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ABSTRACT

Machine unlearning of deep generative model refers to the process of modifying
or updating a pre-trained generative model to forget or remove certain patterns
or information it has learned. Existing research on Bayesian-based unlearning
from various deep generative models has highlighted low efficiency as a significant
drawback due to two primary causes. Firstly, Bayesian methods often overlook
correlations between data to forget and data to remember, leading to conflicts during
gradient descent and much slower convergence. Additionally, they require aligning
updated model parameters with the original ones to maintain the generation ability
of the updated model, further reducing efficiency. To address these limitations,
we propose an Efficient Bayesian-based Unlearning method for various deep
generative models called EBU. By identifying the relevant weights pertaining to
the data to forget and the data to remember, EBU only preserves the parameters
related to data to remember, improving the efficiency. Additionally, EBU balances
the gradient descent directions of shared parameters to adeptly manage the conflicts
caused by the correlations between data to forget and data to remember, leading to
a more efficient unlearning process. Extensive experiments on multiple generative
models demonstrate the superiority of our proposed EBU.

1 INTRODUCTION

In recent years, there have been significant advancements in deep generative models, showcasing their
ability to produce synthetic images of exceptional quality (Wei et al., 2022; Li et al., 2022; Nichol
& Dhariwal, 2021). These models typically rely on large volumes of training data to effectively
learn and generate high-quality outputs (Wang et al., 2022; Cai & Zhu, 2015). However, the use of
unauthorized data for training can lead to issues such as data misuse and privacy breaches (Li et al.,
2021; Deepa et al., 2022; Wang et al., 2023c), raising concerns about the potential for these models
to generate misleading or inappropriate content (Heng & Soh, 2024; Fan et al., 2024). Consequently,
there is an urgent need to develop methods for mitigating the influence of specific data on pre-trained
generative models.

The machine unlearning concept (Bourtoule et al., 2021) is proposed to demonstrate the problem
that requires the trained machine learning models unlearn from specific data instances. Significant
efforts have been made to advance the field of machine unlearning (Gupta et al., 2021; Sekhari et al.,
2021; Nguyen et al., 2022).When it comes to the unlearning of multiple deep generative models, prior
research has tackled this task by proposing Bayesian-based unlearning methods, albeit with certain
inefficiency limitations (Chen et al., 2021; Deepanjali et al., 2021; Schuhmann et al., 2022; Heng &
Soh, 2024; Fan et al., 2024). We attribute the inefficiency of Bayesian-based machine unlearning
methods to two primary causes. Firstly, they neglect correlations between data to remember and data
to forget (Heng & Soh, 2024; Wang et al., 2023a; Fan et al., 2024), leading to conflicts during gradient
descent and much slower convergence, thereby exacerbating inherent inefficiencies. Secondly,
Bayesian-based unlearning methods require aligning updated model parameters with the original ones
to maintain generative ability of updated model (Heng & Soh, 2024; Wang et al., 2023a), introducing
additional inefficiencies, notably prolonging the unlearning process.
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Given the inefficiency limitations of existing Bayesian-based unlearning methods (Chen et al., 2021;
Deepanjali et al., 2021; Schuhmann et al., 2022; Fan et al., 2024), we seek to enhance the efficiency of
Bayesian-based forgetting methods. We propose EBU to stress the two fold limitations of Bayesian-
based unlearning methods. Firstly, we selectively retain memory of parameters crucial for data to
remember (Sener & Koltun, 2018; Désidéri, 2012), while updating parameters associated with data to
forget, preventing the alignment of the entire model parameters, thereby improving efficiency and
accelerating the unlearning process. Moreover, considering the correlation between data to forget and
data to remember, EBU balances gradient updates on shared parameters associated with both types
of data. This balancing mitigates conflicting gradient descent directions, narrowing conflicts, and
further enhancing the efficiency of the unlearning process. Notably, the proposed EBU substantially
improves the efficiency of the unlearning process and lays the groundwork for more effective model
adaptation in deep generative models.

We summary our main contributions in short as follows:

• We introduce EBU, a groundbreaking framework that dramatically enhances the efficiency
of machine unlearning in deep generative models by effectively resolving the conflicts
between forgetting and remembering processes. This innovation significantly improves both
concept-wise and class-wise unlearning.

• EBU strategically preserves critical parameters tied to the data that must be remembered,
making the unlearning process in Bayesian-based models far more efficient and streamlined
than previous approaches.

• By incorporating a novel mechanism to balance gradient updates for forgetting and remem-
bering, EBU accelerates the entire unlearning process, ensuring faster and more reliable
performance.

• Extensive experiments across diverse datasets and generative models clearly demonstrate the
superior performance of EBU, proving its effectiveness and efficiency compared to existing
baseline methods.

2 RELATED WORK

Machine unlearning for generative model In recent years, the researchers have made efforts in
unlearning of generative model. Several works proposed to unlearning from GANs by utilizing the
discriminator (Kong & Chaudhuri, 2023; Chen et al., 2021; Sun et al., 2023), but these methods
can’t be applied to other generative models due to they only suit for paradigm of GANs. There are
some works realizing unlearning of generative model by modifying the weights (Bau et al., 2020;
Tarun et al., 2023), but it is still a challenge to accurately identify model weights associated to the
forgetting tasks accurately. Some researchers proposed Bayesian based unlearning methods that can
be applied to various generative models (Heng & Soh, 2024; Nguyen et al., 2020; Fan et al., 2024; Fu
et al., 2022; 2021), but they need to trade off between forgetting the posterior distribution of data to
forget and not entirely forgetting posterior distribution of the original training data to preserve the
generative models’ ability, causing conflicts due to the correlations between the data to forget and the
original training data.

Difference between EBU and prior methods Our proposed EBU is a Bayesian based unlearning
method and can be compatible with any generative models, but advanced with the existing Bayesian
based unlearning methods (Heng & Soh, 2024; Nguyen et al., 2020; Fan et al., 2024), our method
reduce the conflicts by balancing the gradient descent directions of the parameters shared by the
forgetting and remembering processes. We identify these shared parameters by analyzing correspond-
ing weight saliency maps during the unlearning process. In contrast to previous methods that use
saliency maps to identify parameters for updates (Fan et al., 2024), our approach dynamically selects
parameters specifically related to forgetting and remembering during the fine-tuning process. This
dynamic selection allows us to guide the gradient descent directions for forgetting and remembering
separately, while keeping unrelated parameters unchanged. By preventing optimization conflicts
between the two tasks, our method not only enhances unlearning efficiency but also ensures more
precise parameter updates, leading to superior performance.
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3 PRELIMINARY

3.1 PROBLEM DEFINITION

We give a brief introduction of the forgetting process of the deep generative model. Given a pre-
trained generative model Gθ with parameter θ trained on the dataset D = {(Xn, Y n)}Nn=1, where N
is the number of categories in the dataset. Without accessing the training data, we generate forgetting
set Df and remembering set Dr using the model Gθ. Here, Df = {(Xn

f , Y
n
f )}Nf

n=1 denotes the set
of data to forget and Dr = {(Xn

r , Y
n
r )}Nr

n=1 denotes the set of data to remember, with Nr +Nf ≤ N .
In this context, Xn

f and Y n
f denote the data to forget and corresponding labels for category n. Xn

r

and Y n
r denote the data to remember and the corresponding labels for category n. Our goal is to

forget the assigned set Df from the pre-trained generative model Gθ while keeping the generation
quality of the remaining samples in Dr by fine-turning the pre-trained deep generative model. The
fine-tuned model Gθ∗ with parameters θ∗ is expected to forget all samples in Df while retaining the
ability to generate samples conforming to the distribution pθ∗(Dr) ∼ Gθ∗(Xr|Yr) that is expected
to align with the distribution of the data to remember p(Dr). For clarity and ease of representation,
all model parameters used in this paper are denoted as the set of their individual elements. For
instance, θ = {θ1, θ2, . . . , θi, . . . , θk}, where k represents the total number of elements within θ and
θi denotes the ith element of the model parameters.

3.2 MOTIVATION

We are interested in forgetting specified samples from a pre-trained diffusion model. Prior work
attempted to forget data from a model to ensure the privacy in machine learning models by deleting
only specific shards (Bourtoule et al., 2021), thereby forgetting these assigned shards. Moreover,
building on the ideas from (Heng & Soh, 2024; Nguyen et al., 2020), they implemented forgetting
of model by forgetting the posterior belief of data Df while not forgetting the posterior belief
given the full data D. As suggested by (Heng & Soh, 2024), using Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) keeps the posterior belief of the full data pθ(D), preventing
catastrophic forgetting. However, this approach hinders the forgetting process by maintaining the
posterior belief of full data pθ(D). A more reasonable solution is to remember the posterior belief of
Dr while forgetting the posterior belief of Df . The weights for forgetting pθ(Df ) and remembering
pθ(Dr) are denoted as θf and θr, respectively. Fast forgetting of Df can be achieved by keeping θr
consistent with its original values and leaving θf unchanged. Moreover, the overarching unlearning
process necessitates a delicate trade-off between forgetting pθ(Df ) while retaining aspects of pθ(D).
The parameters affected by this trade-off are those within θf ∩ θ = θf . When compared to the
general unlearning approach, focusing solely on addressing conflicts within θr ∩ θf ⊆ θf results in
a smaller negative impact on the unlearning process, thereby potentially accelerating it.

4 METHOD

We introduce a novel unlearning method EBU aimed at expediting the forgetting process of pre-
trained deep generative models while preserving the quality of the generated images. We present a
comprehensive theoretical analysis to underpin our proposed EBU in Section 4.1, elucidating the
underlying rationale behind our method’s efficacy in resolving conflicts inherent in the unlearning
process. In particular, EBU comprises two key components. First, we introduce a partial parameter
alignment method in Section 4.2, which significantly enhances unlearning efficiency. Second, in
Section 4.3, we propose an effective approach to mitigate optimization conflicts between remembering
and forgetting, further accelerating the unlearning process.

4.1 THEORETICAL ANALYSIS

The optimization objective of the unlearning of deep generative models is to minimize the expected
loss functions Lf and Lr over the distributions of forgetting dataset p(Df ) and remembering dataset
p(Dr):

O1 = min
{θf ,θr}

Ep(Df )[Lf (Xf ,θf )] + Ep(Dr)[Lr(Xr,θr)] (1)

3
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But the distributions p(Df ) and p(Dr) are unavailable, and one solution is to optimize the forgetting
task and remembering task independently. However, it’s important to note that the data to forget and
the data to remember might be related. If handle the remembering and forgetting separately, we could
lose important information because the parameters involved in both tasks might conflict with each
other (Sener & Koltun, 2018). Thus training the data of forgetting and remembering simultaneously
is another solution, which results in a new optimization task:

O2 = min
θ

1

Nf +Nr

Nf∑
i=1

Lf (X
i
f ,θ) +

Nr∑
i=1

Lr(X
i
r,θ) (2)

However, this training approach overlooks the distinction between the data intended for forgetting
and the data intended for remembering. As a result, it may hinder the model from converging since
the gradient of the first loss term and the second loss term in Equation (2) may update in opposite
direction. In the context of deep generative model, according to the PAC-Bayesian theory (McAllester,
1998), there exists a error ϵ(N, ζ) ≥ 0 with probability 1− ζ over independent draws monotonically
decreasing with the training samples N between the expected optimization objective and actual
optimization objective (McAllester, 1998) (the detailed proof is provided in Appendix C). We can
obtain the following proposition:
Proposition 4.1. The bounds between the optimization objective O1 and O2:
|O1 −O2| ≤Ep(Df )[Gθf

(Xf |Yf )−Gθe(Xf |Yf )] + Ep(Dr)[Gθr
(Xr|Yr)−Gθe

(Xr|Yr)]

+ ϵ(Nf +Nr, ζ)
(3)

where θe denotes the optimal solution of Equation (2) and Gθ(·) denotes the deep generative model
with parameters θ(·).

Considering the differences and connections between the data to forget and the data to remember at
the same time, we rewrite the optimization objective as:

O∗ = min
{θf ,θr,θe}

1

Nf

Nf∑
i=1

Lf (X
i
f ,θf ) +

1

Nr

Nr∑
i=1

Lf (X
i
r,θr)

subject to |Ep(Df )[Gθf
(Xf |Yf )−Gθe

(Xf |Yf )]| ≤ ξ

|Ep(Dr)[Gθr (Xr|Yr)−Gθe(Xr|Yr)]| ≤ ξ

(4)

The constant ξ controls the closeness between functions. A larger ξ allows functions to be more
task-specific. The expectations in Equation (4) can’t be calculated directly due to the lack of the
accessibility to the probability distribution p(·). But if the function is Lipschitz in the parameterization,
the distance between the functions can be measured by the distance between parameters (Cervino
et al., 2021), thus we have another proposition to estimate the expectations:
Proposition 4.2. The two generative models can be seen as two parametric functions, thus it has:

Ep(Df )[Gθf
(Xf |Yf )−Gθe(Xf |Yf )] ≤ L|θf − θe|,

Ep(Dr)[Gθr (Xr|Yr)−Gθe(Xr|Yr)] ≤ L|θr − θe|
(5)

where L is a constant that decides the scope.

Thus through imposing constraints on parameters, the Equation (4) can be solved. The forgetting
and remembering tasks relate to part parameters θf and θr, we present how to select and modify the
corresponding θf and θr to unlearn from deep generative model in Section 4.2.

4.2 PARTIAL PARAMETER ALIGNED BAYESIAN UNLEARNING

Existing works (Chen et al., 2021; Deepanjali et al., 2021; Schuhmann et al., 2022) for unlearning
of deep generative models need to fully align the parameters between the unlearned model and
original pre-trained model. This leads to highly inefficient unlearning. In this section, we propose
a technique which only needs to partially align the parameters between the unlearned model and
original pre-trained model, thereby improving the efficiency significantly. Specifically, in Section 4.1,
we define the optimization objective of unlearning from deep generative models in Equation (4), but
the expectations can’t be calculated directly. As described in Proposition 4.2, the expectations can be
estimated by accessing the corresponding parameters, then this optimization objective can be solved.
In this section, we propose efficient ways to select the corresponding parameters θf and θr, thereby
solving the Equation (4) to unlearn from the deep generative models efficiently.

4
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Learning objective for the data to forget To forget Df from the pre-trained deep generative
model Gθ, we need to make the posterior distribution p(Xf |θ∗, Yf ) far from the real distribution
p(Xf |Yf ) as much as possible. One way is to make the unlearned model to generate samples from
a mandatory distribution q̃(Xf |Yf ), which should be different from the real distribution (Heng &
Soh, 2024) and usually set it to a standard Gaussian distribution. We minimize the KL divergence
between the generated sample distribution from the unlearned model and the designated mandatory
distribution during the fine-turning process:

Lf = Ep(Yf )DKL(p(Xf |θ∗, Yf )||q̃(Xf |Yf )) (6)

we denote the class distributions in Df as p(Yf ). In this way, the fine-tuned generative model Gθ∗

will change the learned distribution of the forgotten set to mandatory distribution after fine-tuning,
so as to achieve the purpose of making the model forget. Accordingly, the parameters θf related to
forgetting task should be far from the original parameters.

Learning objective for the data to remember During the forgetting process, it’s necessary to
strengthen the memory of generative model for the data in the remember set Dr. We thus replay
the data from Dr during the forgetting process to keep the model’s ability to generate the data to
remember. By replaying data in Dr, the updated posterior distribution of Dr denoted as p(Xr|θ∗, Yr)
is forced to approach to the original posterior distribution p(Xr|θ, Yr), preserving the model’s ability
to generate the data to remember. To replay data from Dr, we define an optimization function as:

Lr = Ep(Yr)DKL(p(Xr|θ∗, Yr)||p(Xr|θ, Yr)) (7)

through this optimization function, the generated sample distribution of Dr with the unlearned model
Gθ∗ will be consistent with the distribution of the data to remember on the original model Gθ.

During the optimization process, the posterior distribution of Dr on model Gθ∗ should be close to
the posterior distribution on Gθ, whereas on Df the situation is reverse. That is we should keep
the model parameters θr related to remembering close to the corresponding parameters in θ and
θf related to forgetting far from the corresponding parameters in θ. We use θ−f

r to represent the
remaining parameters of θr after removing the overlap with the θf , and θ̂−f

r denotes the elements of
the original pre-trained model parameters θ with same parameter index of the elements in θ−f

r :

θ̂−f
r = θ ×O(θ−f

r ), θ−f
r = θr\(θr ∩ θf ) (8)

where O(·) sets the non-zero values in the set to 1 and leave the zero values unchanged, the symbol
× denotes element-wise multiplication and \ denotes the operation of obtaining complement set.

Motivated by the continue learning algorithm EWC (Kirkpatrick et al., 2017), we make θr close
to θ at each gradient step to enforce the model remembering Dr, and the optimization function of
remembering Dr can be further rewritten as follows,

Lc
r = Lr +

γ

2

∑
i

Fi(θ
−f
r,i − θ̂−f

r,i )
2 (9)

where γ is a constant that regularizes the degree that make the new parameters close to the old
parameters, i denotes the index of the element, and F is the set of diagonal elements of the fisher
information matrix calculated on θ. Existing work (Chen et al., 2021; Heng & Soh, 2024) aligns
the entire parameters θ and θ∗. In contrast, our work only needs to partially align θ−f

r,i and θ̂−f
r,i in

Equation (9), thereby speeding up the unlearning process.

4.3 OPTIMIZATION CONFLICTS MITIGATION

Forgetting data Df from the generative model changes part of the parameters, while replaying data
Dr to the model also changes part of parameters, we denote the two parts of parameters as θf and
θr respectively. However, data from different categories may exhibit similar patterns, potentially
influencing a shared set of model parameters, i.e., θf ∩ θr. As shown in Figure 1, the changed
parameters θf and θr partially overlap. When optimizing Lr and Lf simultaneously, the gradient
update directions for forgetting and replaying conflict, hindering the model’s ability to forget or
remember effectively and slowing convergence. To address this, a trade-off strategy is needed
to balance forgetting and remembering during optimization. In this section, we propose efficient
methods to mitigate these conflicts and accelerate the unlearning process.

5
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(a) Existing unlearning methods (Nguyen et al.,
2020; Heng & Soh, 2024)

(b) Our proposed unlearning method EBU

Figure 1: In Figure 1(a), we illustrate the conflict inherent in existing unlearning methods, where
the conflict spans across all θf when forgetting specific data while not entirely forgetting the entire
dataset. Figure 1(b) depicts our proposed unlearning method, which narrows the scope of conflicted
parameters to θf ∩ θr, we also employ a trade-off parameter α to balance the conflicted gradient
descent directions, mitigating their negative impact on the unlearning process.

Parameters selection During the unlearning process, the parameters that are closely related to the
forgetting and remembering tasks will exhibit larger gradients compared to the irrelevant parameters.
This observation allows us to identify the parameters pertinent to each task based on their gradients
at each gradient step. We denote the entire set of parameters of the deep generative model as θ∗

t at
the t-th gradient step. The optimization functions for forgetting and remembering at this step are
represented by Lt

f and Lt
r, respectively. By analyzing these gradients, we can effectively discern

which parameters need to be adjusted for efficient unlearning.

We utilize a constant σ ∈ [0, 1] to determine the proportion of selected parameters based on the
gradient values ∇θ∗

t
Lt
f . By applying this threshold, we can identify the parameters θt

f associated
with forgetting at the t-th step by selecting the top σ proportion of gradient values.

θt
f = θ∗

t ×O(top-σ(∇θ∗
t
Lt
f )) (10)

We fill zeros in the empty spaces to maintain the size of the selected parameters consistent with the
original parameters. This ensures that the overall structure of the parameter set remains intact while
allowing us to focus on the relevant parameters associated with the forgetting task. By preserving the
dimensions of the parameter set, we can seamlessly integrate these updates into the model without
disrupting its architecture.

Gradient Modulation To effectively resolve conflicts arising from shared parameters, we propose a
straightforward trade-off method that balances the effects of forgetting and remembering by averaging
their gradients. This approach is particularly effective because it neutralizes the competing influences
of both processes, preventing one from undermining the other.

By defining θt,r
f = θt

f ∩ θt
r to represent the parameters in θt

f that overlap with those in θt
r, we

ensure that we focus on the shared parameters that are crucial for both forgetting and remembering.
Averaging the gradients for these overlapping parameters allows us to update them in a way that
accommodates the requirements of both tasks simultaneously:

∇θt,r
f
Lt
f := α∇θt,r

f
Lt
r ⊕ (1− α)∇θt,f

r
Lt
f (11)

where ⊕ denotes the element-wise sum operation applied to elements with the same index, while
α ∈ (0, 1) serves as a trade-off constant. Adjusting α allows us to steer the gradient descent directions
of the parameters shared between θt

f and θt
r (we delve into the effect of different α values on the

unlearning process in Section 5.5).

This method effectively mitigates optimization conflicts by ensuring that updates made for forgetting
do not completely override the updates for remembering, and vice versa. As a result, we maintain
a balanced influence on the shared parameters, which leads to a more coherent unlearning process.

6
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This dual consideration enhances overall model efficiency and ensures that important information is
preserved while unwanted knowledge is successfully removed.

During the optimization process, it is crucial to effectively erase the data we wish to forget from
the deep generative model. To achieve this, we adjust the gradient descent to be more focused on
forgetting, thereby accelerating the forgetting process. We denote Lc,t

r as the t-th instance of the
forgetting loss Lc

r (refer to Equation Equation (9)).

∇θ∗
t
(Lt

f + Lc,t
r ) := ∇θ∗

t
(Lt

f + Lc,t
r ) +∇θt

f
Lt
f (12)

This targeted approach ensures that the model prioritizes updates that facilitate the removal of
unwanted information while maintaining the integrity of the data we intend to remember.

Consequently, the overall optimization process can be summarized as:

θ∗
t+1 ← θ∗

t − λ∇θ∗
t
(Lt

f + Lc,t
r ), θ∗

0 = θ (13)

where λ is the learning rate. This formulation highlights how the parameters are updated by taking
into account both the forgetting and remembering objectives, ensuring a balanced approach that
facilitates effective unlearning. The comprehensive algorithm of our proposed method is outlined in
Algorithm 1.

Algorithm 1 Unlearning Process of EBU

1: Input: Pre-trained model Gθ, data to retain Dr = {(Xn
r , Y

n
r )}Nr

n=1, data to forget Df =

{(Xn
f , Y

n
f )}Nf

n=1, desired distribution q̃(Xf |Yf ), learning rate λ, initial parameter set θ∗
0 = θ

2: Output: Fine-tuned model Gθ∗ , θ∗ = θ∗
T

3: for t = 0 to T -1 do
4: Compute gradients ∇θ∗

t
Lt
f = ∂Lt

f/∂θ
∗
t and ∇θ∗

t
Lt
r = ∂Lt

r/∂θ
∗
t

5: Select parameter subsets θt
f and θt

r based on the top δ proportion values of∇θ∗
t
Lt
f and∇θ∗

t
Lt
r

respectively.
6: Identify overlapping parameters: θt,r

f = θt,f
r = θt

r ∩ θt
r

7: Calculate gradients for overlapping parameters: ∇θt,r
f
Lt
f := α∇θt,r

f
Lt
f ⊕ (1− α)∇θt,f

r
Lt
r

8: Update parameters: θ∗
t+1 ← θ∗

t−λ∇θ∗
t
(Lt

f+Lc
r), ∇θ∗

t
(Lt

f+Lc
r)← ∇θ∗

t
(Lt

f+Lc
r)+∇θt

f
Lt
f

9: end for

5 EXPERIMENT

In this section, we demonstrate the ability of proposed EBU in assisting various deep generate models
unlearning certain classes and concepts. We compare our method with the existing state-of-the-art
unlearning baselines, highlighting the effectiveness of EBU.

5.1 EXPERIMENT SETTING

Implements We focus on two types of forgetting tasks: class-wise forgetting and concept-wise
forgetting. We utilize two types of generative models: the pre-trained DDPM (Ho et al., 2020) and
the Stable Diffusion (SD) model (Rombach et al., 2022) to assess the performance of our proposed
method. The hyperparameters α and δ are set to 0.6 and 0.5, respectively. All experiments are
conducted using 4 Nvidia V100 GPUs with 32 GB memory. More detailed experiment implements
of both the class-wise unlearning and concept-wise unlearning tasks can be found in Appendix B.2.

Baselines We compare our proposed EBU with other five different state-of-the-art methods to evaluate
the efficiency and fidelity of EBU. We choose three general unlearning methods: FT (Warnecke et al.,
2021), GA (Thudi et al., 2022) and Retraining, two unlearning methods for deep generative methods:
SA (Heng & Soh, 2024) and ESD (Gandikota et al., 2023). The detailed description and implements
of the baseline methods are presented in Appendix B.

Metrics To evaluate the fidelity of unlearning methods for class-wise forgetting, we use two metrics:
classification entropy (CE) for forgetting classes and remaining accuracy (RA) for the accuracy of
the remaining classes in the unlearned model. For assessing efficiency, we consider unlearn time

7
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(UT) and relearn time (RT). UT measures the time for the unlearning process, while RT counts
the gradient updating steps needed for the unlearned model. We also use the Fréchet Inception
Distance (FID) to assess the image quality of the classes to remember, aiming for minimal impact on
their quality by the unlearned model. As for the concept-wise forgetting, we use two metrics: Clip
Score (CS) (Hessel et al., 2021) and Nudity Score (NS) used in (Gandikota et al., 2023) to evaluate
the forgetting performance of different unlearning methods.

5.2 CLASS-WISE FORGETTING

The class-wise forgetting is to unlearn the specified classes, we evaluate the class-wise forgetting
performance of unlearning methods on pre-trained DDPM and SD.

Main results on DDPM We conduct experiments on CIFAR10, STL10 and CIIFAR100. The experi-
ment results of DDPM on CIFAR-100 and STL10 are presented in Table 6, the experiment results
on CIFAR10 are presented in Appendix D.4, multiple unlearning methods are applied to pre-trained
DDPM to demonstrate the effectiveness of unlearning methods. Here we present the experiment
results of unlearning class 0, and the additional experiment results are shown in Appendix D.

Table 1: The experiment results of different unlearning methods on CIFAR100 and STL10 datasets
with pre-trained DDPM, and class 0 is selected to be unlearned. The best results are bolded and the
second best results are underlined.

Method CIFAR-100 STL10
CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓) CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓)

FT (Warnecke et al., 2021) 1.247 1.946 0.245 2000 298.6 1.631 1.628 0.104 2000 187.4
GA (Thudi et al., 2022) 1.222 1.499 0.239 2000 40.44 1.749 1.722 0.120 2000 332.7
SA (Heng & Soh, 2024) 1.306 1.463 0.401 20000 40.28 1.822 0.089 0.968 30000 48.87
SalUn (Fan et al., 2024) 1.218 1.482 0.381 2000 59.28 0.596 0.092 0.990 4000 75.91

EBU (Ours) 1.431 1.398 0.419 200 37.88 1.917 0.086 0.955 200 48.35

It can be seen from Table 1 that our EBU demonstrates a significant reduction in RT while maintaining
performance on par with other baseline methods. Notably, our approach achieves superior results
across most evaluation metrics, emphasizing both its efficiency and robustness. Moreover, EBU excels
in CIFAR100 datasets with a higher number of classes, where the intricate correlations between the
data to forget and the data to remember are more effectively managed. This highlights our method’s
ability to handle the optimization conflicts between the remembering and forgetting, improving the
efficiency and ensuring reliable and scalable unlearning performance.

(a) CE of Df varies with unlearning time. (b) CE of Dr varies with unlearning time.

Figure 2: The changes of cross-entropy (CE) of Df and Dr with different unlearning methods when
unlearning time increases.

To further demonstrate the efficiency of our proposed method, we plotted the changes in classification
cross-entropy of CIFAR10 when unlearning class 0 during the unlearning process in Figure 5 (more
details are presented in Appendix D.2). It’s evident that our method can forget the designated
categories within a short time (within 102 seconds) without affecting the remaining data. Moreover,
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to further validate the presence of optimization conflicts on shared parameters, we report the average
number of parameters related to both forgetting and remembering during the fine-tuning process in
Appendix D.1.

Main results on SD We perform the class-wise forgetting on pre-trained standard SD model, ten
classes of Imagenette are chosen to evaluate the performance of unlearning from SD. We present
the experiment results of forgetting class ‘cassette player’ in Table 2 , and the detailed experiment
settings can be found in Appendix B. We further present the generated samples of different unlearning
methods with prompt “An image of cassette player” in Figure 9 (refer to Appendix D.4).

Table 2: Experiment results of different unlearning methods
on pre-trained SD, class ‘cassette player’ is selected to be
unlearned. The best results are bolded and the second best
results are underlined.

Method Imagenette
CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓)

ESD (Gandikota et al., 2023). 1.089±.120 0.159±.022 0.936±.010 1000 201.9±2.33

SA (Heng & Soh, 2024) 1.196±.084 0.027±.002 0.998±.001 50000 211.7±4.01

SalUn (Fan et al., 2024) 1.139±.024 0.054±.032 0.976±.011 1000 201.7±2.11

EBU (Ours) 1.148±.054 0.041±.005 0.999±.001 1000 199.9±2.01

It can be seen from Figure 9 that,
compared with SA, our proposed
method drastically reduces the time re-
quired for forgetting, with only 1000
steps required to achieve good re-
sults whereas SA requires 50000 steps
for complete forgetting, resulting in
50× efficiency improvement, also
compared with ESD and SalUn, our
method has better unlearning perfor-
mance with same gradient descent steps and better preserves the model’s ability to generate samples
of data to remember. The experiment results demonstrate the effectiveness and efficiency of our
proposed methods in unlearning from deep generative models.

Unlearning process visualization We visualize the unlearning process of forgetting class 0 from
the pre-trained DDPM in Figure 6 (refer to Appendix D.3), displaying a total of 200 steps. The
samples of all baseline methods can be found in Appendix D. Our proposed method exhibits superior
forgetting performance with the fewest forgetting time steps.

5.3 CONCEPT-WISE FORGETTING

Concept-wise forgetting involves the unlearning of specific concepts, often employed in the text-
to-image models. In this study, we evaluate the concept-wise forgetting performance of various
unlearning methods on the classic text-to-image model, SD. Our methodology begins by generating
samples with empty prompts. Subsequently, we establish the mandatory distribution of samples for
specific concepts as the distribution of these randomly generated samples.

Table 3: The experiment results of unlearning “nu-
dity” on SD model, four baseline methods are used.

Metric EBU SA ESD SalUn SPM

Clip Score 0.1900 0.1747 0.1895 0.1396 0.1874
Nudity Score 0.5988 0.4615 0.3557 0.5062 0.5528

Forgetting Nudity We assess the effectiveness
of our EBU in forgetting nudity, the quantita-
tive results are presented in Table 3. Moreover,
we illustrate the performance of unlearning nu-
dity in Figure 3 (more samples can refer to Ap-
pendix D.5). To ensure fair comparison across
experiments, we set the gradient descent steps to 1000 for all unlearning methods. Using the prompt
“a person with full nudity,” we generate samples with different seeds.

(a) SD. (b) Ours. (c) SalUn. (d) SA. (e) ESD.

Figure 3: The generated samples of nude person with prompt “a person with full nudity”.

Comparative analysis with baseline methods shows that our approach consistently achieves the
lowest levels of nudity, even though the number of gradient descent steps remains the same. This
demonstrates the effectiveness of our method in selectively unlearning undesired content while
maintaining efficiency. We also evaluate the performance of forgetting art style in Appendix D.5.
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5.4 ABLATION STUDY

Table 4: The ablation study of our EBU method on the
CIFAR-10 dataset using DDPM.

Ablation CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓)

Partial Align

EBUw/o PA 0.8517 0.0353 0.9625 200 33.78

Optimization Conflicts Mitigation

EBUw/o Lf
0.8213 0.0224 0.9888 200 35.38

EBUw/o Lc
r

0.8212 0.0227 0.9886 200 35.37
EBUw/o Mitigation 0.8033 0.0386 0.9888 200 42.42

EBU 0.8550 0.0110 0.9931 200 29.92

We have also conducted an ablation
study of our proposed EBU. To eval-
uate the effectiveness of the Partial
Align (PA) module, we remove the
PA module (denoted as EBUw/o PA).
As for the effectiveness of Optimiza-
tion Conflicts Mitigation module, we
remove the Lf , Lc

r and the mitiga-
tion operation respectively. The abla-
tion study is performed on CIFAR10
dataset and the results are presented
in Table 4. As shown in Table 4, the
removal of the Proximal Attention (PA) significantly degrades the forgetting performance, under-
scoring its critical role. Furthermore, the contributions of both the forgetting loss Lf and the
reconstruction loss Lr are evident in improving the overall forgetting. The proposed optimization
conflict mitigation mechanism effectively reduces conflicts between objectives, leading to enhanced
forgetting performance. These results demonstrate that both PA and conflict mitigation are essential
components for optimizing the forgetting process.

5.5 EFFECT OF α AND δ

We assess the impact of α and δ on the forgetting process by varying their values within the range
0.2, 0.4, 0.6, 0.8. Our experiments are conducted on CIFAR10, and results are depicted in Figure 4.
The effect of α: We observe that increasing α affects the generated samples of both data to remember

(a) CEf (b) CEr (c) RA (d) FID

Figure 4: We investigate the impact of α and δ on the forgetting performance through experiments
conducted on the CIFAR10 dataset. We vary the values of α and δ within the range 0.2, 0.4, 0.6, 0.8.

and data to forget simultaneously. Specifically, within a small range of α, the quality of generated
samples for data to remember improves. Conversely, within a larger range, the performance of
forgetting is enhanced. The effect of δ: Furthermore, the value of δ determines the proportion of
parameters attributed to forgetting and remembering. As δ increases, the quality of generated samples
for data to remember improves. However, when δ reaches a large value, the forgetting process is
impacted adversely due to the involvement of more irrelevant parameters.

6 CONCLUSION AND LIMITATION

In conclusion, we addressed the inefficiencies existed in Bayesian-based unlearning methods for deep
generative models. We proposed an Efficient Bayesian-based Unlearning method (EBU), which sig-
nificantly enhances the unlearning process. By pinpointing relevant parameters and balancing gradient
descent directions of data to forget and data to remember, EBU preserves essential parameters and
manages conflicts effectively, resulting in a more efficient unlearning process. Extensive experiments
across various generative models and unlearning tasks demonstrate the superior performance of EBU,
validating its effectiveness and efficiency in unlearning tasks.
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A RELATED WORK OF MACHINE UNLEARNING

Machine unlearning dedicates to enabling the removal of specific data from trained machine learning
models (Bourtoule et al., 2021; Nguyen et al., 2022), encompasses methods ranging from data
reorganization to direct model manipulation. While some approaches focus on preventing model
learning by reorganizing data or constructing fake data (Felps et al., 2020; Tarun et al., 2023; Zhang
et al., 2022; Cao & Yang, 2015), they often introduce extra information that impacts learning. Some
researchers tried to unlearn sample through manipulating the model directly (Baumhauer et al., 2022;
Golatkar et al., 2020; Sekhari et al., 2021; Wang et al., 2024; 2023b), i.e., modifying weights to remove
sample information or adjusting model updates based on data statistics during training (Golatkar
et al., 2020; Sekhari et al., 2021). Notably, research primarily focuses on unlearning for classification
models, with relatively less attention to generative models, which is still in its early stages.

B EXPERIMENT SETTING

B.1 THE DESCRIPTION OF BASELINE METHODS

General unlearning methods: We choose Retraining, FT (Warnecke et al., 2021) and GA (Thudi
et al., 2022) as basic unlearning baseline methods. Retraining realizes unlearning by updating on
the training data with removal of data. FT builds on close-form updates of model parameters to
unlearn the features and labels. GA limits the overall change in weights during SGD to facilitate the
approximate unlearning.

Unlearning for generative models: We use two most recent unlearning methods for generative
models SA (Heng & Soh, 2024) and ESD (Gandikota et al., 2023). SA derives from continual
learning to selectively forget concepts in pretrained deep generative models. ESD erases a visual
concept from a pre-trained diffusion model, given only the name of the style and using negative
guidance as a teacher model.

B.2 IMPLEMENT DETAILS

Class-wise forgetting: Class-wise forgetting targets the removal of generations belonging to
specified classes from deep generative models. For the DDPM, we fine-tune it for 200 gradient
update steps using a batch size of 32 and a learning rate of 1e-5. We conduct comparisons on two
datasets, CIFAR-10 and STL10, employing various methods. Regarding the SD model, we fine-tune
it for 1000 gradient update steps with a learning rate of 1e-5. We focus on unlearning classes from
Imagenette, which comprises ten easily identifiable classes from ImageNet. The detailed experiment
results can be found in Section 5.2.

Concept-wise forgetting: The concept-wise unlearning of deep generative models aims to eliminate
generations containing specific concepts. We fine-tune the SD model using 1000 gradient descent
steps, with a batch size set to 1 and a learning rate of 1e-5. We consider two types of concepts: art
style and nudity. Detailed experiments and results can be found in Section 5.3.

B.3 THE DETAILS OF FORGETTING FROM DDPM

Baseline implement. For the baseline methods, we implement them as recommend. Note that the
baseline methods FT, GA are proposed for classification model, but they can be adapted to generative
model easily. For FT, it only needs data to remember during the unlearning process, thus we change
the original loss function of FT as Lr. For GA, it only needs data to forget, thus we set the loss
function of GA as −Lf . And for Retraining, we just fine-tune the pre-trained model with Dr directly.
For SA, we implement it as recommend.

Experiment settings In our experimental setup, we utilize a simple yet effective Residual model
architecture with 3 input and output channels, employing a channel size of 128 and 2 residual blocks.
Attention resolutions are set at 16, with dropout probability at 0.1. For diffusion, we implement a
linear beta schedule spanning from 0.0001 to 0.02 over 1000 diffusion timesteps. During training, we
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employ a batch size of 32 for 20,0 iterations, with logging every 50 iterations and visualization of
100 samples. Optimization is conducted using the Adam optimizer with a learning rate of 0.0001
and a weight decay of 0.000, while gradients are clipped at a threshold of 1.0. These settings ensure
robust experimentation and reliable evaluation of our proposed methods.

B.4 THE EXPERIMENT SETTINGS OF FORGETTING FROM SD.

Baseline implement We use two baseline methods ESD and SD. For SD, it needs to generate the
data to forget and data to remember, we use the random samples generated by SD as the data to forget
and we then use a empty prompt to generate the data to remember. For ESD, we implement it as
recommended.

Experiment settings In our experiment setup, we utilize the Latent Diffusion model with specific
configurations tailored for unlearning tasks. The diffusion process spans 1000 timesteps, with
linear beta scheduling from 0.00085 to 0.012. We employ a UNet model architecture with attention
resolutions at [4, 2, 1] and two residual blocks. Training involves a base learning rate of 1.0e-05,
and we utilize a LambdaLinear scheduler with a warm-up period of 1 step. The model consists of a
first stage autoencoder with embedded dimensions of 4 and a conditional stage encoder. And all the
unlearning methods are trained with ’xattn’ part parameters while keeping other parts frozen.

C THEORY PROOF

C.1 PAC ASSUMPTION

To give the bound between the solution of multi-task learning problem, the following assumptions
need to be introduced in advance:

Assumption C.1. If function Gθ is probably approximately correct, for all θ ∈ Θ with probability
1− δ over independent draws (Xn, Yn) ∼ p:

|E[L(X,θ)]− 1

N

N∑
i=1

L(Xn,θ)| ≤ ϵ(N, δ) (14)

Assumption C.2. Loss function L(.,θ) is M-Lipschitz continuous.

The Assumption C.1 is a generalization of the law of large numbers for the case in which samples are
iid, where the error is of under 1/N . And under the assumption, we could obtain the proposition:

Proposition C.3. The bounds between the optimization objective O1 and O2:

|O1 −O2| ≤Ep(Df )[Gθf
(Xf |Yf )−Gθe

(Xf |Yf )] + Ep(Dr)[Gθr
(Xr|Yr)−Gθe

(Xr|Yr)]

+ ϵ(Nf +Nr, ζ)
(15)

where θe denotes the optimal solution of Equation (2) and Gθ(·) denotes the deep generative model
with parameters θ(·).

The Equation (15) in the proposition is a direct application of Assumption C.1 over the average
probability distribution and taking the Lipschitz Assumption C.2 over the solutions.

Note that if the function is Lipschitz in the parameterization, there is a connection between the
functional, and parametric constraints:

Proposition C.4. The two generative models can be seen as two parametric functions, thus it has:

Ep(Df )[Gθf
(Xf |Yf )−Gθe

(Xf |Yf )] ≤ L|θf − θe|,
Ep(Dr)[Gθr

(Xr|Yr)−Gθe
(Xr|Yr)] ≤ L|θr − θe|

(16)

Through enforcing the constraint over the parameters, we could remove the expectation and the
dependency over the distribution p(·).
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C.2 THE PAC-BAYESIAN THEORY

PAC-Bayesian theory (McAllester, 1998) seeks to quantify the trade-off between empirical risk
minimization and model complexity, offering insights into the generalization ability of a learning
algorithm. Given a hypothesis classH, the training set D = {(X1, Y1), . . . , (Xn, Yn)} iid sampled
from an distribution p̂ over an instance space S , the real-valued loss function L : H× S −→ [0,∞),
the PAC-Bayes provides the generalization bounds for any posterior q ∈ M1

+(H), and M1
+(H)

is the set of probability measures on a space H. The generalization bounds are dependent on the
empirical performance of q and its closeness to a chosen prior distribution p, the empirical risks of a
posterior distribution q are defined as:

Rs(q) = Eh∼q(h)[
1

n

n∑
i=1

L(h, (Xi, Yi))] (17)

and the true risk of q is defined as:
R(q) = Eh∼q(h)[E(X,Y )∼p̂L(h, (X,Y ))] (18)

Also before introducing the PAC-Bayesian bound, the posterior q and the loss function L need to
satisfy the Assumption C.5.
Assumption C.5. If there exists a constant K>0 and a family E of functions H → R, for any
(X1, Y1), (X2, Y2) ∈ S:

dE(q(h|(X1, Y1)), q(h|(X2, Y2))) ≥ Kd((X1, Y1), (X2, Y2)) (19)
and the loss function L(., (X,Y )) : H → R is in E .

Then for the bounded loss functions, the PAC-Bayesian bound (Catoni, 2003) are defined in Theo-
rem C.6
Theorem C.6. For a probability measure p̂ on S, a loss function L : H × S −→ [0, 1], with
probability at least 1-δ over the n random samples Ŝ draw from p̂, the following equation holds for
any posterior distribution q ∈M1

+(H):

R(q) ≤ Rs(q) +
λ

8n
+

DKL(q||p) + log 1
δ

λ
(20)

the real number δ ∈ (0, 1) and λ>0.

The Theorem C.6 predicts the behavior of q(h|(X,Y )) for any (X,Y ) ∼ p̂ when the posterior q was
learned using the training samples D.

D EXPERIMENT RESULTS

D.1 THE COUNT OF OVERLAPPED PARAMETERS

We have counted the average number of selected forgetting and remembering parameters of the SD
model, as well as the overlapping parameters during the unlearning process. In our experiments,

Table 5: The average count of parameters related to forgetting and remembering and the overlapped
parameters of SD model during the unlearning process.

Forgetting concept Total Forgetting remembering overlapped

Multiple Artists 3.200G 1.605G 1.988G 1.095G
Single Artist 3.200G 1.701G 1.596G 0.867G

Multiple violence concepts 3.200G 1.616G 2.010G 1.100G
Single violence concepts 3.200G 1.675G 1.566G 0.861G

we observed that there is indeed a non-negligible overlap between the parameters θr (retain) and
θf (forget), and we present the count of overlapped parameters in Table 5 . This overlap was
identified through the gradient analysis during the training process, where conflicting updates to
shared parameters were detected.
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D.2 EFFICIENCY ANALYSIS

To further demonstrate the efficiency of our proposed method, we plotted the changes in classification
cross-entropy of CIFAR10 when unlearning class 0 during the unlearning process in Figure 5. It’s
evident from the plot that our method can forget the designated categories within a short time (within
102 seconds) without affecting the remaining data. In contrast, other methods consistently require
more than 103 seconds for the same task. This evidence highlights that our method achieves a
significant improvement in unlearning time and is more efficient than other baseline methods.

(a) CE of Df varies with unlearning time. (b) CE of Dr varies with unlearning time.

Figure 5: The changes of cross-entropy (CE) of Df and Dr with different unlearning methods when
unlearning time increases, experiments are performed on CIFAR10 dataset, class 0 is unlearned.

D.3 UNLEARNING PROCESS

We present the visualization of unlearning process of the unlearning methods with 200 gradient
descent steps on CIFAR10 dataset in figure 6.

D.4 CLASS-WISE FORGETTING

Forgetting from pre-trained DDPM. The full experiment results on CIFAR10 dataset are presented
in Table 6:

Table 6: The experiment results of different unlearning methods on CIFAR10 and STL10 datasets
with pre-trained DDPM, and class 0 is selected to be unlearned. The best results are bolded and the
second best results are underlined.

Method CIFAR-10 STL10
CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓) CEf (↑) CEr (↓) RA (↑) RT (↓) FID (↓)

FT (Warnecke et al., 2021) 0.579±.006 0.580±.001 0.114±.001 2000 75.51±21.1 1.631±.162 1.628±.191 0.104±.005 2000 187.4±21.2

GA (Thudi et al., 2022) 0.627±.005 0.609±.005 0.596±.008 2000 253.6±15.0 1.749±.009 1.722±.007 0.120±.024 2000 332.7±10.1

SA (Heng & Soh, 2024) 0.807±.006 0.009±.001 0.997±.001 20000 19.11±2.41 1.822±.284 0.089±.005 0.968±.013 30000 48.87±2.81

SalUn (Fan et al., 2024) 0.598±.012 0.061±.004 0.996±.003 4000 29.91±2.12 0.596±.018 0.092±.006 0.990±.015 4000 75.91±2.83

EBU (Ours) 0.855±.051 0.011±.001 0.993±.001 200 29.92±4.21 1.917±.021 0.086±.015 0.955±.021 200 48.35±4.32

The visualizations of different unlearning methods unlearn from pre-trained DDPM on CIFAR10 and
STL10 are presented on figure 7 and figure 8.

Forgetting from pre-trained SD. We present the generated samples of different unlearning methods
with prompt ”An image of cassette player” in Figure 9.

D.5 CONCEPT-WISE FORGETTING

Forgetting of Nudity. We illustrate the performance of unlearning nudity of four baseline methods
in Figure 10.
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(a) t=10 (b) t=60 (c) t=110 (d) t=160 (e) t=200

Figure 6: Samples generated by our method, SA, and FT for the classes 0 (”airplane”) and class 1
(”car”) on the CIFAR10 dataset. The class to forget is ”airplane”, and the class to remember is ”car”.
The unlearning step ’t’ varies from 10 to 200.

Forgetting Art style To assess the efficacy of various forgetting methods in unlearning art styles, we
conduct experiments using the SD model. In Figure 11, we present the forgetting results for “Kelly
Mckernan” and “Thomas Kinkade”. Our EBU demonstrates the capability to effectively forget art
styles from the generative model. The figures generated by our method exhibit different colors and
objects compared to the original figures generated by the SD model. This showcases the effectiveness
of EBU in forgetting art styles.

D.6 EFFECT OF HYPER-PARAMETER

The impact of α and δ on the forgetting process, their values are chosen in the range 0.2, 0.4, 0.6, 0.8.
Our experiments are conducted on CIFAR10, and results are depicted in Figure 12.
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(a) Ours. (b) SA.

(c) Retraining. (d) GA. (e) FT.

Figure 7: Unlearn class 0 on CIFAR10 Dataset.
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(a) Ours. (b) SA.

(c) Retraining. (d) GA. (e) FT.

Figure 8: Unlearn class 0 on STL10 Dataset.

(a) SD. (b) Ours. (c) SA. (d) ESD.

Figure 9: Generated samples of object ”cassette player” with prompt ”An image of cassette player”.

(a) SD. (b) Ours. (c) SA. (d) ESD.

Figure 10: The generated samples of nude person with prompt “a person with full nudity”.
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(a) SD. (b) Ours. (c) SA. (d) ESD.

Figure 11: The generated samples of art style ‘Kelly Mckernan’ (top line) and ‘Thomas Kinkade’
(bottom line) with prompt “An image of Kelly Mckernan” and “An image of Thomas Kinkade”.

(a) CEf (b) CEr (c) RA (d) FID

Figure 12: We investigate the impact of α and δ on the forgetting performance through experiments
conducted on the CIFAR10 dataset. We vary the values of α and δ within the range 0.2, 0.4, 0.6, 0.8.
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