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Abstract

Transformers have revolutionized the field of machine learning. In particular, they
can be used to solve complex algorithmic problems, including graph-based tasks.
In such algorithmic tasks a key question is what is the minimal size of a transformer
that can implement the task. Recent work has begun to explore this problem for
graph-based tasks, showing that for sub-linear embedding dimension (i.e., model
width) logarithmic depth suffices. However, an open question, which we address
here, is what happens if width is allowed to grow linearly, while depth is kept
fixed. Here we analyze this setting, and provide the surprising result that with
linear width, constant depth suffices for solving a host of graph-based problems.
This suggests that a moderate increase in width can allow much shallower models,
which are advantageous in terms of inference and train time. For other problems,
we show that quadratic width is required. Our results demonstrate the complex and
intriguing landscape of transformer implementations of graph-based algorithms.
We empirically investigate these trade-offs between the relative powers of depth
and width and find tasks where wider models have the same accuracy as deep
models, while having much faster train and inference time due to parallelizable
hardware.

1 Introduction

The transformer architecture [Vaswani, 2017], has emerged as the state-of-the-art neural network
architecture across many fields, including language [Brown et al., 2020], computer vision [Dosovitskiy
et al., 2021] and molecular analysis [Jumper et al., 2021]. This success prompts a basic question:
which algorithms can be implemented using transformers, and how do specific architecture choices
affect this capability. Understanding these questions could enable practitioners to design more
computationally efficient models without compromising expressivity.
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Two significant architectural elements of transformers are the depth (the number of layers) and width
(the dimension of their latent representation). Increasing either property increases the expressivity of
the underlying architecture, but the qualitative differences between “shallow and wide” and “deep
and narrow” architectures are poorly understood. Given the widespread use of specialized parallel
hardware for training and serving modern language models, increasing the width has a limited effect
on model latency, provided sufficient memory. A wide range of recent theoretical work [see e.g.,
Merrill and Sabharwal, 2023b, Liu et al., 2023] explores these fundamental expressivity questions for
various benchmark tasks and transformer scaling regimes. However, a complete understanding of
the interplay between architecture and algorithmic capabilities—and in particular the fine-grained
interplay between depth and width—remains elusive. In this work, we aim to crystallize the emergent
algorithmic capabilities of transformers as a function of model depth and width, and demonstrate
occasions when, contrary to conventional wisdom, the benefits of width eclipse those of depth.
Specifically, we focus on the following question:

What are the algorithmic capabilities obtained by increasing the width of a transformer?

We ground this question in the context of graph algorithmic tasks, which provide a compelling
testbed for understanding transformer reasoning. Graph algorithms serve as a natural “algorithmic
playground,” encompassing a wide range of well-known problems that span computational classes.
Many of these tasks have already been investigated as benchmarks for language models [Fatemi et al.,
2023]. Furthermore, previous theoretical works have routinely employed these algorithmic tasks to
unveil the capabilities and limitations of graph neural networks [GNNs, Gilmer et al., 2017]. For
example, the theoretical analysis of Loukas [2019] revealed lower bounds on the depth and width
necessary to determine connectivity. Sanford et al. [2024a] employed similar analysis to elucidate
such trade-offs for transformers. However, their results pertain primarily to the powers of depth and a
specific edge-list representation. Other scaling regimes—such as transformers with fixed depth and
variable width—have yet to be explored in the context of this toolkit.

For such graph reasoning tasks, we are principally concerned with the optimal transformer size
scaling as a function of the graph size. Specifically, given a graph with n nodes and an encoding
of an algorithmic task, such as determining connectivity or counting the number of triangles, we
investigate the width necessary and sufficient to solve the task as a function of n. This fixed-depth,
variable-width setting is arguably more pertinent given the aforementioned benefits of width in
computational efficiency. Indeed, practical applications of transformers to graphs have width that is
often much larger than the number of vertices in the graph.2

Our theoretical contribution is a novel representational hierarchy that characterizes this depth-width
dependence in transformers. Surprisingly, our results show that multiple problems of interest can
be solved with fixed depth and linear width with respect to n. We provide empirical support for the
advantage of these shallow and wide models.

Our results elucidate a hierarchy concerning the minimum width needed for constant-depth transform-
ers to represent solutions to various graph algorithmic tasks. Section 5 establishes the relevance of the
linear scaling regime, where the width of the transformer increases linearly in the number of nodes
n. Specifically, it considers tasks, such as graph connectivity and detection of fixed length cycles,
for which linear width is necessary and sufficient for dense graph input. Section 5 demonstrates that
more complex tasks, including subgraph counting and Eulerian cycle verification, require super-linear
and near-quadratic width respectively. The resulting hierarchy over transformer widths induced by
our collection of positive and negative results is visualized in Figure 1, which ranges from local
node-level tasks that can be solved with constant width (such as computing the degree of each node),
to arbitrary functions that require quadratic width scaling. Some of the lower bounds are conditional
on the well known one vs. two cycles conjecture (see appendix B.1 for a formal statement).

The empirical results of Section 6 demonstrate the relevance of our results in practice. We consider
various graph problems, and experiment with varying the depth and width of the model under a
constraint on the overall parameter count. Our results demonstrate that shallower and wider models
are significantly faster than narrow and deep models.

2See Table 3 for a list of commonly used graph datasets (including molecular datasets) where the average
graph size in the data is less than 40.
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Figure 1: The width complexity hierarchy of graph
tasks for transformers with constant depth. Each
row visualizes the width regimes where the task is
solvable (blue) or hard (red).

Expressive power of transformers Trans-
former with arbitrary depth [Wei et al., 2021,
Yun et al., 2020] or arbitrarily many chain-of-
thought tokens [Malach, 2023] are known to be
universal approximators. Informally, these re-
sults suggest that any algorithm can be simulated
with a sufficiently large transformer. They, how-
ever, leave open more fine-grained questions
about more compact transformer implementa-
tions of a given algorithm, particularly in terms
of parameter count and depth.

Various theoretical techniques have been em-
ployed to develop a more precise understand-
ing of the relevant scaling trade-offs. For in-
stance, Merrill and Sabharwal [2023a] show that
constant-depth transformers with polynomial
width can be simulated by TC0 Boolean circuits,
implying that they cannot solve problems like
graph connectivity. These results provide essen-
tial context for our paper, where we introduce
scaling regimes where transformers can and can-
not learn such tasks.Similarly, Hao et al. [2022]
identify formal language classes that can and
cannot be recognized by hard-attention trans-
formers. Another way to augment transformer expressivity is to use chain-of-thought reasoning [Wei
et al., 2022]. Indeed, it has been shown that sufficiently long chains reasoning can simulate finite-state
automata [Liu et al., 2023, Li et al., 2024].

A different perspective frames transformers in terms of communication complexity. Sanford et al.
[2024c,b] draw an analogy between transformers and the Massively Parallel Computation (MPC)
framework [Karloff et al., 2010], similar to prior work linking GNNs to the CONGEST model
in distributed computing [Loukas, 2019]. Sanford et al. [2024a] extend this analogy to define a
transformer complexity hierarchy for graph tasks.

Graph transformers and GNNs Research in transformers and graph neural networks (GNNs)
reveals a rich overlap, primarily because both are fundamentally message-passing models. Substantial
research effort has been devoted to the study of hybrid architectures to combine GNNs’ intrinsic
encoding of input graphs and transformers’ empirical successes. A variety of approaches to model
hybridization have been explored, including the incorporation of graph structure directly into attention
layers [Veličković et al., 2018, Brody et al., 2022], as subgraph features in positional encodings [Zhang
et al., 2020], and as spectral features of the graph Laplacian matrix [Kreuzer et al., 2021]. The aim
of this work is to understand transformer architectural trade-offs rather than to introduce a novel
architecture. However, the graph encoding schemes employed in this paper draw upon key insights
from this literature. We primarily utilize a simple adjacency encoding in order to isolate the focus
of our study to the impacts of changing the embedding dimension, but we also investigate some
theoretical and empirical trade-offs for spectral Laplacian-based encodings (Appendix A).

3 Problem setting and notations

3.1 Transformers

We consider the following setting of transformers: the input is a sequence of N tokens x1, . . . ,xN

where xi ∈ Rdin . We denote by X(0) ∈ Rdin×N the matrix where the i-th column is equal to xi.
Each layer of the transformer applies a self-attention mechanism on the inputs, and then an MLP. We
denote the input to layer ℓ by X(ℓ−1). The self-attention at layer ℓ with H heads is parameterized by
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matrices K(ℓ)
h , Q

(ℓ)
h ∈ Rm×m, V (ℓ)

h ∈ Rm×m.3 It is defined as:

Z(ℓ) =

H∑
h=1

V
(ℓ)
h X(ℓ−1)SM(X(ℓ−1)⊤K

(ℓ)⊤

h Q
(ℓ)
h X(ℓ−1)) ,

where SM is row-wise softmax, and m is the hidden embedding dimension. The output is of dimension
Z(ℓ) ∈ Rm×N . This is followed by a residual connection, so that the output of the self-attention layer
is X̃(ℓ) = Z(ℓ) +X(ℓ−1).

Finally, we apply an MLP N (ℓ) : Rm → Rm with ReLU activations on each token separately (i.e.
each column of X̃(ℓ)). The output of the MLP is X(ℓ), and is the input to the next layer. We let
σ : R → R denote the ReLU activation. Critically, we assume that the MLP layer can compute
arbitrary functions of each individual token embedding X

(ℓ)
i . While involved, this assumption

is common in the theoretical literature [see e.g. Sanford et al., 2024b] and enables a theoretical
understanding of the modeling limitations imposed by the attention layer. However, we note that
in all our constructions, the size of the MLP is at most polynomial in the number of nodes in
the input graph. Our MLP layers further incorporate arbitrary positional encodings of the index i

of each token embedding X̃
(ℓ)
i , i.e. N ℓ(X̃(ℓ)) = (g(X̃

(ℓ)
1 , 1), . . . , g(X̃

(ℓ)
N , N)), for some g. This

formalism allows standard transformer positional encodings to be implemented in our theoretical
model. Normalization layers—which are not explicitly accounted for in our transformer definition—
can be similarly incorporated by taking advantage of the arbitrary MLP assumption without changing
the results.

The bit-precision of all our transformers will be O(log n), where n is the number of input tokens.
This is a common assumption in many previous works Sanford et al. [2024c,b], Merrill and Sabharwal
[2023b, 2024], and is relatively mild. It is also a necessary requirement for representing a number of
size n, e.g. when having positional embeddings for n tokens. We will denote m = max(m0, . . . ,mL)
the embedding dimension, and din the input dimension.

Graph Inputs Because the network topology of transformers (unlike GNNs) does not encode the
structure of an input graph, graph structure must be encoded explicitly into the input of the transformer.
Choosing the format of this tokenization scheme for graph inputs is a significant modeling decision.
The most fundamental aspect of that choice involves deciding between edge-wise and node-wise
schemes. Sanford et al. [2024a] employ an edge-list tokenization that converts the graph into a
sequence of discrete edge tokens. However, this scheme suffers computationally for large graphs; the
quadratic computational bottleneck of self-attention can result in an Ω(n4) runtime for dense graphs
with n nodes.

In contrast, we consider node-wise encodings, where each node corresponds to exactly one input
embedding. Our primary theoretical results use what is arguably the simplest such representation: the
node-adjacency tokenization scheme. In this representation, each input embedding directly encodes
a node’s edges as an adjacency vector. That is, for graph G with n nodes and adjacency matrix
A ∈ {0, 1}n×n, the ith token input xi ∈ Rn to the transformer is defined as the ith row of A. An
alternative node-wise scheme is the Laplacian eigenvector tokenization [Kreuzer et al., 2021], which
captures global graph structure node-wise in a lossy manner with the most significant eigenvectors
of the Laplacian matrix. We empirically contrast the node-adjacency scheme with both alternatives
in Section 6, and we further explore the representational properties of the Laplacian tokenization in
Appendix A.

The adjacency node embedding is not permutation invariant, similar to the edge-list embedding
used in Sanford et al. [2024a]. Namely, if the tokens contain positional embeddings, then changing
the order of the tokens may also change the output. These embeddings are used for technical
convenience, especially since spectral embeddings that are permutation invariant are difficult to
analyze for combinatorial problems (such as connectivity, subgraph counting, etc.). In section 6 we
provide experiments that justify the use of such embedding on real-world datasets.

3Except for the first layer where K
(ℓ)
h , Q

(ℓ)
h ∈ Rdin×din , V (ℓ)

h ∈ Rm×din
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4 The Expressive Power of a Linear Embedding Dimension

In this section we focus on two graph reasoning tasks: the 1 vs. 2 cycle problem and the cycle
detection problem. We show that a fixed-depth transformer can solve these tasks with only linear
width. We also show that these results are tight. All the proofs for the theorems in this section are in
Appendix B. Finally, in Sec. 4.3 we show that for cycle detection in bounded degree graphs, sublinear
width suffices. Note that the node degree task as appears in fig. 1 (namely, calculating the degree of
each node) can be easily solved with an O(log(n)) embedding size, as shown e.g., in Sanford et al.
[2024a]

4.1 A linear width solution for 1 vs. 2 cycle detection

Previous works on the connection between the MPC model and transformers have shown conditional
lower bounds for solving certain tasks. One such lower bound includes the 1 vs. 2 cycle problem.
Namely, determine whether an n-node graph is one cycle of length n or two cycles of length n

2 .
Conjecture 13 from Sanford et al. [2024a] (see also Ghaffari et al. [2019]) states that any MPC
protocol with n1−ϵ memory per machine for any ϵ ∈ (0, 1) cannot distinguish between the two cases,
unless the number of MPC rounds is Ω(log n). This condition implies that transformers with an
embedding dimension of O(n1−ϵ) cannot solve this task. For a formal definition, see appendix B.1.
We demonstrate the tightness of this bound by showing that a transformer with linear embedding
dimension can solve this task:

Theorem 4.1. There exists a transformer with 2 layers of self-attention, and embedding dimension
O(n) that solves the 1 vs. 2 cycle problem.

The proof intuition is that the graph contains only n edges, we can stack all of them into a single token.
After doing so, we can use the MLP to solve it. This demonstrates the brittleness of communication-
based transformer lower bounds, since even a slight increase in the embedding dimension breaks
them. With that said, this result is not surprising, since the graph in this task is very sparse.

The connectivity problem for general graphs cannot be solved in this manner. The reason is that for
graphs with n nodes there are possibly Ω(n2) edges, and thus it is not possible to compress the entire
graph into a single token with linear embedding dimension. However, the connectivity problem can
still be solved by increasing the embedding dimension by polylog terms, as we explain below.

Ahn et al. [2012] uses linear sketching to solve the connectivity problem on general graphs with
O(n log3(n)) total memory. The idea is to use linear sketching, which is a linear projection of the
adjacency rows into vectors of dimension O(poly log(n)). Although this is a lossy compression, it
still allows to solve the connectivity problem. As a consequence, we can use a similar construction
as in Theorem 4.1 where we first apply the sketching transformation to each token (i.e. row of the
adjacency), then embed all the tokens, into a single token and use the MLP to solve the problem using
the algorithm from Ahn et al. [2012] (Theorem 3.1). Note that this construction works only in high
probability rather than deterministically, since the linear sketching requires using a random matrix,
which compresses successfully the adjacency matrix only with some high probability. Thus, we don’t
present it here formally, but rather as a proof sketch.

Our next results include problems that cannot be solved by simply compressing all the information of
the graph into a single token, and require a more intricate use of the self-attention layers.

4.2 Linear width is necessary and sufficient for 2-cycle detection

This section shows that for the problem of cycle detection, linear width is sufficient for solving the
task with fixed-depth, and is also necessary. We consider the 2-cycle detection problem for directed
graphs. The task is to find nodes u and v such that the edges (u, v) and (v, u) exist. We begin with
the lower bound for this case.

Theorem 4.2. Let T be a transformer with embedding dimension m depth L, bit-precision p and H
attention heads in each layer. Also, assume that the input graphs to T are embedded such that each
token is equal to a row of the adjacency matrix. Then, if T can detect 2-cycles on directed graphs,
the following must hold: (1) If T has residual connections then mpHL = Ω(n); or (2) If T doesn’t
have residual connections then mpH = Ω(n).
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The proof uses a communication complexity argument, and specifically a reduction to the set
disjointness problem. For a formal definition see Appendix B. This lower bound is stronger than
the lower bounds in Section 4.1 in the sense that they cannot be circumvented by logarithmic depth.
For example, assume that the embedding dimension is m = O(n1−ϵ) for some ϵ ∈ (0, 1), and that
p,H = O(log(n)) (which is often the case in practice). Then, transformers with residual connection
require a depth of Ω(nϵ) to solve this task, which is beyond logarithmic, while transformers without
residual connections cannot solve it. This lower bound is also unconditional, compared to the lower
bounds from Sanford et al. [2024a] which are conditional on the hardness of the 1 vs. 2 cycle problem
(Conjecture 13 therein). The caveat of this lower bound is that it relies on having the input graph
specifically embedded as rows of the adjacency matrix.

We now turn to show an upper bound for this task. We will show an even more general claim than
detecting 2-cycles. Namely, that depth L transformers with Ω(n) embedding dimension can calculate
the L-th power of an adjacency matrix of graphs. In particular, the trace of AL equals the number of
cycles of size L in the graph (multiplied by an appropriate constant). Thus, a 2-layer transformer
with linear embedding dimension can already solve the directed 2-cycle problem.

Theorem 4.3. There exists an O(L)-layer transformer with embedding dimension m = O(n) such
that, for any graph embedded as rows of an adjacency matrix A, the output of the transformer in the
i-th token is the i-th row of AL.

The constructive proof of this theorem carefully selects key and query parameters to ensure that the
output of the softmax matrix approximately equals A. This enables an inductive argument that
encodes Aℓ in the value matrix of the ℓth layer, in order to compute Aℓ+1.

The above theorem shows that having a transformer with embedding dimension proportional to the
graph size is representationally powerful. Namely, AL

i,j counts the number of walks of length L form
node i to node j. This also allows to determine whether a graph is connected, by checking whether
An doesn’t contain any zero entries. Although, there are other algorithm (e.g. those presented in
Section 4.1) that can solve the connectivity task more efficiently.

4.3 A sublinear width solution for cycle detection in bounded degree graphs

The results of the previous section establish that for worst-case graph instance, transformers with
node-adjacency tokenizations require a linear embedding dimension to solve simple graph reasoning
tasks, such as 2-cycle detection. This fact is perhaps unsurprising because each node-adjacency
tokenization input is a length-n boolean vector, which must be compressed in a lossy manner if the
embedding dimension m and bit precision p satisfy mp = o(n). It is natural to ask whether such
results apply to sparse graphs as well, such as graphs with bounded degree. Here, we show that
requisite embedding dimension to detect 2-cycles scales linearly with the degree of the graph.

Theorem 4.4. For any n ∈ N and d ≤ n, there exists a single-layer transformer with embedding
dimension O(d log n) that detects 2-cycles in any graph with node degree at most d. This embedding
dimension is optimal up to logarithmic factors.

The proof reduces the dimensionality of the input adjacency matrix by incorporating vector em-
beddings from Sanford et al. [2024c] into the key, query, and value matrices to produce a “sparse
attention unit,” whose activations are large when a respective cycle exists.

5 The expressive power of sub-quadratic embedding dimension

Thus far, we showed that there are graph problems that can be solved with fixed depth and linear
width. A natural question is if there are problems where larger width is necessary? Intuitively,
quadratic width should suffice for solving any task, since it can be used to record the entire graph,
and then a sufficiently expressive MLP can solve the task. But are there problems where quadratic
width is necessary. In Sec. 5.1 we show that for the problem of Eulerian cycle detection, quadratic
width is necessary. This leads to the interesting question of whether there are problems that require
super-linear but sub-quadratic width (i.e., between linear and quadratic). We offer a first result in this
direction by showing in Sec. 5.2 that such width is sufficient for the problem of sub-graph counting.
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5.1 Necessity of nearly-quadratic width for Eulerian cycle detection

As mentioned above, quadratic width trivially suffices for solving graph problems. It is therefore
interesting to understand whether this upper bound is tight for some graph problems. We affirmatively
answer this question with the Eulerian cycle verification problem. Given a graph and a list of “path
fragments,” where each fragment consists of a pair of subsequent edges in a path, the goal of the
Eulerian cycle verification problem is to determine whether the properly ordered fragments comprise
an Eulerian cycle4. We establish the hardness of this problem on multi-graphs under the well-accepted
“1 vs. 2 cycle” conjecture.

Theorem 5.1. Under Conjecture 2.4 from Sanford et al. [2024b], the Eulerian cycle verification
problem on multigraphs with self loops cannot be solved by transformers with adjacency matrix
inputs if m = O

(
n2−ϵ

)
for any constant ϵ > 0, unless L = Ω(log(n)).

The proof relies on a novel reduction to the 1 vs. 2 cycle problem. The difficulty with the reduction is
that the one vs. two cycles problem consists of a sparse graph with only n edges and nodes, and to
show a sub-quadratic lower bound we need a dense graph with Ω(n2) edges and n nodes. To this
end, we do a random projection of an instance of the one vs. two cycles problem with n2 nodes to
a multigraph with n nodes, where each node represents n nodes in the original graph, but keeping
all the edges. This allows us to produce a dense multigraph, for which solving the Eulerian cycle
verification problem will solve the one vs. two cycles problem in the original graph, before the
projection.

5.2 Sub-quadratic solutions to sub-graph counting

Subgraph detection and counting are central tasks for fields as diverse as biology, organic chemistry,
and graph kernels (see Jin et al. [2020], Jiang et al. [2010], Pope et al. [2018], Shervashidze et al.
[2009]; see also the discussion in Chen et al. [2020]). In what follows we show that this problem can
be solved with transformers with fixed depth, but width that is between linear and quadratic.

Theorem 5.2. Let k, n ∈ N, and let G′ be a graph with k nodes. There exists a transformer with
O(1) self-attention layers and embedding dimension O

(
n2−1/k

)
that, for any graph G of size n,

counts the number of occurrences of G′ as a subgraph of G.

In contrast, known GNN constructions [e.g., see Chen et al., 2020] entail higher-order constructions
with k-IGN models, which require computing practically-infeasible k-order tensors. These models
require a depth of k to recognize subgraph of size k, where each layer uses a k-tensor instead of
standard matrices, which requires nk parameters each. Even for k = 3 or k = 4 this may be too large
for graphs with a few hundreds of nodes.

Our proof implements the seminal “tri-tri-again” algorithm [Dolev et al., 2012] using transformers.
Given a graph with n nodes, we partition the nodes into n1/k disjoint sets, each containing n1−1/k

nodes. For each possible combination of k such sets, we use an MLP to count the given subgraph in
it. There are

(
n1/k

k

)
≤ nk·1/k = n such combinations of sets, each one containing at most n2−2/k

edges. Thus, each token with a large enough embedding dimension can simulate one combination of
subsets, cumulating all the relevant edges. Note that subgraph detection is a sub-task of counting,
where the number of occurrences is larger than 0.

Theorem 5.2 can be compared to Theorem 23 in Sanford et al. [2024a] that provides a construction
for counting k-cliques using transformers with sub-linear memory and additional blank tokens. There,
it was shown that it is possible to count k-cliques with a transformer of depth O(log log(n)), however
the number of blank tokens is O(nk−1) in the worse case. Here, blank tokens refer to empty tokens
that are appended to the input and used for scratch space as defined in Sanford et al. [2024a]. In
our result, we require a depth of O(1), and the total number of tokens is n, while the embedding
dimension is super-linear (but sub-quadratic). Thus, our solution has better memory usage, since the
increase in width is only polynomial, but the number of tokens is n instead of O(nk).

Remark 5.3. We note that the overall computation time of our depth O(1) model above is still
exponential in k due to the size of the MLP. This is also the case in Theorem 23 from Sanford et al.
[2024a]. In fact, it is a common conjecture in the literature that no (possibly randomized) algorithm

4Recall that a Eulerian cycle is a cycle over the entire graph that uses each edge exactly once.
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(a) (b) (c)

Figure 2: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the connectivity task over graphs with 100 nodes, across transformers with approximately 100k
parameters, varying in width and depth.
While the loss and accuracies remain consistent, shallow and wide transformers demonstrate signifi-
cantly faster training and inference times.

can detect k-cliques in time less than O(n2k/3−ϵ) for any ϵ > 0 (see Hypothesis 6 in Williams
[2018]).

6 Experiments

We showcase the effect of width growth in transformers by training a variety of models on synthetic
graph algorithmic tasks. Section 6.1 establishes the relative advantages of scaling width over depth
by training a family of models with similar parameter counts and variable network topologies; our
results show that the shallower and wider models yield the same accuracy as the deeper models, but
with faster training and inference. Section 6.2 evaluates the critical width at which the substructure
counting task becomes solvable, and shows that it is roughly linear. Section 6.3 demonstrates the trade-
offs of each graph encoding scheme (node-adjacency versus edge-list versus Laplacian-eigenvector)
on different tasks.5

In our experiments, we used a standard transformer architecture using Pytorch’s transformer encoder
layers [Paszke et al., 2019]. Specifically, each layer is composed of Multi-Head Self-Attention,
Feedforward Neural Network, Layer Normalization and Residual Connections. More experimental
details are provided in Appendix E.

For all experiments in Section 6.1 and Section 6.2, we used the adjacency rows tokenization as
described in Section 5.2. Details of the implementation are described in Appendix D. We considered
the tasks of connectivity, triangles count, and 4-cycle count. For the counting tasks, we used the
substructure counting dataset from Chen et al. [2020], where each graph was labeled with the number
of pre-defined substructures it contains, as a graph regression task. For the connectivity tasks, we
generated synthetic graphs, and the label indicates whether the graph is connected or not. All the
datasets information is described in detail in Appendix E.

6.1 Empirical trade-offs between width and depth

In this subsection, we examine the empirical trade-offs between depth and width in transformers.
We show that when using transformers that are shallow and wide, the training and inference times
are significantly lower than when using deep and narrow transformers. This is while test error and
training convergence rates are empirically similar.

We trained a transformer with a fixed amount of 100k parameters split between varying depth and
width. We examine how the running time, loss, and generalization depend on the width and depth. We
examine the following pairs of (depth, width): (1, 125), (2, 89), (4, 63), (8, 45), (10, 40). We train
each model for 100 epochs and examine the following: the total training time, the total inference
time, the training loss and test performance (accuracy for classification and MAE for regression). We

5Code is provided in the Supplementary Material.
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repeat this experiment with graph sizes 50 and 100. We report the averages over 3 runs with random
seeds. The hyper-parameters we tuned are provided in Appendix E.

The results for the connectivity task over 100 nodes are presented in Figure 2. Additional results for
the counting tasks and different graph sizes, present the same trends, and are provided in Appendix D
due to space limitations. As shown in Figure 2(b) and Figure 2(c), the training loss and accuracy
remain consistent across all depth and width configurations. However, Figure 2(a) reveals that
shallow and wide transformers significantly reduce the total training and inference time compared to
their deeper and narrower counterparts. This may be due to the ability of GPUs to parallelize the
computations across the width of the same layer, but not across different layers.

6.2 Minimum width for substructure counting

(a)

Figure 3: Critical width evaluation for the 4-Cycle
Count task, using a transformer with 1 layer. The
points indicate the critical width at which the
model fails to fit the data.

In this subsection, we show that the transformer
width required to fit the substructure counting
tasks increases sub-quadratically with the num-
ber of nodes, as argued in Section 5.2. The
experiments considered graphs with increasing
numbers of nodes, ranging from 50 to 400 in
increments of 50, and transformer widths vary-
ing from 100 to 800 in increments of 100. For
each combination of graph size and transformer
width, we determined the critical width at which
the model failed to fit the data. The critical
width is defined as the width where the training
loss plateaued at more than 0.05. To determine
the critical width, we conducted a grid search
over each combination of graph size and model
width, and selected the model that fitted the data
best. The hyper-parameters we considered are
provided in Appendix E.

To isolate the effect of width, we used a trans-
former model with one layer. We used two at-
tention heads to ensure there exists a width for
which the model can fit the data for all the evaluated graph sizes. The results for the 4-Cycle count
task are presented in Figure 3. Due to space limitations, the results for the triangle count task are
deferred to Appendix D. Figure 3 shows that the critical width increases roughly linearly with the
graph size.

6.3 Comparison of graph encodings

In this paper, we focus on a graph tokenization where each row of the graph’s adjacency matrix
is treated as a token for the model. This tokenization offers significant efficiency advantages for
dense graphs, as the edge-list representation requires O(n2) tokens, whereas the adjacency-row
representation reduces this to O(n). To validate the effectiveness of this tokenization approach in
practice, we evaluate it on real graph datasets.

We compared the adjacency-row representation to the edge-list representation by training a trans-
former model on three Open Graph Benchmark (OGB) Hu et al. [2020] datasets: ogbg-molhiv,
ogbg-molbbbp, and ogbg-molbace. In ogbg-molhiv, the task is to predict whether a molecule inhibits
HIV replication, a binary classification task based on molecular graphs with atom-level features and
bond-level edge features. ogbg-bbbp involves predicting blood-brain barrier permeability, a crucial
property for drug development. ogbg-bace focuses on predicting the ability of a molecule to bind to
the BACE1 enzyme, associated with Alzheimer’s disease. We also evaluated a tokenization using the
eigenvectors and eigenvalues of the graph Laplacian, as commonly used in the literature [Dwivedi
and Bresson, 2021, Kreuzer et al., 2021]. More experimental details, including the dataset statistics
can be found in Appendix E.

The results of our evaluation are summarized in Table 1. In all three tasks, the adj-rows representation
achieved better ROC-AUC scores than the edge-list representation. In two out of the three, it also
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Table 1: ROC-AUC performance metrics for different graph representations: Edge List, Adjacency
Rows, and Laplacian Eigenvectors (LE), averaged over 3 random seeds.

Dataset
Tokenization MOLHIV MOLBBBP MOLBECA

EdgeList 54.01±1.38 64.73±1.66 66.06±3.89

AdjRows 61.87±1.10 67.63±2.57 68.64±2.34

LE 68.11±1.52 55.31±4.79 63.61±2.31

improved upon the commonly used Laplacian eigenvectors representations. The results suggest that
the adjacency representation we use in this paper is empirically effective, and should be considered
alongside the commonly used Laplacian eigenvector representation.

7 Discussion and Future Work

This paper uses a collection of graph algorithmic tasks—including subgraph detection, one vs
two cycles, and Eulerian cycle verification—to demonstrate the powers of width bounded-depth
transformers that take as input node adjacency encodings. These results include sharp theoretical
thresholds that demonstrate the trade-offs between constant, linear, quadratic, and intermediate width
regimes. Our empirical results validate the efficiency and accuracy of our choice of scaling regime
and embedding strategy.

There are numerous possible extensions of this work. One future direction is to study different graph
tokenization schemes, beyond the node-adjacency encoding of this work and edge-list encoding of
Sanford et al. [2024a]. A particularly notable alternative is the smallest eigenvectors of the graph
Laplacian, presented as a vector of components for each node. This spectral embedding is a standard
embedding scheme for GNNs, and the techniques and tasks developed in this paper would likely be
relevant to proving similar bounds. We provide a preliminary exploration of the trade-offs between the
intrinsically local characteristics of adjacency-based tokenization schemes and more global spectral
approaches in Appendix A. Another future direction is to study the optimization and generalization
capabilities of transformers to solve graph problems, beyond the expressiveness results presented in
this work.
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A Alternative tokenization approaches

While the primary aim of this paper is to study the properties of the node-adjacency tokenization
scheme in terms of its width and depth trade-offs, we also establish clear trade-offs between this
scheme and other encoding schemes. The Laplcian-eigenvector tokenization passes as input to the
transformer each node’s components of the most significant eigenvectors.

Concretely, let A ∈ Rn×n be the adjacency matrix of a graph and D the diagonal degree metrix.
The Laplacian matrix is defined as L = D − A. Denote the eigenvectors of L as v1, . . . ,vn

with respective eigenvalues 0 = λ1 ≤ · · · ≤ λn. For some embedding dimension m, we let
the m-dimensional Laplacian-eigenvector tokenization be y1, . . .yn, where yi = (v1,i, . . . ,vm,i);
we encode the eigenvalues as well as y0 = (λ1, . . . , λm). We contrast this with node-adjacency
encodings of embedding dimension m, whose ith input is xi = ϕ(Ai).

We note several illustrative toy tasks that demonstrate trade-offs between the two graph tokenization
schemes.

Node-adjacency advantage at local tasks The node-adjacency tokenization is amenable for
analyzing local structures around each node. Most simply, the degree of each node can be computed
in a sequence-wise manner with node-adjacency tokenization with embedding dimension m = 1
by simply computing the inner products ⟨111n,xi⟩. Constructions like Theorems 4.3 and 4.4 further
demonstrate the abilities of adjacency encodings to aggregate local structures.

In contrast, choosing the smallest eigenvectors in the alternative encoding makes it impossible to
even compute each node degree without having embedding dimension m growing linearly in the
node count n6.

Laplacian-eigenvector advantage at global tasks In contrast, the most significant graph Laplacian
provide high-level information about the global structure of the graph. Most notably, the tokenization
trivializes the connectivity task because a graph is disconnected if and only if its second-smallest
eigenvalue is zero; transformers with the node-adjacency tokenization require either depth Ω(log n)
or width Ω(n) to solve the same problem.

Other properties of structured graphs reveal themselves with low-dimensional Laplacian-eigenvector
tokenizations. For instance, the relative position of a node in a lattice or ring graph are encoded in
the most significant eigenvectors. Graph clustering algorithms could be inferred by transformers
that take spectral encodings as input and simulate algorithms like k-means. The hardness of graph
connectivity with the adjacency encoding translates to hardness results for efficiently simulating
clustering algorithms.

Quadratic embedding equivalence Critically, the above trade-offs occur in small embedding di-
mensions. In the regime where m = Ω(n2) and MLPs are universal approximators, both tokenization
schemes are universal. The entire graph can be encoded in a single token, which can then convert
between A and the spectrum of L.

B Proofs from section 4

B.1 The 1 vs. 2 cycle conjecture

The most notable conjecture in distributed computing is the 1 vs. 2 cycle conjecture, which is a
common method for providing conditional lower bounds in the MPC model. See Definition 2 in
Sanford et al. [2024a] for a (γ, δ)-MPC protocol. In simple words, this is a distributed computing
protocol, where the input has length n, which is distributed to Θ(n1+γ−δ) machines, each having

6Consider the task of computing the degree of a particular node of a graph consisting of n
3

disconnected
linear subgraphs, each with three nodes connected by two edges. The zero eigenvalue thus has multiplicity n

3
,

and hence the eigenvectors v1, . . . ,vn/3 exist solely as indicators of connected components. Therefore, if nodes
i, j, k comprise a cluster and m ≤ n

3
, then their embeddings yi,yj ,yk are identical.
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memory of s := Θ(nδ). Each communication round, each machine calculates an arbitrary local
message bounded by size s, and all the messages are sent simultaneously. The 1 vs. 2 cycle conjecture
is the following:

Conjecture B.1 (Conjecture 13 in Sanford et al. [2024a]). For any γ > 0 and δ ∈ (0, 1), any
(γ, δ)-MPC protocol that distinguishes a single length-n cycle from two disjoint length-n/2 uses
Ω(n) communication rounds.

B.2 Proof of Theorem 4.1

Theorem 4.1. There exists a transformer with 2 layers of self-attention, and embedding dimension
O(n) that solves the 1 vs. 2 cycle problem.

Proof. The proof idea is to embed all the information about the graph into a single token, and then
offload the main bulk of the solution to the MLP. For that, the first layer will transform the input of
each node from adjacency rows to only indicate its two neighbors. The second layer will embed all
the information over the entire graph into a single token.

We now define the construction of the transformer. The input to the transformer are adjacency rows,
where we concatenate positional encodings that include the row number. Namely, the i-th input token

is equal to
(
xi

i

)
, where xi is the i-th row of the adjacency matrix of the graph. The first layer of

self-attention will not effect the inputs. This can be thought of as choosing V = 000 (while K and Q
are arbitrary), and using the residual connection so that the tokens remain the same as the input. We
now use Lemma B.2 to construct a 3-layer MLP that changes the embedding of each token such that
it includes for each node its neighbors. The MLP does not change the positional encoding, this can
be done since ReLU networks can simulate the identity function by z 7→ σ(z) − σ(−z), where σ
represents the ReLU function. We add another layer to the MLP that maps R3 ∋ vi 7→ ui ∈ R3n,
where (ui)3(i−1)+1:3i = vi and all the other entries of ui are equal to 0.

The second layer of self-attention will have the following matrices: K = Q = 0003n×3n, V = n · I3n.
Since we used the zero attentions, all the tokens attend in the same way and using the exact same
weight to all other tokens. The Softmax will normalize the output by the number of tokens, namely
by n. Hence, after applying the V matrix, all the output tokens of the second layer of self-attention
will be equal to the sum of all the tokens that were inputted to the second layer.

In total, we get that the output of the second layer of attention is a vector with 3n coordinates, where

each 3 coordinates of the form

(
i
j
k

)
represent the two edge (i, k), (j, k). Thus, the entire information

of the graph is embedded in this vector.

Finally, we use the MLP to determine whether the input graph, whose edges are embedded as a list of
edges, is connected. This can be done by an MLP since it has the universal approximation property
Cybenko [1989], Leshno et al. [1993]. Although we don’t specify the exact size of this MLP, it can
be bounded since there are efficient deterministic algorithms for determining connectivity. These
algorithms can be simulated using ReLU networks.

Note that the output of the connectivity problem is either 0 or 1, thus it is enough to approximate a
solution of this task up to a constant error (say, of 1

4 ), and then use another layer to threshold over the
answer.

Lemma B.2. There exists a 3-layer MLP N : Rn → R2 such that for every vector v where there are

i, j ∈ [n] with (v)i = (v)j = 1 and (v)k = 0 for every other entry we have that either N (v) =

(
i
j

)
or N (v) =

(
j
i

)
.
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Proof. The first layer of the MLP will implement the following function:

v 7→
(∑n

i=1 i · 1((v)i = 1)∑n
i=1 i

2 · 1((v)i = 1)

)
.

This is a linear combination of indicators, where each indicator can be implemented by the function
f(z) = σ(x) − σ(x − 1). Note that the input to the MLP is either 0 or 1 in each coordinate, thus

the output of this function will be
(

i+ j
i2 + j2

)
. We have that i+ j and i2 + j2 determine the values

of i and j. This means that if i1 + j1 = i2 + j2 and i21 + j21 = i22 + j22 then i1 = i2 or i1 = j2 and
similarly for i2. Since there are O(n2) different possible values, we can construct a network with

2-layers and O(n2) width that outputs
(
i
j

)
up to changing the order of i and j.

B.3 Proof of Theorem 4.2

Theorem 4.2. Let T be a transformer with embedding dimension m depth L, bit-precision p and H
attention heads in each layer. Also, assume that the input graphs to T are embedded such that each
token is equal to a row of the adjacency matrix. Then, if T can detect 2-cycles on directed graphs,
the following must hold: (1) If T has residual connections then mpHL = Ω(n); or (2) If T doesn’t
have residual connections then mpH = Ω(n).

Proof. Our proof relies on a communication complexity lower bound for the set disjointness problem,
and is similar to the arguments from Sanford et al. [2024c], Yehudai et al. [2024]. The lower bound
for communication complexity is the following: Alice and Bob are given inputs a, b ∈ {0, 1}s
respectively, and their goal is to find max aibi by sending single bit-messages to each other in a
sequence of communication rounds. The lower bound says that any deterministic protocol for solving
such a task requires at least s rounds of communication.

We set s = n2, and design a graph G = (V,E) that has a directed 2-cycle iff max aibi = 1. The
graph has |V | = 2n, we partition the vertices into 2 disjoint sets V1, V2, and number the vertices of
each set between 1 and n. The inputs a and b encode the adjacency matrices between vertices in V1

and V2, and between vertices in V2 and V1 respectively. Now, there exists a directed 2-cycle iff there
is some i ∈ [s] for which both ai = 1 and bi = 1 meaning that max aibi = 1.

Assume there exists a transformer of depth L with H heads, embedding dimension m and bit precision
p that successfully detects 2-cycles in a directed graph. Denote the weights of head i in layer ℓ by
Qℓ

i ,K
ℓ
i , V

ℓ
i ∈ Rm×m for each i ∈ [H], and assume w.l.o.g. that they are of full rank, otherwise our

lower bound would include the rank of these matrices instead of the embedding dimension (which can
only strengthen the lower bound). We design a communication protocol for Alice and Bob to solve
the set disjointness problem. The communication protocol will depend on whether T has residual
connections or not. We begin with the case that it does have them, the protocol works as follows:

1. Given input sequences a, b ∈ {0, 1}s to Alice and Bob respectively, they calculate the input
tokens x0

1, . . . , x
0
n and x0

n+1, . . . , x
0
2n, respectively. Note that the adjacency matrix have

a block shape, thus both Alice and Bob can calculate the rows of the adjacency matrix
corresponding the the edges which are known to them.

2. Bob calculates K1
j x

0
i , Q

1
jx

0
i , V

1
j x

0
i for every head j ∈ [H] and transmits them to Alice. The

number of transmitted bits is O(nmHp)

3. Alice can now calculate the output of the r-th token after the first layer. Namely, for every
head j ∈ [H], she calculates:

srj =

2n∑
i=1

exp(x0⊤

i K1⊤

j Q1
jx

0
r)

trj =

2n∑
i=1

exp(x0⊤

i K1⊤

j Q1
jx

0
r)V

1
j x

0
i .
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The output of the j-th head on the r-th token is equal to
trj
srj

. For the first n tokens, Alice use
the residual connection which adds the tokens that are known only to her. She now passes
the tokens through the MLP to calculate x1

1, . . . , x
1
n, namely the output of the tokens known

to her after the first layer.

4. Similarly to the previous 2 steps, Bob calculates the tokens x1
n+1, . . . , x

1
2n which are known

only to him.

5. For any additional layer, the same calculations are done so that Alice calculates xℓ
1, . . . , x

ℓ
n

and Bob calculates xℓ
n+1, . . . , x

ℓ
2n.

In case there are no residual connections, after the third step above Alice have the information about
all the tokens. Hence, there is no need for more communication rounds, and Alice can finish the rest
of the calculations of the transformers using the output tokens of the first layer.

By the equivalence between the set disjointness and the directed 2-cycle that was described above,
Alice returns 1 iff the inputs maxi aibi = 1, and 0 otherwise. The total number of bits transmitted in
this protocol in the case there are residual connection is O(nmpHL), since there are O(nmpH) bits
transferred in each layer. The lower bound is determined by the size of the input which is s = n2,
hence mpHL = Ω(n). In the case there are no residual connections there is no dependence on L,
hence the lower bound becomes mpH = Ω(n).

B.3.1 An extension to bounded degree graphs

In order to prove the optimality result in Theorem 4.4 for the task of determining the existence of a
2-cycle in bounded-degree graphs, we state the following theorem.

Theorem B.3. Let T be a transformer with embedding dimension m depth L, bit-precision p and H
attention heads in each layer. If T can detect 2-cycles on d-degree directed graphs, then:

1. If T has residual connections then mpHL = Ω(d).

2. If T doesn’t have residual connections then mpH = Ω(d).

Proof. The proof is nearly identical to that of Theorem 4.2, except that we alter the reduction to
ensure that that the graph possessed by Alice and Bob is of degree d.

As before, we design a graph G = (V,E) with vertices partitioned into two sets V1, V2 satisfying
|V1| = |V2| = n. Let Ēd denote the edges of a bipartite graph between V1 and V2 such that (1) every
node has d incident outgoing edges; and (2) (i, j) ∈ Ēd if and only if (j, i) ∈ Ēd.

Consider some instance of set disjointness with a, b ∈ {0, 1}s for s = nd. We index the 2s edges in
Ēd as ea1 = (v11 , v

2
1), . . . , e

b
s = (v1s , v

2
s) and eb1 = (v21 , v

1
1), . . . , e

b
s = (v2s , v

2
s). Then, we embed the

instance by letting eai ∈ E if ai = 1 and ebi ∈ E if bi = 1. As before, there exists a directed 2-cycle
in G if and only if maxi aibi = 1.

The analysis of the transformer remains unchanged. An L-layer transformer with embedding
dimension m, heads H , and bit precision p transmits O(nmpHL) bits between Alice and Bob. The
hardness of set disjointness requires that at least s = nd bits be transmitted, which means that it must
be the case that mphL = Ω(d).

B.4 Proof of Theorem 4.3

We will need the following lemma for the proof.

Lemma B.4. Let a1, . . . , ak, b1, . . . , bk ∈ R where the ai’s are distinct. There exists a 2-layer
fully-connected neural network N : R → R with width O(k) such that N(ai) = bi.

Proof. Let δ = mini ∈ [k]|ai − aj |, by the assumption δ > 0. Let:

fi(x) =
1

δ
(σ(x− (ai − 2δ))− σ(x− (ai − δ) + σ(ai + 2δ − x)− σ(ai + δ − x)) .
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It is clear that fi(ai) = 1 and fi(aj) = 0 for any j ̸= i. Thus, we define the network: N(x) =∑k
i=1 bifi(x).

We are now ready to prove the theorem.
Theorem 4.3. There exists an O(L)-layer transformer with embedding dimension m = O(n) such
that, for any graph embedded as rows of an adjacency matrix A, the output of the transformer in the
i-th token is the i-th row of AL.

Proof. We will first show the construction for the case of L = 1, and then show inductively for

general L. We define the input for the transformer as X =

 A
I

000d×d

000d×d

 ∈ R3d×d, namely, there are

d tokens, each token contains a column of the adjacency matrix concatenated with a positional
embedding. The self-Attention layer contains one head with the following matrices:

K = c ·

(
I

000d×d

000d×d

)
, Q =

(
000d×d I
000d×d 000d×d

000d×d

)
, V =

(
I

I
000d×d

)
.

where c > 0 is some sufficiently large constant the determines the temperature of the softmax. We
first have that X⊤K⊤QX = A. Since all the values of A are either 0 or 1, for a sufficiently large
c > 0, the softmax behave similarly to the hardmax and we get that:

V XSM(A) =

A2 · deg(A)−1

A · deg(A)−1

000d×d

 ,

where deg(A) is a diagonal matrix, where its i-th diagonal entry is equal to the degree of node i.
Finally, we apply an MLP N : R3d×d → R3d×d that operates on each token separately. We define
the MLP such that:

N

A2 · deg(A)−1

A · deg(A)−1

000d×d

 =

000d×d

000d×d

A2

 .

Constructing such an MLP can be done by calculating the degree of each token from A · deg(A)−1

and multiplying the first d coordinates of each token by this degree. This can be done since the
entries of this matrix is either 0 or the inverse of the degree of node i, thus it requires only inverting
an integer between 1 and n. By Lemma B.4 this can be done by a 2-layer MLP with width n. This
finishes the construction for calculating A2.

For general L > 2 we use the residual connection from the inputs. That is, the input to the L-th

layer of the transformer is equal to

 A
I
AL

. We use a similar construction as the above, except

that we use the matrix V =

(
000d×d

I
I

)
. This way, the output of the self-attention layer is 000d×d

A · deg(A)−1

AL+1 · deg(A)−1

, and we employ a similar MLP as before to eliminate the deg(A)−1 term.

B.5 Proof of Theorem 4.4

Theorem 4.4. For any n ∈ N and d ≤ n, there exists a single-layer transformer with embedding
dimension O(d log n) that detects 2-cycles in any graph with node degree at most d. This embedding
dimension is optimal up to logarithmic factors.

The optimality result is proved using the same methodology as Theorem 4.2. It is stated and proved
formally as Theorem B.3.
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The proof of the construction adapts an argument from Theorem 2 of Sanford et al. [2024c], which
shows that a sparse averaging task can be solved with bounded-width transformers. We make use of
the following fact, which is a consequence of the Restricted Isometry Property analysis of Candes
and Tao [2005], Mendelson et al. [2005].
Lemma B.5. For any d ≤ n ∈ N and p = Ω(d log n), there exist vectors y1, . . . ,yn ∈ Rp such that
for any x ∈ {0, 1}n with

∑
i xi ≤ d, there exists ϕ(x) ∈ Rp such that

⟨ϕ(x),yi⟩ = 1, if xi = 1,

⟨ϕ(x),yi⟩ ≤
1

2
, if xi = 0.

We use this fact to prove Theorem 4.4.

Proof. Concretely, we prove that some transformer T exists that takes as input

X =

(
x1 . . . xn

1 . . . n

)
∈ R(n+1)×n

and returns T (X) ∈ {0, 1}n, where T (Xi) = 1 if and only if the ith node in the graph whose
adjacency matrix is A belongs to a directed 2-cycle. We assume that no self-edges exist.

We first configure the input MLP to incorporate the above vectors for node identifiers and adjacency
rows and produce the tokens X̃ = (x̃1, . . . x̃n) ∈ Rm×n for m = 2p+ 2:

x̃i =

ϕ(xi)
yi

1
0

 .

We also introduce a constant-valued “dummy node” x̃n+1, which has no edges and does not appear
in the output:

x̃n+1 =

000p
000p
0
1

 .

We define linear transforms Q,K, V ∈ Rd×n that satisfy the following, for any i ∈ [n] and some
sufficiently large temperature constant c:

Qx̃i = c

ϕ(xi)
yi
7
4
0

 , Kx̃i =

 yi

ϕ(xi)
0
0

 , Kx̃n+1 =

000p
000p
1
0

 , V x̃i =

000p
000p
0
1

 , V x̃n+1 = 000m,

Then, for any i, j ∈ [n] with i ̸= j, the individual elements of the query-key product are exactly

(X̃⊤K⊤QX̃)j,i = c (⟨ϕ(xi),yj⟩+ ⟨ϕ(xj).yi⟩) .

By applying Lemma B.5, we find that

(X̃⊤K⊤QX̃)j,i = 2c, if xi,j = 1 and xj,i = 1;

(X̃⊤K⊤QX̃)j,i ≤
3

2
c, otherwise.

In contrast, (X̃⊤K⊤QX̃)n+1,i =
7
4c for any i.

Thus, for sufficiently large c, all nonzero elements (after rounding) of SM(X̃⊤K⊤QX̃)·,i be-
longs to indices j ∈ [n] if there exist at least one 2-cycle containing node i; if not, then
SM(X̃⊤K⊤QX̃)n+1,i = 1 and all others are zero.

By our choice of value vectors, the ith output of the self-attention unit is em if there exists a 2-cycle
and 000m otherwise.
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C Proofs from Section 5

C.1 Proof of Theorem 5.2

Theorem 5.2. Let k, n ∈ N, and let G′ be a graph with k nodes. There exists a transformer with
O(1) self-attention layers and embedding dimension O

(
n2−1/k

)
that, for any graph G of size n,

counts the number of occurrences of G′ as a subgraph of G.

Proof. The main bulk of the proof will use the transformer to prepare the inputs. We will first explain
the layout of the construction, and then present it formally. Each input node is represented as a row of
the adjacency matrix. We will split the nodes into n1/k sets, where each set contains n1−1/k nodes.
The first layer will prepare the adjacency rows so that each token will include only edges of other
nodes from the same set. The second layer will combine all the nodes of each set into a separate token.
This will use n1/k tokens, where each of them will contain at most n2−2/k edges. The last layer will
use each token to represent each possible combination of k such sets. There are at most

(
n1/k

k

)
≤ n

such combinations, and each of them contains at most n2−2/k edges. We need an additional n1/k

entries for technical reasons to do this embedding into all possible combinations of sets.

We now turn to the formal construction. Assume that the nodes are numbered as v1, . . . , vn, and
denote by x1, . . . ,xn the row of the adjacency matrix corresponding to the nodes. The input to the

transformer of the node vi will be
(
xi

i

)
∈ Rn+1, where ei is the i-th standard unit vector.

Throughout the proof we assume that n1/k and n1−1/k are integers. Otherwise, replace them by their
integral value.

Layer 1: We begin the construction with an MLP that operates on each token separately. This can
be viewed as if we use the self-attention layer to have no effect on the inputs, by setting V = 0 and
using the residual connection. The MLP will implement the following function:

Rn+1 ∋
(
xi

i

)
7→

 x̃i

wi

zi
i

 ∈ Rn2−2/k+2n1/k+1 .

Intuitively, we split the nodes into n1/k sets, each one containing n1−1/k nodes. x̃i will include a
pruned adjacency row for node i with only edges from its own set. wi indicates to which set each
node belongs to, and zi indicate on the tokens that will store these sets. We first introduce the vectors
x̄i ∈ Rn1−1/k

that are equal to:

(x̄i)j =

n1/k∑
r=1

1((xi)(r−1)n1−1/k+j = 1)·1((r−1)n1−1/k+1 ≤ i ≤ rn1−1/k)·1((r−1)n1−1/k+1 ≤ j ≤ rn1−1/k)

These vectors can be constructed using a 3-layer MLP. First, note that this function in our case
operates only on integer value inputs, since i, j and all the entries of xi are integers, hence it is
enough to approximate the indicator function up to a uniform error of 1

2 and it will suffice for our
purposes. To this end, we define the function:

fr,s(z) = σ(x− (r − 1))− σ(x− r) + σ(x− (s+ 1))− σ(x− s) .

Here σ = max{0, z} is the ReLU function. If s ≥ r + 2 We get that fr,s(z) = 1 for r ≤ z ≤ s,
and fr,s(z) = 0 for z ≤ r − 1 or z ≥ s+ 1. This shows that the functions inside the indicators can
be expressed (for integer valued inputs) using a 2-layer MLP. Expressing the multiplication of the
indicators can be done using another layer:

g(z1, z2, z3) = σ(z1 + z2 + z3 − 2) = 1(z1 = 1) · 1(z2 = 1) · 1(z3 = 1) ,

where z1, z2, z3 ∈ {0, 1}. The width of this construction is O(n) since for each of the n1−1/k

coordinates of the output we sum n1/k such functions as above.

We define x̃i ∈ Rn2−2/k

for i ≡ j(mod n1−1/k) to be equal to x̄i in the coordinates (j−1)n1−1/k+1
until jn1−1/k and all the other coordinates are 0. These vectors will later be summed together across
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all nodes in the same set, which provides an encoding of all the edges in the set. We also define
wi = ej ∈ Rn1/k

for (j − 1)n1/k + 1 ≤ i ≤ jn1/k and zi = ei ∈ Rn1/k

for i = 1, . . . , n1/k and
zi = 000 otherwise.

Layer 2: We define the weights of the second layer of self-attention in the following way:

K =

000n2−2/k×n2−2/k

000n1/k×n1/k

In1/k

0

 ,

Q =

000n2−2/k×n2−2/k

In1/k

000n1/k×n1/k

0

 ,

V =

(
n1/kIn2−2/k

000(2n1/k+1)×(2n1/k+1)

)
.

Given two vectors

 x̃i

wi

zi
i

 ,

 x̃j

wj

zj
j

, which are outputs of the previous layer, we have that:

 x̃i

wi

zi
i


⊤

K⊤Q

 x̃j

wj

zj
j

 = ⟨zi,wj⟩. This shows that the first n1/k tokens, which represent each

of the n1/k sets, will attend with a similar weight to every node in their set. After applying the V
matrix we use the residual connection only for the positional embedding vectors7 (namely, the last
2n1/k + 1 coordinates). Thus, the output of the self-attention layer for the first n1/k tokens encodes
all the edges in their set in their first n2−2/k coordinates. This encoding is such that there is 1 in
the i-th coordinates if there is an edge between nodes vs and vr in the set for where r and s are the
unique integers such that i ≡ r(mod n1−1/k) and (s − 1)n2−2/k + 1 < i < sn2−2/k. Thus, the

output of the self-attention layer can be written as

yi

wi

zi
i

 ∈ Rn2−1/k+2n1/k+1, where yi is either an

encoding as described above (for i ≤ n1/k) or some other vector (for i ≥ n1/k) for which its exact
value will not matter. The vector wi is a positional embedding that is not needed anymore and will
be removed by the MLP, and zi = ei for i ≤ n1/k and zi = 000 otherwise.

We will now construct the MLP of the second layer. First, note that given n1/k sets, the number of all
k combinations of such sets is bounded by

(
n1/k

k

)
≤ nk·1/k = n. Denote all possible combinations

by B1, . . . , Bn and let v1, . . . ,vn ∈ Rn1/k

such that (vi)j = 1 if Bi includes the j-th set, and 0
otherwise. These vectors encode all the possible combinations of such sets. The MLP will apply the
following map:

Rn2−1/k+2n1/k+1 ∋

yi

wi

zi
i

 7→

(
yi

vi

zi

)
∈ Rn2−1/k+2n1/k+1 .

This map can be implemented by a 3-layer MLP. Specifically, the only part coordinates that changes
are those of wi which are replaced by vi. This can be done using the function f(i) =

∑n
j=1 1(i =

j) · vj , and its construction is similar to the construction of the MLP in the previous layer.

7It is always possible to use the residual connection to affect only a subset of the coordinates. This can be
done by doubling the number of unaffected coordinates, using the V matrix to move the unaffected entries to
these new coordinates, and then using a 1-layer MLP to move the unaffected entries to their previous coordinates
(which now include what was added through the residual connection). We omit this construction from here for
brevity and since it only changes the embedding dimension by a constant factor.
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Layer 3: The last self-attention layer will include the following weight matrices:

K =

(
000n2−1/k×n2−1/k

In1/k

000n1/k×n1/k

)
,

Q =

(
000n2−1/k×n2−1/k

000n1/k×n1/k

In1/k

)
,

V =

(
kIn2−1/k

000(2n1/k+1)×(2n1/k)

)
.

After applying this layer to the outputs of the previous layer, each token i will attend, with similar
weight, to all the sets (out of the n1/k sets of nodes) that appear in its positional embedding vector vi.
Thus, after applying this layer, The first n2−1/k contain an encoding (as described in the construction
of the previous layer) of all the edges in the i-th combination of k sets Bi.

Finally, the MLP will be used to detect whether the given subgraph of size k appears as a subgraph in
the input graph (which is an encoding of the edges). The output of the MLP will be 1 if the subgraph
appears and 0 otherwise.

Note that any subgraph of size k must appear in one of those combination of sets. Thus, by summing
all the tokens, if their sum is greater than 0 the subgraph of size k appears as a subgraph of G.

C.2 Proof of Theorem 5.1

We first define the Eulerian cycle verification problem on multi-graphs.

Consider some directed multi-graph G = (V,E) for V = {v1, . . . , vn} and E = {e1, . . . , eN},
where each edge is labeled as

ej = (ej,1, ej,2, j) ∈ V × V × [N ].

We say that ej is a successor edge of ei if ei,2 = ej,1. A problem instance also contains a fragmented
path, which is expressed as a collection of ordered pairs of edges P = {p1, . . . , pN} with

pj = (pj1, p
j
2) ∈ E × E,

where pj1 and pj2 are successive edges (i.e. pj1,2 = pj2,1). Let pj be a successor path fragment of pi if
pi2 = pj1.

We say that P verifies an Eulerian cycle if

1. every edge in E appears in exactly two pairs in P ; and

2. there exists a permutation over pairs σ : [N ] → [N ] such that each pσ(j+1) is a successor of
pσ(j) (and pσ(0) is a successor of pσ(N)).

We treat Eulerian cycle detection as a sequential task on adjacency-node tokenization inputs by setting
the ith embedding to ϕ(vi, Pi), where Pi encodes all pairs incident to node vi, i.e.,

Pi = {p ∈ P : p1,2 = p2,1 = vi}.
Now, we prove that—conditional on the hardness of distinguishing one-cycle and two-cycle graphs—
no transformer can solve the Eulerian cycle verification problem of degree-n multi-graphs without
sufficient width or depth.
Theorem 5.1. Under Conjecture 2.4 from Sanford et al. [2024b], the Eulerian cycle verification
problem on multigraphs with self loops cannot be solved by transformers with adjacency matrix
inputs if m = O

(
n2−ϵ

)
for any constant ϵ > 0, unless L = Ω(log(n)).

Proof. Consider some transformer T with depth L and embedding dimension m that solves the
Eulerian cycle verification problem for any directed multi-graph with n nodes and at most n2 edges.
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We use this to construct a transformer T with depth L+O(1) and embedding dimension O(m+n1.1)

that distinguishes between an undirected8 cycle graph of size N and two cycles of size N
2 for N = n2

2 .
The claim of the theorem follows as an immediate consequence of the 1 vs. 2 cycle conjecture (as
stated in Conjecture 13 of Sanford et al. [2024a]).

We prove that a transformer with O(1) layers and embedding dimension O(n) can convert an N -node
cycle graph instance G = (V,E) into a multi-graph G = (V,E) with paths P such that G is a single
cycle if and only if P represents an Eulerian path on G. We first define the transformation and then
show that it can be implemented by a small transformer.

• Assume without loss of generality that V = [N ] and V = [n]. Let ϕn(i) = i (mod n
2 ) be

a many-to-one mapping from vertices in V to half of the vertices in V .

• For each undirected edge ei = {v1, v2} ∈ E, we add two directed edges to E:

ei = (ϕn(v1), ϕn(v2), i), and e−i = (ϕn(v2), ϕn(v1),−i).

For an arbitrary turnaround edge edge ei = e∗ ∈ E, we replace ei∗ , e−i∗ with two self edges:

ei = (ϕn(v2), ϕn(v2), i), and e−i = (ϕn(v1), ϕn(v1),−i).

• For edge ei ∈ E as above with unique neighbors ej = {v0, v1} and ek = {v2, v3}, we add
paths pi = (ei, eak) and p−i = (e−i, ebj), where a and b are chosen such that eak and ebj
succeed ei and e−i respectively.

We remark on a few properties of the constructed graph G, which satisfies |V | = n, and |E| = |P | =
n2. Any two adjacent edges in G create two “successor relationships” between pairs of path segments
in P . Then, if a cyclic subgraph of G does not contain e∗, the path segments in P produced by the
edges in the subgraph comprise two disjoint directed cycle paths. On the contrary, if the subgraph
contains e∗, then its path segments comprise a single cycle path.

Therefore, if G is contains a single cycle of length N , then P verifies an Eulerian cycle in G that
includes all n2 edges Otherwise, if G has two cycles of length 2N , then P represents three cyclic
paths, one of length n2

2 and two of length n2

4 . Hence, there is a one-to-one correspondence between
the 1 vs. 2 cycle detection problem on G and the Eulerian cycle verification problem on G and P .

We conclude by outlining the construction of transformer T that solves the cycle distinction prob-
lem. This can be implemented using elementary constructions or the existing equivalence between
transformers and MPC.

• T takes as input a stream of edges, e1, . . . eN ∈ E, in no particular order. These are expressed
in the edge tokenization, which means that the ith input to the transformer is (ei,1, ei,2, i).
We arbitrarily denote e1 = e∗ with its positional embedding.

• In the first attention layer, T retrieves the two adjacent edges of each edge embedding.

It does so with two attention heads. The first encodes ei,1 as a query vector (which is selected
to be nearly orthogonal to those of each of the other N edge embeddings), ei,1+ ei,2 as a key
vector, and (ei,1, ei,2, i) as the value vector. The second does the same with ei,2. O(log n)
embedding dimension suffices for this association.

Then, the ith output of this layer is processed by an MLP that computes pi and p−i.

• The second attention layer collects all path tokens incident to node j ∈ [n] (i.e., every
pi ∈ Pj) in the jth embedding. This can be treated as a single communication operation
in the Massively Parallel Computation (MPC) model of Karloff et al. [2010], where N
machines each send O(log n) bits of information to n machines, where each machine
receives at most O(n log n) bits. Due to Theorem 1 of Sanford et al. [2024a], this attention
layer can complete the routing task with embedding dimension m = O(n1.1).

• Now, the jth element computes ϕ(vj , Pj) and passes the embedding as input to T .

8The 1 vs. 2 cycle conjecture applies only to undirected graphs.
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• If T verifies an Eulerian cycle, let T output that G is a single-cycle graph.

Therefore, the existence of a transformer T with depth o(log n) or width O(N2−ϵ) that solves the
Eulerian cycle verification problem contradicts the 1 vs. 2 cycle conjecture. This completes the
proof.

D Additional Experiments

Here, we provide additional results of the experiment described in Section 6.1. The results for the
4-Cycle and Triangle Count with 50 and 100 nodes, as well as the connectivity task with 50 nodes, are
presented in Figures 4, 5, 6, 7, 8. These experiments present the same trend discussed in Section 6.1,
where the training loss and test accuracy and loss are similar, while training and inference times are
drastically better for shallow-wide networks.

In Figure 9 we present the critical width chart as described in Section 6.1, for the Triangle Count task.

(a) (b) (c)

Figure 4: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the 4-Cycle count task over graphs with 100 nodes, across transformers with approximately 100k
parameters, varying in width and depth. While the loss and accuracies remain consistent, shallow and
wide transformers demonstrate significantly faster training and inference times.

(a) (b) (c)

Figure 5: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the 4-Cycle count task over graphs with 100 nodes, across transformers with approximately 100k
parameters, varying in width and depth. While the loss and accuracies remain consistent, shallow and
wide transformers demonstrate significantly faster training and inference times.

E Experimental Details

Dataset information In Section 6.1 we used three synthetic datasets, including connectivity,
Triangle Count and 4-Cycle Count. The Triangle Count and 4-Cycle Count were presented in Chen
et al. [2020]. Each of these datasets contains 5000 graphs, and the number of nodes is set according
to the configuration, as we tested graphs with increasing numbers of nodes. The counting datasets are
generated using Erdős–Rényi graphs with an edge probability of 0.1.
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(a) (b) (c)

Figure 6: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the 4-Cycle count task over graphs with 50 nodes, across transformers with approximately 100k
parameters, varying in width and depth. While the loss and accuracies remain consistent, shallow and
wide transformers demonstrate significantly faster training and inference times.

(a) (b) (c)

Figure 7: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the Triangle Count task over graphs with 50 nodes, across transformers with approximately 100k
parameters, varying in width and depth. While the loss and accuracies remain consistent, shallow and
wide transformers demonstrate significantly faster training and inference times.

For the connectivity dataset, to avoid a correlation between connectivity and edge probability as exists
in Erdős–Rényi graphs, we generated the datasets using diverse graph distributions, each with multiple
distribution parameters. The dataset consists of graphs that are either connected or disconnected,
generated using different random graph models to ensure diversity. The Erdős–Rényi model G(n, p)
is used, where each edge is included independently with probability p, and connected graphs are
ensured by choosing p ≥ lnn

n , while disconnected graphs use a lower p. Random Geometric Graphs
(RGGs) are also employed, where nodes are placed randomly in a unit space, and edges are formed
if the Euclidean distance is below a certain threshold r; connected graphs use a sufficiently high r,
whereas disconnected graphs are created with a lower r. Additionally, Scale-Free networks generated
using the Barabási–Albert model are included, where new nodes attach preferentially to high-degree
nodes, ensuring connectivity when enough edges per node (m) are allowed, while disconnected
graphs are produced by limiting interconnections between components. Lastly, the Stochastic Block
Model (SBM) is used to generate community-structured graphs, where intra-community connection
probabilities (pintra) are set high for connected graphs, and inter-community probabilities (pinter)
are set to zero to ensure disconnected graphs. Each type of graph is sampled in equal proportions,
shuffled, and split into training, validation, and test sets to maintain class balance.

In Section 6.3 we used three molecular property prediction datasets from Open Graph Benchmark
(OGB) Hu et al. [2020]. In ogbg-molhiv, the task is to predict whether a molecule inhibits HIV
replication, a binary classification task based on molecular graphs with atom-level features and
bond-level edge features. ogbg-bbbp involves predicting blood-brain barrier permeability, a crucial
property for drug development, while ogbg-bace focuses on predicting the ability of a molecule to
bind to the BACE1 enzyme, associated with Alzheimer’s disease. Dataset statistics are presented in
Table 2.
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(a) (b) (c)

Figure 8: Training and inference times (a), training loss curves (b), and accuracy curves (c) for
the Triangle Count task over graphs with 100 nodes, across transformers with approximately 100k
parameters, varying in width and depth. While the loss and accuracies remain consistent, shallow and
wide transformers demonstrate significantly faster training and inference times.

(a)

Figure 9: Critical width evaluation for the Triangle count Task. The points indicate the critical width
at which the model fails to fit the data.

Hyper-Parameters For all experiments, we use a fixed drouput rate of 0.1 and Relu activations. In
Section 6.1 we tuned the learning rate in {10−4, 5 · 10−5}, batch size in {32, 64}. In Section 6.3 we
tuned the learning rate in {10−3, 5 · 10−3}, number of layers in {3, 5, 6, 10, 12}, hidden dimensions
in {32, 64}. We used batch size of size 64.

Edge List tokenization Tokenization of the graph as a list of edges is done as follows. Assume a
graph over n nodes. Each node is represented by a one-hot encoding vector bi ∈ Rn concatenated
with the node input features xi ∈ Rd. Then, each edge is represented by concatenating its node
representations. Each edge representation is fed as an independent token to the transformer. As
graphs vary in size, we pad each node representation with zeros to match the maximal graph size in
the dataset.

Adjacency Rows tokenization Tokenization of the graph as an adjacency rows is done as follows.
Assume a graph over n nodes and adjacency matrix A. Each node is associated with a vector of
features xi ∈ Rd. We concatenate to each row of A the node’s corresponding feature vector. This
results in a vector of size n+ d for each node. As graphs vary in size, we pad each node vector with
zeros to match the maximal graph size in the dataset. Each such vector is used as an input token to
the transformer

Laplacian Eigenvectors tokenization Tokenization of the graph as Laplacian eigenvectors is done
as follows. Assume a graph over n nodes and graph Laplacian L. Each node is associated with a
vector of features xi ∈ Rd. We compute the eigenvector decomposition of the graph’s Laplacian.
Then, each node is associated an eigenvector and an eigenvalue. We concatenate these two for each
node, resulting in a vector of size n+ 1. We then concatenate to each of these spectral vectors the
node’s corresponding feature vector xi. This results in a vector of size n + d + 1 for each node.
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As graphs vary in size, we pad each node vector with zeros to match the maximal graph size in the
dataset. Each such vector is used as an input token to the transformer

Table 2: Summary statistics of datasets used in Section 6.

Dataset # Graphs Avg # Nodes Avg # Edges # Node Features # Classes

ogbg-molhiv 41,127 25.5 27.5 9 2
ogbg-molbace 1,513 34.1 36.9 9 2
ogbg-molbbbp 2,039 24.1 26.0 9 2

Small and medium size graph commonly used datasets In the main paper we mentioned that
many commonly used graph datasets contain graphs of relatively small size. Therefore in many
real-world cases, the embedding dimension of the model is larger than the size of the graph. Here
we list multiple such datasets from the Open Graph Benchmark (OGB) Hu et al. [2020] as well as
TUdatasets Morris et al. [2020]. The datasets, including their statistics, are listed in Table 3.

Table 3: Summary of commonly used graph datasets, where the average number of nodes is relatively
small

Dataset # Graphs Avg # Nodes Avg # Edges

ogbg-molhiv 41,127 25.5 27.5
ogbg-molbace 1,513 34.1 36.9
ogbg-molbbbp 2,039 24.1 26.0
ogbg-tox21 7,831 18.6 19.3
ogbg-toxcast 8,576 18.8 19.3
ogbg-muv 93,087 24.2 26.3
ogbg-bace 1,513 34.1 36.9
ogbg-bbbp 2,039 24.1 26.0
ogbg-clintox 1,477 26.2 27.9
ogbg-sider 1,427 33.6 35.4
ogbg-esol 1,128 13.3 13.7
ogbg-freesolv 642 8.7 8.4
ogbg-lipo 4,200 27.0 29.5
IMDB-Binary 1000 19 96
IMDB-Multi 1500 13 65
Proteins 1113 39.06 72.82
NCI1 4110 29.87 32.3
Enzymes 600 32.63 62.14
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will provide in the final version a Github project with the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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