
Forging Time Series with Language: A Large
Language Model Approach to Synthetic Data

Generation

Cécile Rousseau
IBM Research Europe

rousseau.cecile@ibm.com

Tobia Boschi
IBM Research Europe

tobia.boschi@ibm.com

Giandomenico Cornacchia
IBM Research Europe

Giandomenico.Cornacchia1@ibm.com

Dhaval Salwala
IBM Research Europe

dhaval.vinodbhai.salwala@ibm.com

Alessandra Pascale
IBM Research Europe
apascale@ie.ibm.com

Juan Bernabe Moreno
IBM Research Europe

juan.bernabe-moreno@ibm.com

Abstract

SDForger is a flexible and efficient framework for generating high-quality multivari-
ate time series using LLMs. Leveraging a compact data representation, SDForger
provides synthetic time series generation from a few samples and low-computation
fine-tuning of any autoregressive LLM. Specifically, the framework transforms
univariate and multivariate signals into tabular embeddings, which are then encoded
into text and used to fine-tune the LLM. At inference, new textual embeddings are
sampled and decoded into synthetic time series that retain the original data’s statisti-
cal properties and temporal dynamics. Across a diverse range of datasets, SDForger
outperforms existing generative models in many scenarios, both in similarity-based
evaluations and downstream forecasting tasks. By enabling textual conditioning
in the generation process, SDForger paves the way for multimodal modeling and
the streamlined integration of time series with textual information. The model is
open-sourced at https://github.com/IBM/fms-dgt/tree/main/fms_dgt/
public/databuilders/time_series.

1 Introduction

In the era of foundation models, integrating time-series analysis with language models (LLMs) has
emerged as a key research priority, spurring work on specialized models for forecasting, anomaly
detection and root cause analysis (Liang et al., 2024). These efforts aim to harness the representational
power of LLMs to tackle complex temporal dependencies. Despite these advancements, foundation
models for time series still struggle with concept drift, high variability, and face performance
degradation over long horizons. In addition, the scarcity of large and diverse time-series datasets
often limits model generalization, especially in domains where data collection is expensive or
operationally constrained, such as climate science, finance, or plasma physics (Kit et al., 2024).

In this context, synthetic data generation has emerged as a complementary research direction to
improve scalability and model performance, particularly in low-quality or data-scarce settings. In
particular, synthetic data can be leveraged to fine-tune machine learning models on domain-specific
distributions, reducing the need to train models from scratch and improving sample efficiency. Indeed,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/IBM/fms-dgt/tree/main/fms_dgt/public/databuilders/time_series
https://github.com/IBM/fms-dgt/tree/main/fms_dgt/public/databuilders/time_series

several generative models for time series have been proposed, including VAE-based architectures (De-
sai et al., 2021; Lee et al., 2023), GANs (Pei et al., 2021; Kidger et al., 2021), and diffusion-based
approaches (Zhou et al., 2023). While these methods have shown promise, they typically lack pre-
training, require task-specific retraining, and often struggle with long-term dependencies, multivariate
coupling, and distributional shifts (Ang et al., 2023).

Recent studies have instead explored the use of LLMs for synthetic tabular data generation (Padhi
et al., 2021; Borisov et al., 2022), demonstrating that language models trained on text-encoded data
can capture statistical relationships and feature dependencies effectively. However, extending these
methods to time series is non-trivial: long temporal windows increase inference and training costs,
while temporal and multivariate correlations require more structured modeling.

These limitations highlight the need for novel methodologies that adapt LLMs for time-series genera-
tion while addressing temporal, structural, and computational challenges. We introduce SDForger
(Synthetic Data Forger), a novel framework for generating high-quality univariate and multivari-
ate time series, even in data-scarce settings. SDForger leverages foundation models with minimal
fine-tuning by operating over compact tabular embeddings derived from functional decompositions.

Key features and advantages of SDForger:

• Compact basis representation SDForger uses FastICA or PCA to embed time series into
low-dimensional tabular data. These capture key temporal and inter-variable structures while
decoupling the embedding from sequence length, enabling efficient processing of long signals.

• Text-to-sequence generation via LLMs The embedding tables are converted into structured
textual prompts and used to fine-tune a language model. A guided inference approach is then
used to generate structured embeddings, ensuring that the synthetic data retains the original
dataset’s statistical properties and feature relationships.

• Flexible, lightweight architecture The framework leverages autoregressive LLMs, including
lightweight models, and requires only a small number of training instances. Its modular de-
sign enables easy adaptation to different generation tasks and architectures, while its compact
embedding space ensures fast inference, even for long time-series windows.

• Multivariate and multimodal readiness SDForger can model complex multivariate dynamics
and supports future extensions to textual conditioning, enabling generation guided by both
time-series structure and external language-based context.

By combining structured embeddings with LLM-based generation, SDForger establishes a new
paradigm for scalable, interpretable, and high-quality synthetic time-series generation.

Our simulations demonstrate that SDForger not only generates statistically realistic time series but
also improves downstream model performance, often matching or exceeding results obtained from
real data alone. This is particularly valuable in practical scenarios where access to high-quality
data is limited or where distribution shifts make original training data less effective. Compared to
state-of-the-art generative models, SDForger achieves competitive or superior performance across a
wide range of similarity metrics and utility-based evaluations. Notably, our experiments show that
even lightweight, pretrained LLMs (e.g., GPT-2) are sufficient to produce high-quality synthetic data
with minimal fine-tuning, highlighting the accessibility, efficiency, and flexibility of our approach.

In the remainder of this paper, we first review related work (Section 2), then detail the SDForger
framework (Section 3), describe our evaluation setup (Section 4), present extensive experimental
results (Section 5), highlight the flexibility of language models (Section 6), and conclude with key
takeaways and future directions (Section 7).

2 Related work

Time-series generation Recent advances in time-series generation have introduced a variety of
deep generative models, including GAN-based approaches like TimeGAN (Smith and Smith, 2020),
state-space models, and vector-quantized architectures such as TimeVQVAE (Lee et al., 2023). While
these methods generate realistic sequences, they often struggle with multivariate dependencies, and
require training from scratch for each dataset. More recent framework integrate randomly-weighted
combinations of time series to improve their pretraining pipeline, e.g. Chronos (Ansari et al., 2024)
adapting the Mixup (Zhou et al., 2023) methodology for time series. To address evaluation challenges,
TSGBench (Ang et al., 2023) proposes a unified benchmark of similarity, fidelity, and utility metrics.

2

Foundation models and LLMs for time series Recent advances have introduced foundation
models specifically designed for time-series tasks, offering unified frameworks for forecasting,
classification, and anomaly detection (Liang et al., 2024). Examples include TFT (Lim et al.,
2021), TimeGPT (Garza and Mergenthaler-Canseco, 2023), and Chronos (Ansari et al., 2024), while
lightweight models like TTMs (Ekambaram et al., 2024) focus on efficient multivariate forecasting.
Parallel efforts have explored adapting LLMs to time-series data by encoding numerical sequences as
text (Gruver et al., 2024; Zhou et al., 2023; Jin et al., 2023), enabling zero-shot inference and transfer
learning. Notably, LLMTime (Gruver et al., 2024) and GPT4TS (Zhou et al., 2023) retain most of the
LLM architecture while fine-tuning only shallow layers, and Time-LLM (Jin et al., 2023) employs
reprogramming to adapt to temporal tasks. Despite these innovations, most existing approaches
either require task-specific pretraining or struggle to model complex structures and may benefit from
synthetic data for improving generalization and robustness.

Specialized architectures for time-series generation Several architectures have been specifically
designed to capture temporal and multivariate dependencies in time series. Variational autoencoders
such as TimeVAE (Desai et al., 2021) and TimeVQVAE (Lee et al., 2023) use recurrent or vector-
quantized structures to model sequential dynamics. GAN-based approaches, including RTSGAN (Pei
et al., 2021), SDEGAN (Kidger et al., 2021), and COSCI-GAN (Seyfi et al., 2022), employ recurrent
or component-wise disentangled generators to capture complex temporal patterns adversarially.
Diffusion-based models, like LS4 (Zhou et al., 2023), generate sequences through learned reverse-
time processes. These specialized architectures complement general-purpose time-series generation
methods and provide valuable baselines for evaluating synthetic data. However, these architectures
are trained from scratch and cannot leverage existing pre-trained language or foundation models,
limiting their scalability and adaptability across domains.

3 Methodology

In this section, we present our methodology, illustrated in Figure 1. SDForger is divided into three
macro-steps: (i) Preprocessing and embedding transform the time series into tabular data (i.e., steps 1
to 3 highlighted in purple); (ii) Fine-tuning and Generation fine-tune a pre-trained LLM and generate
new embedding instances (i.e., step 4 highlighted in green); (iii) Decoding reconstruct the original
time-series space from the generated embeddings (i.e., steps 5 and 6 highlighted in light blue).

Original Data

67 = {679}9+:;< , 	 679∈ ℝ=×>

!̃!!! 	 !̃!"! 	 !̃!#! 	 !̃!!" 	 !̃!"" 	 !̃!#"
!̃"!! 	 !̃""! 	 !̃"#! 	 !̃"!" 	 !̃""" 	 !̃"#"

4. LLM
Inference

and
Finetuning

Ti
me

Se
ri
es

Generated Data

Ta
bu

la
r D

at
a

Te
xt

!" = !"!, … , !"" ∈ ℝ#$×&

"Input: value_1 is [blank], value_2 is [blank] … value_6 is [blank]. [sep]
Target:	(()) [answer]	((*) [answer] … ((+* [answer].”

()*+,) ∈ *, +

,6	

"Input: value_1 is [blank], value_2 is [blank] … value_6 is [blank]. [sep]
Target:	,(,)) [answer] ,(,*) [answer] … ,(,+* [answer].”

,-*+, -	 ∈ *, /+

0! ∈ ℝ"×.)

" = "!, … , "" ∈ ℝ$×&

1. PERIODICITY
AWARE

SEGMENTATION

8 = {81}1)23 , 	 81∈ ℝ4×5

2. ICA/FPC
EMBEDDING

!!!! 	 !!"! 	 !!#! 	 !!!" 	 !!"" 	 !!#"

!"!! 	 !""! 	 !"#! 	 !"!" 	 !""" 	 !"#"
!#!! 	 !#"! 	 !##! 	 !#!" 	 !#"" 	 !##"

6

92 96

CHANNEL 1 CHANNEL 2

3. TEXTUAL ENCODING 5. TEXTUAL DECODING

92 96

CHANNEL 1 CHANNEL 2
6. ICA/FPC
DECODING

1 = 2!+	2/

Generation

Figure 1: SDForger pipeline. Overview of the SDForger generation process. The example illustrates a setting
with I = 3 input segments, C = 2 channels, k1 = k2 = 3 components, and Ĩ = 2 generated samples. The
model performs periodicity-aware segmentation, extracts embeddings, and embed them into text. An LLM is
then fine-tuned to generate embedding sequences, which are finally decoded to reconstruct synthetic time series.

Notation Hereinafter, we introduce some basic notation. Let X = {Xi}Ii=1, Xi ∈ RC×L represent
a collection of I instances of a multivariate time series, where each instance has length L and consists

3

of C channels. The task of synthetic time-series generation can now be formally defined as producing
Ĩ instances of a multivariate time series {X̃i}Ĩi=1, X̃i ∈ RC×L conditioned on the given context X .
Throughout the paper, we denote by xc

i ∈ RL the i-th instance of channel c, and by Xc ∈ RI×L the
matrix collecting all instances associated with channel c.

Periodicity-aware segmentation In cases where only a single time series instance X1 ∈ RC×L1

is available, we apply a segmentation strategy to artificially create multiple instances. The segmen-
tation procedure facilitates the estimation of the time-series distribution. Specifically, we extract I
periodicity-aware windows of fixed length L < L1, aligning cuts with natural cycles and minimizing
overlap to enhance independence and diversity. This pre-processing (described in Appendix A.1)
transforms the data from a single sequence X1 into a set X = {Xi}Ii=1, where Xi ∈ RC×L,
preparing the data for the generation task.

3.1 From time series to tabular data

To enable tabular generation and analysis, SDForger transforms time series into structured tabular
data using basis decomposition techniques. Each row represents a time series embedding obtained
by projecting the signal onto a set of learned basis functions. Specifically, we adopt two decompo-
sition methods: Functional Principal Components (FPC) (Ramsay and Silverman, 2005) and Fast
Independent Component Analysis (FastICA) (Hyvarinen, 1999):

• FPC identifies principal modes of variation by performing eigen-decomposition of the covariance
operator. It captures directions of maximal variance, preserving correlation across components,
showing effectiveness in modeling multivariate longitudinal data (Boschi et al., 2024).

• FastICA extracts statistically independent components by maximizing non-Gaussianity. It
decomposes a contrast function, uncovering independent latent factors that may not align with
the directions of maximal variance.

Formally, for each channel c, we assume the instances (Xc
1 , . . . , X

c
I) are realizations of continuous

functions defined over T = [0, L]. We approximate each Xc
i as a linear combination of kc basis

functions (bc1, . . . , b
c
kc
), where the choice of basis depends on the decomposition method (non-

Gaussianity-based for FastICA, covariance-based for FPC). The embedding coefficients are:

ecij = ⟨Xc
i , b

c
j⟩L2 =

∫
T
Xc

i (t)b
c
j(t) dt,

We define the embedding matrix for channel c, Ec ∈ RI×kc . By concatenating the embeddings across
all channels, we obtain the final embedding table: E = (E1, . . . , EC) ∈ RI×K with K =

∑C
c=1 kc.

Throughout this paper, we refer to the columns of E as embedding features. We denote the i-th row
of E as Ei, corresponding to the embedding vector of instance Xi, and the value in its k-th column
as eik. More details on the choice of kc are given in Appendix A.2 and Appendix Table D.1.

Notably, both methods offer the advantage that their computational cost depends on the number of
instances I and the number of components kc, but not on the instance length L. This decoupling allows
our algorithm to handle very long time windows without a corresponding increase in computational
complexity, ensuring great flexibility and scalability.

3.2 Generation of tabular data

Our data generation block consists of three key stages: encoding tabular data into text, fine-tuning an
LLM, and generating synthetic embeddings.

3.2.1 From embeddings table to text

LLMs are designed to process textual information. Therefore, applying an LLM to tabular data
requires converting each row into a textual format that can serve as a prompt during the fine-tuning
stage. Inspired by Donahue et al. (2020), we introduce a Textual Encoder responsible for converting
tabular instances Ei into structured text representations using a Fill-In-The-Middle template.

Definition 1 (Textual encoder) Let PFT = {PFT
i }Ii=1 denote the set of fine-tuning prompts, where:

4

PFT
i = “Input: ⃝K

k=1 (value_π(k) is [blank],) [sep]

Target: ⃝K
k=1 (eiπ(k) [answer])”

Here, the operator ⃝ denotes the concatenation and π is a random permutation of K elements.

Random Feature Order Permutation. Encoding tabular data into text can introduce unintended
positional biases, as LLMs inherently process tokens in sequence. To enforce order independence
(Borisov et al., 2022), we apply a random permutation π to the encoded feature-value pairs within
each instance. This shuffling ensures that the model does not infer any spurious relationships
based on the ordering of features within the textual representation. For K = 2, an admissible
finetuning prompt for Ei is: “Input: value_2 is [blank], value_1 is [blank] [sep]
Target: ei2 [answer] ei1 [answer]”

3.2.2 Large language model finetuning and inference

Fine-tuning By training an LLM on structured text representations of the embedding tables, we
enable it to learn meaningful patterns present in the data. Since the optimal number of fine-tuning
epochs depends on the number of instances, the embedding dimension, and the LLM architecture, we
implement an early stopping criterion to prevent overfitting.

Inference After fine-tuning, inference is performed by prompting the LLM with structured textual
templates that mirror the training format, allowing it to autonomously generate new embedding rows.

Definition 2 (Textual inference) Given the embedding table E ∈ RI×K , we define the set of infer-
ence prompts at each generation step as P INF = {P INF

g }G
g=1

where:

P INF
g = “Input:⃝K

k=1 (value_π(k) is [blank],) [sep] Target:”

We use a multinomial distribution sampling strategy to reduce repetition and generate more creative
and diverse outputs. The model draws from its learned token probability distribution at each step,
guided by the temperature parameter, which controls sampling variability. As a result, all values
are internally generated by the LLM in a fully conditional and self-contained manner, highlighting
the model capacity to internalize statistical and structural patterns from compact embeddings and
synthesize coherent time series without external noise injection or sampling routines.

At each inference step, we generate a batch of G synthetic instances, repeating the process until
the desired number of sequences is obtained or a stopping criterion is met. We denote the set of
all generated text instances as: G = {G1, . . . ,GG}. Ideally, the fine-tuned LLM should generate
text instances in the following format: Gg = ⃝ (P INF

g , ⃝K
k=1(ãgπ(k) [answer])) where π is the

random permutation used in P INF
g , and {ãgπ(k)}Kk=1 are the K numerical values inferred, which form

the generated embedding table.

Retrieve embedding from text Given a generated text instance Gg ∈ G, we reconstruct the
corresponding tabular data by mapping the inferred embedding values {ẽgπ(k)}Kk=1 to their respective
features. Each textual entry is split into feature-value pairs using "[answer]" as a delimiter. Missing
or unrecognized features are assigned the placeholder "NaN". For a specific channel c, the output
of an inference step s is the reconstructed embedding matrix: Ẽc,s ∈ RG×kc , where each row
corresponds to a generated instance Gg and each column represents an inferred embedding feature
associated with channel c. To track all generated embeddings up to step s, we define: Ẽc,≤s.

In-generation filtering and stopping criterion At each inference step s, we apply an online
filtering procedure that validates generated embeddings without requiring reconstruction into the
time-series domain, ensuring efficient real-time evaluation. Specifically, the reconstructed embedding
matrices

(
Ẽ1,s, . . . , ẼC,s

)
are filtered based on three criteria: 1) Instances with missing values are

discarded, as they prevent accurate reconstruction; 2) Duplicated instances are discarded to maintain
diversity in the generated dataset; 3) Significantly diverging instances are discarded. This combined
filtering procedure not only enforces diversity and validity among the generated instances but also
provides a diagnostic signal: if a substantial fraction of samples is rejected, it may indicate that the
fine-tuned LLM requires further training or more representative data. Representative examples of

5

discarded instances and details on the divergence detection procedure are provided in Appendix A.3,
while Appendix Table D.2 reports the rejection rates observed in a representative generation scenario,
illustrating the balance between filtering rigor and sample diversity.

In generation mode, SDForger employs a dynamic stopping criterion that continues generating
batches of G text instances as long as sufficient diversity is preserved among the generated samples
(Appendix A.4). However, for consistent comparison with baseline methods across all simulation
scenarios, we fix the number of generated instances Ĩ across all algorithms. If we denote by S
the final inference step, then the output of the generation process is the complete embedding table
Ẽ ∈ RĨ×K , where, for each channel c, Ẽc = Ẽc,≤S .

3.3 Decoding: from tabular embeddings to time series

Given Ẽ, the time-series representation of generated embeddings can be efficiently recovered due
to the reversible nature of the embedding technique used. For the channel c, given the generated
coefficients ẽcij and the corresponding basis system (bc1, . . . , b

c
kc
), the reconstructed time series are

computed as follows Kokoszka and Reimherr (2017): x̃c
i =

∑kc

j=1 ẽ
c
ijb

c
j .

This formulation ensures that each generated embedding is decoded back to the original space,
resulting in Ĩ synthetic instances of a multivariate time series X̃i ∈ RC×L.

4 Evaluation methodology

Evaluation metrics Evaluating synthetic time-series data requires balancing realism, usability, and
efficiency. A strong generative model should replicate key properties of real data while supporting
downstream tasks such as forecasting. We adopt a comprehensive evaluation framework comprising
two categories: similarity metrics and utility metrics.

• Similarity metrics, inspired by Ang et al. (2023), assess how closely the generated data
matches the real data in terms of distribution, structure, and behavior. They fall into two
subtypes: (i) Feature-based metrics which include Marginal Distribution Difference (MDD),
Auto-Correlation Difference (ACD), Skewness Difference (SD), and Kurtosis Difference (KD),
assess how well synthetic data retains key statistical properties of real data; (ii) Distance-based
metrics include Euclidean Distance (ED), Dynamic Time Warping (DTW), and SHAP-RE (SHR),
a shapelet-based reconstruction error. They quantify the similarity between synthetic and real
data in raw feature space or temporal alignment. Formal definitions are provided in Appendix B.

• Utility metrics assess the effectiveness of synthetic data in downstream tasks. Specifically, we
fine-tune Tiny Time Mixers (TTM) (Ekambaram et al., 2024), a recent foundation model for
multivariate time series, under four settings: (1) zero-shot (no fine-tuning) (2) real data only, (3)
synthetic data only, and (4) real data augmented with synthetic data. This setup quantifies the
impact of synthetic data on model transferability, data efficiency, and robustness.

Evaluation protocols We consider three distinct evaluation settings to assess the generative capa-
bilities of SDForger across different structural assumptions:

• Multisample generation aims to produce new instances by combining patterns from multiple
existing time series. This setting reflects scenarios such as generating experimental samples,
weather profiles, or patient trajectories from heterogeneous observations. It emphasizes diversity
and generalization in data-rich contexts.

• Univariate generation focuses on learning from a single time series to generate plausible
alternative versions. This is useful for simulating counterfactual histories, seasonal variations, or
stress-test scenarios in domains like finance, weather, and demand forecasting.

• Multivariate generation evaluates the ability to jointly generate multiple interdependent chan-
nels. It reflects real-world settings, such as energy systems, traffic flows, or sensor networks,
where channel interactions and cross-correlations are crucial for realism and downstream utility.

In the multisample case, multiple instances are available by design. In contrast, for univariate
and multivariate settings, only one instance is provided; therefore, we first apply the period-aware
segmentation procedure described in Section 3 to extract multiple windows from each channel.

6

Parameter settings We summarize here the hyperparameters for SDForger. We fix the embedding
dimension to k = 3 for the multisample and univariate setting. The LLM used for generation is
GPT-2 1, fine-tuned with Adam (Diederik, 2014) optimization, a learning rate of 8× 10−5, batch size
32, and a maximum of 200 epochs. Early stopping criteria is applied based on the best validation loss
computed every 5 steps, patience set to 5, randomly choosing 20% of the data as a validation set.

Baselines We evaluated SDForger’s performance against several baseline models for synthetic time
series generation, covering different approaches. Variational autoencoders: TimeVAE (Desai et al.,
2021), which models temporal dependencies with a recurrent VAE architecture, and TimeVQVAE
(Lee et al., 2023), which incorporates vector quantization for better capturing discrete temporal pat-
terns; generative adversarial networks: RTSGAN (Pei et al., 2021), which uses recurrent components
for adversarial training, and SDEGAN (Kidger et al., 2021), which models time series as solutions
to stochastic differential equations; and a diffusion-based model: LS4 (Zhou et al., 2023), which
generates sequences via a learned reverse-time diffusion process. Hyperparameters for all baseline
competitors follow those reported in their original papers, except for SdeGAN, for which we fix the
number of training iterations to 1000 to balance convergence and computational cost.

Datasets We evaluated SDForger models using 12 publicly available datasets from various domains,
including energy, transport, industry, weather, and finance, with sampling frequencies ranging from
2 minutes to monthly. The datasets, sourced from the Monash Time Series Forecasting Repository
and other public domains, include both stationary and non-stationary time series, reflecting diverse
temporal dynamics. Detailed information is provided in Appendix C.

5 Results

Following, we discuss results on Similarity-based (Section 5.1), Utility-based metrics (Section 5.2),
and a condensed ablation study (Section 5.3). Complete ablations are provided in Appendix D.

5.1 Similarity-based metrics results

The similarity-based results aggregated for the multisample and univariate settings are reported in
Table 1, with detailed per-dataset scores provided in Appendix Tables D.10, D.11, D.12, D.13, and
D.14.

Overall performance. Different generative models exhibit complementary strengths: for instance,
TimeVAE performs well on distribution-based metrics, while TimeVQVAE excels on distance-
based measures such as Euclidean Distance and DTW. In contrast, SDForger achieves consistently
strong and balanced performance across both metric categories, maintaining high scores without
overfitting to either statistical or structural similarity (Table 1). This balanced behaviour is further
confirmed by the normalized average scores per metric group and the average rank values. Such
consistency indicates that SDForger not only preserves key statistical features but also captures the
underlying temporal and distributional structure of the data, demonstrating strong generalization
and robustness across heterogeneous temporal domains. By decoupling representation learning
from generation, SDForger captures long-range dependencies while maintaining statistical realism,
ultimately producing temporally coherent and domain-consistent synthetic samples.

Robustness to evaluation protocols Comparing multisample and univariate settings, we observe
that model rankings and relative performances remain largely consistent, suggesting that SDForger is
robust to variations in the evaluation protocol. This stability is an important advantage in practice,
where test-time conditions may vary.

ICA vs. FPC The ICA embedding strategy consistently leads, particularly on distance-based metrics.
The superior performance of the ICA-based variant likely comes from the nature of the components it
produces. Unlike FPC, which orders components by explained variance and often concentrates most
information in the first few components, ICA explicitly seeks statistically independent components.
This tends to produce a more balanced and disentangled basis decomposition, where each component
carries distinct information that have similar importance for data reconstruction. For our LLM-based
generation pipeline, this disentanglement appears advantageous because the model can learn a joint

1https://huggingface.co/openai-community/gpt2

7

https://huggingface.co/openai-community/gpt2

Table 1: Aggregated performance comparison in the multisample and univariate settings. Metrics include
raw similarity scores and normalized averages (in [0− 1]) for each metric group, plus the average rank. Lower
values are better. Bold indicates the best performance per column, and underlined indicates the second-best.

Feature-based Distance-based Norm. Avg.

MDD ACD SD KD ED DTW SHR Feat. Dist. Rank

M
U

LT
IS

A
M

PL
E

SDF-ICA3 0.244 1.180 0.869 2.384 16.669 12.373 6.870 0.224 0.074 3.143

SDF-FPC3 0.255 2.166 1.323 4.299 17.749 11.921 16.537 0.562 0.100 4.714

TimeVAE 0.227 0.259 0.507 1.697 18.041 11.625 14.021 0.000 0.094 2.143

TimeVQVAE 0.371 5.466 1.327 3.889 13.661 10.167 2.030 0.873 0.000 3.714

RtsGAN 0.279 1.769 0.612 2.300 16.084 11.859 5.631 0.231 0.058 2.857

SdeGAN 0.240 2.098 1.404 4.091 37.174 33.391 51.678 0.540 0.693 5.286

LS4 0.276 6.150 1.243 4.852 44.389 31.806 160.403 0.789 0.977 6.143

U
N

IV
A

R
IA

T
E

SDF-ICA3 0.306 1.396 0.671 1.382 18.802 12.435 4.856 0.149 0.070 2.429

SDF-FPC3 0.308 1.480 0.801 1.690 19.340 12.809 5.452 0.354 0.084 4.000

TimeVAE 0.288 2.013 0.611 1.245 20.778 12.126 18.534 0.066 0.158 2.714

TimeVQVAE 0.433 4.330 0.740 2.052 15.438 11.250 2.217 0.707 0.000 3.571

RtsGAN 0.363 2.389 0.776 1.325 18.951 12.926 5.464 0.384 0.081 4.000

SdeGAN 0.267 3.659 0.813 1.542 42.017 38.541 65.557 0.390 0.979 5.143

LS4 0.298 6.041 0.855 2.457 40.362 24.262 69.751 0.797 0.805 6.143

Table 2: Utility evaluation via fine-tuned forecasting models. TTM forecasting performance on downstream
tasks using different training sources: zero-shot, original data, generated data, and a combination of original
and generated data. Results are reported for 3 multivariate datasets: bikesharing (target: count, control:
temperature, humidity), etth1 (target: HUFL, control: MUFL, OT), and traffic (target: junction1, control:
junction2, junction3). Metrics include RMSE, MASE, WQL, and average rank (lower is better). Bold
highlights the best result within each row group; underlined the second best; bold+underlined the overall best.

bikesharing etth1 traffic

RMSE MASE WQL RMSE MASE WQL RMSE MASE WQL Avg. Rank

0-shot 0.728 2.150 0.287 0.678 2.132 0.255 0.708 1.555 0.255 1.78

Original Data (OD) 0.495 0.822 0.178 0.658 1.820 0.232 0.702 1.995 0.283 1.22

G
E

N
E

R
AT

E
D

SDF-ICA 0.514 0.899 0.194 0.626 1.820 0.224 0.655 1.849 0.262 2.00

SDF-FPC 0.527 0.926 0.200 0.650 1.887 0.232 0.662 1.837 0.262 3.22

TimeVAE 0.566 0.983 0.211 0.690 2.268 0.269 0.738 2.078 0.296 5.33

TimeVQVAE 0.520 0.867 0.188 0.626 1.874 0.227 0.702 1.995 0.283 2.67

RtsGAN 0.710 1.261 0.275 0.770 2.271 0.291 0.597 1.574 0.225 4.67

SdeGAN 0.572 0.995 0.214 0.688 2.262 0.263 0.629 1.715 0.243 4.00

LS4 0.839 1.468 0.318 0.642 1.977 0.236 0.917 2.595 0.369 5.89

O
R

IG
IN

A
L

+
G

E
N

SDF-ICA + OD 0.487 0.801 0.173 0.642 1.746 0.226 0.750 2.110 0.301 3.22

SDF-FPC + OD 0.493 0.829 0.179 0.666 1.754 0.231 0.743 2.087 0.297 4.78

TimeVAE + OD 0.492 0.814 0.176 0.654 1.752 0.228 0.721 2.039 0.290 2.89

TimeVQVAE + OD 0.495 0.804 0.174 0.678 1.887 0.242 0.724 2.043 0.291 4.56

RtsGAN + OD 0.498 0.819 0.177 0.637 1.872 0.231 0.607 1.647 0.234 3.44

SdeGAN + OD 0.495 0.837 0.181 0.620 1.843 0.224 0.605 1.716 0.242 3.33

LS4 + OD 0.497 0.822 0.178 0.660 1.819 0.233 0.745 2.111 0.300 5.56

distribution over a set of factors that all have the same “power”. Thus, the results suggest that the
LLM is indeed better equipped to model the joint distribution when presented with independent
factors rather than a hierarchy of variance-ordered components.

5.2 Utility-based metrics results

Table 2 presents the utility evaluation, where we assess the practical value of synthetic data by
fine-tuning TTM on different multivariate training sources. For LS4, we modified the architecture to
support multivariate generation. Furthermore, we adjust the embedding dimension k in SDForger
according to the complexity of each dataset, setting k=3 for bikesharing, k=7 for etth1, and k=5

8

for traffic. To determine these values, we conducted a small ablation study to identify the optimal
embedding dimension for each dataset (see Table D.7).

SDForger demonstrates strong performance across datasets, as evidenced by its top average rank,
with notable results on bikesharing and etth1. In bikesharing, synthetic data from SDForger alone
yields competitive scores, and combining it with real data leads to the best overall performance across
metrics. On etth1, SDForger-generated data surpasses original data in RMSE and WQL, suggesting it
captures critical temporal and statistical structure. The hybrid setting (original + generated) maintains
this advantage and further improves MASE. Performance on traffic is more nuanced. Here, fine-
tuning on real data is less effective, and GAN-based methods outperform others. Nevertheless,
SDForger remains competitive, especially when using synthetic data alone. This suggests that the
test distribution may deviate significantly from the training set, making traditional fine-tuning less
useful. Indeed, high-quality synthetic data can act as a valuable supplement or even an alternative.

In no scenario does synthetic data degrade downstream performance, underscoring the reliability and
utility of SDForger-generated samples across varied forecasting contexts.

5.3 Ablation

Effect of embedding dimension k Appendix Table D.6 presents an ablation study on the number
of components k used in SDForger’s embedding space. A compact embedding with k=3 offers
strong performance across both multisample and univariate settings, indicating that a small number
of components is often sufficient to capture core temporal and structural patterns. However, the
optimal value of k may vary across datasets, with more intricate dynamics potentially requiring
higher-dimensional representations. In practice, users may also opt to select k based on a desired
percentage of explained variance, adapting the representation to specific application needs.

Domain-level insights Appendix Tables D.3 and D.4 summarize the average normalized similarity
scores per dataset. SDForger models achieve strong performance across a wide range of domains.
Structured datasets such as Energy, Appliances, and Weather exhibit particularly high scores. In
contrast, domains such as Tourism, Traffic, and Finance present greater challenges, likely due to their
increased irregularity and noise. Nonetheless, SDForger maintains competitive results even in more
complex settings, underscoring the flexibility of the proposed architecture.

Generation efficiency Appendix Table D.5 reports the average time to generate univariate sequences
for three targets from the Bikesharing dataset, across two window lengths. SDForger is substantially
faster than all competitors, often by one to two orders of magnitude. TimeVAE is the closest com-
petitor but remains over 4× slower. Notably, unlike GAN-based competitors, SDForger’s generation
time is independent of sequence length and scales with the number of embedding components (k). A
minor exception occurs at k = 3, where the reduced latent expressivity increases LLM fine-tuning
time. Overall, SDForger achieves state-of-the-art efficiency without compromising quality.

LLM comparison GPT-2 (124M) achieves performance on par with, and sometimes better than larger
and more recent models such as granite-3.0 (2B) and phi-3.5 (3.8B) (Appendix Table D.9).
This shows that SDForger’s pipeline is effective even leveraging lightweight models. While runtime
cost grows with model size, SDForger remains efficient compared to baselines (Appendix Table D.8).

Filtering Procedure. Appendix Table D.2 reports rejection statistics for a representative generation
scenario. We observe that the overall discard rate remains consistently low (< 2%) across settings,
indicating that most generated embeddings fall within a plausible norm range. The proportion
of missing values increases with larger embedding dimensions, reflecting a higher likelihood of
incomplete generations in longer textual outputs. Notably, the ℓ2 norms of accepted samples closely
match those of the original embeddings, while discarded ones exhibit markedly higher values,
confirming that the filtering procedure effectively removes divergent or anomalous generations.

6 Shaping time series with language

SDForger is designed to naturally incorporate textual information, making it well-suited for state-
of-the-art time-series generation that embraces additional multi-modal inputs. To explore this, we
conduct an experiment using the bikesharing dataset. Coming from the intuition that these variables
stem from a common physical process and may share latent components, we embed their three

9

channels (temperature, count, and humidity) into a shared ICA basis. We incorporate the channel
information in the textual encoder: “Condition: data is temp [sep] Input: value_1 is
[blank]...[sep] Target: ei1 [answer]...”

This conditioning strategy enables SDForger to generate channel-specific sequences with high fidelity.
For instance, using a longitudinal k-nearest neighbor classifier (Ramos-Carreño et al., 2024) trained
on real data, we achieve an accuracy of 0.81 in identifying the generated curves (see Figure 2). These
results highlight SDForger’s strong generative capacity and its ability to integrate and respond to
textual cues, positioning it as a flexible and powerful baseline for multimodal time-series synthesis.

200

0

200

400

600

800

1000

1200 count

0.2

0.4

0.6

0.8

1.0

1.2 humidity

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 temperature

Figure 2: Text-Conditioned Generation with SDForger. Visualization of 10 original (grey) and synthetic sam-
ples per channel from the bikesharing data. Synthetic data is generated using conditional prompts: “Condition:
data is cnt (blue)”, “Condition: data is hum (pink)”, and “Condition: data is temp (orange)”.

7 Conclusions

We introduced SDForger, a flexible and efficient framework for generating synthetic multivariate
time series using large language models. By combining compact functional embeddings with textual
conditioning, SDForger enables high-quality generation even in data-scarce settings. Extensive
evaluations across multiple datasets and tasks demonstrate that SDForger consistently achieves strong
similarity scores and enhances downstream forecasting performance—often matching or surpassing
results obtained from real data and outperforming state-of-the-art baselines.

Ablation studies confirm the robustness of the framework across embedding strategies, dimensionality
choices, and LLM architectures. SDForger is also highly efficient, with significantly lower generation
times compared to its competitors. Moreover, by leveraging LLMs, SDForger enables seamless
integration with textual prompts, paving the way for multimodal time-series generation, where natural
language can guide not only content but also structure, semantics, or temporal context.

We believe SDForger can be further improved. Its modular design is intentionally built to support
flexible experimentation, making it easy to explore enhancements or tailor components to specific
needs. We see several promising directions:

• Embedding Strategies While our current approach relies on linear methods like FastICA and
FPC, future work could explore more expressive, nonlinear embeddings (e.g., AE) or multivariate-
aware methods like Multivariate FPCA or Multivariate Singular Spectrum Analysis to better
capture temporal and inter-channel dependencies.

• Parameter-Efficient Fine-Tuning We currently use full fine-tuning for the LLM. However,
using too many components relative to the number of instances can lead to unstable fine-tuning
and reduced generation quality. Incorporating PEFT techniques such as LoRA or adapters could
improve scalability, efficiency, and facilitate domain adaptation.

• Extension to encoder-only models Our current implementation supports only autoregressive
LLMs; future work would extend the framework to encoder-only models and different generation
paradigms such as masked token prediction.

• Extended Utility Evaluation While we focus on forecasting, SDForger could be evaluated and
optimized for broader downstream tasks such as classification or anomaly detection.

• Context and Covariate Integration By design, SDForger supports integration of external
covariates (e.g., categorical or textual data). Expanding this functionality could enable richer
conditional generation, and multimodal transfer learning (see Section 6).

In summary, SDForger offers a flexible foundation, and we see meaningful opportunities to improve
it both architecturally and in terms of task generalization.

10

References
Ang, Y., Q. Huang, Y. Bao, A. K. Tung, and Z. Huang (2023). Tsgbench: Time series generation

benchmark. Proc. VLDB Endow. 17(3), 305–318.

Ansari, A. F., L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapuram,
S. P. Arango, S. Kapoor, et al. (2024). Chronos: Learning the language of time series. arXiv
preprint arXiv:2403.07815.

Borisov, V., K. Seßler, T. Leemann, M. Pawelczyk, and G. Kasneci (2022). Language models are
realistic tabular data generators. arXiv preprint arXiv:2210.06280.

Boschi, T., L. Testa, F. Chiaromonte, and M. Reimherr (2024). Fasten: an efficient adaptive
method for feature selection and estimation in high-dimensional functional regressions. Journal of
Computational and Graphical Statistics, 1–13.

Desai, A., C. Freeman, Z. Wang, and I. Beaver (2021). Timevae: A variational auto-encoder for
multivariate time series generation. arXiv preprint arXiv:2111.08095.

Diederik, K. (2014). Adam: A method for stochastic optimization. (No Title).

Donahue, C., M. Lee, and P. Liang (2020). Enabling language models to fill in the blanks. arXiv
preprint arXiv:2005.05339.

Ekambaram, V., A. Jati, N. H. Nguyen, P. Dayama, C. Reddy, W. M. Gifford, and J. Kalagnanam
(2024). Ttms: Fast multi-level tiny time mixers for improved zero-shot and few-shot forecasting of
multivariate time series. arXiv preprint arXiv:2401.03955.

Garza, A. and M. Mergenthaler-Canseco (2023). Timegpt-1. arXiv preprint arXiv:2310.03589.

Godahewa, R., C. Bergmeir, G. I. Webb, R. J. Hyndman, and P. Montero-Manso (2021). Monash
time series forecasting archive. arXiv preprint arXiv:2105.06643.

Gruver, N., M. Finzi, S. Qiu, and A. G. Wilson (2024). Large language models are zero-shot time
series forecasters. Advances in Neural Information Processing Systems 36.

Hyvarinen, A. (1999). Fast ica for noisy data using gaussian moments. In 1999 IEEE international
symposium on circuits and systems (ISCAS), Volume 5, pp. 57–61. IEEE.

Jablonka, K. M., C. Charalambous, E. Sanchez Fernandez, G. Wiechers, J. Monteiro, P. Moser,
B. Smit, and S. Garcia (2023). Machine learning for industrial processes: Forecasting amine
emissions from a carbon capture plant. Science Advances 9(1), eadc9576.

Jin, M., S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. Li, S. Pan, et al.
(2023). Time-llm: Time series forecasting by reprogramming large language models. arXiv
preprint arXiv:2310.01728.

Kidger, P., J. Foster, X. Li, and T. J. Lyons (2021). Neural sdes as infinite-dimensional gans. In
International conference on machine learning, pp. 5453–5463. PMLR.

Kit, A., A. Järvinen, Y. Poels, S. Wiesen, V. Menkovski, R. Fischer, M. Dunne, A.-U. Team, et al.
(2024). On learning latent dynamics of the aug plasma state. Physics of Plasmas 31(3).

Kokoszka, P. and M. Reimherr (2017). Introduction to functional data analysis. CRC Press.

Lee, D., S. Malacarne, and E. Aune (2023). Vector quantized time series generation with a bidirec-
tional prior model. arXiv preprint arXiv:2303.04743.

Liang, Y., H. Wen, Y. Nie, Y. Jiang, M. Jin, D. Song, S. Pan, and Q. Wen (2024). Foundation
models for time series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD
conference on knowledge discovery and data mining, pp. 6555–6565.

Lim, B., S. Ö. Arık, N. Loeff, and T. Pfister (2021). Temporal fusion transformers for interpretable
multi-horizon time series forecasting. International Journal of Forecasting 37(4), 1748–1764.

11

Padhi, I., Y. Schiff, I. Melnyk, M. Rigotti, Y. Mroueh, P. Dognin, J. Ross, R. Nair, and E. Altman
(2021). Tabular transformers for modeling multivariate time series. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3565–3569.
IEEE.

Pei, H., K. Ren, Y. Yang, C. Liu, T. Qin, and D. Li (2021). Towards generating real-world time series
data. In 2021 IEEE International Conference on Data Mining (ICDM), pp. 469–478. IEEE.

Ramos-Carreño, C., J. L. Torrecilla, M. Carbajo-Berrocal, P. Marcos, and A. Suárez (2024). scikit-fda:
a python package for functional data analysis. Journal of Statistical Software 109, 1–37.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis (2 ed.). Springer.

Seyfi, A., J.-F. Rajotte, and R. Ng (2022). Generating multivariate time series with common source
coordinated gan (cosci-gan). Advances in neural information processing systems 35, 32777–32788.

Smith, K. E. and A. O. Smith (2020). Conditional gan for timeseries generation. arXiv preprint
arXiv:2006.16477.

Zheng, G., Y. Yang, and J. Carbonell (2016). Efficient shift-invariant dictionary learning. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 2095–2104.

Zhou, L., M. Poli, W. Xu, S. Massaroli, and S. Ermon (2023). Deep latent state space models for
time-series generation. In International Conference on Machine Learning, pp. 42625–42643.
PMLR.

Zhou, T., P. Niu, L. Sun, R. Jin, et al. (2023). One fits all: Power general time series analysis by
pretrained lm. Advances in neural information processing systems 36, 43322–43355.

Zhou, Y., L. You, W. Zhu, and P. Xu (2023). Improving time series forecasting with mixup data
augmentation.

12

Appendix

A Implementation details

A.1 Data preprocessing: segmentation

In many scenarios, each channel consists of a single historical time series, i.e., I0 = 1. However, to
estimate embeddings that effectively capture the temporal distribution, multiple instances per channel
are necessary. Therefore, when I0 = 1, we segment each channel into multiple overlapping windows.
Specifically, for each channel c, we construct Ic windows of fixed length Lc, where Lc < L0. Without
loss of generality, for simplicity in notation, we assume Lc and Ic are identical across all channels
and denote them as L and I , respectively.

To ensure robust learning of the embedding distribution, I must be sufficiently large. Our experiments
indicate that even I = 15 (i.e., 15 instances) suffices for this purpose. Once I and L are fixed, we
segment the time series while minimizing the overlap between consecutive windows. The overlap
step is determined by the dominant periodicity P of the channel, ensuring that window transitions
align with intrinsic temporal cycles.

The set of extracted windows W is formally defined as:

W = {X[t : t+ L] | t = 0, s, 2s, . . . , L0 − L} (1)

where the step size s is computed as: s = max(1, ⌊L0−L
I−1 ⌋) and then adjusted to be the nearest

multiple of P to maintain consistency in periodic structure.

To determine the dominant periodicity P , we employ the Autocorrelation Function (ACF), which
quantifies the similarity between the time series and its lagged versions at different time shifts. This
method is robust to noise and remains effective even when periodicity is not strictly stationary.

The estimation of P follows these steps:

1. Compute the ACF and identify significant peaks, excluding lag 0.
2. Rank the detected peaks by their autocorrelation values.
3. Select the highest-ranked period P such that P < L/2.

Figure A.1: Periodicity-aware segmentation.

By leveraging this periodicity-aware segmentation strategy, we ensure that the extracted windows
align with the natural cycles of the time series. Moreover, this approach minimizes window overlap,
maximizing their independence and diversity and facilitating more effective embedding computations
for downstream generative tasks.

This pre-processing transforms the data from a single sequence X1 into a set X = {Xi}Ii=1, where
each Xi ∈ RC×L, preparing the data for the generation task.

A.2 Choice of the number of components

The choice of kc determines how well the basis representation approximates the original time-series
channel c. Our frameword allows the user to either select the smallest kc that explains a predefined
percentage of the total variance of the original time series or manually specify kc.

There exists an inherent trade-off in selecting kc. A higher kc captures more of the total variability
but can hinder the LLM’s ability to model the underlying distribution during the generation phase.
Moreover, if kc is too large, the generated samples may become overly similar to the original data,

13

limiting diversity and the introduction of novel patterns. Conversely, choosing kc too small risks
omitting essential structures and temporal characteristics, degrading the reconstruction quality.

It is important to note that the nature of the components differs between FPC and FastICA. FPC
forms a parsimonious basis system, where a few components typically suffice to capture most of the
variability, with components ordered by the amount of variance they explain—early components being
systematically more informative. In contrast, FastICA components are unordered: each component
contributes independently, without a hierarchical importance structure. As a result, FastICA generally
requires more components to achieve a similar reconstruction quality compared to FPC. However,
this property also makes FastICA embeddings more robust during generation, as information is
distributed more evenly across components, reducing the risk that a few badly generated components
disproportionately affect the synthesized curves.

To provide a quantitative intuition, Appendix Table D.1 reports the proportion of variance retained
across embedding dimensions for both decomposition methods. This analysis highlights how the
variance explained increases with k, and how FPC typically achieves higher cumulative variance with
fewer components, while FastICA distributes information more evenly across dimensions.

In practice, we recommend keeping the total number of components K reasonably small, particularly
when the number of training instances is limited. Empirically, with a training set of 30 instances,
setting K > 25 often results in unstable fine-tuning and an increased rate of discarded samples
due to low-quality generation. This limitation stems from the LLM’s reduced ability to model
high-dimensional embeddings under data-scarce conditions effectively.

A.3 In-generation filtering

Missing values and duplicated instances. To illustrate the filtering logic, we report three concrete
examples of generated prompts with embedding dimension K = 4. Following the inference template:

P INF
g = “Input:⃝K

k=1 (value_π(k) is [blank],) [sep] Target:”,

the model produces the following textual generations:

• Prompt 1 (valid)
Input: value_2 is [blank], value_4 is [blank], value_1 is [blank],
value_3 is [blank] [sep] Target: 0.125 [answer] -0.084 [answer] 0.217
[answer] 0.041 [answer]

• Prompt 2 (duplicated)
Input: value_4 is [blank], value_1 is [blank], value_2 is [blank],
value_3 is [blank] [sep] Target: -0.084 [answer] 0.217 [answer] 0.125
[answer] 0.041 [answer]

• Prompt 3 (missing value)
Input: value_1 is [blank], value_3 is [blank], value_2 is [blank],
value_4 is [blank] [sep] Target: 0.182 [answer] 0.095 [answer] -0.012
[answer]

In this example, the filtering stage identifies Prompt 2 as a duplicate of Prompt 1 and discards it,
while Prompt 3 is removed because it does not contain all the targets’ coefficients. Only Prompt 1 is
retained for reconstruction. This simple yet effective procedure ensures that the generated embedding
tables remain diverse and valid before decoding into the time-series domain.

Diverging instances To ensure the quality of synthetic data, we discard generated instances whose
embedding coefficients significantly deviate from the distribution of the original data. Specifically, we
compute the squared ℓ2-norm of each embedding vector and compare it to the norms of the original
embeddings. This criterion efficiently filters out extreme outliers in the latent space, without requiring
reconstruction into the time-series domain.

Formally, for each channel c, let Êc,s = Ec ∪ Ẽc,≤s−1 be the matrix containing both original
embeddings and all previously accepted generated embeddings up to inference step s − 1, with
Êc,0 = Ec. Denote by N c,old and N c,new the sets of squared Euclidean norms of the rows of Êc,s−1

14

and the newly generated matrix Ẽc,s, respectively. For each newly generated row i, we compute its
norm and accept it only if:

q1 − 3 · IQR ≤ N c,new
i ≤ q3 + 3 · IQR,

where q1 and q3 are the first and third quartiles of N c,old, and IQR = q3 − q1. An instance is retained
only if this condition is satisfied across all channels c.

This norm-based strategy is particularly well-motivated when using FPCs, due to the orthonormality
of the basis. Let X c

i be a time series in channel c and bcj the corresponding FPC basis. Then the
L2-norm of X c

i can be approximated by the Euclidean norm of its FPC coefficients:

∫
T
(X c

i)
2 dt = ∥X c

i ∥2L2 =

∞∑
j=1

⟨X c
i , b

c
j⟩2L2 ≈

kc∑
j=1

(ecij)
2,

where ecij are the FPC embedding coefficients. This justifies the norm-based filtering as a direct proxy
for detecting time-series samples with unusually high or low energy.

While filtering based on coefficient norms does not guarantee full statistical fidelity to the original
time-series distribution, it serves as an effective mechanism to remove extreme outliers without
reconstruction. Combined with additional checks for missing values and duplicates, this step helps
preserve both the diversity and relevance of the generated data. A high rejection rate may indicate
insufficient LLM fine-tuning or poor generalization, suggesting the need for more representative
training data or additional training steps.

A.4 Stopping criterion

The stopping criterion monitors the diversity of the generated norms across all channels to determine
when the generation process should stop. When using FPC, these norms correspond to the L2-norms
of the generated curves. When using FastICA, they correspond to the norms of the embedding
coefficient vectors; although not directly related to the curve norms, they still provide a useful proxy
for identifying over-sampling and loss of variability.

At inference step s, for each channel c, let uc denote the number of unique values in N c,old (the set of
accepted norms up to step s), rounded to the fourth decimal place. Let Ĩ be the total number of valid
instances generated so far. We define the diversity score for channel c as:

Dc = uc/Ĩ.

The diversity score provides a quantitative measure of how much variability remains in the generated
norms. We track Dc at each inference step, and the stopping condition is triggered when:

max
c

Dc < λstop or Ĩ > Ĩmax.

In other words, generation stops either when the maximum diversity score across channels falls
below a predefined threshold λstop, indicating reduced novelty, or when the total number of generated
instances exceeds a maximum cap Ĩmax.

Monitoring the diversity score enables us to assess whether the model continues to introduce new
variability in the generated data, serving as an online signal for generation quality.

If we denote by S the final inference step, then the output of the generation process is the complete
embedding table Ẽ ∈ RĨ×K , where, for each channel c, Ẽc = Ẽc,≤S .

B Evaluation metrics

All the metrics presented below are adopted from Ang et al. (2023), except for Shapelet-based
Reconstruction, which follows the definition in Zheng et al. (2016).

15

B.1 Feature-based evaluation

Marginal Distribution Difference MDD computes an empirical histogram for each dimension
and time step in the generated series, using the bin centers and widths from the original series. It
then calculates the average absolute difference between this histogram and that of the original series
across bins, assessing how closely the distributions of the original and generated series align.

AutoCorrelation Difference ACD computes the autocorrelation of both the original and generated
time series, then determines their difference. By contrasting the autocorrelations, we could evaluate
how well dependencies are maintained in the generated time series.

Skewness Difference SD is vital for the marginal distribution of a time series, quantifying its
distribution asymmetry. Given the mean (standard deviation) of the train time series T tr

s as µtr
s (σtr

s)
and the generated time series T gen

s as µgen
s (σgen

s), we evaluate the fidelity of T gen
s by computing the

skewness difference between them as:

SD =

∣∣∣∣E[(T gen
s − µgen

s)3]

σgen3
s

− E[(T tr
s − µtr

s)3]

σtr3
s

∣∣∣∣ .

Kurtosis Difference Like skewness, KD assesses the tail behavior of a distribution, revealing
extreme deviations from the mean. Using the previous notations, the kurtosis difference between T tr

s
and T gen

s is calculated as:

KD =

∣∣∣∣E[(T gen
s − µgen

s)4]

σgen4
s

− E[(T tr
s − µtr

s)4]

σtr4
s

∣∣∣∣ .

B.2 Distance-based evaluation

Euclidean Distance For each original series str = (x1, ..., xl) and its generated sgen = (y1, ..., yl),

ED =
√∑l

1=1(xi − yi)2. We take the mean of ED for all series and all samples. Given that the
input time series has been preprocessed to fit within the range of [0, 1], ED deterministically assesses
the similarity between sgen and str. It provides a value-wise comparison between the time series.

Dynamic Time Warping Given that ED overlooks alignment, we include DTW to capture the
optimal alignment between series regardless of their pace or timing. The alignment facilitated by
DTW offers insights into the predictive quality of the generated series.

Shapelet-based Reconstructions Shapelet based RE is calculated by generated time series using
shapelets extracted using shift invariant dictionary learning (SIDL) algorithm (Zheng et al., 2016).
Shapelets represent local discriminative patterns present in the time-series data. We learn shift
invariant patterns/shapelets on the original time-series dataset and then use the learnt dictionary to
reconstruct unseen generated time series. The reconstruction error is calculated between the generated
time series and their reconstruction using SIDL.

16

C Datasets & protocol settings

Table C.1: Overview of the benchmark datasets. For each dataset, we report its application domain, sampling
frequency, number of time series, length statistics, and the type of evaluation (univariate, multivariate, multi-
sample) it supports.

Dataset Domain Freq. Number Evaluation type

MS UV MV

Australian Electricity energy 30m 5 N Y Y

Appliances energy 10m 1 N Y N

Bikesharing general 1H 3 N Y Y

Carbon Capture Plant nature 2m 4 N Y N

ETTH1 energy 1H 3 N Y Y

ECL energy 1H 320 Y N N

Exchange Rate finance 1D 8 N Y N

NN5 finance 1D 111 Y N N

Tourism general 1M 365 Y N N

Traffic transport 1H 3 N Y Y

Traffic Monash transport 1H 861 Y N N

Solar - Weather nature 1H 653 Y N N

Rain - Weather nature 1H 386 Y N N

Temperature - Weather nature 1H 362 Y N N

C.1 Dataset overview

Energy

• Australian Electricity (Godahewa et al., 2021) contains electricity demand data from 5 states in
Australia.

• Appliances2 contains house temperature and humidity conditions monitored with a wireless
sensor network, and energy data logegd with m-bus energy meters averaged for 10 minutes
periods.

• ETTH13 contains oil temperatures and other covariates of electrical transformers from two
stations in China, measured at 15 minutes granularity but hourly aggregated.

• ECL 4 contains electricity consumption of 370 points.

Mobility and Transport

• Bikesharing5 contains the hourly and daily count of rental bikes between the years 2011 and
2012 in the Capital bike share system with the corresponding weather and seasonal information.

• Traffic6 contains observations of the number of vehicles each hour in four different junctions
• Traffic Monash (Godahewa et al., 2021) contains hourly road occupancy readings from sensors in

the San Francisco Bay area.
• Tourism (Godahewa et al., 2021) dataset from, used for the Kaggle Tourism Forecasting competi-

tion. This dataset is non-stationary.

Nature

• Carbon Capture Plant (Jablonka et al., 2023) records the emission profiles of “2-amino-2-methyl-
1-propanol” (AMP) and “piperazine” (Pz) collected at every 2 minutes interval.

• Weather (Godahewa et al., 2021) contains daily time series of four weather variables (rain,
mintemp, maxtemp and solar radiation) measured at weather stations in Australia.

Finance
2https://www.kaggle.com/datasets/loveall/appliances-energy-prediction
3https://github.com/zhouhaoyi/ETDataset
4https://www.kaggle.com/datasets/minhnguyendichnhat/ecl-dataset
5https://www.kaggle.com/datasets/lakshmi25npathi/bike-sharing-dataset
6https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset

17

https://www.kaggle.com/datasets/loveall/appliances-energy-prediction
https://github.com/zhouhaoyi/ETDataset
https://www.kaggle.com/datasets/minhnguyendichnhat/ecl-dataset
https://www.kaggle.com/datasets/lakshmi25npathi/bike-sharing-dataset
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset

• Exchange Rate (Godahewa et al., 2021) contains daily exchange rates for currencies of eight
countries (Australia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore)
between 1990 and 2016. This dataset is non-stationary.

• NN5 (Daily, Weekly) (Godahewa et al., 2021) contains cash withdrawal data from ATMs. This
dataset combines stationary and non-stationary time series.

C.2 Protocols

Multisample setting For MS data preparation, we sampled I = 30 instances, each of length
L = 250, resulting in a total training sequence of 15,000 timestamps. Standard scaling per timestamp
is applied. For evaluation, we generate 100 synthetic instances.

Univariate setting For UV data preparation, we used a training sequence of length L0 = 2, 000,
segmented into I = 30 instances of length L = 250 using our periodicity-aware segmentation
strategy (cf Appendix A.1). Same standard scaling was applied. For evaluation, we generate 100
synthetic instances.

Multivariate setting For fine-tuning TTM in the MV setting, we used consecutive sequences
of length L0 = 5000, 2500, and 2500 for training, validation, and testing, respectively. Each set
was segmented into I = 30, 15, and 15 instances of length L = 1120 using our period-aware
segmentation strategy (Appendix A.1). Periodicity was estimated from the training set. Standard
scaling per timestamp, computed on the training set, was applied consistently across all splits. For
evaluation, we generated 30 instances, matching the size of the training set.

D Additional results

Table D.1: Variance retained across embedding dimensions. For each dataset, we report the proportion
of total variance retained for embedding dimensions k = 3, k = 5, and k = 7 under both FastICA and FPC
decompositions.

Dataset FICA FPC

k=3 k=5 k=7 k=3 k=5 k=7

Appliances 0.333 0.457 0.539 0.324 0.459 0.555

Australian Electricity 0.703 0.853 0.912 0.787 0.895 0.938

Bikesharing 0.492 0.662 0.744 0.599 0.734 0.796

Carbon Capture Plant 0.773 0.905 0.951 0.843 0.933 0.965

ETTH1 0.536 0.686 0.775 0.635 0.754 0.823

ECL 0.809 0.941 0.971 0.991 0.997 0.999

Exchange Rate 0.776 0.907 0.942 0.957 0.982 0.989

NN5 0.336 0.479 0.590 0.719 0.780 0.826

Tourism 0.869 0.954 0.977 0.986 0.995 0.998

Traffic 0.376 0.564 0.697 0.408 0.591 0.714

Traffic Monash 0.541 0.722 0.823 0.745 0.845 0.902

Rain - Weather 0.449 0.605 0.725 0.558 0.684 0.781

Solar - Weather 0.450 0.616 0.718 0.674 0.773 0.833

Temperature Max - Weather 0.493 0.602 0.685 0.864 0.893 0.915

Temperature Min - Weather 0.390 0.517 0.611 0.777 0.824 0.858

Table D.2: Filtering statistics for generated embeddings. Rejection statistics on the count variable from the
bikesharing dataset, averaged across 5 seeds. Each row reports the proportion of generated samples containing
missing values, the fraction of samples discarded by the filtering stage, and the average ℓ2 norms of the original,
accepted, and discarded embedding vectors.

NaN% Discard% Norms Original (Avg) Norms Accepted (Avg) Norms Discarded (Avg)

SDF-ICA3 3.87 1.94 1.708 1.714 19.066

SDF-ICA5 36.29 1.94 2.202 2.248 9.514

SDF-ICA7 58.82 0.00 2.602 2.521 0.000

18

Table D.3: Per-dataset similarity results in the multisample setting. Average normalized similarity scores
(feature-based and distance-based) for each dataset and model.

Feature-Based Distance-Based

ecl nn5 tourism traffic weather ecl nn5 tourism traffic weather

SDF-ICA3 0.402 0.195 0.268 0.330 0.204 0.018 0.129 0.032 0.086 0.137

SDF-FPC3 0.576 0.323 0.594 0.293 0.296 0.054 0.183 0.073 0.099 0.136

TimeVAE 0.164 0.109 0.211 0.143 0.174 0.063 0.139 0.074 0.143 0.125

TimeVQVAE 0.754 0.380 0.818 0.437 0.498 0.003 0.068 0.009 0.053 0.069

RtsGAN 0.049 0.347 0.174 0.344 0.315 0.075 0.074 0.110 0.059 0.102

SdeGAN 0.499 0.219 0.539 0.391 0.308 0.299 0.652 0.290 0.496 0.616

LS4 0.860 0.319 0.849 0.470 0.400 0.720 0.681 0.639 0.926 0.707

Table D.4: Per-dataset similarity results in the univariate setting. Average normalized similarity scores
(feature-based and distance-based) for each dataset and model.

Feature-Based Distance-Based

appl. austr. bike carbon etth1 exch. traffic appl. austr. bike carbon etth1 exch. traffic

SDF-ICA3 0.486 0.122 0.162 0.197 0.128 0.155 0.269 0.088 0.073 0.077 0.063 0.080 0.115 0.059

SDF-FPC3 0.509 0.122 0.169 0.345 0.107 0.287 0.213 0.085 0.101 0.077 0.078 0.076 0.143 0.064

TimeVAE 0.370 0.123 0.184 0.176 0.234 0.113 0.236 0.119 0.079 0.155 0.102 0.140 0.091 0.178

TimeVQVAE 0.531 0.439 0.371 0.572 0.354 0.578 0.312 0.045 0.031 0.037 0.005 0.031 0.031 0.035

RtsGAN 0.567 0.300 0.273 0.226 0.244 0.217 0.312 0.056 0.098 0.084 0.085 0.072 0.157 0.053

SdeGAN 0.634 0.128 0.174 0.409 0.173 0.115 0.249 0.456 0.623 0.831 0.703 0.833 0.469 0.765

LS4 0.609 0.294 0.265 0.695 0.289 0.416 0.300 0.720 0.471 0.475 0.554 0.364 0.498 0.621

Table D.5: Average generation time: baselines Average time (in seconds) required to generate synthetic
univariate time series for the bikesharing dataset across three targets: count, temperature, and humidity.
We report results for two input sequence lengths: 250 and 500. All models were evaluated under the same
computational constraints (-mem 20G -cores 1+1 -gpu v100) using a single NVIDIA V100 GPU.

Length SDF-ICA3 SDF-ICA5 SDF-ICA7 SDF-FPC3 SDF-FPC5 SDF-FPC7 TimeVAE TimeVQVAE RtsGAN SdeGAN LS4

250 41.9 26.8 28.8 22.0 25.4 33.1 138.1 4574.2 2055.7 3498.9 2804.4

500 38.3 22.8 26.0 17.9 22.8 26.6 112.6 4401.4 3536.3 7316.7 2378.9

Table D.6: Ablation study: embedding dimension. Aggregated similarity-based performance across all
datasets in the multisample and univariate setting.

Feature-based Distance-based Norm. Avg.

MDD ACD SD KD ED DTW SHR Feat. Dist.

M
U

LT
IS

A
M

PL
E

SDF-FPC3 0.255 2.166 1.323 4.299 17.749 11.921 16.537 0.616 0.609

SDF-FPC5 0.262 3.191 1.336 3.668 17.475 11.727 22.893 0.714 0.535

SDF-FPC7 0.264 3.534 1.500 3.560 17.710 11.652 28.068 0.787 0.655

SDF-ICA3 0.244 1.180 0.869 2.384 16.669 12.373 6.870 0.050 0.333

SDF-ICA5 0.261 0.782 1.378 2.649 16.743 12.238 7.731 0.371 0.307

SDF-ICA7 0.265 0.589 1.964 2.963 16.900 12.031 14.195 0.576 0.362

U
N

IV
A

R
IA

T
E

SDF-FPC3 0.308 1.480 0.801 1.690 19.340 12.809 5.452 0.736 0.469

SDF-FPC5 0.306 1.887 0.773 1.581 20.534 12.513 8.920 0.536 0.753

SDF-FPC7 0.309 2.399 0.774 1.954 20.470 12.079 10.982 0.947 0.654

SDF-ICA3 0.306 1.396 0.671 1.382 18.802 12.435 4.856 0.169 0.163

SDF-ICA5 0.306 0.867 0.770 1.333 19.043 12.261 6.555 0.279 0.222

SDF-ICA7 0.306 0.597 0.736 1.458 19.989 12.381 8.102 0.175 0.543

19

Table D.7: Ablation study: embedding dimension. TTM forecasting performance on downstream tasks
using different training sources: generated data, and a combination of original and generated data. Results
are reported for 3 multivariate datasets: bikesharing (target: count, control: temperature, humidity), etth1
(target: HUFL, control: MUFL, OT), and traffic (target: junction1, control: junction2, junction3). Metrics
include RMSE, MASE, WQL, and average rank (lower is better). Bold highlights the best result within each row
group; bold+underlined the overall best.

bikesharing etth1 traffic

RMSE MASE WQL RMSE MASE WQL RMSE MASE WQL

0-shot 0.728 2.150 0.287 0.678 2.132 0.255 0.708 1.555 0.255

Original Data (OD) 0.495 0.822 0.178 0.658 1.820 0.232 0.702 1.995 0.283

G
E

N

SDF-FPC3 0.527 0.926 0.200 0.692 1.914 0.246 0.699 2.029 0.287

SDF-FPC5 0.530 0.918 0.198 0.693 2.003 0.252 0.662 1.837 0.262

SDF-FPC7 0.522 0.915 0.197 0.650 1.887 0.232 0.812 2.265 0.323

SDF-ICA3 0.514 0.899 0.194 0.647 1.829 0.233 0.730 2.068 0.294

SDF-ICA5 0.537 0.909 0.194 0.637 1.934 0.233 0.655 1.849 0.262

SDF-ICA7 0.517 0.898 0.193 0.626 1.820 0.224 0.790 2.189 0.312

O
G

+
G

E
N SDF-FPC3 + OD 0.493 0.829 0.179 0.658 1.780 0.229 0.736 2.077 0.296

SDF-FPC5 + OD 0.487 0.807 0.174 0.659 1.757 0.230 0.743 2.087 0.297

SDF-FPC7 + OD 0.492 0.821 0.177 0.666 1.754 0.231 0.706 1.993 0.283

SDF-ICA3 + OD 0.487 0.801 0.173 0.640 1.790 0.228 0.734 2.074 0.295

SDF-ICA5 + OD 0.486 0.804 0.174 0.649 1.780 0.230 0.750 2.110 0.301

SDF-ICA7 + OD 0.490 0.810 0.175 0.642 1.746 0.226 0.718 2.025 0.288

Table D.8: Average Generation Time Across LLM Backbones. Average time (in seconds) required to generate
synthetic univariate time series for the bikesharing dataset across three targets: count, temperature, and
humidity. We report results for two input sequence lengths (250 and 500) and compare three LLM backbones:
GPT-2, granite-3.0-2b-base, and Phi-3.5-mini-instruct. All models were evaluated under the same
computational constraints (-mem 100G -cores 1+1 -gpu a100) using a single NVIDIA A100 GPU. For
fine-tuning, we use a batch size of 16 for granite and 8 for phi.

Length ICA3 + gpt2 ICA3 + granite ICA3 + phi ICA5 + gpt2 ICA5 + granite ICA5 + phi ICA7 + gpt2 ICA7 + granite ICA7 + phi

250 22.7 112.8 132.6 18.3 118.5 113.9 19.0 119.9 126.1

500 16.2 93.6 98.5 17.3 99.9 103.7 18.9 125.0 110.7

Table D.9: Ablation study: LLM backbone. Aggregated similarity-based performance across all datasets
for different LLMs used in SDF models. We compare GPT-2 with two larger and more recent alternatives:
granite-3.0-2b-base7 (2B parameters) and Phi-3.5-mini-instruct8 (3.8B parameters). For fine-tuning,
we use a batch size of 16 for granite and 8 for phi.

Feature-based Distance-based Norm. Avg.

MDD ACD SD KD ED DTW SHR Feat. Dist.

M
U

LT
IS

A
M

PL
E

SDF-FPC3 + GPT-2 0.255 2.166 1.323 4.299 17.749 11.921 16.537 0.964 0.747

SDF-FPC3 + Granite 0.251 1.817 1.227 4.132 16.429 11.659 11.565 0.757 0.245

SDF-FPC3 + Phi-3 0.257 1.215 1.154 3.723 16.734 11.872 12.367 0.643 0.397

SDF-ICA3 + GPT-2 0.244 1.180 0.869 2.384 16.669 12.373 6.870 0.101 0.361

SDF-ICA3 + Granite 0.241 1.069 0.961 2.524 16.953 12.744 6.160 0.101 0.509

SDF-ICA3 + Phi-3 0.247 0.907 1.102 3.570 16.069 11.847 6.499 0.382 0.069

U
N

IV
A

R
IA

T
E

SDF-FPC3 + GPT-2 0.308 1.480 0.801 1.690 19.340 12.809 5.452 0.947 0.804

SDF-FPC3 + Granite 0.305 1.268 0.673 1.185 19.026 12.556 5.457 0.207 0.505

SDF-FPC3 + Phi-3 0.310 1.368 0.671 1.305 19.561 12.767 5.196 0.574 0.777

SDF-ICA3 + GPT-2 0.306 1.396 0.671 1.382 18.802 12.435 4.856 0.496 0.161

SDF-ICA3 + Granite 0.304 1.370 0.679 1.123 18.616 12.365 4.712 0.253 0.000

SDF-ICA3 + Phi-3 0.307 1.398 0.541 1.199 19.081 12.471 5.856 0.337 0.577

20

Table D.10: Multisample evaluation: similarity metrics reported per dataset.

SDForger Models VAE Models GAN Models Others

ICA3 FPC3 TimeVAE TimeVQVAE RTSGAN SDEGAN LS4

ECL

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.154
0.146
2.47

7.342
10.141
9.715
0.424

0.219
4.492
2.762
6.07

12.543
10.985
4.027

0.156
0.082
0.746
3.294
12.887
12.025
1.922

0.292
7.862
2.803
6.895
9.978
7.97
2.21

0.145
0.051
0.114
1.001
13.461
12.486
4.123

0.193
0.174
2.91
8.673

25.951
25.431
7.048

0.296
8.365
2.983

10.074
43.715
40.142
105.287

NN5

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.248
1.489
0.307
1.43

19.308
12.837
9.482

0.248
3.235
0.428
4.249
20.576
12.617
40.975

0.243
0.221
0.126
0.151
20.514
11.223
20.993

0.371
4.964
0.259
1.159
15.019
10.914
2.072

0.383
4.646
0.092
0.348
16.201
9.684
8.254

0.246
2.73
0.422
0.512

43.433
36.712
83.918

0.262
5.677
0.287
0.96

38.822
24.415
207.419

Tourism

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.189
0.22

1.321
4.477
11.216
10.291
0.547

0.24
3.29

2.613
8.297
14.039
11.837

4.28

0.172
0.206
0.854
4.251
13.895
12.409
1.785

0.339
7.807
2.896
7.877
10.516
8.192
2.135

0.121
0.272
0.681
4.852
15.405
14.741
2.833

0.208
0.215
2.988
9.616

25.399
25.098
6.409

0.282
8.228
2.806

10.907
39.897
35.521
100.231

Traffic

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.251
1.443
1.433
3.177
16.532
10.917
6.568

0.234
1.368
1.507
1.937
18.429

10.5
9.188

0.234
0.097
0.353
1.263
20.748
12.343
14.948

0.359
3.767
1.377
1.503
14.169
10.039
1.995

0.314
0.886
1.384
2.642
15.552
9.164
5.101

0.222
3.749
1.598
3.113

35.522
31.69
51.49

0.242
5.229
1.403
4.727

55.908
37.028
205.07

Weather

(Maxtemp)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.292
1.097
0.131
0.419
25.51
20.532
6.638

0.293
2.221
0.017
2.561
21.661
15.354
24.439

0.282
0.533
0.435
0.591
19.665
13.238
9.079

0.447
6.717
0.005
2.188
15.113
11.219
2.098

0.303
1.15
0.37

0.584
19.77
15.884
3.931

0.286
0.705
0.237
0.527

43.035
41.331
34.196

0.296
7.597
0.142
0.976

46.189
34.55

152.274

Weather

(Mintemp)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.271
1.705
0.185
1.065
17.199
13.148
6.217

0.27
1.053
0.216
1.789
18.533
11.255
14.613

0.264
0.278
0.304
0.757
19.575
10.48
15.605

0.41
5.937
0.05

1.936
15.177
10.675
1.956

0.365
1.508
0.398
0.985
15.575
10.837
2.587

0.266
1.67
0.249
0.213

44.094
41.651
55.846

0.275
6.737
0.145
1.174

46.266
32.415
208.289

Weather

(Rain)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.233
1.642
0.599
1.146
14.461
10.935
10.955

0.222
0.321
2.474
6.636
16.009
11.493
9.555

0.175
0.309
1.065
3.238
16.979
11.35
25.464

0.291
2.491
2.683
7.94

13.631
10.718
1.883

0.259
2.735
1.641
7.447
15.033
10.803
9.595

0.199
5.549
2.729
9.639

31.412
28.891
57.118

0.27
4.696
2.135
9.724

50.966
33.017
224.024

Weather

(Solar)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.314
1.695
0.508
0.013
18.989
10.61
14.132

0.31
1.351
0.564
2.854
20.201
11.322
25.218

0.29
0.349
0.172
0.029
20.061
9.932
22.375

0.459
4.18

0.539
1.618
15.69
11.607
1.892

0.342
2.902
0.216
0.544
17.677
11.275
8.623

0.297
1.996
0.101
0.433

48.549
36.321
117.395

0.284
2.667
0.044
0.27

33.346
17.363
80.632

7https://huggingface.co/ibm-granite/granite-3.0-2b-base
8https://huggingface.co/microsoft/Phi-3.5-mini-instruct

21

https://huggingface.co/ibm-granite/granite-3.0-2b-base
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

Table D.11: Univariate evaluation: similarity metrics reported for Energy datasets.

SDForger Models VAE Models GAN Models Others

ICA3 FPC3 TimeVAE TimeVQVAE RTSGAN SDEGAN LS4

Appliances

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.318
1.825
2.068
3.249
19.493
11.597
9.588

0.315
1.714
2.093
3.816
19.13
11.73
9.072

0.303
3.137
1.008
2.891
20.459
10.03
27.262

0.405
1.714
2.07

2.586
15.916
12.322
1.952

0.414
2.404
2.152
2.559
17.162
11.301
6.367

0.241
7.208
2.269
4.196

29.562
27.191
71.477

0.251
4.301
2.028
5.874
47.81

16.564
162.749

Australian Elec

(T000000)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.315
1.069
0.165
0.161
19.017
10.652
3.411

0.312
0.392
0.103
0.452
22.663
13.655
2.719

0.292
1.431
0.65

1.296
19.656
10.899
7.925

0.457
5.641
0.071
2.12

15.657
10.583
2.441

0.376
1.926

0.3
1.829
22.511
14.942
4.007

0.281
2.976
0.091
0.325
42.67

40.842
23.325

0.323
7.129
0.423
0.765

38.681
26.104
34.777

Australian Elec

(T000001)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.287
1.46
0.274
1.8

18.368
12.248
2.211

0.281
0.457
0.307
1.677
19.769
12.842
2.91

0.277
0.265
0.11

0.503
19.51
10.312
6.061

0.436
5.579
0.137
1.99

15.717
10.648
2.587

0.421
4.796
0.589
0.264
20.145
13.322
3.291

0.273
2.518
0.031
0.273

44.034
41.201
26.765

0.293
6.908
0.032
0.899

37.357
25.029
30.768

Australian Elec

(T000002)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.313
1.196
0.42
0.179
20.624
13.17
2.683

0.313
0.569
0.718
0.69

21.174
13.104
3.04

0.292
0.237
0.322
0.539
19.537
10.626
4.984

0.486
5.675
0.598
2.111
15.889
10.748
2.38

0.334
2.541
0.605
2.386
19.896
14.559
1.572

0.297
2.559
0.387
0.389

45.934
44.425
23.29

0.315
7.209
0.229
0.804

37.731
26.567
28.057

Australian Elec

(T000003)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.283
1.549
0.399
0.057
17.406
11.621
1.888

0.289
1.35
0.389
0.465
19.377
14.456
1.929

0.279
0.455
0.135
0.226
20.146
11.466
4.942

0.444
5.174
0.221
1.596
15.975
11.025
2.522

0.41
4.187
0.822
0.524
18.751
11.502
3.095

0.261
2.791
0.365
0.127

40.657
37.719
17.34

0.286
6.412
0.034
1.343
40.4

28.914
26.566

Australian Elec

(T000004)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.293
1.68
0.088
0.199
19.85
11.8
4.11

0.287
0.887
0.062
0.664
19.864
12.582
4.468

0.28
1.735
0.666
1.679
20.51
10.921
11.67

0.458
4.565
0.136
2.199
15.88
10.933
2.523

0.337
2.658
0.173
0.691
19.327
12.972
4.131

0.277
3.209
0.057
0.527

44.238
40.349
39.504

0.302
6.726
0.365
0.706

41.623
28.13

54.245

ETTH1

(HUFL)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.326
1.249
0.355
0.745
19.324
9.475
9.878

0.32
1.376
0.45
0.845
20.103
9.579
13.289

0.29
3.618
0.956
1.5

21.804
10.69
28.806

0.476
2.678
0.371
2.067
16.021
11.35
1.94

0.381
4.233
0.153
0.869
17.323
10.616
7.684

0.291
4.542
0.142
1.0

45.316
38.346
129.161

0.326
4.778
0.751
0.276

25.175
9.745

48.028

ETTH1

(OT)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.235
2.276
0.104
0.892
20.481
12.525
3.368

0.24
1.163
0.179
0.097
18.292
12.195
3.444

0.225
1.923
1.006
0.651
22.676
12.614
15.306

0.354
4.969
0.332
1.089
15.583
10.499
2.174

0.268
2.67
0.76

0.936
20.463
11.718
5.613

0.254
3.337
0.176
0.645

51.747
49.511
52.871

0.272
6.463
0.134
1.885

42.246
25.674
52.186

22

Table D.12: Univariate evaluation: similarity metrics reported for Transport datasets.

SDForger Models VAE Models GAN Models Others

ICA3 FPC3 TimeVAE TimeVQVAE RTSGAN SDEGAN LS4

Bikesharing

(Count)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.326
0.856
0.101
0.571
21.389
10.305
13.665

0.336
0.691
0.12

0.258
19.406
10.036
13.77

0.295
2.493
0.202
0.125
21.314
10.163
38.651

0.492
1.712
0.042
1.447
16.172
12.804
2.012

0.444
2.451
0.251
0.091
19.806
10.225
19.352

0.29
4.306
0.61
0.218

44.217
31.743
247.88

0.332
1.972
0.035
0.387

21.848
10.347
64.166

Bikesharing

(Humidity)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.318
1.653
0.116
0.521
19.761
10.699
4.249

0.322
1.94

0.113
0.806
18.098
10.847
4.63

0.301
4.68

0.569
0.671
25.8

13.416
43.651

0.432
2.715
0.076
1.831
16.097
10.907
2.154

0.365
3.323
0.367
0.511
18.478
10.25
7.005

0.266
4.948
0.425
0.404

44.641
36.872
88.647

0.289
3.845
0.617
1.13

51.221
26.846
100.497

Bikesharing

(Temperature)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.37
1.426
0.13
1.91

17.172
12.107
2.807

0.372
1.662
0.488
0.931
20.38
12.47
4.426

0.363
0.086
0.43

0.536
19.349
11.074
7.514

0.451
5.766
0.534
1.776
15.702
10.569
2.189

0.386
2.137
0.808
1.228
20.591
15.251
6.538

0.291
1.244
0.11
0.409

49.379
46.37

42.472

0.339
7.736
0.53
1.334

39.062
26.093
50.348

Traffic

(Junction 1)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.3
0.924
0.276
3.793
18.191
10.776
5.198

0.294
0.861
0.018
2.151
18.465
10.597
5.21

0.277
4.631
0.667
0.769
25.655
13.931
31.453

0.42
2.642
0.008
1.807
15.782
10.893
2.124

0.403
2.195
0.225
0.317
16.151
10.065
4.393

0.267
6.292
0.167
0.052

45.765
41.767
82.871

0.313
3.854
0.266
1.168

36.403
18.485
58.632

Traffic

(Junction 2)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.367
2.893
0.272
1.212
17.937
10.246
5.546

0.368
2.265
0.237
0.645
18.765
10.425
6.777

0.352
2.889
0.526
1.135
21.622
10.307
30.016

0.434
2.878
0.086
1.921
16.007
10.995
2.157

0.445
2.516
0.992
2.667
17.114
11.314
3.426

0.281
5.164
0.328
0.273
44.67

38.389
135.497

0.315
4.492
0.295
1.155

41.478
19.57

99.919

Traffic

(Junction 3)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.326
2.788
0.898
1.086
17.961
11.558
6.848

0.326
2.444
1.039
0.684
18.412
11.147
7.446

0.326
3.861
0.054
0.262
22.054
10.892
46.675

0.41
2.123
0.906
0.336
16.058
11.807
2.022

0.361
3.308
0.23

0.776
18.829
10.677
12.436

0.25
5.97
1.056
1.283

38.533
32.538
118.245

0.276
4.377
1.257
2.822

53.251
25.618
178.736

Table D.13: Univariate evaluation: similarity metrics reported for Nature datasets.

SDForger Models VAE Models GAN Models Others

ICA3 FPC3 TimeVAE TimeVQVAE RTSGAN SDEGAN LS4

CCP

(CO2)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.173
1.391
0.472
1.644
18.442
15.245
1.123

0.186
1.119
2.21

3.443
18.729
14.344
1.684

0.166
2.203
2.481
4.155
26.232
18.308
13.719

0.3
5.536
1.984
3.31

14.19
10.176
2.486

0.179
2.598
1.12
3.72

14.734
10.831
1.329

0.232
3.06

1.809
5.09

72.136
71.196
52.729

0.236
6.866
1.86

6.164
36.803
28.544
25.99

CCP

(NH3)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.452
0.312
0.416
1.267
16.965
15.495
0.423

0.477
2.223
0.766
0.554
19.28
17.18
1.064

0.409
0.55

0.272
0.212
17.18
14.483

1.13

0.67
6.779
0.441
0.292
15.465
12.381
2.418

0.392
0.56
0.23

0.671
22.525
19.973
2.904

0.364
0.822
0.346
0.011
31.041
30.589
2.805

0.455
9.168
0.753
2.743
35.404
29.251
9.832

CCP

(C4H11NO)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.197
0.662
1.747
2.054
15.92
12.168
1.255

0.191
0.822
2.232
3.638
16.128
11.741
2.426

0.158
0.152
0.007
3.105
15.448
10.881
2.801

0.266
6.672
2.294
4.998
11.295
8.252
2.363

0.189
0.371
0.626
0.251
14.54
10.213
2.042

0.189
0.231
2.729
6.454
38.679
37.706
14.476

0.229
8.524
2.511
8.179
49.348
40.586
47.176

CCP

(C4H10N2)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.178
1.514
1.675
0.157
15.698
11.646
2.299

0.18
1.273
1.638
2.451
17.378
12.004
4.547

0.162
0.535
0.512
0.824
19.159
12.098
6.142

0.249
4.522
1.456
3.091
13.879
10.002
2.228

0.221
2.445
1.398
4.551
21.6

14.647
5.582

0.19
3.142
1.831
4.592
46.177
44.366
31.911

0.249
5.538
1.659
6.204
45.823
33.614
59.928

23

Table D.14: Univariate evaluation: similarity metrics reported for Finance datasets.

SDForger Models VAE Models GAN Models Others

ICA3 FPC3 TimeVAE TimeVQVAE RTSGAN SDEGAN LS4

Exchange Rate

(Currency 1)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.27
0.851
0.409
0.32

18.913
15.672
1.759

0.269
1.727
0.62
1.173
19.909
15.91
2.228

0.267
0.211
0.33

0.058
20.652
16.319
2.52

0.415
7.212
0.614
1.77

15.335
11.256
2.449

0.358
1.062
1.031
0.854
26.589
22.394
5.691

0.278
0.932
0.476
0.034
47.853
46.856
17.248

0.308
8.803
0.332
1.275
35.288
26.695
22.698

Exchange Rate

(Currency 2)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.316
0.426
1.285
2.003
17.727
15.12
0.967

0.303
1.424
0.914
1.249
19.579
16.076
1.186

0.286
0.305
0.289
1.507
18.253
14.15
1.744

0.459
7.14

0.863
1.576
14.43
10.689
2.442

0.343
0.983
0.424
0.443
18.272
14.488
2.217

0.253
0.976
1.034
0.208
32.215
31.633
6.681

0.291
8.597
1.083
1.636
45.617
38.042
28.819

Exchange Rate

(Currency 3)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.369
0.113
0.22
0.64

19.578
19.092
0.485

0.428
2.852
0.751
3.039
21.042
19.25
0.956

0.36
0.157
0.122
0.205
19.31
18.532
0.808

0.614
8.035
0.453
2.755
14.765
12.47
2.44

0.47
0.639
1.154
0.046
21.985
20.528
1.168

0.314
0.106
0.633
0.992
28.394
28.143
2.133

0.348
9.934
0.71

0.369
38.289
34.966
15.265

Exchange Rate

(Currency 4)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.342
0.34
0.647
0.484
20.09
16.021
1.18

0.341
1.427
0.252
1.206
20.287
16.187
1.383

0.341
0.848
0.136
0.69

19.622
13.507
1.85

0.543
7.171
0.349
2.483
15.38
10.985

2.34

0.349
1.132
0.49

0.394
20.51
14.745
1.858

0.279
1.023
0.502
0.666
33.675
32.558
7.303

0.317
8.913
0.686
0.645
42.123
33.075
23.273

Exchange Rate

(Currency 6)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.273
0.204
0.285
0.534
19.809
18.469
0.569

0.28
1.893
0.755
3.95

19.763
17.954
0.82

0.251
0.179
0.245
0.88

16.956
14.799
1.036

0.427
7.773
0.342
1.701
14.579
11.822
2.386

0.338
0.578
0.049
1.127
21.034
18.02
2.427

0.237
0.414
0.481
0.152
39.025
38.671
5.158

0.286
8.341
0.464
1.401
34.643
30.317
28.882

Exchange Rate

(Currency 7)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.318
0.17
0.249
0.743
19.565
18.484
0.945

0.353
2.423
0.169
3.389
23.189
20.773
0.761

0.322
0.179
0.212
0.574
15.034
13.105
0.981

0.493
7.967
0.22

2.616
14.768
12.875
2.496

0.374
0.121
0.61

0.379
21.199
19.659
0.918

0.292
0.22

0.344
0.759
36.463
36.214
2.649

0.334
9.778
0.599
0.443
34.437
30.555
9.963

Exchange Rate

(Currency 8)

MDD
ACD
SD
KD
ED

DTW
SHAP-RE

0.401
0.06
0.091
1.009
16.88
16.254
0.232

0.378
2.259
0.04
2.867
21.571
20.245
1.044

0.358
0.119
0.595
0.716
16.902
15.651
0.638

0.564
8.052
0.173
2.751
14.882
12.884

2.43

0.467
0.197
0.253
0.202
21.432
20.061
0.679

0.339
0.077
0.041
0.891
37.487
37.232
3.228

0.353
10.102
0.333
0.205
42.048
39.402
15.895

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the key contributions and
scope of the paper. Specifically, they outline SDForger’s novel framework for time series
generation using LMs, highlight the use of compact functional embeddings, and emphasize
its flexibility, scalability, and ability to work in data-scarce regimes. These claims are
substantiated throughout the paper via detailed methodology (Section 3), empirical results
(Section 4), and ablation studies (Appendix D), confirming the consistency between the
stated objectives and the actual contributions

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses its main limitations in the conclusion. In
particular, it highlights that the generation quality depends on the embedding dimensionality
k and the number of training instances. When k is too large and training data is limited,
the fine-tuning of the LM becomes unstable, potentially leading to low-quality or discarded
generations. Additionally, the paper acknowledges that model performance may vary
depending on dataset complexity and that the optimal k may be task-dependent. The
need for a separate filtering step to ensure high-quality output is also discussed. These
considerations reflect awareness of both computational and methodological boundaries.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

25

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results, theorems, or proofs. The
work is empirical and methodological in nature, focusing on the design and evaluation of a
generative framework for time-series data using large language models.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed information about the datasets, model components
(e.g., FPC, ICA, GPT-2), hyperparameters, and evaluation metrics used in both similarity
and utility experiments. The experimental setup, including instance length, number of
components, fine-tuning strategy, and prompt structure, is clearly described in Section 5 and
Appendix D. These details allow for the reproduction of the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

26

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used in our experiments are publicly available and listed in the
paper. We will include the code as supplemental material at submission time and will release
it as open-source upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all key experimental details in Section 5 and Appendix C,
including data splits, embedding dimensionality, fine-tuning parameters, optimizer, and stop-
ping criteria. Hyperparameter choices are justified through ablation studies, and additional
implementation details are included in the supplementary material.
Guidelines:

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars or use repeated runs with different random
seeds. Instead, we demonstrate robustness by evaluating on a wide range of datasets and
metrics. We report results for each individual dataset as well as domain-level and overall
aggregated scores (e.g., average rank, normalized scores), which helps mitigate dataset-
specific variability and highlights consistent trends across diverse temporal settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the compute resources in Appendix D. Experiments were run on
NVIDIA V100 GPUs with 20 GB memory and 2 CPU cores. We also include generation
time benchmarks (Table D.5) and specify batch sizes, training steps, and stopping criteria.
The overall compute budget was moderate, as the models used are lightweight (e.g., GPT-2),
and training converges in under 30 minutes for most datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

28

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics. We use
only publicly available datasets that do not contain personal or sensitive information. No
human participants or surveillance data were involved. Our method is general-purpose and
does not support applications that could lead to discrimination, harm, or misuse. We also
discuss potential limitations and plan to release the code under an appropriate license with
documentation to support transparency and reproducibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not include a dedicated discussion of broader societal impacts,
as it focuses on a general-purpose framework for time-series data generation using publicly
available datasets. The proposed method does not directly engage with high-risk or sensitive
applications, nor does it introduce privacy or fairness concerns in its current scope. We
encourage responsible use aligned with the ethical deployment of generative models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

29

https://neurips.cc/public/EthicsGuidelines

Justification: The proposed method operates on structured time-series data and leverages
publicly available pretrained language models (e.g., GPT-2). It does not release any new
pretrained models or scraped datasets, nor does it target high-risk applications. As such, the
framework does not pose a significant risk of misuse in its current form.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and models used in this paper are publicly available and appropri-
ately cited. Where applicable, we have acknowledged the source papers and repositories,
Pretrained LMs (such as GPT-2 and Phi) are used under their respective terms of use and
clearly referenced in the methodology section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new framework (SDForger) for time-series generation.
The code to reproduce the methodology and results will be submitted as supplemental
material and made publicly available under an open-source license upon acceptance. Docu-
mentation will be provided to support reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

30

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are a core component of the SDForger framework, where they are
fine-tuned to generate synthetic time series from structured text prompts. The methodology,
implementation details, and the impact of different LLM backbones are thoroughly discussed
in Section 3 and Section 5
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Methodology
	From time series to tabular data
	Generation of tabular data
	From embeddings table to text
	Large language model finetuning and inference

	Decoding: from tabular embeddings to time series

	Evaluation methodology
	Results
	Similarity-based metrics results
	Utility-based metrics results
	Ablation

	Shaping time series with language
	Conclusions
	Implementation details
	Data preprocessing: segmentation
	Choice of the number of components
	In-generation filtering
	Stopping criterion

	Evaluation metrics
	Feature-based evaluation
	Distance-based evaluation

	Datasets & protocol settings
	Dataset overview
	Protocols

	Additional results

