
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE ATTENTION DECOMPOSITION
APPLIED TO CIRCUIT TRACING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many papers have shown that attention heads work in conjunction with each other to perform com-
plex tasks. It’s frequently assumed that communication between attention heads is via the addition
of specific features to token residuals. In this work we seek to isolate and identify the features used
to effect communication and coordination among attention heads in GPT-2 small. Our key leverage
on the problem is to show that these features are very often sparsely coded in the singular vectors of
attention head matrices. We characterize the dimensionality and occurrence of these signals across
the attention heads in GPT-2 small when used for the Indirect Object Identification (IOI) task. The
sparse encoding of signals, as provided by attention head singular vectors, allows for efficient sepa-
ration of signals from the residual background and straightforward identification of communication
paths between attention heads. We explore the effectiveness of this approach by tracing portions of
the circuits used in the IOI task. Our traces reveal considerable detail not present in previous studies,
shedding light on the nature of redundant paths present in GPT-2. And our traces go beyond previous
work by identifying features used to communicate between attention heads when performing IOI.

1 INTRODUCTION

Recent work has made progress interpreting emergent algorithms used by language models in terms of circuits (Olah
et al., 2020). Much of the work in model interpretability views a model as a computational graph (Geiger et al., 2021),
and a circuit as a subgraph having a distinct function (Conmy et al., 2023; Wang et al., 2023; Marks et al., 2024). In
language models, the computation graph is typically realized through communication between model components via
the residual stream (Elhage et al., 2021).

In this context, an important subtask is tracing a circuit (Wang et al., 2023; Lieberum et al., 2023; Conmy et al.,
2023) – identifying causal communication paths between model components that are significant for model function.
Focusing on just communication between attention heads, one approach to circuit tracing might be to track information
flow. For example, given an attention head computing a score for a particular pair of tokens, one might ask which
upstream heads modify those tokens in a way that functionally changes the downstream attention head’s output. A
straightforward attack on this question would involve direct inspection of residuals and model component inputs and
outputs at various places within the model. Unfortunately and not surprisingly, direct inspection reveals that the great
majority of upstream attention heads meet this criterion. Each downstream attention head examines a pair of query
and key subspaces, and most upstream heads write at least some component into each downstream head’s query or
key subspace. The problem this causes is that, absent interventions using counterfactual inputs, it is not clear which of
those contributions are making changes that are significant in terms of model function.

Many previous studies have approached this problem by averaging over a large set of inputs, comparing test cases with
counterfactual examples, and by using interventions such as patching (Zhang & Nanda, 2024; Goldowsky-Dill et al.,
2023). This approach has many successes, but it can be hard to isolate specific communicating pairs of attention heads
and hard to identify exactly what components of the residual are mediating the communication.

In this paper we explore a different strategy. We ask whether leverage can be gained on this problem by looking for
low dimensional components of each upstream head’s contributions. To do so, we ask: is there a change of basis
associated with any given attention head, such that components of its input in the new basis make sparse contributions
to the attention head’s output? If so, those components may represent the most significant parts of the input in terms of
model function. Our main result is to find a change of basis for the attention head’s inputs, such that attention scores
are sparsely constructed in the new basis. We show that this basis comes from the singular value decomposition of the
QK matrix of the attention head.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our testbed is GPT-2 small applied to the Indirection Object Identification (IOI) task (Wang et al., 2023). In this
setting we show that in the new basis, tracing inputs to attention heads back to sources serves generally identifies a
small set of upstream attention heads whose outputs are sufficient to explain the downstream attention head’s output.
Further, the small set identified generally includes upstream heads that are known to be functionally associated with the
downstream head. We also show that, in the new basis, the representations of tokens can be correlated with semantic
features. We exploit these properties to build a communication graph of the attention heads of GPT-2 for the IOI
task. By construction, each edge represents a causal direct effect between an upstream head and the attention score
output from the downstream head; more interestingly, we demonstrate that the edges in this graph generally identify a
communication path that has causal effect on the ability of GPT-2 to perform the IOI task.

In sum, our contributions are twofold. First, we draw attention to the fact that attention scores are typically sparsely
decomposable given the right basis. This has significant implications for interpretability of model activations. Note that
this is very different from the uses of SVD to analyze model matrices in previous work; we are nowt concerned with
static analysis of model matrices themselves. Second, we demonstrate that by leveraging the sparse decomposition to
denoise inputs to heads, we can effectively and efficiently trace functionally significant causal communication paths
between attention heads.

2 RELATED WORK

The dominant style of circuit tracing is via patching (Zhang & Nanda, 2024; Goldowsky-Dill et al., 2023). That strat-
egy has shown considerable success (Wang et al., 2023; Conmy et al., 2023; Hanna et al., 2023; Lieberum et al., 2023)
but is time-consuming, generally requires the creation of a counterfactual dataset to provide task-neutral activation
patches, may miss alternative pathways (Makelov et al., 2023; Mueller, 2024), and has been shown to produce indirect
downstream effects that can even result in compensatory self-repair (McGrath et al., 2023; Rushing & Nanda, 2024).

In this work, we trace circuits using only a single forward pass over the data, eliminating the need for counterfactuals
and avoiding the problems of self-repair after patching. The authors in (Ferrando & Voita, 2024) trace circuits in a
single forward pass, and argue that the approach is much faster than patching, and avoids dependence on counter-
factual examples and the risk of self-repair. We derive the same benefits, but unlike that paper we leverage spectral
decomposition of attention head matrices to identify the signals flowing between heads.

Like distributed alignment search (Geiger et al., 2024) we adopt the view that placing a neural representation in an
alternative basis can reveal interpretable dimensions (Smolensky, 1986). However, unlike that work, we do not require
a gradient descent process to find the new basis, but rather extract it directly from attention head matrices. Likewise,
using sparse autoencoders (SAEs) the authors in (Gurnee et al., 2023; Marks et al., 2024) construct interpretable
dimensions from internal representations; our approach is complementary to the use of SAEs and the relationship
between the representations we extract and those obtained from SAEs is a valuable direction for further study.

We demonstrate circuit tracing for the IOI task in GPT-2 small, which has become a ‘model organism’ for tracing
studies (Wang et al., 2023; Conmy et al., 2023; Ferrando & Voita, 2024). Like previous studies, one portion of our
validation consists of recovering known circuits; however we go beyond recovery of those known circuits in a number
of ways, most importantly by identifying signals used for communication between heads.

The use of SVD in our study is quite different from its previous application to transformers. SVD of attention matrices
has been used to reduce the time and space complexity of the attention mechanism (Wu et al., 2023; Wang et al., 2024)
and improve reasoning performance (Sharma et al., 2024), often leveraging a low-rank property of attention matrices.
Our work does not rely on attention matrices showing low-rank properties. We use SVD as a tool to decompose the
computation of attention; the leverage we obtain comes from the resulting sparsity of the terms in the attention score
computation. Likewise, previous work has shown interpretability of the singular vectors of OV matrices and MLP
weights — though not of QK matrices (Millidge & Black). We show here evidence that it is the representations of
tokens in the bases provided by the singular vectors of QK matrices that show intepretability.

3 BACKGROUND

In the model, token embeddings are d-dimensional, there are h attention heads in each layer, and there are t layers. We
define r = d

h , which is the dimension of the spaces used for keys and queries in the attention mechanism. In GPT-2
small, d = 768, h = 12, t = 12, and r = 64.

The attention mechanism operates on a set of n tokens in d-dimensional embeddings: X ∈ Rn×d. Each token x ∈ Rd

is passed through two affine transforms given by x⊤WK+b⊤
K , x⊤WQ+b⊤

Q, using weight matrices WK ,WQ ∈ Rd×r

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and offsets bK ,bQ ∈ Rr. Then the inner product is taken for all pairs of transformed tokens to yield attention scores.
More precisely:

A′ = (XWQ + 1b⊤
Q)(XWK + 1b⊤K)⊤

= XWQW
⊤
KX⊤ +XWQbK1⊤ + 1b⊤

QW
⊤
KX⊤ + 1b⊤

QbK1⊤ (1)

We can capture (1) in a single bilinear form by making the following definitions:

Ω =

[
WQW

⊤
K WQbK

b⊤
QW

⊤
K bT

QbK

]
, x̃ =

[
x

1

]
. (2)

Then we can rewrite the score computation (1) as

A′
ij = x̃⊤

i Ωx̃j (3)

in which xi is the destination token and xj is the source token of the attention computation. To enforce masked self-
attention, A′

ij is set to −∞ for i < j. Attention scores are then normalized, for each destination (corresponding to a
row in A′), yielding attention weights A = Softmax(A′/

√
r), in which the Softmax operation is performed for each

row of A′/
√
r. The resulting attention weight Aij is the amount of attention that destination i is placing on source j.

4 CIRCUIT TRACING

4.1 APPROACH

The approach used in this paper to trace circuits starts by decomposing the attention score A′ in terms of the SVD of
Ω. The matrix Ω has size (d+1)× (d+1), but due to its construction it has maximum rank r. We therefore work with
the SVD of Ω = UΣV ⊤ in which U ∈ R(d+1)×r, V ∈ R(d+1)×r and Σ ∈ Rr×r. U and V are orthonormal matrices
with U⊤U = I and V ⊤V = I , and Σ = diag(σ0, σ1, . . . , σr−1) with σ0 ≥ σ1 ≥ · · · ≥ σr−1 ≥ 0. Important to our
work is that the SVD of Ω can equivalently be written as

Ω =

r−1∑
k=0

ukσkv
⊤
k =

r−1∑
k=0

Dk (4)

in which {uk} and {vk} are orthonormal sets and each term in the sum is a rank-1 matrix having Frobenius norm σk.
We refer to each term Dk as an orthogonal slice of Ω, since we have D⊤

k Dj = DkD
⊤
j = 0 whenever k ̸= j.

The following hypothesis drives our approach:

Hypothesis (Sparse Decomposition) When an attention head performs a task that requires detecting compo-
nents in a pair of low-dimensional subspaces in its inputs xi and xj , and its inputs have significant components in
those subspaces, it will show large values of x⊤

i ukσkv
⊤
k xj for a distinct subset of values of k.

In the remainder of this paper we show a variety of evidence that is consistent with the sparse decomposition
hypothesis in the case of GPT-2 small. In §6 we will discuss reasons why this phenomenon may arise.

When the sparse decomposition hypothesis holds, we can approximate the score computed by the attention head as
follows:

A′
ij ≈

∑
k∈Sij

x⊤
i ukσkv

⊤
k xj =

∑
k∈Sij

x⊤
i Dkxj (5)

where the number of terms in the sum (i.e., |Sij |) is small.

We use Sij to denote the subset of values of k for the token pair (i, j). Besides being specific to an attention head and
token pair, S also depends on the task. In this paper we do not define ‘task’ precisely; in what follows, we study only
a limited set of attention head functions that are performed when generating outputs for IOI prompts in GPT-2 small.
We leave the association between S and precisely-defined tasks as a fascinating direction for future work.

Our tracing strategy constructs A′ using (5), i.e., using Sij in place of all of the singular vectors of Ω. This is
akin to denoising in signal processing. When a signal has an approximately-sparse representation in a particular
orthonormal basis (e.g., the Fourier basis or a wavelet basis) then removing the signal components that correspond
to small coefficients is useful to suppress noise. Likewise, we find that in the orthonormal bases provided by U and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

V , contributions of the inputs xi and xj are typically approximately-sparse. Hence removing the dimensions with
contributions summing to zero allows us to identify low-dimensional components of the inputs that are responsible for
most of the attention head’s output (score). We illustrate the benefits of denoising A′ in §5.2.

Hence, to fix Sij , we consider the individual contributions made by each orthogonal slice to A′
ij : {x⊤

i Dkxj}r−1
k=0.

Empirically we typically find a few large, positive terms and many others that may be positive or negative. We seek
to separate terms into ‘signal’ and ‘noise.’ To do so we adopt a simple heuristic, treating noise terms as a set that, in
sum, has little or no effect on the attention head score. Accordingly, we define the noise terms to be the largest set of
terms whose sum is less than or equal to zero. The indices of the remaining terms constitute Sij . Terms denoted by
Sij are strictly positive, and are the largest positive terms. Typically the number of those terms, ie, |Sij |, is 20 or less,
often just 2 or 3. We refer to this condition where |Sij | is small as the sparse decomposition of attention head scores
in terms of the orthogonal slices of Ω.

Given Sij , we can decompose model residuals into ‘signal’ and ‘noise’ in terms of their impact on A′
ij . Define sub-

spaces U = Span{uk | k ∈ Sij} and V = Span{vk | k ∈ Sij} and associated projectors PU and PV . The denoising
step separates the inputs xi and xj into:

s̃i = PU x̃i, z̃i = PU⊥ x̃i, s̃j = PV x̃j , z̃j = PV⊥ x̃j , (6)

where PU⊥ = I − PU and PV⊥ = I − PV . Then we have xi = si + zi,xj = sj + zj , and

s̃⊤i Ωs̃j ≈ A′
ij and z̃⊤i Ωz̃j ≈ 0,

where |Sij | is as small as possible.1 Intuitively, we interpret a signal s to approximately represent a feature that is used
for communication between attention heads; we present evidence in support of this interpretation below.

4.2 SINGULAR VECTOR TRACING

We use this framework to trace circuits in GPT-2 small as follows. A prompt corresponding to the IOI task is input to
GPT-2. Consider the a-th attention head at layer ℓ, generating attention score A′

ij for source token j and destination
token i. Then Sℓa

ij defines a set of orthogonal slices that the attention head (ℓ, a) is using. Hence we can approximately
construct A′

ij as in (5), where we are using the SVD of Ωℓa.

We will trace circuits causally with respect to the singular vectors of each attention head. For attention head (ℓ, a)
generating output on tokens (i, j), we identify the subspaces U and V . We then look at each attention head ‘upstream’
of (ℓ, a), to determine how much each contributes in the subspace U to destination token xi and in the subspace V
to source token xj . Specifically, for attention head (l, b) with l < ℓ, denote the output that it adds to token i as olb

i
(likewise for j). We then compute

cℓa,lbi,ij =
∑

k∈Sℓa
ij

√
σℓa
k uℓa⊤

k olb
i and cℓa,lbj,ij =

∑
k∈Sℓa

ij

√
σℓa
k vℓa⊤

k olb
j (7)

Conceptually, cℓa,lbi,ij is an estimate of how much attention head (l, b), by writing to token xi, has changed the output
(score) of attention head (ℓ, a) on token pair (i, j). We use

√
σk to incorporate the magnitude of each singular vector’s

contribution to the attention head output, dividing the contribution equally between the source and destination tokens.
We refer to cℓa,lbi,ij as the contribution of attention head (l, b) to attention head (ℓ, a) on token pair (i, j) through token
xi.

4.3 EXPERIMENTS

To demonstrate the utility of singular vector tracing we apply it to a specific setting: the behavior of GPT-2 small
when performing indirect object identification (IOI). The IOI problem was introduced in (Wang et al., 2023), and that
paper identified circuits that GPT-2 uses to perform the IOI task. As described in that paper: In IOI, sentences such as
“When Mary and John went to the store, John gave a drink to” should be completed with “Mary.” To be successful,
the model must identify the indirect object (IO, ‘Mary’) and distinguish it from the subject (S, ‘John’) in a prompt that
mentions both. Thus, a succinct measure of model performance can be obtained by comparing the output logits of the
IO and S tokens. The authors identified a collection of attention heads, and the token positions they attend to, that
together perform the IOI task. We refer the reader to (Wang et al., 2023) for additional details.

1To go from x̃ to x we simply drop the last component; this is explained in the Appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 20 40 60
Orthogonal Slice Index

−10
−5

0
5

Co
nt

rib
ut

io
n

 to
 A

ttn
. S

co
re

0 20 40 60
Orthogonal Slice Index

−10
−5

0
5

Co
nt

rib
ut

io
n

to
 A

ttn
. S

co
re

(a) (b)

Figure 1: Orthogonal slice contributions to attention score (a): A′
ij < 0; (b) A′

ij > 0.

The IOI dataset that we use consists of 256 example prompts with 106 different names. We are using the same 15
templates used in (Wang et al., 2023), with two patterns (‘ABBA’ and ‘BABA’), which refers to the order of the names
appearing in the sentence (the IO name is A, and the S name is B). Prompt sizes range from 14 to 20 tokens.

Singular vector tracing as described in §4.2 can be applied at every attention head with respect to every token pair.
However in our experiments we limit our analysis to cases where the attention head is primarily attending to a single
source token for a given destination token. This strategy is similar to analyses in prior work (Wang et al., 2023; Conmy
et al., 2023; Ferrando & Voita, 2024); it reduces complexity in the tracing analysis, but could be relaxed in future work.
Specifically we say that an attention head is ‘firing’ if it places more than 50% weight on a particular source token for
any given destination. This rule implies that a head can only ‘fire’ on one source token for each destination token. In
general, we only trace upstream from attention heads that are firing on specific token pairs.

Note that interpreting (7) as giving the actual magnitude of the change in downstream attention score overlooks pro-
cessing that may affect the signal in between the upstream head and the downstream head. Previous work has shown
that downstream processing can compensate for upstream ablations (McGrath et al., 2023) and that some layers may
remove features added by previous layers (Rushing & Nanda, 2024). We show results in §5.4 that confirm the direct
causality of signals on downstream attention head outputs, but also illustrate that downstream processing can at times
have a noticeable effect on model performance after signal interventions. Further, (7) ignores the impact of the layer
norm. We account for the effect of the layer norm using three techniques: weights and biases are folded into the down-
stream affine transformations, output matrices are zero centered,2 and the scaling applied to each token is factored into
the contribution calculation. More details on tracing are provided in the Appendix.

5 RESULTS

5.1 CHARACTERIZING ATTENTION HEAD BEHAVIOR VIA SVD

Throughout this and the next section, we use as our examples attention heads that figured prominently in the results
of (Wang et al., 2023). This aids interpretation and ensures we are paying attention to important components of the
model.

We start by demonstrating the approximately-sparse nature of attention scores when decomposed via SVD. Figure 1
shows typical cases. Each plot in the figure shows results for attention head (8, 6) and a single source token, destination
token, and prompt. The 64 contributions made by each orthogonal slice to the attention score are shown. Red bars
correspond to sets Sij ; the sum of the red bars is approximately equal to the sum of all bars, which is the attention
score for this head on these inputs. Figure 1(a) corresponds to the case in which the attention score is negative (and so
the attention weight would be nearly zero); Figure 1(b) corresponds to a case in which the attention score is positive
(28.1), and the attention weight is large (≈ 0.83). Note that orthogonal slices are shown in order of decreasing singular
value; the effect shown is not due to a low-rank property of Ω itself. Rather, the effect shown corresponds to sparse
construction of the attention score when the inputs are encoded in the bases given by the SVD of Ω.

We see considerable evidence in our experiments that the orthogonal slices used by an attention head are similar to
each other when the attention head is firing. Figure 2 shows examples of the Sij sets for four attention heads: (3, 0),
(4, 11), (8, 6), and (9, 9) across 256 prompt inputs. Furthermore, the nature of these attention head’s functions are
evident in the sets of slices that they use. In the case of (8, 6) (an S-inhibition head), there is a set of about 6 slices
that are consistently used; these are the same as the red bars in Figure 1(b). Attention head (9, 9) (a name mover
head) uses a larger set, but there is still clearly a specific set of slices that frequently appear. Attention head (3, 0) (a
duplicate-token head) uses a broad set of slices; this is consistent with its need to look at all the token’s dimensions,

2These operations are provided by the TransformerLens library; see (Nanda).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Orthogonal slices used when head is firing: (a) AH (3, 0); (b) AH (4, 11); (c) AH (8, 6); (d) AH (9, 9).

0 5 10 15 20
Number of Singular Vectors in Sij

0.0

0.2

0.4

0.6

0.8

De
ns

ity

(8, 6)
(4, 11)
(3, 0)
(9, 9)
(9, 6)
(10, 0)

0 5 10 15 20
Number of Singular Vectors in Sij

0.0

0.1

0.2

0.3

De
ns

ity

(8, 6)
(4, 11)
(3, 0)
(9, 9)
(9, 6)
(10, 0)

Figure 3: Number of slices used when firing. (left) IOI dataset (right) non-specific dataset.

since its role is to detect identical tokens. And attention head (4, 11) (a previous token head) primarily uses a single
slice; this also is consistent with its role of detecting adjacent tokens, which appears to only require detecting a feature
in a one-dimensional subspace. Finally, we show in the Appendix corresponding plots for when these attention heads
are not firing; there too, a consistent set of slices is used, but the slices are completely different from those used when
the head is firing.

The sparsity of the contributions of the slices of Ω to attention scores is summarized in Figure 3. In Figure 3(a) we
show the distribution of the number of orthogonal slices used, ie, |Sij |, across all the prompts in our dataset. The figure
shows that the number of slices used is consistently small, much smaller than the number of available dimensions (64).
We also ask whether the sparsity observed is an artifact of the input data used in our experiments. To assess this, we
run GPT-2 on a dataset consisting of non-specific inputs, having no relationship to the IOI task. We use the first 256
elements of The Pile (Nanda, 2024) selecting the first 21 tokens from each element to match the IOI dataset size. The
corresponding plot is shown in Figure 3(b). This comparison suggests that sparse decompositions of attention scores
is not limited to the IOI setting.

5.2 DO WE NEED SINGULAR VECTORS?

Next we show that it is possible to leverage the sparsity of attention score decomposition. To illustrate this, we ask
the following question: given a token that is input to a particular attention head, what similarity does it show to the
outputs of upstream attention heads? In other words, could we trace some part of a circuit by simply looking upstream
to see who has ‘contributed’ to the token?

We take as our examples heads (9, 9) and (10, 0), which are name mover heads. The authors in (Wang et al., 2023)
find that functionally important contributors to the ‘end’ tokens of these heads are (7, 3), (7, 9), (8, 6), and (8, 10). The
heatmaps in Figure 4 show contribution scores (computed via (7)) for two cases: the case where the signal is taken to
be the entire residual x, and the case where the signal s is taken to be just its low-dimensional component as described
in §4.1.

The figure shows the strong filtering and correcting effect that results from exploiting the sparsity of attention decom-
position. Figures 4(a) and (c) show that if we simply ask how much each upstream head contributes to the attention
score of the downstream head, we get a very noisy answer with two problems. First, a large set of attention heads have

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 4: Filtering effect of orthogonal slices. Upstream contributions to (a) (10, 0), ‘end’ token, all slices of Ω; (b)
minimal set of slices of Ω; (c) (9,9), ‘end’ token, all slices of Ω; (d) minimal set of slices of Ω.

high scores; and second, the known functional relationships from (Wang et al., 2023) are not evident. On the other
hand, when we focus on Figures 4(b) and (d), we see considerable noise suppression; many heads in middle layers
of the model are no longer shown as being significant. Furthermore, we see that one attention head (8, 6) stands out,
and it is one of those previously identified as functionally important. And in the case of Figure 4(d), we see that other
attention heads with known functional relationship (7, 3) and (7, 9), are also highlighted. In §5.3 we will show many
other attention head pairs with functional relationships from (Wang et al., 2023) that are recovered using the singu-
lar vector tracing strategy. In the Appendix we show a hypothetical network trace performed without using singular
vectors; the resulting trace is not usable and shows little evidence of known functional relationships in the IOI circuit.

Interpreting Signals. Detailed investigation of the interpretability of signals is beyond the scope of this paper.
However we observe that in some cases signals show interpretability. As an example, we consider the name mover
attention head (9, 9). For each token in the input to layer 9, we compute the magnitude of its residual in the V subspace
of (9, 9). This measures the strength of the signal that (9, 9) uses to identify the IO token. We find that this measure
cleanly separates the names in our data from the non-names. Details are in the Appendix.

5.3 SINGULAR VECTOR TRACE OF GPT-2 ON IOI

Next we construct a singular vector trace using the concepts from §4.2. We start at a particular attention head and
token pair. If the head is firing on the token pair (as discussed in §4.3) we obtain the subspaces U and V and associated
projectors PU and PV . We then look at each upstream attention head’s output, and separate from it the signal it contains
for the downstream head. The properly adjusted magnitude of this signal constitutes the upstream head’s contribution
to the downstream head’s attention score via the corresponding token, as computed via (7).

Empirically we find that the contributions from most upstream heads are small, with only a few upstream heads making
large contributions to the downstream attention score. We filter out the small contributions, which are unlikely to have
significant impact on model performance. To do this for a given downstream firing, we adopt the simple rule of
choosing the smallest set of upstream heads whose contributions sum to at least 70% of the sum of all contributions.

Using this rule, for each token we identify the upstream heads with significant contribution through that token. An
edge in the resulting trace graph is defined by the upstream head, the downstream head, the two tokens on which
the downstream head is firing, and the choice of which token is being written into by the upstream head. For each
upstream head we then ask whether it is firing on that token as a destination. If so, the process repeats from that head
and token pair. The process is presented in detail as Algorithm 1 in the Appendix.

We ran singular vector tracing on GPT-2 small using 256 prompts from the IOI dataset described in §4.3. We started
the trace at the three name mover heads (9, 6), (9, 9) and (10, 0), as they were identified as having direct effect on
model performance in (Wang et al., 2023). The resulting trace is shown in Figure 5; we refer to the graph in the figure
as G. There are two kinds of edges in G: communication edges from heads to tokens, and attention edges from tokens
to heads. In the figure, blue edges are toward tokens that are source tokens downstream, and red edges likewise are
destinations. The width of the edge is the accumulated contribution of the edge over the 256 prompts. Darker nodes
fired more often in our traces, and we have placed green borders around nodes that appeared in (Wang et al., 2023).
Edges that appear very few times (less than 65 times over the 256 prompts) are omitted.

We make a number of observations. First, the trace shows broad agreement with results in (Wang et al., 2023), although
not all nodes in that paper appear in our graph; this may reflect differences of effect size, or differences between the
input datasets. The trace shows agreement with previous results on head-to-head connections and also on the tokens

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(8, 5)

(0, 5)

(5, 0)

(4, 3, 'end')

(8, 6)

(1, 1)

(5, 0, 'S1+1')

(0, 9)

(3, 0, 'S2')

(5, 0, 'IO')(5, 5, 'S1+1')

(1, 6) (1, 4)

(5, 5, 'S2')

(4, 11, 'S1')

(2, 8, 'verb')

(8, 6, 'S2')

(2, 8, 'end')

(8, 6, 'end')

(2, 10)

(0, 11)

(10, 0, 'IO')

(2, 3)
(2, 8)

(10, 0)

(9, 9, 'IO')

(0, 10)

(3, 11)

(9, 9)

(10, 0, 'end')

(6, 7)

(1, 2) (1, 7)

(9, 9, 'end')

(1, 10)

(6, 1, 'S1+1')

(5, 10)

(1, 8)

(6, 1, 'IO')

(5, 10, 'end-1')(5, 6, 'S1+1')

(7, 8)

(5, 10, 'end')(5, 6, 'IO')

(7, 9)

(0, 7)(0, 1)

(7, 9, 'S2')

(3, 7) (3, 5)

(9, 6, 'IO')

(7, 9, 'end')

(4, 11)

(9, 6)

(3, 0)

(5, 6)

(0, 8)

(4, 8)

(7, 0)

(5, 5)

(7, 4)

(2, 0)(2, 5)

(4, 11, 'S1+1')

(2, 9)

(3, 2)

(1, 3)

(6, 0)

(4, 11, 'IO')

(9, 6, 'end')

(5, 2)

(6, 3)

(7, 3)

(6, 8)

(5, 3)

(7, 5)

(6, 11)

(4, 1)
(4, 3)

(8, 3)

(3, 0, 'S1')

(6, 1)

(4, 3, 'end-1')

Figure 5: Traced Network, 256 Prompts. Heads are ovals, tokens are boxes.

through which the communication is effected. Note that in the appendix we show that further filtering this graph to
just its most frequent edges yields a set of attention heads in agreement with (Wang et al., 2023) to a precision of 0.52
and recall of 0.69.

The trace also goes beyond previous results in a number of ways. Whereas in previous work, the upstream contributors
to name mover source tokens were not identified, this trace shows where important features for the that (IO) token are
added and that this happens very early in the model’s processing. Previous work also proposed that redundant paths
were present in GPT-2’s processing for the IOI task; this trace confirms their existence and elucidates the nature of
their interconnection pattern. For example, there is distinct lattice structure among nodes at layers 7, 8, and 9. (In
the Appendix we isolate this lattice structure for better inspection.) We also identify highly active heads that were not
discussed in previous work, including (2, 8) which attends to the ditransitive verb of the prompt and feeds into (4, 11)
(a previous token head) as well as (8, 6) (a S-inhibition head); and (4, 3) which attends to the last token (which is
always a preposition in our prompts) and its predecessor.

5.4 VALIDATION

We adopt a variety of strategies to validate the graph in Figure 5. To demonstrate the causal effect of each edge’s
communication on model performance, we intervene on individual edges; and to demonstrate that the structure of the
graph itself is functionally significant, we intervene on various collections of edges simultaneously.

Edge Validation. A communication edge in G represents the contribution cℓa,lbij , which is a measure of the amount
that head (l, b) would change the attention score A′

ij of head (ℓ, a) via sℓa,lbij if there were no downstream modifications.
Validating an edge (l, b) → (ℓ, a) in G involves intervening in the output of the upstream attention head (l, b) by
modifying the signals (as defined in (6)) used by the downstream attention head (ℓ, a). We define two types of
interventions: global interventions, and local interventions. In a global intervention, we simply modify the signal
in the output of the upstream attention head; in a local intervention, we modify the signal only at the input to the
downstream attention head. Global interventions have the potential to directly affect all downstream heads, while
local interventions are limited in their direct effect to only the downstream head.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (10, 0, end)

(8, 3) ->

 (10, 0, end)

(9, 4) ->

 (10, 0, end)

(9, 6) ->

 (10, 0, end)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (10, 0, end)

(8, 3) ->

 (10, 0, end)

(9, 4) ->

 (10, 0, end)

(9, 6) ->

 (10, 0, end)

Figure 6: Single-Edge Interventions: (left) Global (right) Local. Green: Ab-
lation; Red: Boosting; Blue: Random Ablating; Orange: Random Boosting.

−15 −10 −5 0 5
F(E, h) - F

All (0, 11)
outgoing edges

All (0, 9)
outgoing edges

All (0, 11) +
 All (0, 9)

outgoing edges

Figure 7: Multi-Edge Ablation.
Blue: Global; Orange: Local.

Specifically, we define ∆ as the projection of the upstream head’s output onto the associated subspace defined by Sℓa
ij .

An edge ablation consists of subtracting ∆ from the residual; and edge boosting consists of adding ∆ to the residual.
Additionally, for comparison purposes we define ∆random which consists of constructing the projection of the residual
using a set of (ℓ, a)’s singular vectors chosen at random from those not in Sℓa

ij ; the size of the chosen set is the same
as |Sℓa

ij |. Performing the same interventions using ∆random allows us to assess whether intervening in the subspaces U
and V is more effective than a random strategy. Implementation details of these interventions are in the Appendix.

We measure the effects of interventions using the same metric as (Wang et al., 2023). Let F (X) be the logit difference
between the IO and S tokens when the model is run on input X . Then define F (X, e,h) = F (X | do(x = x+h)) for
a particular intervention h on a particular edge e corresponding to residual x. A negative value of F (X, e,h)−F (X)
indicates that the model’s performance on the IOI task has gotten worse; while a positive value of F (X, e,h)−F (X)
indicates that the model’s performance has improved.

Our results show, with some interesting exceptions, that almost all of the edges from G that we test cause model
performance to degrade when ablated. Importantly, we also show that model performance shows corresponding in-
creases when an edge is boosted. Generally speaking, intervening on an edge with higher weight (shown as thicker) in
Figure 5 has stronger impact on model performance. We conclude that tracing via singular vectors generally identifies
functionally causal communication paths for IOI in GPT-2.

It is important to note that the magnitudes of the interventions performed here are small. We are intervening in a
subspace of dimension less than 20 (typically) on a vector with 768 dimensions. To illustrate, we find that the cosine
similarity between residuals before and after a local intervention in our experiments is generally higher than 0.999; and
the relative change in vector norm before and after intervention is typically less than 1%. Details are in the Appendix.

As an example of our results, we show in Figure 6 interventions on edges into (10, 0, end). Both local and global inter-
ventions show causal impact on model performance, with more significant edges having larger impact. We note that
in a number of cases (shown in the Appendix) local interventions can have greater impact than global interventions,
presumably due to downstream modification of signals by other components; we also show cases where global inter-
ventions have greater impact than local interventions, presumably because signals are being shared between multiple
communication paths in the model.

Structural Validation. The results in (Wang et al., 2023) suggest that there are alternative paths that can be used by
the model to perform the IOI task. An advantage of the trace shown in Figure 5 is that those alternate paths are made
explicit. To demonstrate that the structure of G is informative, we show that intervening on parallel edges is frequently
additive, while intervening on serial edges is frequently not.

Figure 7 shows a multi-edge intervention in a large set of edges on parallel paths: all outgoing edges from attention
heads (0, 11) and (0, 9). Global interventions of these edges have significant impact in the performance of the model,
and this effect is amplified when we intervene on both (0, 11) and (0, 9) at the same time, showing intervention on
parallel paths that is additive. On the other hand, local intervention in the downstream nodes of these edges has a
smaller effect, suggesting that the model has redundant paths for the same task (eg, backup name movers as discussed
in (Wang et al., 2023)). Results showing intervention on serial edges are in the Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 DISCUSSION

Possible Mechanisms. The results in §§5.1 and 5.2 support the sparse decomposition hypothesis. In this section we
discuss some possible mechanisms behind this phenomenon. First, a motivation for decomposing attention matrices
using SVD comes from the following fact:

Lemma 1 Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix D that maximizes
x⊤Dy is D = x

∥x∥
y⊤

∥y∥ .

The proof is straightforward and provided in the Appendix. This suggests that model training could have the following
effect. If an attention head needs to attend to particular vectors x and y, it needs to output a large value for x̃⊤Ωỹ.
In that case, model training could result in construction of Ω in which one term of the SVD, say ukσkv

⊤
k , has uk ≈

x̃/∥x̃∥, vk ≈ ỹ/∥ỹ∥, and with σk reflecting the importance of this term in the overall computation of the attention
score. As an illustration, we note that the results in §5.2 and the Appendix show that in GPT-2 the singular vectors of
some Ω matrices are correlated with word features that are relevant for the IOI task.

Consider a hypothetical case in which the sets of vectors to which the attention head needs to attend, say {x̃i} and {yi},
happen to each form orthogonal sets. Then to achieve maximum discrimination power in distinguishing corresponding
pairs, the singular vectors of Ω, that is {ui} and {vi} respectively, should be aligned with the corresponding vectors
in {x̃i} and {ỹi}. To move from vectors to features, we refer to the linear representation hypothesis (Mikolov et al.,
2013; Gurnee & Tegmark, 2024; Park et al., 2023) which suggests that concepts, including high-level concepts, are
often represented linearly in the model.

To move closer to realistic cases, we note that the authors in (Elhage et al., 2022) make observations, based on
experimental evidence and geometric considerations, about features constructed by neural models. They argue that
models will tend to represent correlated feature sets in a manner such that, considered in isolation, the sets are nearly
orthogonal. They term this the use of “local, almost-orthogonal bases.” In our case, if an attention head is attending to
vector sets {x̃i} and {ỹi} that are important when performing a specific task, then we may hypothesize that training
will construct the sets to be “nearly-orthogonal,” meaning that cosine similarities among the vectors in each set would
typically be small.In this case, the resulting sets of singular vectors {uk}, {vk} are more likely to sparsely encode the
{x̃i} and {ỹi} than exist in one-to-one correspondence.

Given the above argument, for cases where the linear representation hypothesis holds, we expect that an attention head
is testing for a pair of low-dimensional subspaces in the inputs xi and xj . In that case, we expect that subsets of the
singular vectors of Ω will be constructed during training so as to ‘match’ those subspaces. In this context, a sparse
encoding allows the attention head to attend to more than r different subspaces, expanding the number of concepts that
the attention head can recognize. In the Appendix we discuss situations where the sparse decomposition hypothesis
may not hold.

Limitations and Future Work. There are a number of limitations of our study and directions for future work. First,
the method as used here does not explore alternative pathways that may affect model output (Makelov et al., 2023).
It also does not directly assess adaptive computations in the model (Marks et al., 2024; Rushing & Nanda, 2024) nor
does it construct minimal circuits in the sense of (Wang et al., 2023). However, we believe that it offers an alternative
toolbox that can be extended to help investigate those issues, in part by exposing the signals passing between specific
pairs of attention heads. And as in (Wang et al., 2023), we focus on understanding the interaction between attention
heads. We believe that extending our framework to include the contributions of MLPs is an important direction for
future work.

Further, we have not explored in depth the nature of the signals themselves. Indirect evidence, such as the difference
in effect between local and global ablations, suggests that there are some similarities between signals used on different
edges of the network. Exploration of the nature of signals and their relationships is an intriguing direction for future
work.

Conclusions. Transformer-based models are largely considered closed boxes whose internals are difficult to interpret
in domain-level terms (Alishahi et al., 2019). By helping elucidate the circuits used by a language model in performing
a given task, we hope to improve our ability to assess, validate, control, and improve model functions. In this paper we
draw attention to a powerful tool for analyzing circuits: the fact that attention scores are typically sparsely constructed.
This effect leads directly to the ability to identify signals used by attention heads to effect inter-head communication.
We show that these low-dimensional signals have causal effect on attention head computations, and generally on the
ability of GPT-2 to perform the IOI task. We believe that further exploration of signals holds promise for even deeper
understanding of the internals of language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Afra Alishahi, Grzegorz Chrupała, and Tal Linzen. Analyzing and interpreting neural networks for nlp: A report
on the first blackboxnlp workshop. Natural Language Engineering, 25(4):543–557, 2019. ISSN 1351-3249. doi:
10.1017/s135132491900024x.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-Alonso. Towards
automated circuit discovery for mechanistic interpretability. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 16318–16352.
Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao
Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernan-
dez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared
Kaplan, Sam McCandlish, and Chris Olah. A Mathematical Framework for Transformer Circuits. Transformer Cir-
cuits Thread, 2021. URL https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,
Martin Wattenberg, and Christopher Olah. Toy Models of Superposition. Transformer Circuits Thread, 2022. URL
https://transformer-circuits.pub/2022/toy_model/.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language models at scale, 2024.
URL https://arxiv.org/abs/2403.00824.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural networks. arXiv, 2021.
doi: 10.48550/arxiv.2106.02997.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D. Goodman. Finding alignments between
interpretable causal variables and distributed neural representations, 2024. URL https://arxiv.org/abs/
2303.02536.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model behavior with path
patching, 2023. URL https://arxiv.org/abs/2304.05969.

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=jE8xbmvFin.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas. Finding
neurons in a haystack: Case studies with sparse probing. arXiv, 2023. doi: 10.48550/arxiv.2305.01610.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Interpreting mathemat-
ical abilities in a pre-trained language model. arXiv, 2023. doi: 10.48550/arxiv.2305.00586.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and Vladimir Mikulik.
Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla. arXiv, 2023.
doi: 10.48550/arxiv.2307.09458.

Aleksandar Makelov, Georg Lange, and Neel Nanda. Is this the subspace you are looking for? an interpretability
illusion for subspace activation patching. arXiv, 2023. doi: 10.48550/arxiv.2311.17030.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse feature circuits:
Discovering and editing interpretable causal graphs in language models. arXiv, 2024.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra effect: Emergent
self-repair in language model computations. arXiv, 2023. doi: 10.48550/arxiv.2307.15771.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations.
In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff (eds.), Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–
751, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL https://aclanthology.
org/N13-1090.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2022/toy_model/
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2304.05969
https://openreview.net/forum?id=jE8xbmvFin
https://openreview.net/forum?id=jE8xbmvFin
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Beren Millidge and Sid Black. The singular value decompositions of transformer weight matri-
ces are highly interpretable. https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/
the-singular-value-decompositions-of-transformer-weight.

Aaron Mueller. Missed causes and ambiguous effects: Counterfactuals pose challenges for interpreting neural net-
works. arXiv, 2024. doi: 10.48550/arxiv.2407.04690.

Neel Nanda. Transformer lens main demo notebook. https://colab.research.google.com/github/
neelnanda-io/TransformerLens/blob/main/demos/Main_Demo.ipynb.

Neel Nanda. The first 10,000 elements of the pile. https://huggingface.co/datasets/NeelNanda/
pile-10k, 2024.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in: An intro-
duction to circuits. Distill, 5(3):e00024–001, 2020.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of large language
models. In Causal Representation Learning Workshop at NeurIPS 2023, 2023. URL https://openreview.
net/forum?id=T0PoOJg8cK.

Cody Rushing and Neel Nanda. Explorations of self-repair in language models. arXiv, 2024. doi: 10.48550/arxiv.
2402.15390.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning in language models
with layer-selective rank reduction. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ozX92bu8VA.

P. Smolensky. Neural and conceptual interpretation of PDP models, pp. 390–431. MIT Press, Cambridge, MA, USA,
1986. ISBN 0262631105.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in
the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value decomposition for
large language model compression. arXiv, 2024. doi: 10.48550/arxiv.2403.07378.

Yifan Wu, Shichao Kan, Min Zeng, and Min Li. Singularformer: Learning to decompose self-attention to linearize
the complexity of transformer. Proceedings of the Thirty-Second International Joint Conference on Artificial Intel-
ligence, pp. 4433–4441, 2023. doi: 10.24963/ijcai.2023/493.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models: Metrics and methods,
2024. URL https://arxiv.org/abs/2309.16042.

12

https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Main_Demo.ipynb
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Main_Demo.ipynb
https://huggingface.co/datasets/NeelNanda/pile-10k
https://huggingface.co/datasets/NeelNanda/pile-10k
https://openreview.net/forum?id=T0PoOJg8cK
https://openreview.net/forum?id=T0PoOJg8cK
https://openreview.net/forum?id=ozX92bu8VA
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2309.16042

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 8: Orthogonal slices used when AH is not firing, 256 prompts. (a) AH (3, 0); (b) AH (4, 11); (c) AH (8, 6); (d)
AH 9, 9). Compare to Figure 2.

0 20 40 60 80 100 120 140
Token rank

1

2

3

4

5

6

Av
er

ag
e

No
rm

 o
f t

he
Pr

oj
ec

tio
n

Figure 9: Average Magnitude of the (9, 9) V Space Signal in Each Token. Tokens corresponding to names are in red.

A APPENDIX

Handling Homogeneous Coordinates. The Ω matrix as defined in (2) expects inputs in homogeneous coordinates
in which the last component of the input vector is 1. This allows the bilinear form (3) to incorporate the linear
and constant terms in (1). When projecting a residual to isolate a signal component, we are only concerned with
the dimensions represented in the residual. We are not concerned with the additional (d + 1)th dimension, as that
dimension represents the linear and constant terms that will be added by the downstream attention head. Hence, to
compute the projection of a residual x in the subspace associated with P , we first form x̃ by extending x with a
(d+ 1)th component having value 1, then compute s̃ = P x̃, then drop the (d+ 1)th component of s̃ leaving s.

Slices Used When a Head is Not Firing. In Figure 8 we show analogous plots to Figure 2, except that we choose
cases where the attention heads are not firing. Interestingly, a consistent and small set of orthogonal slices is used in
each head when it is not firing. However, comparing to Figure 2, we see that an entirely different set of orthogonal
slices are in use when the head is not firing. We note that across our measurements we find a very small number of
slices are responsible for an attention head’s score when it is not firing.

Interpretability of Signals. As described in §5.2, we find that signals can show interpretability. As a simple illus-
tration, we consider the (9, 9) attention head, a name mover. The projection of a token’s residual into the V subspace
of this attention head isolates the signal used by the head to recognize the IO token.

To make this a uniform measure we can apply across multiple tokens, we create a consensus estimate of a single
subspace V across all firings of (9, 9). We do this by selecting only the orthogonal slices that appear in at least 100
firings. This yields 12 sets of singular vectors which we can use to construct PV . We then measure ∥PVx∥ for all
token residuals x at the input of layer 9. The average of the norms for each token is plotted in Figure 9. Tokens are
sorted by the magnitude of the signal ∥PVx∥ and colored according to whether they are names (in red) or not (in blue).
We see that magnitude of the signal in x is a clear measure of whether that token is a name, ie, a potential IO.

Tracing Details. Here we discuss some of the fine points of our tracing method.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.85 0.90 0.95 1.00
Cosine similarity

0

10000

20000

30000

40000

Co
un

t

(a) Global Intervention

0.6 0.7 0.8 0.9 1.0
Cosine similarity

0

10000

20000

30000

40000

50000

60000

Co
un

t

(b) Global (Random)

0.996 0.998 1.000
Cosine similarity

0

10000

20000

30000

40000

50000

60000

Co
un

t

(c) Local Intervention

0.997 0.998 0.999 1.000
Cosine similarity

0

10000

20000

30000

40000

50000

60000

Co
un

t

(d) Local (Random)

Figure 10: Distribution of cosine similarities between x+ h and x across single-edge interventions.

1.0 1.1 1.2
Norm ratio

0

2500

5000

7500

10000

12500

15000

17500

Co
un

t

(a) Global Intervention

1.0 1.2 1.4 1.6
Norm ratio

0

10000

20000

30000

40000

Co
un

t

(b) Global (Random)

0.99 1.00 1.01 1.02
Norm ratio

0

2000

4000

6000

8000

10000

12000

14000

Co
un

t

(c) Local Intervention

0.990 0.995 1.000 1.005 1.010
Norm ratio

0

5000

10000

15000

20000

25000

30000

Co
un

t
(d) Local (Random)

Figure 11: Norm ratio
(

∥x+h∥
∥x∥

)
distribution across single-edge interventions.

0.4 0.6 0.8 1.0
Cosine similarity

0

500

1000

1500

2000

2500

Co
un

t

(a) Global Intervention

0.96 0.97 0.98 0.99 1.00
Cosine similarity

0

500

1000

1500

2000

2500

3000

3500

Co
un

t

(b) Local Intervention

Figure 12: Distribution of cosine similarities between
x+ h and x across multi-edge ablations.

1.0 1.5 2.0 2.5
Norm ratio

0

500

1000

1500

2000

2500

3000

3500

Co
un

t

(a) Global Intervention

0.96 0.98 1.00
Norm ratio

0

100

200

300

400

500

600

700

Co
un

t

(b) Local Intervention

Figure 13: Norm ratio
(

∥x+h∥
∥x∥

)
distribution across multi-

edge ablations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

First, note that for each term in (5), we get the same value if we replace uk,vk with −uk,−vk. For consistency of
interpretation, we adopt the convention of defining uk to lie in the direction that creates a positive inner product with
xi. This determines the direction for vk (and if A′

ij > 0, then vk will lie in the direction of positive inner product
with xj). The result is that we can treat the set of vectors {uk | k ∈ Sℓa

ij } as rays defining a cone of positive influence
on A′

ij , and similarly for {vk | k ∈ Sℓa
ij }.

As in (Wang et al., 2023), we focus on understanding the interaction between attention heads. We believe that extend-
ing our framework to include the contributions of MLPs is an important direction for future work. Furthermore, in the
analyses in this paper we do not consider cases in which heads attend to the first token – that is, when attention head
has a large value of Aij for j = 0. Because the attention weights for each target token form a probability distribution,
when a destination token should not be meaningfully modified, attention heads normally put their weight on the first
token. This role for token 0 has been noted in previous work (Nanda).3

Finally, as noted in §4.3, to properly attribute contributions of upstream heads to downstream inputs, we need to
take into account the effect of the (downstream) layer norm. The layer norm operation can be decomposed into four
steps: centering, normalizing, scaling, and translation. Centering, scaling, and translation are affine maps, which
means that they can be folded into different parts of the model with mathematical equivalence. The TransformerLens
library handles the centering step by setting each weight matrix that writes into the residual stream to have zero mean.
Moreover, it folds the scaling and translation operations into the weights of the next downstream layer.4 The result is
that centering, scaling, and translation make changes to the matrices used to compute Ω as shown in (2). The remaining
step is the normalizing step. This step does not change the direction of the residual; it only affects the magnitude of
the contribution calculation (7). Since for any contribution calculation, we are considering a specific addition to the
residual oi, we can simply scale its contribution by the same scaling factor used for the corresponding token xi when
it is input to the downstream layer.

Algorithm for Singular Vector Tracing. Singular vector tracing starts from a given head, token pair, and prompt
and works upstream in the model to identify causal contributions to that attention head’s output. If the upstream
attention heads are themselves firing (attending mainly to a pair of tokens), then the process proceeds recursively for
each token. We present singular vector tracing as Algorithm 1.

3GPT-2 does not use a ‘bos’ token.
4See https://github.com/TransformerLensOrg/TransformerLens/blob/main/further_comments.

md for more details.

15

https://github.com/TransformerLensOrg/TransformerLens/blob/main/further_comments.md
https://github.com/TransformerLensOrg/TransformerLens/blob/main/further_comments.md

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 14: Top Layers of Traced Network, Showing Structure of Redundant Paths.

1 def is not firing(prompt, layer, ah idx, dest token, src token):
2 if head (layer, ah idx) on prompt tokens (dest token, src token) has attention weight < 0.5:
3 return True
4 else:
5 return False
6 def SVT(prompt, layer, ah idx, dest token, src token):
7 edges = []

see §4.3
8 if is not firing(prompt, layer, ah idx, dest token, src token):
9 return edges

see §4.3
10 if src token == 0:
11 return edges

See §4.2, Eqn (7)
For noise filtering, ignore small contributions as described in §5.3

12 src contrib ahs = upstream heads with significant contribution to src token for (prompt, layer, ah idx,
dest token, src token)

13 dest contrib ahs = upstream heads with significant contribution to dest token for (prompt, layer, ah idx,
dest token, src token)

14 for (upstream layer, upstream ah idx) in src contrib ahs:
15 edges.append(layer, ah idx, upstream layer, upstream ah idx, src token, dest token, contrib, ‘s’)
16 upstream dest = src token
17 for upstream src in range(upstream dest+1):
18 edges = edges + SVT(prompt, upstream layer, upstream ah idx, upstream dest, upstream src)
19 for (upstream layer, upstream ah idx) in dest contrib ahs:
20 edges.append(layer, ah idx, upstream layer, upstream ah idx, src token, dest token, contrib, ‘d’)
21 upstream dest = dest token
22 for upstream src in range(upstream dest+1):
23 edges = edges + SVT(prompt, upstream layer, upstream ah idx, upstream dest, upstream src)
24 return edges

Algorithm 1: Python Pseudocode for Singular Vector Tracing.

Alternative Paths in the IOI Circuit Previous work has noted that interventional studies are complicated by the
presence of alternative causal paths in the IOI circuit. In Figure 14 we isolate nodes from the top layers of our network
trace. The figure illustrates the lattice-like structure existing between the attention heads responsible for the higher-
level processing in the circuit. The heads that take part in alternate pathways include the three name mover head (9,
6), (9, 9), and (10, 0), and the three S-inhibition heads (7, 3), (7, 9), and (8. 6).

Skeleton of SVT Graph. In Figure 15 we show a version of singular vector trace shown in Figure 5. In this figure
we have shown only edges that appear very frequently in our traces. Specifically, we show edges and (the nodes they
connect to) that occur more than 170 times in our trace of 256 prompts. Because our trace strategy starts from (9, 6),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 15: Skeleton of Traced Network. Edges filtered to 170 occurrences or more.

(9, 9), and (10, 0), only 16 of the heads identified in (Wang et al., 2023) can appear in the trace. The figure shows that
this ‘skeleton’ contains 11 of the 16 possible attention heads previously identified, out of a total of 21 attention heads
in the trace (precision ≈ 0.52, recall ≈ 0.69).

Tracing Without Singular Vectors. In §5.2 we show the noise suppression effect of filtering signals using the
orthogonal slices of Ω. That section shows that using all the orthogonal slices of Ω, ie, simply looking at the residuals
directly, without extracting their signals, is very noisy and leads to incorrect conclusions. As a further illustration, in
Figure 16 we demonstrate a attempted circuit trace in which residuals are directly used for tracing, instead of using
signals as in all other traces in this paper. The figure shows that the resulting trace is not useful. It does not contain most
of the nodes that were identified as functionally important in (Wang et al., 2023). Further, it seems that contributions
to source tokens are almost completely missed. The figure also shows that the most noisy and incorrect parts of the
graph concern the longer-range connections between early and late layers of the model.

Intervention Details. Here we provide precise descriptions of the intervention strategies used in §5.4. Assume
that, for a given instance, we are intervening in an edge (l, b) → (ℓ, a) of type t (either source or destination), with
destination token x̃i, source token x̃j .

Global interventions are performed at the upstream head (l, b) while local interventions are done at the downstream
head (ℓ, a). We denote the x̃m the token position that will be intervened. Specifically, if head (l, b) has output õlb

m on
token x̃m, we define a global ablation intervention as the modification do(õlb

m = õlb
m −h); and if head (ℓ, a) has input

ĩℓam (after layer norm), a local ablation intervention is the modification do(̃iℓam = ĩℓam − h). For boosting interventions,
we implement do(õlb

m = õlb
m + h) and do(̃iℓam = ĩℓam + h).

Implementing the intervention depends on whether the token is a source or destination token in the downstream head.
When the edge is a source edge (t = source), we intervene in the source token (x̃m = x̃j), and we set h equal to
the signal s̃ℓa,lb = PVo

lb
m. In this case, PV is the projector onto the V subspace defined by Sℓa

ij . When the edge is a
destination type edge, we intervene in the destination token (x̃m = x̃i), and we set h equal to the signal s̃ℓa,lb = PUo

lb
m,

where PU is the projector onto the U subspace defined by Sℓa
ij . In the case of local interventions, to make their encoding

consistent with the assumptions imposed by layer norm folding, we center and scale them before adding them to the
downstream input vector.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 16: Skeleton of Trace Performed Using Residuals Directly Rather than Singular Vectors. Edges filtered to 170
occurrences or more.

Magnitudes of Interventions. Here we provide more detailed evidence of the magnitudes of the interventions we
perform in §5.4. Given the intervened residual x + h and the original residual x, we use two metrics: the cosine
similarity between x and x+ h, and the ratio of the residual norms before and after the intervention ∥x+h∥

∥x∥ .

For the single-edge interventions, we show the distribution across prompts that were intervened. In the case of the
multi-edge interventions, different prompts can have different numbers of interventions. In that case, for each multi-
edge intervention, we compute the metric per prompt, and the plots show the distribution of the average values across
multiple multi-edge interventions. As expected, single edge interventions have smaller effects in the residual than
multi-edge interventions. However, both are very peaked in the value 1.0, showing that most of these interventions
have very small effects in the residual. See Figures 10, 11, 12, and 13 for more details.

Effect of an Edge. An edge in Figure 5 corresponds to a signal that has direct effect on a downstream attention
head, and the weight of the edge corresponds to the strength of this signal. We expect that when we ablate an edge
(for example), the attention score of the intervened token pair (i, j) in the downstream head is decreased, especially
for local interventions. In general this does not guarantee a particular indirect effect on model performance, due to
indirect effects including self-repair and redundant paths in the circuit.

In Figures 17, 18, 19, and 20 we present examples showing the range of effects that edge ablation can have on
both downstream attention scores, and on model performance. Edges in the figures are ordered by increasing weight
(magnitude of the contribution (7) of the edge).

In all cases, edge ablations decrease attention scores as expected, with the effect varying depending on the weight of
the edge. Further, in Figures 17, 19, and 20 edge ablations generally decrease model performance, again as expected.
For the local ablations in Figure 20, the impact on model performance is proportionate to the decrease in attention score
caused by the ablation. However in the case of global interventions, impact on model performance is not generally
proportionate to the decrease in attention score.

Figure 18, corresponding to local ablations of edges into (9, 6) is a special case that we discuss in more detail below.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(1
, 5

) -
>

(9
, 6

, e
nd

)

(0
, 1

) -
>

(9
, 6

, e
nd

)

(2
, 0

) -
>

(9
, 6

, e
nd

)

(1
, 7

) -
>

(9
, 6

, e
nd

)

(1
, 4

) -
>

(9
, 6

, e
nd

)

(3
, 7

) -
>

(9
, 6

, e
nd

)

(8
, 4

) -
>

(9
, 6

, e
nd

)

(1
, 2

) -
>

(9
, 6

, e
nd

)

(0
, 1

1)
 ->

 (9
, 6

, e
nd

)

(6
, 4

) -
>

(9
, 6

, e
nd

)

(4
, 3

) -
>

(9
, 6

, e
nd

)

(6
, 7

) -
>

(9
, 6

, e
nd

)

(7
, 1

1)
 ->

 (9
, 6

, e
nd

)

(0
, 6

) -
>

(9
, 6

, e
nd

)

(8
, 8

) -
>

(9
, 6

, e
nd

)

(5
, 7

) -
>

(9
, 6

, e
nd

)

(7
, 8

) -
>

(9
, 6

, e
nd

)

(7
, 5

) -
>

(9
, 6

, e
nd

)

(5
, 1

0)
 ->

 (9
, 6

, e
nd

)

(8
, 2

) -
>

(9
, 6

, e
nd

)

(8
, 7

) -
>

(9
, 6

, e
nd

)

(2
, 1

0)
 ->

 (9
, 6

, e
nd

)

(1
, 1

0)
 ->

 (9
, 6

, e
nd

)

(6
, 0

) -
>

(9
, 6

, e
nd

)

(7
, 9

) -
>

(9
, 6

, e
nd

)

(8
, 5

) -
>

(9
, 6

, e
nd

)

(7
, 3

) -
>

(9
, 6

, e
nd

)

(8
, 3

) -
>

(9
, 6

, e
nd

)

(8
, 6

) -
>

(9
, 6

, e
nd

)

−0.8

−0.6

−0.4

−0.2

0.0

M
et

ric
 v

al
ue

Figure 17: Global interventions effects on Edges into (9, 6, end). Blue: logit difference. Orange: attention scores
difference.

(1
, 5

) -
>

(9
, 6

, e
nd

)

(0
, 1

) -
>

(9
, 6

, e
nd

)

(2
, 0

) -
>

(9
, 6

, e
nd

)

(1
, 7

) -
>

(9
, 6

, e
nd

)

(1
, 4

) -
>

(9
, 6

, e
nd

)

(3
, 7

) -
>

(9
, 6

, e
nd

)

(8
, 4

) -
>

(9
, 6

, e
nd

)

(1
, 2

) -
>

(9
, 6

, e
nd

)

(0
, 1

1)
 ->

 (9
, 6

, e
nd

)

(6
, 4

) -
>

(9
, 6

, e
nd

)

(4
, 3

) -
>

(9
, 6

, e
nd

)

(6
, 7

) -
>

(9
, 6

, e
nd

)

(7
, 1

1)
 ->

 (9
, 6

, e
nd

)

(0
, 6

) -
>

(9
, 6

, e
nd

)

(8
, 8

) -
>

(9
, 6

, e
nd

)

(5
, 7

) -
>

(9
, 6

, e
nd

)

(7
, 8

) -
>

(9
, 6

, e
nd

)

(7
, 5

) -
>

(9
, 6

, e
nd

)

(5
, 1

0)
 ->

 (9
, 6

, e
nd

)

(8
, 2

) -
>

(9
, 6

, e
nd

)

(8
, 7

) -
>

(9
, 6

, e
nd

)

(2
, 1

0)
 ->

 (9
, 6

, e
nd

)

(1
, 1

0)
 ->

 (9
, 6

, e
nd

)

(6
, 0

) -
>

(9
, 6

, e
nd

)

(7
, 9

) -
>

(9
, 6

, e
nd

)

(8
, 5

) -
>

(9
, 6

, e
nd

)

(7
, 3

) -
>

(9
, 6

, e
nd

)

(8
, 3

) -
>

(9
, 6

, e
nd

)

(8
, 6

) -
>

(9
, 6

, e
nd

)

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

M
et

ric
 v

al
ue

Figure 18: Local interventions effects on Edges into (9, 6, end). Blue: logit difference. Orange: attention scores
difference. Note that while attention scores are decreasing, model performance is actually improving.

Additional Intervention Results. Here we show more extensive results of the intervention based validation exper-
iments. First, we show that ablations generally decrease the IO logit, and boosting generally increases the IO logit.
Figure 22, Figure 23, and Figure 24.

We also examine a wide range of multi-edge ablations to illustrate the impact of multiple paths in the traced circuit.
First, note that Figure 14 gives a detailed look at the many redundant paths through the top layers of the traced circuit.
In Figure 25 we show a variety of cases in which edges that are parts of parallel paths are ablated, both separately
and together. In many cases we see evidence that the effect of ablating parallel paths has an additive nature. Then
in Figure 26 we show a variety of cases in which edges that are parts of serial paths are ablated, both separately and
together. In many of these cases, we see what is closer to a superposition effect, in which the effects of each edge are
separately felt and not generally additive.

On a different point, in Figure 28 we show the effects of ablating edges outgoing from (2, 8). This shows that (2, 8)
– which we identify as an important part of the IOI network in this paper, attending to the verb of the sentence – also
has a causal effect on model performance.

Ablation Results for (9, 6) Edges. In §5.4 we show that ablating edges that feed into most components of the model
decreases the value of F , measured as F (X, e,x) − F (X). Here we show that (9, 6) (a name mover head) exhibits
the opposite behavior, but only for local interventions. Figure 21 shows the intervention results for the four most

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(1
, 9

) -
>

(1
0,

 0
, I

O)

(1
, 6

) -
>

(1
0,

 0
, I

O)

(0
, 5

) -
>

(1
0,

 0
, I

O)

(3
, 2

) -
>

(1
0,

 0
, I

O)

(6
, 0

) -
>

(1
0,

 0
, I

O)

(0
, 3

) -
>

(1
0,

 0
, I

O)

(1
, 0

) -
>

(1
0,

 0
, I

O)

(5
, 2

) -
>

(1
0,

 0
, I

O)

(2
, 8

) -
>

(1
0,

 0
, I

O)

(4
, 1

) -
>

(1
0,

 0
, I

O)

(7
, 4

) -
>

(1
0,

 0
, I

O)

(0
, 7

) -
>

(1
0,

 0
, I

O)

(6
, 1

) -
>

(1
0,

 0
, I

O)

(9
, 3

) -
>

(1
0,

 0
, I

O)

(2
, 7

) -
>

(1
0,

 0
, I

O)

(0
, 4

) -
>

(1
0,

 0
, I

O)

(1
, 3

) -
>

(1
0,

 0
, I

O)

(5
, 5

) -
>

(1
0,

 0
, I

O)

(7
, 0

) -
>

(1
0,

 0
, I

O)

(0
, 1

) -
>

(1
0,

 0
, I

O)

(5
, 0

) -
>

(1
0,

 0
, I

O)

(1
, 2

) -
>

(1
0,

 0
, I

O)

(0
, 9

) -
>

(1
0,

 0
, I

O)

(0
, 1

0)
 ->

 (1
0,

 0
, I

O)

(1
, 1

0)
 ->

 (1
0,

 0
, I

O)

(0
, 8

) -
>

(1
0,

 0
, I

O)

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

M
et

ric
 v

al
ue

Figure 19: Global interventions effects on Edges into (10, 0, IO). Blue: logit difference. Orange: attention scores
difference.

(1
, 9

) -
>

(1
0,

 0
, I

O)
(1

, 6
) -

>
(1

0,
 0

, I
O)

(0
, 5

) -
>

(1
0,

 0
, I

O)
(3

, 2
) -

>
(1

0,
 0

, I
O)

(6
, 0

) -
>

(1
0,

 0
, I

O)
(0

, 3
) -

>
(1

0,
 0

, I
O)

(1
, 0

) -
>

(1
0,

 0
, I

O)
(5

, 2
) -

>
(1

0,
 0

, I
O)

(2
, 8

) -
>

(1
0,

 0
, I

O)
(4

, 1
) -

>
(1

0,
 0

, I
O)

(7
, 4

) -
>

(1
0,

 0
, I

O)
(0

, 7
) -

>
(1

0,
 0

, I
O)

(6
, 1

) -
>

(1
0,

 0
, I

O)
(9

, 3
) -

>
(1

0,
 0

, I
O)

(2
, 7

) -
>

(1
0,

 0
, I

O)
(0

, 4
) -

>
(1

0,
 0

, I
O)

(1
, 3

) -
>

(1
0,

 0
, I

O)
(5

, 5
) -

>
(1

0,
 0

, I
O)

(7
, 0

) -
>

(1
0,

 0
, I

O)
(0

, 1
) -

>
(1

0,
 0

, I
O)

(5
, 0

) -
>

(1
0,

 0
, I

O)
(1

, 2
) -

>
(1

0,
 0

, I
O)

(0
, 9

) -
>

(1
0,

 0
, I

O)
(0

, 1
0)

 ->
 (1

0,
 0

, I
O)

(1
, 1

0)
 ->

 (1
0,

 0
, I

O)
(0

, 8
) -

>
(1

0,
 0

, I
O)

−0.3

−0.2

−0.1

0.0

M
et

ric
 v

al
ue

Figure 20: Local interventions effects on Edges into (10, 0, IO). Blue: logit difference. Orange: attention scores
difference.

significant edges into (9, 6), and Figure 27 shows results for ablating all incoming edges of (9, 6). Note that global
ablation of the (9, 6) signal decreases the logit of the IO token as expected. However, when the intervention is applied
locally so that it only affects the (9, 6) head, ablation increases the logit of the IO token and boosting decreases the
IO logit. More detail on ablations is provided in Figure 18. This figure shows that after ablation, the attention scores
of the (9, 6) are indeed decreasing; it is only the downstream impact on the IO logit that is increasing. Further, the
amount of increase of the IO logit is proportionate to the amount of decrease of the (9, 6) attention score. This suggests
a different role for the (9, 6) compared to the other name mover heads. This effect is borne out across all local edge
interventions in the (9, 6) and is suggestive of the need for further study.

When Might the Sparse Decomposition Hypothesis Not Hold? Attention heads have been shown to have a variety
of functions, not all of which correspond to testing low-dimensional subspaces. For example, some attention heads
have the role of detecting when tokens xi and xj are identical (Elhage et al., 2021; Wang et al., 2023). In that case,
we expect that xi and xj will have non-negligible inner products with most or all of the singular vectors of Ω. In fact,
we see exactly this phenomenon in the case of the duplicate-token head (3, 0) as shown in Figure 2(a).

Proof of Lemma 1. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix D

that maximizes x⊤Dy is D = x
∥x∥

y⊤

∥y∥ .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (9, 6, end)

(8, 3) ->

 (9, 6, end)

(7, 3) ->

 (9, 6, end)

(8, 5) ->

 (9, 6, end)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (9, 6, end)

(8, 3) ->

 (9, 6, end)

(7, 3) ->

 (9, 6, end)

(8, 5) ->

 (9, 6, end)

(a) (b)

Figure 21: Intervention on Edges into (9, 6, end). (a) Global Intervention; (b) Local Intervention. Green: Ablation;
Red: Boosting; Blue: Random Ablating; Orange: Random Boosting.

First we show that any rank-1 matrix having unit Frobenius norm can be expressed as the outer product of two unit-
norm vectors. Consider a rank-1 matrix X having unit Frobenius norm. Since X is rank-1, we can write X = xy⊤.
Now construct X̃ = x

∥x∥
y⊤

∥y∥ . By construction X̃ is both rank-1 and unit norm. Matrices X and X̃ differ by a constant
factor 1

∥x∥∥y∥ . However, since they have the same norm, we must have ∥x∥∥y∥ = 1, and so X can be expressed as
the outer product of two unit vectors.

Next consider a unit-norm, rank-1 matrix G = uv⊤ for unit vectors u and v. By way of contradiction, suppose
x⊤Gy > x⊤Dy. Then x⊤uv⊤y > x⊤ x

∥x∥
y⊤

∥y∥y. The right hand side is the positive quantity ∥x∥∥y∥. The left hand
side is the product of the projections of x onto u, and y onto v. The product is maximized when u = x/∥x∥,v =
y/∥y∥, or u = −x/∥x∥,v = −y/∥y∥. In either case, x⊤Gy = x⊤Dy, proving the lemma.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

−1 0 1
F(e, h) - F

(8, 6) ->

 (9, 9, end)

(8, 3) ->

 (9, 9, end)

(7, 3) ->

 (9, 9, end)

(7, 9) ->

 (9, 9, end)

−1 0 1
F(e, h) - F

(8, 6) ->

 (9, 9, end)

(8, 3) ->

 (9, 9, end)

(7, 3) ->

 (9, 9, end)

(7, 9) ->

 (9, 9, end)

(a) (b)

−1 0 1 2
F(e, h) - F

(0, 9) ->

 (9, 9, IO
)

(1, 4) ->

 (9, 9, IO
)

(1, 8) ->

 (9, 9, IO
)

(0, 11) ->

 (9, 9, IO
)

−1 0 1 2
F(e, h) - F

(0, 9) ->

 (9, 9, IO
)

(1, 4) ->

 (9, 9, IO
)

(1, 8) ->

 (9, 9, IO
)

(0, 11) ->

 (9, 9, IO
)

(c) (d)

Figure 22: Edges into (9, 9): (a) (9, 9, end), Global intervention; (b) (9, 9, end), Local intervention; (c) (9, 9, IO),
Global intervention; (d) (9, 9, IO), Local intervention. Green: Ablation; Red: Boosting; Blue: Random Ablating;
Orange: Random Boosting.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(7, 9) ->

 (8, 6, end)

(7, 5) ->

 (8, 6, end)

(7, 3) ->

 (8, 6, end)

(2, 8) ->

 (8, 6, end)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(7, 9) ->

 (8, 6, end)

(7, 5) ->

 (8, 6, end)

(7, 3) ->

 (8, 6, end)

(2, 8) ->

 (8, 6, end)

(a) (b)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(6, 3) ->

 (8, 6, S2)

(5, 5) ->

 (8, 6, S2)

(3, 0) ->

 (8, 6, S2)

(5, 0) ->

 (8, 6, S2)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(6, 3) ->

 (8, 6, S2)

(5, 5) ->

 (8, 6, S2)

(3, 0) ->

 (8, 6, S2)

(5, 0) ->

 (8, 6, S2)

(c) (d)

Figure 23: Edges into (8, 6): (a) (8, 6, end): Global intervention; (b) (8, 6, end): Local intervention; (c) (8, 6, S2):
Global intervention; (d) (8, 6, S2): Local intervention. Green: Ablation; Red: Boosting; Blue: Random Ablating;
Orange: Random Boosting.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (10, 0, end)

(8, 3) ->

 (10, 0, end)

(9, 4) ->

 (10, 0, end)

(9, 6) ->

 (10, 0, end)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(8, 6) ->

 (10, 0, end)

(8, 3) ->

 (10, 0, end)

(9, 4) ->

 (10, 0, end)

(9, 6) ->

 (10, 0, end)

(a) (b)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(0, 8) ->

 (10, 0, IO
)

(1, 10) ->

 (10, 0, IO
)

(0, 10) ->

 (10, 0, IO
)

(0, 9) ->

 (10, 0, IO
)

−1.0 −0.5 0.0 0.5 1.0
F(e, h) - F

(0, 8) ->

 (10, 0, IO
)

(1, 10) ->

 (10, 0, IO
)

(0, 10) ->

 (10, 0, IO
)

(0, 9) ->

 (10, 0, IO
)

(c) (b)

Figure 24: Edges into (10, 0): (a) (10, 0, end): Global intervention; (b) (10, 0, end): Local intervention; (c) (10, 0, IO):
Global intervention; (d) (10, 0, IO): Local intervention. Green: Ablation; Red: Boosting; Blue: Random Ablating;
Orange: Random Boosting.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

−2 −1 0
F(E, h) - F

(8, 6) ->
 (9, 9, end)

(8, 6) ->
 (10, 0, end)

[(8, 6) ->
 (9, 9, end),

(8, 6) ->
 (10, 0, end)]

−3 −2 −1 0
F(E, h) - F

[(7, 9) ->
 (8, 6, end),

(7, 9) ->
 (9, 9, end)]

[(7, 3) ->
 (8, 6, end),

(7, 3) ->
 (9, 9, end)]

All four edges
at once

−4 −3 −2 −1 0
F(E, h) - F

All (7, 9)
outgoing edges

All (7, 3)
outgoing edges

All (7, 9) +
 All (7, 3)

outgoing edges

(a) (b) (c)

−2 −1 0
F(E, h) - F

[(0, 11) ->
 (7, 9, end),

(1, 4) ->
 (7, 9, end)]

(0, 9) ->
 (7, 9, S2)

[(0, 11) ->
 (7, 9, end),

(1, 4) ->
 (7, 9, end),

(0, 9) ->
 (7, 9, S2)]

−10 −5 0
F(E, h) - F

All (10, 0, 'end')
incoming edges

All (10, 0, 'IO')
incoming edges

All (10, 0, 'end') +
 All (10, 0, 'IO')

incoming edges

−2 0
F(E, h) - F

All (8, 6, 'end')
incoming edges

All (8, 6, 'S2')
incoming edges

All (8, 6, 'end') +
 All (8, 6, 'S2')

incoming edges

(d) (e) (f)

−15 −10 −5 0
F(E, h) - F

All (9, 9, 'end')
incoming edges

All (9, 9, 'IO')
incoming edges

All (9, 9, 'end') +
 All (9, 9, 'IO')

incoming edges

(g)

Figure 25: Parallel Multi-Edge Sets. Orange: Local Ablations; Blue: Global Ablations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

−1.0 −0.5 0.0
F(E, h) - F

(0, 9) ->
 (7, 9, S2)

(7, 9) ->
 (9, 9, end)

[(0, 9) ->
 (7, 9, S2),

(7, 9) ->
 (9, 9, end)]

−1.0 −0.5 0.0
F(E, h) - F

(0, 9) ->
 (7, 9, S2)

(7, 9) ->
 (8, 6, end)

[(0, 9) ->
 (7, 9, S2),

(7, 9) ->
 (8, 6, end)]

(a) (b)

−1.0 −0.5 0.0
F(E, h) - F

(0, 11) ->
 (7, 9, end)

(7, 9) ->
 (9, 9, end)

[(0, 11) ->
 (7, 9, end),

(7, 9) ->
 (9, 9, end)]

−0.75 −0.50 −0.25 0.00
F(E, h) - F

(0, 11) ->
 (7, 9, end)

(7, 9) ->
 (8, 6, end)

[(0, 11) ->
 (7, 9, end),

(7, 9) ->
 (8, 6, end)]

(c) (d)

Figure 26: Serial Edge Sets. Orange: Local Ablations; Blue: Global Ablations.

−15 −10 −5 0
F(E, h) - F

All (9, 6, 'end')
incoming edges

All (9, 6, 'IO')
incoming edges

All (9, 6, 'end') +
 All (9, 6, 'IO')

incoming edges

Figure 27: Multi Edge Sets for (9, 6).

−0.4 −0.2 0.0 0.2 0.4
F(E, h) - F

All (2, 8)
outgoing edges

Figure 28: Edges from (2, 8).

26

	Introduction
	Related Work
	Background
	Circuit Tracing
	Approach
	Singular Vector Tracing
	Experiments

	Results
	Characterizing Attention Head Behavior via SVD
	Do We Need Singular Vectors?
	Singular Vector Trace of GPT-2 on IOI
	Validation

	Discussion
	Appendix

