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Abstract

We study learning-theoretic foundations of operator learning, using the linear layer of the
Fourier Neural Operator architecture as a model problem. First, we identify three main
errors that occur during the learning process: statistical error due to finite sample size,
truncation error from finite rank approximation of the operator, and discretization error
from handling functional data on a finite grid of domain points. Finally, we analyze a
Discrete Fourier Transform (DFT) based least squares estimator, establishing both upper
and lower bounds on the aforementioned errors.

1 Introduction

In operator learning, the goal is to use statistical methods to estimate an unknown operator between function
spaces. A primary application of operator learning is the development of fast data-driven methods to
approximate the solution operator of partial differential equations (PDEs) (Li et al., 2021; Kovachki et al.,
2023). For example, consider the heat equation

∂u

∂t
= τ ∇2u,

where u : [0, 1]d → R vanishes on the boundary. The solution operator for this equation is a linear operator
exp(τt∇2) :=

∑∞
k=0(τt∇2)k/k! . Fixing some time point (say t = 1), our objective is to learn the solution

operator L := exp(τ∇2) .

Given the training data (v1, w1), . . . , (vn, wn) where wi = Lvi, operator learning entails using statistical
methods to estimate the solution operator L̂n. Then, given a new input v, one can get the approximate
solution ŵ = L̂nv. The goal is to develop the estimation rule such that ŵ is close to the actual solution
w = Lv under some appropriate metric.

Traditionally, given an input function v, one would use numerical methods such as finite differences to
get a numerical solution. The solver starts from scratch for every new function v of interest and can be
computationally slow and expensive. This can be limiting in some applications such as engineering design
where the solution needs to be evaluated for many different instances of the input functions. To solve
this problem, operator learning aims to learn surrogate models that significantly increase speed for solution
evaluation compared to traditional solvers while sacrificing a small degree of accuracy.

In this work, rather than focusing on specific PDEs, we adopt a broader perspective and study the learning-
theoretic foundations of operator learning. For this task, we use the linear layer of the influential Fourier
Neural Operator (FNO) architecture proposed by Li et al. (2021) as our model problem. While our results
offer some practical and theoretical insights into the FNO, it is important to emphasize that our primary
objective is neither to advance the practical implementation of operator learning nor to develop deeper
insights into the FNO architecture itself. Instead, our objective is to rigorously understand the statistical
learning aspects of the operator learning paradigm. Our primary goal is to understand how operator learning
differs from traditional machine learning settings and to identify the new techniques required to build a
rigorous learning-theoretic foundation for this emerging area.
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To this end, we start by identifying the distinct types of errors that are unique to operator learning. In
addition to the standard statistical error arising from a finite sample size, operator learning introduces
a discretization error due to the functional data being available only on a finite grid of domain points.
Furthermore, ignoring high-frequency Fourier modes lead to a truncation error. Lastly, we introduce a
Discrete Fourier Transform (DFT)-based estimator for our model problem and demonstrate how these errors
can be systematically quantified for this estimator.

1.1 Neural Operators

To formally define our problem setting, we need to introduce neural operators from (Kovachki et al., 2023).
Let V be a vector space of functions from a bounded subset X ⊆ Rd to Rp, and W to be a vector space of
functions from Y ⊆ Rd to Rq. Given a function v ∈ V , a single layer of neural operator Nt : V → W is a
mapping such that

(Ntv)(y) = σ
(

(Kθtv) (y) + bt(y)
)

∀y ∈ Y,

where (Kθt
v) (y) =

∫
X kθt

(y, x) v(x) dx. The function bt : Y → Rq is a bias function in W, the function
σ : Rq → Rq is a point-wise non-linear activation, and the transformation v 7→ Kθtv is a integral kernel
transform of v using some kernel kθt : Y × X → Rq×p. These layers are then composed to get a neural
operator architecture.

Parametrizing Kθt in terms of kθt can be impractical due to the computational cost of calculating the
integral in for each layer. Thus, a significant area of research in neural operators focuses on developing
innovative parametrizations of Kθt

that facilitate more efficient computation. One such parametrization
gives rise to a well-known architecture called the Fourier Neural Operator.

1.2 Fourier Neural Operator (FNO)

In this section, we present a brief, non-rigorous overview of the FNO. A more formal treatment, along with
new insights into its parametrization, is provided in Appendix B.

We consider the setup from the work of Li et al. (2021). Let X = Y = Td ≃ [0, 1]d be a d-dimensional
periodic torus. Assume the kernel kθ is translation invariant–that is, kθ(y, x) = kθ(y− x). This implies that
Kθ is a convolution operator. Then, the Convolution Theorem implies that

Kθv = F−1
(

F(kθ) F(v)
)
,

where F and F−1 are Fourier and Inverse Fourier transform respectively. The key insight in FNO is that
instead of parametrizing the kernel kθ, we parametrize its Fourier transform F(kθ) directly. That is, we
parametrize the kernel transform operator as

Kβv = F−1
(

Λβ F(v)
)
.

This is a linear operator and will be referred to as Fourier linear operator. When |Λβ(m)|ℓ1 < ∞, we can
write this

(Kβv)(y) =
∑

m∈Zd

e2π i⟨m,y⟩ Λβ(m) (Fv)(m) ∀y ∈ Y.

There are two practical challenges in implementing the operator Kβ . First, the implementation involves an
infinite sum over Zd. Second, the Fourier transform Fv cannot be computed exactly since the function v is
only available on a finite grid of domain points. To address the first challenge, a large K ∈ N is fixed and we
sum only over m ∈ Zd such that |m|ℓ∞ ≤ K. The second challenge is addressed by approximating Fv using
the Discrete Fourier Transform (DFT) of v over the finite grid of domain points, which can be efficiently
computed using Fast Fourier Transform (FFT) algorithms. The solution to the second challenge motivates
our DFT-based least-squares estimator.
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1.3 Our Contribution

In this work, we study the error bounds of learning the operator class {v 7→ F−1(Λβ F(v)
)

: β ∈ B}, where
B is some parameter space that will be specified later. We study this simple setup to conceptually separate
the paradigm of operator learning from its commonly used instantiation using neural network architectures.
By eliminating the complexities associated with neural networks, studying this linear class can provide
insights that are broadly applicable to both algorithm design and theoretical analysis. Our work aligns
with the historical development of neural networks theory where the statistical properties of the linear core
x 7→ Wx+ b (a linear regression problem) were fully understood before studying deep neural networks.

We assume that V = W = Hs(Td,R), a (s, 2)-Sobolev space of real-valued functions defined on the d-
dimensional periodic torus. See Section 3.3 for an explanation on why V and W need to be function space
with higher-order smoothness to achieve a vanishing error. We work in the agnostic (misspecified) setting
and analyze the DFT-based least-squares estimator (see Section 3.2 for more details). Specifically, for some
universal constant c1 > 0, we show that the excess risk of the DFT-based least-squares estimator is at most

c1

(
1√
n

+ 1
Ns

+ 1
K2s

)
.

The term 1/
√
n is the usual statistical/estimation error due to a finite sample size. The term 1/K2s is the

truncation error incurred because the learner only works with the low Fourier modes m such that |m|ℓ∞ ≤ K.
Finally, the term 1/Ns is the discretization error due to functions being accessible to the learner only on
the uniform grid of size Nd of [0, 1]d. This error quantifies the generalization error of an estimator trained
on a grid of size Nd but evaluated at full resolution (N → ∞). It formalizes the concept of multiresolution
generalization (operators trained at lower resolution have good generalization even when evaluated in higher
resolution)–a phenomenon frequently observed in practice (Li et al., 2021, Section 5).

Additionally, we establish the lower bound on excess risk, showing that it is at least

c2

(
1
n

+ 1
N2s

+ 1
K2s

)
for some c2 > 0. Our analysis is non-asymptotic and the precise form of the constants c1 and c2 are provided
in Theorems 3.2 and 3.3 respectively.

1.4 Related Works

After Li et al. (2021) proposed Fourier Neural Operators (FNOs), there has been a surge of interest in this
architecture. The number of applied works is too vast and not entirely relevant to list here, so we focus on
related theoretical works. One of the earliest theoretical analyses of FNOs was the universal approximation
result by Kovachki et al. (2021).

More closely related to our work is a recent study on the sample complexity of various operator classes,
including FNOs, by Kovachki et al. (2024a). Their scope is broader than ours as they address a general class
of nonlinear operators. However, their results do not imply ours. They treat the truncation parameter K as
a part of the model rather than a variable that the learning algorithm can choose. Their error bounds are
based on metric entropy analysis, which leads to a suboptimal dependence on K and the input dimension d.
Specifically, their bounds break down as K → ∞ and suffer from the curse of dimensionality in d. In contrast,
our work establishes statistical error bounds using sharp Rademacher analysis, avoiding both dependence
on K and the curse of dimensionality in d. An interesting future direction is to extend our Rademacher-
based analysis to capture function classes at the level of generality considered in Kovachki et al. (2024a).
We also note that Rademacher-based analysis has also been used by Raman et al. (2024); Tabaghi et al.
(2019) to study Schatten operators between Hilbert spaces. Kim & Kang (2024) also bound the Rademacher
complexity of FNOs, but the bound is rather loose and even non-vanishing in some cases. Finally, the
analysis by Liu et al. (2024) and Liu et al. (2025) also share our motivation of quantifying the statistical
error in operator learning.
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A recent work by Lanthaler et al. (2024) aligns with our goal of quantifying the discretization error of FNOs,
and some of our proof techniques are inspired by their work. However, the nature of their results differs
from ours. To discuss the difference precisely, let Ψ be a trained Fourier Neural Operator and v be an input
function available to the learner only over a discrete grid of domain points of size N . Denote vN as the set of
discrete values of v available to the learner. Lanthaler et al. (2024) bound the term ∥Ψv−ΨvN ∥, quantifying
the error incurred in the forward pass due to the function being available only over a discrete grid. Essentially,
this only captures errors incurred during the test time but does not quantify the discretization error incurred
during training. In contrast, our focus is on quantifying the generalization error of an operator trained on a
grid of size Nd but evaluated at full resolution (N → ∞), a type of multiresolution generalization (Li et al.,
2021, Section 5).

Finally, we also note that or setup is closely related to the function-to-function regression often studied in
the functional data analysis (FDA) literature. For example, the linear layer of a neural operator v 7→ Kv+ b
is a well-studied model in FDA (Wang et al., 2016, Equation 15). Even a single layer of a neural operator
v 7→ σ (Kv + b) has been examined in FDA literature as multi-index functional models (Wang et al., 2016,
Equation 13), (Chen et al., 2011). That said, the overall goal of the FDA differs slightly from that of operator
learning. In FDA, the focus is on statistical inference, typically using RKHS-based frameworks under some
assumptions about the data-generating process. As a result, FDA methods often do not always scale to
large datasets. In contrast, operator learning primarily aims at prediction, seeking to develop surrogate
models that approximate numerical PDE solvers (Li et al., 2021; Kovachki et al., 2024b). The emphasis
is on creating computationally efficient methods that can be used to train large models and handle large
datasets. However, we believe that the intersection of these two fields can benefit both. The theoretical
tools developed in FDA literature can be applied to the analysis of operator learning methods, while the
computational advances in operator learning can help scale FDA methods.

2 Preliminaries

2.1 Notation

Let N be natural numbers and Z be integers. Define N0 := N ∪ {0}. R and C denote real and complex
numbers respectively. For any η ∈ Rd, we let |η|∞ := max1≤i≤d |ηi| denote the ℓ∞ norm. For any complex
number z ∈ C such that z = a+b i, we use |z| =

√
a2 + b2 and z̄ = a− i b denotes complex conjugate. For any

x, y ∈ Rd, the term ⟨x, y⟩ denotes the Euclidean inner product. Occasionally, the inner products on other
Hilbert spaces such as L2 will be distinguished from the Euclidean one with the subscript such as ⟨·, ·⟩L2 .
However, when the context is clear, we will use ⟨·, ·⟩ to denote canonical inner products on the respective
Hilbert spaces.

Given K ∈ N, we define Zd
≤K = {m ∈ Zd : |m|∞ ≤ K} and Zd

>K := Zd\Zd
≤K . For a sequence s := {sk}k∈Zd ,

we will also use |s|ℓp to denote the ℓp norm of s. Moreover, we let Td ≃ [0, 1]d denote a d-dimensional
periodic torus. See (Grafakos et al., 2008, Chapter 3) for more details on the torus. Throughout the paper,
for any m ∈ Zd, we use φm : Td → R to denote the function φm(x) = e2π i⟨m,x⟩. The sequence {φm}m∈Zd

will be referred to as Fourier basis.

2.2 L2-Spaces and Fourier Analysis

Define

L2(Td,R) :=
{
u : Td → R |

∫
Td

|u(x)|2 dx < ∞
}
.

Recall that L2(Td,R) is a Hilbert space with inner-product ⟨u, v⟩L2 =
∫
Td u(x) v(x) dx, where z = a − b i

is the complex conjugate of z = a + b i. The norm induced by this inner product will be denoted as ∥·∥L2 .
The sequence {φm}m∈Zd forms an orthonormal basis for L2(Td,R). That is, for any u ∈ L2(Td,R), we can
write u =

∑
m∈Zd ⟨u, φm⟩L2 φm, where the convergence is in L2-norm. The celebrated Parseval’s identity

then implies that ∥u∥2
L2 =

∑
m∈Zd | ⟨u, φm⟩L2 |2.
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Since Td is identified with a bounded set [0, 1]d, the condition u ∈ L2(Td,R) implies that u is integrable.
That is,

∫
Td |u(x)| dx < ∞. For integrable functions, F denotes the Fourier transform operator such that

Fu : Zd → C is a complex-valued function on Zd defined as

(Fu)(m) =
∫
Td

u(x) e−2π i⟨m,x⟩ dx.

Note that we have (Fu)(m) = ⟨u, φm⟩. We let F−1 denote the operator that satisfies
(
F−1F

)
(u) = u .

F−1 will be referred to as inverse Fourier transform.

2.3 Sobolev Spaces

Fix s ∈ N and define

Hs(Td,R) =
{
u ∈ L2

∣∣∣ ∂ku ∈ L2 s.t. k ∈ Nd
0 & |k|∞ ≤ s

}
.

Here, ∂ku is the kth partial derivatives. The space Hs(Td,R), also referred to as (s, 2)-Sobolev space, is a
Hilbert space with an inner product

⟨u, v⟩Hs :=
∑

k∈Nd
0 : |k|∞≤s

〈
∂ku, ∂kv

〉
L2 ,

which naturally induces the norm ∥u∥Hs :=
√

⟨u, u⟩Hs . In this paper, we often assume that s > d/2. This
ensures that (see Lemma D.4)

∑
m∈Zd | ⟨u, φm⟩ | < ∞, which implies uniform convergence of the Fourier

series over Td.

Note that it is more common to define Sobolev spaces with multi-indices k such that |k|1 ≤ s or |k|2 ≤ s.
We chose the restriction |k|∞ ≤ s simply for the convenience of computation. However, as d is finite and all
ℓp norms on a d-dimensional space are equivalent up to a factor of d.

3 Learning Fourier Linear Operators

In this section, we establish excess risk bounds of learning the operator class {v 7→ F−1(Λβ F(v)
)

: β ∈ B},
where B is some parameter space. Here, we only consider the case where V,W ⊆ L2(Td,R). This is different
from the usual setting in the literature, where V and W are Banach spaces of vector-valued functions. First,
a significant number of PDEs of practical interest describe how scalar-valued functions evolve. Since not
much is known from a theoretical standpoint even for scalar-valued functions, we believe that this is a good
start. Second, assuming V,W to be a subset of L2 (a Hilbert space) does not result in any meaningful loss of
generality from a practical standpoint. In practice, one must discretize the domain and work with function
values over a discrete grid, which effectively requires a bounded domain. This essentially means working
with bounded functions on a bounded domain, all of which are L2 integrable.

For scalar-valued functions, Λβ is a scalar-valued function defined on modes Zd. Since the function is
only defined on a countable domain, we can also represent it by a scalar-valued sequence {Λβ(m)}m∈Zd .
Henceforth, we will drop the β and just write {λm}m∈Zd , denoting λm’s to be the parameters themselves.
For the convenience of notation, we will also λ to denote the sequence {λm}m∈Zd and write F−1(λ F(·)

)
.

Fixing some C > 0, the class of interest can be written as{
v 7→ F−1(λ F(v)

)
: |λ|ℓ1 ≤ C

}
.

A starting point of our work is the following result on the decomposition of Fourier linear operators.
Proposition 3.1. If λ ∈ ℓ1(Zd), then

F−1(λ F(·)
)

=
∑

m∈Zd

λm φm ⊗ φ−m, (1)

where the equality holds for every u ∈ L2(Td,R).
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Here, φm ⊗φ−m is a rank-1 operator such that (φm ⊗φ−m)(u) = ⟨φ−m, u⟩L2 φm. The equality in (1) means
F−1(λ F(u)

)
=
∑

m∈Zd λm φm ⟨φ−m, u⟩L2 for all u ∈ L2(Td,R), where the sum converges uniformly over
x ∈ Td. We provide the proof of Proposition 3.1 in Appendix C.

Given Proposition 3.1, we can write our class as
{∑

m∈Zd λm φm ⊗ φ−m : |λ|ℓ1 ≤ C
}

. This representation
is preferable for the following reasons. First, it highlights the fact that the Fourier basis is just one of the
design choices for singular vectors that may be replaced with any other orthonormal sequences. Second, this
representation also allows us to drop the constraint that λ ∈ ℓ1, which is a rather artificial constraint required
only to ensure that the operator F−1(λ F(·)

)
is a well-defined object. However,

∑
m∈Zd λm φm ⊗ φ−m is

still well-defined even when λ ∈ ℓ∞ (in fact, it is a bounded operator). Therefore, for some fixed C > 0, we
will instead study the class of operators

T :=

∑
m∈Zd

λm φm ⊗ φ−m

∣∣∣ |λ|ℓ∞ ≤ C

 .

Since the class
{
v 7→ F−1(λ F(·)

)
: |λ|ℓ1 ≤ C

}
is contained in the class T , any guarantee (in terms of

upper bound) for T also holds for the ℓ1 constrained class.

Remark. The class T should remind readers of de Hoop et al. (2023), who also consider the problem of
singular value inference of an operator under fixed singular vectors. However, their setting differs from ours
in two significant ways. First, they only consider the well-specified setting with an additive noise model,
whereas we adopt a fully agnostic viewpoint. Second, they do not account for possible discretization errors,
assuming that their input and output functions are fully available to the learner.

3.1 Problem Setting and Error Types

We adopt the framework of statistical learning and study the rates of error in learning the class T . In
statistical learning, the learner is provided with n ∈ N i.i.d samples Sn = {(vi, wi)}n

i=1 from some unknown
distribution µ on V × W. We adopt a fully agnostic viewpoint and do not make any assumptions about
the data-generating process. Next, using the sample Sn and some prespecified learning rule, the learner
then finds an estimator T̂ ∈ T . We will abuse notation and denote T̂ to be both the learning rule and the
estimator output by the learner. For an estimator T̂ , we can define its expected excess risk as

En(T̂ , T , µ) = E
Sn∼µn

[
E

(v,w)∼µ

[
∥T̂ v − w∥2

L2

]
− inf

T ∈T
E

(v,w)∼µ

[
∥Tv − w∥2

L2

] ]
.

Formally, the goal of the learner is to output the estimator such that En(T̂ , T , µ) → 0 as n → ∞. In
traditional settings, the excess risk En(T̂ , T , µ) is usually referred to as the statistical error of the learner.
This error arises because the learner is trying to find the optimal operator in T for distribution µ while only
having access to finitely many samples from the distribution. However, unlike traditional statistical learning
settings, in operator learning, there are two additional errors beyond the statistical error: discretization error
and truncation Error.

Discretization Error: The discretization error arises because the learner only has access to (vi, wi) ∼ µ
over some discrete grid of domain points. In this work, we assume that each vi and wi are available on a
uniform grid

G :=
{
m/N : m ∈ {0, . . . , N − 1}d

}
of [0, 1]d for some prespecified N ∈ N. That is, the learner only has access to {vi(x) : x ∈ G} and
{wi(x) : x ∈ G}. Although other grids are also used in practice, the use of FNO requires uniform griding.
This is because the main benefit of FNO is its computationally efficient approximation of Fourier transform
through fast Fourier transform (FFT) algorithms, which requires uniform grids.

Truncation Error: To see where the truncation error comes from, note that the representation of any
estimator T ∈ T requires specifying an infinite sequence {λm}m∈Zd . However, the infinite sequence cannot
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be implemented in a computer. Thus, for a practical implementation (Li et al., 2021), one picks a large
K ∈ N and specifies the finite rank operator

TK =
∑

m∈Zd
≤K

λm φm ⊗ φ−m.

While the truncation error is specific to our class of interest T , a similar “truncation" error occurs in any
model class. Such error arises because operator learning is inherently an infinite-dimensional problem, yet
any computation we perform is limited to some finite-dimensional subspace.

3.1.1 Further Connection to FDA.

The operator TK is related to functional PCA-based estimators common in the FDA literature. Given n
i.i.d. function pairs {(vi, wi)}i≤n, the least-squares estimator solves

∑n
i=1 wi ⊗ vi = L ◦ (

∑n
i=1 vi ⊗ vi),

which is under-specified in infinite-dimensional spaces. To address this, one computes a pseudo-inverse
(
∑n

i=1 vi ⊗ vi)
† by fixing an orthonormal basis {ψt}t∈N. With eigendecomposition

∑n
i=1 vi ⊗ vi =∑

t≥1 ηt ψt ⊗ ψt, the pseudo-inverse becomes
∑

t≥1 1[ηt > 0]η−1
t ψt ⊗ ψt, yielding the estimator L̂ =

(
∑n

i=1 wi ⊗ vi)
(∑

t≥1 1[ηt > 0] η−1
t ψt ⊗ ψt

)
. In practice, the sum is truncated at some t ≤ τ .

Estimators of this type have been studied in works such as Hörmann & Kidziński (2015); Reimherr (2015);
Yao et al. (2005) under well-specified models. These approaches generally require learning the basis functions
ψt’s and the truncation parameter from the data to achieve the guarantees established in these studies, which
often introduces significant computational challenges. In contrast, we work in the potentially misspecified
(agnostic) setting, and K depends only on the sample size n to achieve

√
n-risk consistency. Additionally,

FDA-based approaches typically assume exact access to the functions, which is unrealistic in practice. In-
stead, we explicitly account for the discretization error that arises when functions are only available on a
finite grid.

3.2 A Constrained Least-Squares Estimator

In this section, we specify our primary estimator of interest. Let T =
∑

m∈Zd λm φm ⊗φ−m. For any v ∈ V,
we have Tv =

∑
m∈Zd λm ⟨φ−m, v⟩ φm. As we only require ℓ∞ norm of λ to be bounded by C, we only get

the convergence of the sum
∑

m∈Zd λm ⟨φ−m, v⟩ φm in L2 norm rather than uniform. Since {φm}m∈Zd is an
orthonormal basis of L2(Td,R), Parseval’s identity implies

∥Tv − w∥2
L2 =

∑
m∈Zd

| ⟨Tv − w,φm⟩L2 |2

=
∑

m∈Zd

|λm ⟨φ−m, v⟩L2 − ⟨φ−m, w⟩L2 |2.

To see why the last equality is true, note that ⟨Tv, φm⟩ = λm ⟨φ−m, v⟩ and ⟨w,φm⟩L2 = ⟨φm, w⟩L2 =
⟨φ−m, w⟩L2 as w is real-valued. Thus, given {(v1, wi)}n

i=1, the least-squares estimator over the class T is an
operator T specified by the sequence {λm}m∈Zd , which is obtained by solving the optimization problem

min
{λm : m∈Zd}

1
n

n∑
i=1

∑
m∈Zd

∣∣∣λm ⟨φ−m, vi⟩L2 − ⟨φ−m, wi⟩L2

∣∣∣2 subject to sup
m∈Zd

|λm| ≤ C.

However, this estimator cannot be implemented for two reasons. First, there is an infinite sum over Zd.
Second the learner only has access to (vi, wi) through vN

i := {vi(x) : x ∈ G} and wN
i := {wi(x) : x ∈ G},

and thus the L2 inner products cannot be computed exactly. Both of these issues can be resolved by
considering the operator specified by the finite length sequence λ̂(N) = {λ̂m : m ∈ Zd

≤K} obtained by
minimizing

1
n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2
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subject to supm∈Zd
≤K

|λm| ≤ C. DFT, which stands for Discrete Fourier Transform, is the numerical approx-
imation of ⟨φ−m, u⟩L2 and is defined formally as

DFT(u)(−m) := 1
Nd

∑
x∈G

u(x) e−2π i⟨x,m⟩.

To indicate the dependence of both truncation value K and grid-size Nd, let us denote the estimator obtained
by solving this problem to be T̂N

K where

T̂N
K :=

∑
m∈Zd

≤K

λ̂m(N) φm ⊗ φ−m. (2)

The estimator T̂N
K is the closest implementable version of the least-squares estimator for our setting.

3.3 Error Bounds

In this section, we study how En(T̂N
K , T , µ) decay as a function of n,K and N . Note that we have only

specified that V and W are subsets of L2(Td,R), but have not specified their precise form. A natural choice
would be V = W = {u ∈ L2(Td,R) : ∥u∥L2 ≤ 1}, the unit ball of L2(Td,R). However, it turns out that
En(T̂N

K , T , µ) does not vanish under such V and W.

To see this, let K ∈ N be a truncation parameter chosen by the learner. Define µ = Uniform({(ψm, ψm) :
2K < |m|∞ < 2K+1}) that is only supported on large modes. Here, ψm = 2−1/2(φm + φ−m) is the
symmetrized, real-valued version of m-th Fourier mode. Note that we can choose a distribution as a function
of K because the truncation parameter K can depend on the sample size n, but not on the exact realization
of the samples.

For any sample size n and the estimator T̂N
K produced by the learner, T̂N

K v = 0 almost surely for (v, w) ∼ µ.
Thus, we have E(v,w)∼µ

[
∥T̂N

K v − w∥2
L2

]
= E(v,w)∼µ

[
∥w∥2

L2

]
= 1, as w = ψm for some 2K < |m|∞ < 2K+1

almost surely and ∥ψm∥L2 = 1 for any m ∈ Zd
>0.

Next, let C = 1 and define T ⋆ =
∑

m∈Zd φm ⊗ φ−m. It is easy to see that T ⋆ψk = 2− 1
2 (T ⋆ φk +

T ⋆ φ−k) = 2− 1
2 (φ−k + φk) = ψk ∀k ∈ Zd\{0}. As T ⋆ ∈ T , we obtain infT ∈T E(v,w)∼µ

[
∥Tv − w∥2

L2

]
≤

E(v,w)∼µ

[
∥T ⋆v − w∥2

L2

]
= 0. Thus, we have established

En(T̂N
K , T , µ) ≥ 1.

This shows that merely bounding the L2 norm of v, w is not sufficient to achieve a vanishing error. So, we
need a stronger assumption on the input and output functions.

The inductive bias in FNOs is that the functions are sufficiently smooth so that the higher Fourier modes
can be safely ignored. We will also adopt this viewpoint and assume that V and W are smooth subsets of
L2(Td,R). In particular, we will assume that V = W = Hs(Td,R), a (s, 2)-Sobolev space (see Section 2.3).
For any u ∈ Hs(Td,R), we are guaranteed that ⟨φ−m, u⟩L2 → 0 sufficiently fast as |m|∞ → ∞. This allows
us to ignore higher Fourier modes while only incurring small error. The following Theorem, whose proof is
deferred to Apendix E, makes these arguments precise and provides an upper bound on the excess risk of
T̂N

K in terms of n,N, and K.
Theorem 3.2 (Upper Bound). Let V = W = Hs(Td,R) for s > d/2 and µ be any distribution on V ×
W for which ∃B > 0 such that ∥v∥Hs ≤ B and ∥w∥Hs ≤ B almost surely. Then, for n iid samples
{(vi, wi)}n

i=1 ∼ µn accessible to the learner over the N -uniform grid of [0, 1]d, the estimator T̂N
K defined in

(2) for N > max{5, 2K} satisfies

En(T̂N
K , T , µ) ≤ 8B2(C + 1)2

(
1√
n

+ 2s
√
πd

Ns
+ 1
K2s

)
.

8
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The terms O(1/
√
n), O(1/Ns), and O(1/K2s) are the estimator’s statistical, discretization, and truncation

errors respectively. For most practical applications of interest, we have d = 3 (functions defined on spatial
coordinates). Since

√
πd ≤ 6 in these cases, the exponential dependence of the discretization error on d is

not an issue. Finally, choosing N ≥ n
1

2s and K ≥ n
1

4s , Theorem 3.2 guarantees the
√
n– risk consistency of

the estimator T̂N
K .

Proof Technique for Upper Bound: Here, we highlight here the key technical novelties of our proof
techniques and the implications of our results. To establish the upper bound, we first decompose the excess
risk into three components: (1) the risk gap between the optimal operator in T for the distribution µ and
its truncated counterpart, (2) the uniform deviation between the true empirical risk on the sample and its
numerical approximation on the discrete grid, and (3) the uniform deviation between the empirical risk and
the actual risk. This decomposition, introduced at the beginning of Appendix E, is not limited to the linear
setting and can also be applied to analyze general non-linear operator classes. Given such decomposition,
bounding the truncation error is straightforward using standard Fourier series properties for Sobolev spaces.
The discretization error, however, requires nontrivial analysis to show that controlling the error of DFT
suffices. Importantly, while the lower bound on the DFT error likely bounds the discretization error below,
an upper bound on the DFT error does not always translate to an upper bound for the trained operator. For
example, this is not true if one adds non-smooth activation such as RELU to our model. For statistical error,
standard techniques yield a bound of

√
Kd

n , which does not allow taking K → ∞. Our key contribution
is a refined analysis that achieves a 1√

n
bound independent of Kd. The K-independent bound is especially

notable because K in FNOs is analogous to the width in standard neural networks, where generalization
bounds are known to be width-independent (Golowich et al., 2018). Our results provide initial evidence that
similar K-free generalization bounds may be achievable for FNOs.

Our next result, proved in Appendix F, provides a lower bound on the rates at which En(T̂N
K , T , µ) decay.

Theorem 3.3 (Lower Bound). Let V = W = Hs(Td,R) for s > d/2 and C = 1. Given n,N,K ∈ N, there
exists a distribution on µ on V × W for which ∃B > 0 such that ∥v∥Hs ≤ B and ∥w∥Hs ≤ B almost surely
and for n iid samples {(vi, wi)}n

i=1 ∼ µn accessible over the N -uniform grid of [0, 1]d, the estimator T̂N
K

defined in (2) for Ns ≥
√

2B satisfies

En(T̂N
K , T , µ) ≥ B2

3(s+ 1)

(
1

8n + 1
N2s

+ 2
(K + 2)2s

)
.

Although the lower bound on truncation error matches with the upper bound, there is a gap in the statistical
and discretization error. We leave closing this gap for future work.

3.4 On Possible Extensions and Refinements of our Error Bounds

The smoothness assumptions in our work are primarily needed to control truncation and discretization errors.
The lower bound in Section 3.3 shows that some regularity, specifically s > 0, is necessary for achieving a
vanishing truncation error. This condition is also sufficient for our upper bound on the truncation error.
The stronger requirement s > d/2 is required to ensure that the DFT-based estimator approximates the true
Fourier coefficients. Moreover, even when s = 0, a statistical rate of 1/

√
n independent of K can still be

obtained under alternative assumptions. For example, if the operator’s spectrum lies in ℓ2(Zd), making it
Hilbert-Schmidt, results from Tabaghi et al. (2019); Raman et al. (2024) imply that such a rate is possible
without any smoothness assumptions.

Additionally, in our analysis of the discretization error (Appendix E.2), the key quantity we control is the
difference between the DFT approximation and the true Fourier coefficient, namely

| DFT(uN )(−m) − ⟨φ−m, u⟩|.

The assumption of a uniform grid is used only to bound the numerical integration error introduced by the
DFT. In principle, any numerical integration method can be applied to a non-uniform grid, and as long as

9
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its error vanishes with increasing grid resolution. For non-uniform grids with structure, such as those based
on the roots of orthogonal polynomials, Gaussian quadrature rules may be used with standard accuracy
guarantees. On unstructured grids, Monte Carlo methods with estimated importance weights can be used,
although their convergence can be slow or the error may not vanish if the estimated weights have high
variance.

4 Experiments

In this section, we present experiments demonstrating that our estimator achieves vanishing errors. We pick
d = 2, and the input functions v are sampled i.i.d. from N (0, 102(−∇2 + I)−γ), a widely used distribution
for generating training data in the operator learning literature (see Li et al. (2021); Kovachki et al. (2023)).
Since γ governs the decay rate of the eigenvalues of the covariance operator for this distribution, it directly
controls the average smoothness of the samples v. For our experiments, we set γ = 2 as this is the smallest
integer value that ensures γ > d/2 for d = 2.

To generate training data, we define a random operator

T ⋆ :=
∑

m∈Zd

λm φm ⊗ φ−m,

where φm’s are Fourier modes and λm ∼ Unif(−2, 2). For a given input v, the corresponding output is
generated as w = T ⋆v+ε, where ε ∼ N (0, (−∇2 +I)−3). Noise is sampled from a higher-order smooth space
to ensure that its addition does not alter the smoothness of w. In actual implementation, the transformation
T ⋆v is implemented on some N × N grid using Fast Fourier Transform (FFT) and Inverse Fast Fourier
Transform (IFFT). The sum over Zd is truncated at a Nyquist limit of N/2.

Recall that, our estimator in Section 3.2 is obtained by solving a convex optimization problem for λm’s for
m ∈ Zd

≤K . So, we implement the optimization routine for our estimator using stochastic gradient descent
with a projection step to ensure |λ̂m| ≤ 2.

Figures 1, 2, and 3 show the statistical, truncation, and discretization errors, respectively. The y-axis in all
these figures represents the relative mean-squared testing error:

1
ntest

ntest∑
i=1

∥wtrue
i − wpredicted

i ∥2
L2

∥wtrue
i ∥L2

,

evaluated using ntest = 100 i.i.d. samples.

4.1 Statistical Error

Both training and testing are carried out on a 64 × 64 grid, with the estimator implemented using K = 32
modes. Error bands are included to account for fluctuations in the estimated parameters at small sample
sizes, showing results from 5 independent runs. The model is trained and tested at the same resolution at the
Nyquist limit of K = 32 modes to ensure that the reported error isolates statistical error with the minimum
possible truncation and discretization errors. The smallest error is ∼ 6 × 10−4 for the sample size of 500.

4.2 Truncation Error

Training and testing data are generated on a 128 × 128 grid, with the estimator trained using n = 500
samples. Error bands are omitted as the estimates are almost identical due to a large sample size. Both
training and testing are conducted at the same resolution to remove discretization error, with the sample size
selected to minimize statistical error, ensuring that the reported error isolates the truncation error effectively.
The testing error converges to around 7.9 × 10−4 at the Nyquist limit of K = 64.

10
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Figure 1: Statistical error of the estimator.

Figure 2: Truncation error of the estimator.

11
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Figure 3: Discretization error of the estimator.

4.3 Discretization Error

Testing data is generated on a 512 × 512 grid. The estimator is trained using n = 500 samples on grids of
varying sizes N × N , where N ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. For each training grid of size N × N ,
truncation is performed at the Nyquist limit (K = N/2). The trained estimators are subsequently evaluated
at the higher testing resolution of 512 × 512 to quantify discretization error. The testing error converges to
around 6 × 10−4 when the estimator is trained at a full grid size of 512 × 512 with 500 training samples.

5 Discussion and Future Work

In this work, we established the excess risk error bounds of learning the core linear layer v 7→ F−1(Λβ F(v)
)

of Fourier neural operators. A natural future direction is to extend these results to single layer Fourier neural
operator, v 7→ σ

(
F−1(Λβ F(v)

)
+ b
)

and then to multiple layers. Although simple metric entropy-based
analysis gives a bound on statistical error even for single layer neural operator, such a bound is vacuous
when K → ∞. It would be interesting to see if we can get a meaningful statistical rate even at the limit
of K → ∞. One can view K as an analog of the width of traditional neural networks. Thus, analysis
of v 7→ σ

(
F−1(Λβ F(v)

)
+ b
)

as K → ∞ can lead to a neural tangent kernel theory (Jacot et al., 2018)
for operator learning. These insights will help us better understand width vs depth tradeoffs in operator
learning.

For discretization error, we consider the setup where the training data is available on a grid of size Nd but the
trained operator is evaluated at full resolution (N → ∞). It would be interesting to study the discretization
error when the training data is available at resolution N1, but the trained operator is evaluated at resolution
N2. Such a theory would provide a more fine-grained quantification of multi-resolution generalization error
observed in practices (Li et al., 2021).

Finally, with PDEs as an application, it is unclear if the iid-based statistical model is the right framework for
operator learning. For instance, Boullé et al. (2023); Subedi & Tewari (2025) show that an active learning
approach for data collection and training for solution operators of elliptic PDEs yields exponential error
decay with increasing sample size. Therefore, an important future direction is to define the appropriate
active learning model and develop active algorithms for operator learning.
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A Appendix

B Fourier Linear Operators

In this section, we provide a formal treatment of Fourier linear operators and the corresponding parametriza-
tion in FNOs. Recall that, in the Fourier Neural operator, one assumes that X = Y = Td and the kernel is
translation invariant. This implies that Kθ defined in Section 1.1 is a convolution operator. That is,

Kθ v = kθ ⋆ v, where (kθ ⋆ v)(y) =
∫
Td

kθ(y − x) v(x) dx.

The convolution is done elementwise, (Kθv)i(y) =
∑p

j=1
(
[kθ]ij ⋆ vj

)
(y), where [kθ]ij : Td → R is the scalar-

valued kernel defined by the (i, j)th component of kθ and (Kθv)i is the ith component of a Rq-valued function.
Similarly, vj : Td → R is the jth component function of Rp-valued function v. Next, using the linearity of
the Fourier transform and the Convolution Theorem, we can write

(Kθv)i = F−1

 p∑
j=1

F
(
[kθ]ij

)
F(vj)

 .

where F is Fourier transform operator, and F−1 is the inverse Fourier transform. Here, F([kθ]ij) : Zd → C
and F(vj) : Zd → C are Fourier transforms of [kθ]ij and vj respectively. Note that only discrete Fourier
modes are defined because all the functions are defined on a periodic domain Td.

The key insight in FNO is that instead of parametrizing the kernel kθ, we parametrize its Fourier transform
F(kθ) directly. That is, we parametrize the kernel transform operator as (Kβv)i = F−1

(∑p
j=1 [Λβ ]ij F(vj)

)
for some Λβ : Zd → Cq×p that maps Fourier modes to a complex-valued matrix. Using the linearity of the
inverse Fourier transform, we can write this more succinctly in a matrix form as Kβ v = F−1(Λβ F(v)

)
.

Since F−1(Λβ F(v)
)

is a function defined on periodic domain Td, it has a Fourier series representation. So,
we can write

F−1(Λβ F(v)
)
(·) =

∑
m∈Zd

φm(·) Λβ(m) (Fv)(m),

as φm(·) := e2π i⟨m,·⟩ and the mth Fourier coefficient of F−1(Λβ F(v)
)

is Λβ(m) (Fv) (m).

We have not specified in what metric the sum on the right-hand side converges. However, the convergence
is not really an issue from a practical standpoint. In practice, Λβ is a trainable parameter, and it has been
observed in Li et al. (2021) that parametrizing Λβ as a function from Zd to Cq×p yields sub-optimal results,
possibly due to discrete structure of the lattice Zd. So, one picks a large K > 0 and parametrize Λβ as a
collection of matrices {Λβ(m) : m ∈ Zd such that |m|∞ ≤ K}. In this case, the sum contains ≤ Kd terms
and thus always converges. If one still wants to deal with the infinite sum, a standard assumption would be
[Λβ ]ij ∈ ℓ1(Zd) for all (i, j) pairs. That is,

∑
m∈Zd |[Λβ(m)]ij | < ∞ for all (i, j) pairs. Then, the Weirstrass

M -test implies that the sum above converges uniformly over all y ∈ Td.

Reparametrizing Kθ as F−1(Λβ F(v)
)

was proposed by Li et al. (2021) from the perspective of the convo-
lution theorem, as discussed earlier. However, a more natural way to derive F−1(Λβ F(v)

)
from Kθ is to

assume that kθ has a Mercer-type decomposition.
Proposition B.1. Let kθ : Zd → Cq×p be a kernel with decomposition

[kθ(y, x)]ij =
∑

m∈Zd

[Λβ(m)]ij φm(y) φ−m(x) ∀(i, j)

for some Λβ : Zd → Cq×p such that Λβ ∈ ℓ1(Zd). Then, Kθv = F−1(Λβ F(v)
)

for all v ∈ V.

Given such decomposition, a simple algebra shows that
∫
Td [kθ(y, x)]ij φk(x)dx = [Λβ(k)]ij φk(y). In other

words, [Λβ(k)]ij are the eigenvalues of the integral operator defined by the kernel [kθ]ij . This suggests that
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the Fourier layer of FNOs is parametrizing the eigenvalues of an operator while fixing the eigenfunctions
to be φk’s. So, setting Λβ(m) = 0 for m ∈ Zd

>K amounts to parametrizing the low-rank version of such
operator. This viewpoint shows that FNO is just a special case of a Low-rank Neural Operator defined in
(Kovachki et al., 2023, Section 4.2).

More importantly, Proposition B.1 (see Appendix B.1 for the proof) provides a natural way to generalize
Fourier Neural Operators. That is, we can consider [kθ(y, x)]ij =

∑
m∈J [Λβ(m)]ij ψm(y)ϕm(x), where

J is some countable index-set and {ψm}m∈J , {ϕm}m∈J are some orthonormal sequences. Some common
orthonormal sequences that allow efficient computation like FFT include the Chebyshev polynomial and
wavelet basis. Some works have already explored the practical advantage of replacing Fourier basis with
wavelet basis in certain problem settings Gupta et al. (2021); Tripura & Chakraborty (2023).

B.1 Proof of Proposition B.1

We now end this section by proving Proposition B.1.

Proof. Let λij(m) := [Λβ(m)]ij and assume that

[kθ(y, x)]ij =
∑

m∈Zd

λij(m) φm(y) φ−m(x).

Using this decomposition, we obtain

(Kθv)i(y) =
∫
Td

p∑
j=1

[kθ(y, x)]ij vj(x) dx

=
∫
Td

p∑
j=1

∑
m∈Zd

λij(m) φm(y) φ−m(x) vj(x) dx

=
∑

m∈Zd

φm(y)
p∑

j=1
λij(m)

∫
Td

φ−m(x) vj(x) dx.

Note that swapping the integral and the summation is justified through Fubini’s because the sum over Zd

converges absolutely (as Λβ ∈ ℓ1) and Td is a bounded set. Since∫
Td

φ−m(x) vj(x) dx =
∫
Td

e−2π i⟨m,x⟩vj(x) dx = F(vj)(m),

we can write

(Kθv)i(y) =
∑

m∈Zd

φm(y)
p∑

j=1
λij(m) F(vj)(m).

Next, consider the function w := F−1
(∑p

j=1 λij F(vj)
)

. Our proof will be complete upon showing that
w(y) = (Kθv)i(y) for every y ∈ Td. Since the function w : Td → C is defined on a periodic domain, it has a
Fourier series representation. That is,

w(y) =
∑

m∈Zd

e2π i⟨m,y⟩ F(w)(m) =
∑

m∈Zd

e2π i⟨m,y⟩
p∑

j=1
λij(m) F(vj)(m),

where the final equality follows because F
(

F−1
(∑p

j=1 λij F(vj)
))

(m) =
∑p

j=1 λij(m) F(vj)(m). As usual,
Λβ ∈ ℓ1 implies that the sum above converges uniformly over y ∈ Td. Recalling that φm(y) = e2π i⟨m,y⟩, we
have shown that (Kθv)i(y) = w(y) for all y ∈ Td. This subsequently implies that

(Kθv)i = w = F−1

 p∑
j=1

λij F(vj)

 .
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Finally, using the linearity of the inverse Fourier transform and writing this in the matrix form establishes
that Kθv = F−1(Λβ F(v)) for any v ∈ V.

C Proof of Proposition 3.1

Proof. Fix v ∈ V and define w := F−1(λ F(v)
)
. By definition of the operator F−1(λ F(·)

)
, we have

w = F−1 (λF(v) ) .

Using the Fourier series representation of w, we have

w(·) =
∑

m∈Zd

e2π i⟨m,·⟩ (Fw)(m) =
∑

m∈Zd

e2π i⟨m,·⟩ λm F(v)(m).

This step is rigorously justified because λ ∈ ℓ1. Noting that

(Fv)(m) =
∫
Td

e−2π i⟨m,x⟩ v(x) dx = ⟨φ−m, v⟩L2 ,

we can write
w(·) =

∑
m∈Zd

e2π i⟨m,·⟩ λm ⟨φ−m, v⟩L2 .

Thus, w =
∑

m∈Zd λm ⟨φ−m, v⟩L2 φm, where the convergence is uniform over Td. This implies that

F−1 (λF(v) ) =
∑

m∈Zd

λm ⟨φ−m, v⟩L2 φm.

Since this equality holds for every v ∈ V, we have

F−1 (λF(·) ) =
∑

m∈Zd

λm φm ⊗ φ−m.

D Technical Lemmas

In this section, we state and derive some technical Lemmas that we use to prove Theorems 3.2 and 3.3.
Lemma D.1. For any u ∈ Hs(Td,R) , we have

| ⟨φ−m, u⟩L2 | ≤
∥u∥Hs

(2π)s |m|s∞
∀m ∈ Zd\{0}.

Proof. Fix m ∈ Zd\{0} and let |mj | = |m|∞ = max1≤i≤d |mi|. Clearly, mj ̸= 0. Integrating by parts s
times with respect to variable xj in x = (x1, . . . , xd), we obtain

⟨φ−m, u⟩ =
∫
Td

u(x)e−2π i⟨m,x⟩ dx = (−1)s

∫
Td

(∂s
ju)(x) e

−2π i⟨m,x⟩

(−2π i mj)s
dx =

(
1

2π imj

)s 〈
φ−m, ∂

s
j u
〉
.

Here, all boundary terms vanish because Td does not have a boundary ((Grafakos et al., 2008, Proof of
Theorem 3.3.9)). Taking absolute value on both sides, we obtain that

|mj |s | ⟨φ−m, u⟩ | = (2π)−s |
〈
φ−m, ∂

s
ju
〉

|

Finally, using the fact that
∣∣〈φ−m, ∂

s
ju
〉∣∣ ≤ ∥u∥Hs completes our proof.
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Lemma D.2. For any u ∈ Hs(Td,R), we have∑
m∈Zd

(1 + |m|2s
∞) | ⟨φ−m, u⟩ |2 ≤ ∥u∥2

Hs .

Proof. Fix m ∈ Zd\{0} and let |mj | = |m|∞ = max1≤i≤d |mi|. Clearly, mj ̸= 0. Integrating by parts s
times with respect to variable xj in x = (x1, . . . , xd), we obtain

⟨φ−m, u⟩ =
∫
Td

u(x)e−2π i⟨m,x⟩ dx = (−1)s

∫
Td

(∂s
ju)(x) e

−2π i⟨m,x⟩

(−2π i mj)s
dx =

(
1

2π imj

)s 〈
φ−m, ∂

s
j u
〉
.

Here, all boundary terms vanish because Td does not have a boundary ((Grafakos et al., 2008, Proof of
Theorem 3.3.9)). Taking absolute value on both sides, we obtain that

|mj |s | ⟨φ−m, u⟩ | = (2π)−s |
〈
φ−m, ∂

s
ju
〉

|

Noting that |mj | = |m|∞, squaring and summing over all m ∈ Zd\{0} to get∑
m∈Zd\{0}

|m|2s
∞ | ⟨φ−m, u⟩ |2 = (2π)−2s

∑
m∈Zd\{0}

|
〈
φ−m, ∂

s
ju
〉

|2 ≤ (2π)−2s
∥∥∂s

ju
∥∥2

L2 ,

where the final inequality uses Parseval’s identity and the fact that ∂s
ju ∈ L2(Td,R). Thus, we obtain∑

m∈Zd

(1 + |m|2s
∞) | ⟨φ−m, u⟩ |2 =

∑
m∈Zd

| ⟨φ−m, u⟩ |2 +
∑

m∈Zd\{0}

|m|2s
∞ | ⟨φ−m, u⟩ |2

≤ ∥u∥2
L2 + (2π)−2s

∥∥∂s
ju
∥∥2

L2

≤ ∥u∥2
L2 +

∥∥∂s
ju
∥∥2

L2

≤ ∥u∥2
Hs ,

completing our proof.

Lemma D.3. For any u ∈ Hs(Td,R) such that s ≥ 0 and K ∈ Z>0, we have

∑
m∈Zd

>K

| ⟨φ−m, u⟩ |2 ≤
∥u∥2

Hs

K2s

Proof. Observe that ∑
m∈Zd

>K

| ⟨φ−m, u⟩ |2 =
∑

m∈Zd
>K

(1 + |m|2s
∞) | ⟨φ−m, u⟩ |2 1

(1 + |m|2s
∞)

≤ 1
1 +K2s

∑
m∈Zd

>K

(1 + |m|2s
∞) | ⟨φ−m, u⟩ |2

≤
∥u∥2

Hs

K2s
,

using Lemma D.2.

Lemma D.4. For any u ∈ Hs(Td,R) such that s > d/2, we have

∑
m∈Zd

>K

| ⟨φ−m, u⟩ | ≤ ∥u∥Hs

√
3d

2s− d

1√
K2s−d

, .

18
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Proof. First, we use Cauchy-Schwarz to get

∑
m∈Zd

>K

| ⟨φ−m, u⟩ | =
√ ∑

m∈Zd
>K

(1 + |m|2s
∞)| ⟨φ−m, u⟩ |2

√√√√ ∑
m∈Zd

>K

1
(1 + |m|2s

∞)

Lemma D.3 implies that the first term is ≤ ∥u∥Hs . To bound the second term, note that for any j ∈ N, we
have |{m ∈ Zd : |m|∞ = j}| = 2(2j + 1)d−1. This is because one of the entry of m has to be ±j and other
d− 1 entries could be anything in {−j . . . ,−1, 0, 1, . . . , j}. So,

∑
m∈Zd

>K

1
(1 + |m|2s

∞) =
∑
j>K

2 (2j + 1)d−1

(1 + j2s) ≤ 3d
∑
j>K

1
j2s−d+1 ≤ 3d

∫ ∞

K

t−2s+d−1 dt = 3d

2s− d

1
K2s−d

,

for all s > d/2. Thus, overall, we obtain

∑
m∈Zd

>K

| ⟨φ−m, u⟩ | ≤ ∥u∥Hs

√
3d

2s− d

1√
K2s−d

,

completing our proof.

Lemma D.5. Let G :=
{
j/N : j ∈ {0, . . . , N − 1}d

}
be the N -uniform grid of [0, 1]d. Then, for any m ∈

Zd
<N , we have

1
Nd

∑
x∈G

e2π i⟨k−m,x⟩ = 1[k ≡ m (mod N)].

Here, we say k ≡ m(mod N) if ∃ℓ ∈ Zd such that k = Nℓ+m.

Proof. We first prove it for d = 1. For this case, we need to show that

1
N

N−1∑
j=0

e2π i(k−m) j
N = 1[k ≡ m(mod N)].

First, consider the case where k = τN + m for some τ ∈ Z. Then, e2π i(k−m) j
N = e2π i τ j = 1 by Euler’s

identity. Thus, the overall sum must be 1. Next, assume that k ̸≡ m (mod N). Then, the geometric series
formula implies that

1
N

N−1∑
j=0

e2π i(k−m) j
N = 1

N

1 − e2π i(k−m)j

1 − e2π i(k−m) j
N

= 0.

Here, the final equality holds because e2π i(k−m)j = 1 by Euler’s identity, whereas e2π i(k−m) j
N ̸= 1 for every

j ∈ {0, 1 . . . , N − 1}. This completes our proof for the case d = 1.

Next, to prove it for general d, we write the sum as d-fold summation

1
Nd

∑
x∈G

e2π i⟨k−m,x⟩ = 1
Nd

N−1∑
j1=0

. . .

N−1∑
jd=0

e2π i(k1−m1) j1
N . . . e2π i(kd−md) jd

N =
d∏

t=1

1
N

N−1∑
jt=0

e2π i(kt−mt) jt
N .

Using the result of d = 1 case for each term in the product, we have

1
Nd

∑
x∈G

e2π i⟨k−m,x⟩ =
d∏

t=1
1[kt ≡ mt (mod N)] = 1[k ≡ m (modN)].
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Lemma D.6. Let u ∈ Hs(Td,R) such that ∥u∥Hs ≤ B and uN := {u(x) : x ∈ G} be its values on the
uniform grid G. Then, for all |m|∞ < N , we have

| DFT(uN )(−m) − ⟨φ−m, u⟩ | ≤

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣ .
Proof. Recall that

DFT(uN )(−m) = 1
Nd

∑
x∈G

u(x) e−2π i⟨m,x⟩.

Pick some M > N and write

u(x) =
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩ +

u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 .

We can then write

DFT(uN )(−m)

= 1
Nd

∑
x∈G

 ∑
k∈Zd

≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩ +

u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩


 e−2π i⟨m,x⟩

=
∑

k∈Zd
≤M

⟨φ−k, u⟩

(
1
Nd

∑
x∈G

e2π i⟨k−m,x⟩

)
+ 1
Nd

∑
x∈G

u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩

=
∑

k∈Zd
≤M

⟨φ−k, u⟩ 1[k ≡ m(mod N)] + 1
Nd

∑
x∈G

u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩,

where the final equality follows from Lemma D.5 as |m|∞ < N . Note that we can swap sums over G and Zd

in the first term because the sums converge absolutely when s > d/2 (see Lemma D.4). Thus, we obtain

| DFT(uN )(−m) − ⟨φ−m, u⟩ | ≤

∣∣∣∣∣ ∑
k∈Zd

≤M

⟨φ−k, u⟩1[k ≡ m(mod N)] − ⟨φ−m, u⟩

∣∣∣∣∣
+

∣∣∣∣∣∣∣
1
Nd

∑
x∈G

u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

 e−2π i⟨m,x⟩

∣∣∣∣∣∣∣
Using the uniform bound over x ∈ G for the second term and the following identity for the first term∑

k∈Zd
≤M

⟨φ−k, u⟩ 1[k ≡ m(mod N)] − ⟨φ−m, u⟩ =
∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)],

we obtain

| DFT(uN )(−m) − ⟨φ−m, u⟩ |

≤

∣∣∣∣∣∣∣
∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)]

∣∣∣∣∣∣∣+ sup
x∈G

∣∣∣∣∣∣∣u(x) −
∑

k∈Zd
≤M

⟨φ−k, u⟩ e2π i⟨k,x⟩

∣∣∣∣∣∣∣
20
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Recall that we have (i) | ⟨φ−k, u⟩ e2π i⟨k,x⟩| ≤ B and
∑

k∈Zd

∣∣⟨φ−k, u⟩ e2π i⟨k,x⟩
∣∣ < ∞ for s > d/2 using Lemma

D.4. The Weierstrass M-test implies that the second term converges to 0 uniformly over x ∈ Td as M → ∞.
Thus, we obtain∑

k∈Zd
≤M

\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)] −−−−→
M→∞

∑
k∈Zd\{m}

⟨φ−k, u⟩ 1[k ≡ m(mod N)]

=
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉
,

which completes our proof.

Lemma D.7. For any s ∈ N such that s > d/2, we have∑
k∈Zd\{0}

1
|k|2s

∞
≤ π2 3d−2.

Proof. Recall that |{m ∈ Zd : |m|∞ = j}| = 2(2j + 1)d−1. This is because one of the entry of m has to be
±j and other d− 1 entries could be anything in {−j . . . ,−1, 0, 1, . . . , j}. Thus,

∑
ℓ∈Zd\{0}

1
|ℓ|2s

∞
≤

∞∑
j=1

2(2j + 1)d−1

j2s
≤ 2 · 3d−1

∞∑
j=1

1
j2s−d+1 ≤ 2 · 3d−1

∞∑
j=1

1
j2 = 2 · 3d−1π2

6 = π2 3d−2.

The third inequality uses 2s− d ≤ 1 as s > d/2 and s ∈ N.

E Proof of Upper Bound (Theorem 3.2)

Before we prove Theorem 3.2, we need some notation. For any T ∈ T such that T =
∑

m∈Zd λm φm ⊗φ−m,
we define

r(T ) := E
(v,w)∼µ

[
∥Tv − w∥2

L2

]
= E

(v,w)∼µ

 ∑
m∈Zd

|λm ⟨φ−m, v⟩ − ⟨φ−m, w⟩|2


r̂(T ) := 1
n

n∑
i=1

∥Tvi − wi∥2
L2 = 1

n

n∑
i=1

∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2

where {(vi, wi)}n
i=1 is the sample accessible to the learner on a uniform grid of [0, 1]d. Then, using these

definitions, we can write

En(T̂N
K , T , µ) = E

[
r(T̂N

K ) − inf
T ∈T

r(T )
]

= E
[
r(T̂N

K ) − inf
T ∈TK

r(T )
]

+ inf
T ∈TK

r(T ) − inf
T ∈T

r(T ),

where TK is the truncated class defined as

TK :=


∑

m∈Zd
≤K

λm φm ⊗ φ−m

∣∣∣ sup
m∈Zd

≤K

|λm| ≤ C

 .

Furthermore, defining
T̂K ∈ arg min

T ∈TK

r̂(T ),
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we can decompose

En(T̂N
K , T , µ) = E

[
r(T̂N

K ) − r(T̂K)
]

︸ ︷︷ ︸
(I)

+E
[
r(T̂K) − inf

T ∈TK

r(T )
]

︸ ︷︷ ︸
(II)

+ inf
T ∈TK

r(T ) − inf
T ∈T

r(T )︸ ︷︷ ︸
(III)

.

First, it is easy to see that
(III) ≤ sup

T ∈T
inf

TK ∈TK

|r(T ) − r(TK)|.

To upper bound (II), let T ⋆
K ∈ TK such that r(T ⋆

K) = infT ∈TK
r(T ). Formally, for every ε > 0, we may

only be guaranteed the existence of T ⋆
K such that r(T ⋆

K) ≤ infT ∈TK
r(T ) + ε. However, as ε can be made

arbitrarily small, we can just choose it to be smaller than any error bound we obtain at the end. So, the
arguments below are rigorously justified.

Given such T ⋆
K , we can write

(II) = E[r(T̂K) − r(T ⋆
K)] = E[r(T̂K) − r̂(T̂K)] + E[r̂(T̂K) − r̂(T ⋆

K)] + E[r̂(T ⋆
K) − r(T ⋆

K)].

The last term of the sum vanishes because E[r̂(T ⋆
K)] = r(T ⋆

K). As for the second term, T̂K minimizes
empirical loss over the samples, implying r̂(T̂K) ≤ r̂(T ⋆

K). For the first term, we use the trivial bound
r(T̂K) − r̂(T̂K) ≤ supT ∈TK

|r(T ) − r̂(T )|. Overall, we obtain

(II) ≤ E
[

sup
T ∈TK

|r(T ) − r̂(T )|
]
.

Finally, we upper bound the term (I). Given K and N , for any T ∈ TK such that T =
∑

m∈Zd
≤K

λm φm⊗φ−m,
define

r̂N (T ) := 1
n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2 + 1

n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2.

Technically, the term r̂N (T ) also depends on K, but we drop K to avoid cluttered notation. Here, the first
term above is the empirical DFT-based least squares loss of T define in 3.2. The second term is introduced
purely for technical reasons to make our calculations work (see Section E.2). Since the second term does not
depend on T , our estimator T̂N

K is still the operator obtained by minimizing r̂N . Then, note that

(I) = E[r(T̂N
K ) − r̂N (T̂N

K )] + E[r̂N (T̂N
K ) − r̂N (T̂K)] + E[r̂N (T̂K) − r(T̂K)]

Note that the second term above satisfies r̂N (T̂N
K )− r̂N (T̂K) ≤ 0 almost surely because T̂N

K minimizes r̂N (T )
over all T ∈ TK . For the first and the third term, we use the bound

E[r(T̂N
K ) − r̂N (T̂N

K )] ≤ E[ sup
T ∈TK

|r(T ) − r̂N (T )|] and E[r̂N (T̂K) − r(T̂K)] ≤ E[ sup
T ∈TK

|r(T ) − r̂N (T )|].

Thus, we have

(I) ≤ 2E
[

sup
T ∈TK

|r(T ) − r̂N (T )|
]

≤ 2E
[

sup
T ∈TK

|r(T ) − r̂(T )|
]

+ 2E
[

sup
T ∈TK

|r̂(T ) − r̂N (T )|
]
,

where the final step uses the triangle inequality. Combining everything, we have established that

En(T̂N
K , T , µ) ≤ 3E

[
sup

T ∈TK

|r(T ) − r̂(T )|
]

+ 2E
[

sup
T ∈TK

|r̂(T ) − r̂N (T )|
]

+ sup
T ∈T

inf
TK ∈TK

|r(T ) − r(TK)|.

The first term is the statistical error, the second is the discretization error, and the final is the truncation
error. Next, we bound each of these terms individually.
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E.1 Upper bound on the truncation error supT ∈T infTK∈TK
|r(T ) − r(TK)|

Pick any T ∈ T . Then, there exists a sequence {λm}m∈Zd such that T =
∑

m∈Zd λm φm ⊗ φ−m. Define

TK :=
∑

m∈Zd
≤K

λm φm ⊗ φ−m.

Clearly, TK ∈ TK . Then, we have

r(T ) − r(TK) = E
(v,w)∼µ

[∥Tv − w∥2
L2 − ∥TKv − w∥2

L2 ]

= E
(v,w)∼µ

[∥Tv∥2
L2 − ∥TKv∥2

L2 + 2 ⟨(TK − T )v, w⟩]

≤ E
(v,w)∼µ

 ∑
m∈Zd

>K

|λm|2| ⟨φ−m, v⟩ |2 + 2
∑

m∈Zd
>K

∣∣∣λm ⟨φ−m, v⟩ ⟨φm, w⟩
∣∣∣


The final equality uses the following facts. First, we have ∥Tv∥2
L2 =

∥∥∑
m∈Zd λm ⟨φ−m, v⟩φm

∥∥2
L2 =∑

m∈Zd |λm|2| ⟨φ−m, v⟩ |2. Analogously, ∥TKv∥2
L2 =

∑
m∈Zd

≤K
|λm|2| ⟨φ−m, v⟩ |2. As for the second term,

we use

⟨(TK − T )v, w⟩ =
〈 ∑

m∈Zd
>K

λm ⟨φ−m, v⟩φm, w

〉
=

∑
m∈Zd

>K

λm ⟨φ−m, v⟩ ⟨φm, w⟩ .

Next, using the fact that |λm| ≤ C followed by Lemma D.3, the first term is

∑
m∈Zd

>K

|λm|2| ⟨φ−m, v⟩ |2 ≤ B2C2

K2s
.

As for the second term, using |λm| ≤ C followed by Cauchy-Schwarz implies

2
∑

m∈Zd
>K

|λm ⟨φ−m, v⟩ ⟨φm, w⟩ | ≤ 2C
√ ∑

m∈Zd
>K

| ⟨φ−m, v⟩ |2
√ ∑

m∈Zd
>K

| ⟨φm, w⟩ |2 ≤ 2CB2

K2s
,

where the final inequality holds because of Lemma D.3. Since T ∈ T is arbitrary, we have shown that

sup
T ∈T

inf
TK∈TK

|r(T ) − r(TK)| ≤ B2C(C + 2)
K2s

≤ B2(C + 1)2

K2s
.

E.2 Upper bound on the discretization error 2E
[

supT ∈TK
|r̂(T ) − r̂N (T )|

]
Fix T ∈ TK . Then, there exists {λm}m∈Zd

≤K
with |λm| ≤ C such that T =

∑
Zd

≤K
λm φm ⊗ φ−m. Then,

recall that

r̂N (T ) := 1
n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2 + 1

n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2.

Moreover, we also have

r̂(T ) = 1
n

n∑
i=1

∑
m∈Zd

≤K

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2 + 1
n

n∑
i=1

∑
m∈Zd

>K

| ⟨φ−m, wi⟩ |2,
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which yields

r̂N (T ) − r̂(T ) = 1
n

n∑
i=1

∑
m∈Zd

≤K

(∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2 − |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2

)
.

Next, we define

αim = DFT(vN
i )(−m) − ⟨φ−m, vi⟩ and βim = DFT(wN

i )(−m) − ⟨φ−m, wi⟩ .

We can then write∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2

= |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ + λm αim − βim|2

≤ |λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ |2 + 2|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ | |λmαim − βim| + |λmαim − βim|2.

Thus, we obtain

|r̂N (T ) − r̂(T )| ≤ 1
n

n∑
i=1

∑
m∈Zd

≤K

(
2|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩ | |λmαim − βim| + |λmαim − βim|2

)
≤ max

i∈[n]

∑
m∈Zd

≤K

2 (|λm ⟨φ−m, vi⟩ | + | ⟨φ−m, wi⟩ |) |λmαim − βim| | + |λmαim − βim|2.

Next, using Cauchy-Schwarz inequality, the first term of the summand can be bounded as∑
m∈Zd

≤K

|λm ⟨φ−m, vi⟩ | |λmαim − βim|

≤
√√√√ ∑

m∈Zd
≤K

|λm|2(1 + |m|2s
∞) | ⟨φ−m, vi⟩ |2

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s

∞

≤ BC

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s

∞
,

where the final inequality uses Lemma D.3 and the fact that |λm| ≤ C. Similar arguments show that

∑
m∈Zd

≤K

| ⟨φ−m, wi⟩ | |(λmαim − βim)| ≤ B

√√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s

∞
.

Overall, we have shown that

|r̂N (T ) − r̂(T )| ≤ max
i∈[n]

2B(C + 1)
√√√√ ∑

m∈Zd
≤K

|λmαim − βim|2
1 + |m|2s

∞
+

∑
m∈Zd

≤K

|λmαim − βim|2

 .

Now, recall that Lemma D.6 implies

max{|αim|, |βim|} ≤

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣ ,
24



Under review as submission to TMLR

which subsequently yields

|λmαim − βim|2 ≤ (C + 1)2

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣
2

.

Thus, we have∑
m∈Zd

≤K

|λmαim − βim|2

≤ (C + 1)2
∑

m∈Zd
≤K

∣∣∣∣∣∣
∑

ℓ∈Zd\{0}

〈
φ−(ℓN+m), u

〉∣∣∣∣∣∣
2

≤ (C + 1)2

 ∑
m∈Zd

≤K

 ∑
ℓ∈Zd\{0}

1
1 + |m+ ℓN |2s

∞

 ∑
ℓ∈Zd\{0}

(1 + |m+ ℓN |2s
∞) |

〈
φ−(ℓN+m), u

〉
|2

 .

,

where the final step follows from Cauchy-Schwarz inequality.

To upper bound the first sum within inner parenthesis, note that |m+ℓN |∞ ≥ |ℓN |∞−|m|∞ ≥ N |ℓ|∞−N/2 ≥
N/2 |ℓ|∞. Here, we use the fact that |m|∞ ≤ K ≤ N/2. So, we have∑

ℓ∈Zd\{0}

1
1 + |m+ ℓN |2s

∞
≤
(

2
N

)2s ∑
ℓ∈Zd\{0}

1
|ℓ|2s

∞
≤ 22sπ2 3d−2

N2s
,

where the final inequality uses Lemma D.7. Next, note that∑
m∈Zd

≤K

∑
ℓ∈Zd\{0}

(1 + |m+ ℓN |2s
∞) |

〈
φ−(ℓN+m), u

〉
|2 ≤

∑
k∈Zd

(1 + |k|2s
∞) | ⟨φ−k, u⟩ |2 ≤ B2,

where the second inequality follows from Lemma D.3. The first inequality holds because for each k ∈ Zd,
we have |{(m, ℓ) : m+ ℓN = k, m ∈ Zd

≤K and ℓ ∈ Zd\{0}}| ≤ 1. That is, for each k ∈ Zd, there is only one
possible pair (m, ℓ) such that k = m+ℓN . Suppose, for the sake of contradiction, there exists k ∈ Zd such that
two distinct pairs exist in the set, namely (m1, ℓ1) and (m2, ℓ2). Note that m1+ℓ1N−(m2+ℓ2N) = k−k = 0,
which implies (m1 −m2) = (ℓ2 − ℓ1)N . Clearly, we cannot have ℓ2 = ℓ1, otherwise, we will have m2 = m1,
contradicting the fact that there are two distinct pairs. So, we must have ℓ2 ̸= ℓ1. That is, |ℓ2 − ℓ1|∞ ≥ 1,
and thus |m1 − m2|∞ ≥ N . Moreover, |m1 − m2|∞ ≤ |m1|∞ + |m2|∞ ≤ 2K, which implies that 2K ≥ N .
This contradicts the fact that K < N/2. Therefore, overall, we have shown that∑

m∈Zd
≤K

|λmαim − βim|2 ≤ 22sπ2 3d−2 B2(C + 1)2

N2s
.

Next, we have √√√√ ∑
m∈Zd

≤K

|λmαim − βim|2
1 + |m|2s

∞
≤
√√√√ ∑

m∈Zd
≤K

|λmαim − βim|2 ≤ 2sπ
√

3d−2 B(C + 1)
Ns

.

Therefore, by combining everything, we have shown that

|r̂N (T ) − r̂(T )| ≤ 2s+1B2(C + 1)2

Ns
π

√
3d−2 + B2(C + 1)24s

N2s
π23d−2 ≤ 2 2s+1B2(C + 1)2

Ns
π

√
3d−2.

The final inequality holds when Ns ≥ 2s−1 π
√

3d−2, which is satisfied as long as N ≥ 6. As T ∈ TK is
arbitrary, we have shown that the discretization error

2E
[

sup
T ∈TK

|r̂(T ) − r̂N (T )|
]

≤ 2s+3π
√

3d−2B2(C + 1)2

Ns
≤ 2s+3

√
πdB2(C + 1)2

Ns
.
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E.3 Upper Bound on the Statistical Error 3E
[
supT ∈TK

|r(T ) − r̂(T )|
]

In fact, we will bound E [supT ∈T |r(T ) − r̂(T )|]. This can be viewed as the limit of the statistical error as
K → ∞. To that end, let σ1, . . . , σn denote iid random variables such that σi ∼ Uniform({−1, 1}). Standard
symmetrization arguments show that

E
[

sup
T ∈T

|r(T ) − r̂(T )|
]

≤ 2E
[

sup
T ∈T

∣∣∣∣∣ 1n
n∑

i=1
σi ∥Tvi − wi∥2

L2

∣∣∣∣∣
]

= 2E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2
∣∣∣∣∣∣


Note that

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2

= (λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩) (λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩)
= λm λm ⟨φ−m, vi⟩ ⟨φ−m, vi⟩ − λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩ − λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩ + ⟨φ−m, wi⟩ ⟨φ−m, wi⟩

= |λm|2 | ⟨φ−m, vi⟩ |2 −
(
λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩ + λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

)
+ | ⟨φ−m, wi⟩ |2.

The first and the last term above are real numbers, so the term in the parenthesis must also be a real number.
Using triangle inequality, the term Rademacher sum above can be upper-bounded as

E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

|λm ⟨φ−m, vi⟩ − ⟨φ−m, wi⟩|2
∣∣∣∣∣∣


≤ E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

|λm|2 | ⟨φ−m, vi⟩ |2
∣∣∣∣∣∣


︸ ︷︷ ︸
(i)

+E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

λm ⟨φ−m, vi⟩ ⟨φ−m, wi⟩

∣∣∣∣∣


︸ ︷︷ ︸
(ii)

+ E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


︸ ︷︷ ︸
(iii)

+E

∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

| ⟨φ−m, wi⟩ |2
∣∣∣∣∣


︸ ︷︷ ︸
(iv)

.

Let us start with the term (iv) first. Swapping the sum over m and i and using triangle inequality yields

(iv) = E

∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

| ⟨φ−m, wi⟩ |2
∣∣∣∣∣
 ≤

∑
m∈Zd

1
n
E

[∣∣∣∣∣
n∑

i=1
σi | ⟨φ−m, wi⟩ |2

∣∣∣∣∣
]

≤
∑

m∈Zd

1
n

(
n∑

i=1
| ⟨φ−m, wi⟩ |4

)1/2

,

where the final step follows from Khintchine’s inequality. Note that swapping the sums is justified because
both sums converge absolutely.
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For the term (iii), swapping the sum over m and i and using the fact that |λm| ≤ C yields

(iii) = E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣ 1n
n∑

i=1
σi

∑
m∈Zd

λm ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


= E

 sup
|λ|ℓ∞ ≤C

∣∣∣∣∣ 1n ∑
m∈Zd

λm

n∑
i=1

σi ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


≤ C E

 ∑
m∈Zd

∣∣∣∣∣ 1
n

n∑
i=1

σi ⟨φ−m, wi⟩ ⟨φ−m, vi⟩

∣∣∣∣∣


≤ C
∑

m∈Zd

1
n

(
n∑

i=1
| ⟨φ−m, wi⟩ ⟨φ−m, vi⟩ |2

)1/2

,

where the final step uses Khintchine’s inequality. Since |λm| ≤ C, we can use the same arguments to show
that

(ii) ≤ C
∑

m∈Zd

1
n

(
n∑

i=1
| ⟨φ−m, vi⟩ ⟨φ−m, wi⟩ |2

)1/2

,

and

(i) ≤ C2
∑

m∈Zd

1
n

(
n∑

i=1
| ⟨φ−m, vi⟩ |4

)1/2

.

Next, note that we can bound | ⟨φ0, u⟩ | ≤ B for all ∥u∥Hs ≤ B. Moreover, Lemma D.1 implies that
| ⟨φ−m, u⟩ | ≤ B

(2π)s |m|s
∞

for all m ̸= 0. Thus, we obtain the bound

(i) ≤ B2C2
√
n

+ C2
∑

m∈Zd\{0}

1
n

(
n∑

i=1

B4

(2π)4s

1
|m|4s

∞

)1/2

≤ B2C2 1√
n

+ B2C2

(2π)2s

1√
n

∑
m∈Zd\{0}

1
|m|2s

∞

≤ B2C2 1√
n

+ B2C2π23d−2

(2π)2s

1√
n
,

where the final inequality uses Lemma D.7. Similar calculations can be done to show that

(ii), (iii) ≤ B2C
1√
n

+ B2Cπ2 3d−2

(2π)2s

1√
n

and (iv) ≤ B2 1√
n

+ B2π23d−2

(2π)2s

1√
n
.

Thus, we have overall shown that

E
[

sup
T ∈T

|r(T ) − r̂(T )|
]

≤ 2 ((i) + (ii) + (iii) + (iv))

≤ 2(B2C2 + 2B2C +B2)
(

1 + π23d−2

(2π)2s

)
1√
n

= 2B2(C + 1)2
√
n

(
1 + π23d−2

(2π)2s

)
≤ 5

2
B2(C + 1)2

√
n

where we use the fact that
π23d−2

(2π)2s
≤ 1

22s

πd

π2s
≤ 1

22s
≤ 1

4
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as 2s > d and s ≥ 1. Therefore, the overall statistical error is

3E
[

sup
T ∈T

|r(T ) − r̂(T )|
]

≤ 8B2(C + 1)2
√
n

.

F Proof of Lower Bound (Theorem 3.3)

Proof. To define a difficult distribution for the learner, we need some notations. Let

ψ0 = φ0 and ψm = 1√
2

(φ−m + φm) for m ∈ Zd\{0}.

Note that ψm : Td → R is a real-valued function such that ∥ψm∥L2 = 1. We work with ψm’s to ensure that
the distribution is only supported over real-valued functions. For any {λk}k∈Zd such that λk = λ−k ∈ R, the
operator T =

∑
m∈Zd λmφm ⊗ φ−m satisfies

Tψm = 1√
2

(λm φm + λ−mφ−m) = λm√
2

(φ−m + φm) = λmψm ∀m ∈ Zd\{0}.

Clearly, Tψ0 = λ0ψ0. Next, let us define a sequence {γm}m∈Zd such that

γ0 = B√
s+ 1

and γm = B√
s+ 1 |m|s∞

∀m ∈ Zd\{0}.

Finally, define a set
J = {m ∈ Zd : m1 ∈ N and mj = 0 ∀j ̸= 1}.

For any M,N ∈ N, define J N
M = {m ∈ J : m1 ̸≡ 0 (mod N) and m1 ≤ M}. Let r ∈ Zd such that r ∈ J

and r1 = 1. That is, r = (1, 0, 0, . . . , 0). For any q ∈ Z, we write qr = (q, 0, 0, . . . , 0).

We now describe a difficult distribution for the learner. To that end, first draw a ξ := {ξm}m∈Zd such that
ξm = ξ−m is drawn from Uniform({−1, 1}). Then, given such ξ, let µξ be any joint distribution on V × W
such that its marginal on V assigns 1/3 mass uniformly on

{
γmψm : m ∈ J N

M

}
, 1/3 mass on γ0ψ0, and

the remaining 1/3 mass on γ(K+j)r ψ(K+j)r for either j = 1 or j = 2 ensuring that K + j ̸≡ 0 (mod N).
Moreover, given a v = γkψk drawn from the marginal of µξ, assign w | v to be ξkγkψk if k ̸= 0. On the other
hand, if k = 0, then w | v is ξNr γNr ψNr.

This is a valid distribution as

∥v∥2
Hs =

∑
k∈Nd

0 : |k|∞≤s

∥∥∂kv
∥∥2

L2 =
∑

k∈Nd
0 : |k|∞≤s

(mk1
1 γm)2

1[kj = 0 for all j ̸= 1]

= γ2
m

s∑
k1=0

|m|2k1
∞

≤ (s+ 1)γ2
m|m|2s

∞

≤ B2

Similar arguments show that ∥w∥2
Hs ≤ B2.

Next, we establish that

E
ξ

[
En(T̂N

K , T , µξ)
]

≥ B2

3(s+ 1)

(
1

8n + 2
(K + 2)2s

+ 1
N2s

)
.

Since the lower bound above holds in expectation, we can use the probabilistic method to argue that there
must exist a sequence ξ⋆ such that En(T̂N

K , T , µξ⋆) ≥ B2

3(s+1)

(
1

8n + 2
(K+2)2s + 1

N2s

)
.
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We now proceed with the proof of the claimed lowerbound. Let T̂N
K denote the estimator produced by the

algorithm. Then, there exists {λ̂m}m∈Zd
≤K

such that

T̂N
K =

∑
m∈Zd

≤K

λ̂m φm ⊗ φ−m.

For convenience, we will extend the sum to the entire Zd and write T̂N
K =

∑
m∈Zd λ̂m φm ⊗ φ−m, where

λ̂m = 0 for all m ∈ Zd
>K .

Given a ξ, we now lowerbound the expected loss of T̂N
K on µξ. Using the definition of the distribution µξ,

we have

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2
L2

]
= 1

3
1

|J N
M |

∑
m∈J N

M

(
λ̂m − ξm

)2
γ2

m + 1
3

∥∥∥λ̂0γ0ψ0 − ξNr γNr ψNr

∥∥∥2

L2
+ 1

3
∥∥0ψ(K+j)r − γ(K+j)r ψ(K+j)r

∥∥2
L2

≥ 1
3|J N

M |
∑

m∈J N
M

γ2
m 1[λ̂mξm ≤ 0] + λ̂2

0γ
2
0 + γ2

Nr

3 +
γ2

(K+j)r

3

≥ γ2
r

3|J N
M |

1[λ̂rξr ≤ 0] + λ̂2
0γ

2
0 + γ2

Nr

3 +
γ2

(K+2)r

3 .

Here, the first inequality use the fact that (λ̂m − ξm)2 ≥ 1 whenever λ̂mξm ≤ 0 and ⟨e0, eNr⟩L2 = 0. The
second inequality uses the fact that r ∈ J N

M as long as M,N > 1 and that γ2
(K+j)r ≥ γ2

(K+2)r for j ∈ {1, 2}.

Next, we establish the upper bound on the loss of the best-fixed operator. Given ξ, define an operator

Tξ =
∑

m∈Zd
>0

ξm φm ⊗ φ−m.

Clearly,

inf
T ∈T

E
(v,w)∼µξ

[∥∥Tv − w∥2
L2

∥∥]
≤ E

(v,w)∼µξ

[∥∥Tξv − w∥2
L2

∥∥]
= E

[∥∥Tξv − w∥2
L2

∥∥ ∣∣v = γ0ψ0
]
P[v = γ0ψ0] + E

[∥∥Tξv − w∥2
L2

∥∥ ∣∣v ̸= γ0ψ0
]
P[v ̸= γ0ψ0]

≤ ∥0 − ξNr γNr ψNr∥2
L2

1
3

≤ γ2
Nr

3 ,

where we use the fact that Tξv = 0 whenever v = γ0e0 and Tξv = w otherwise. Overall, we have shown that

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2
L2

]
− inf

T ∈T
E

(v,w)∼µξ

[∥∥Tv − w∥2
L2

∥∥]
≥ γ2

r

3|J N
M |

1[λ̂rξr ≤ 0] + λ̂2
0γ

2
0 + γ2

Nr

3 + γ2
t

3 − γ2
Nr

3

≥ 1
3(s+ 1)

(
1[λ̂rξr ≤ 0]

|J N
M |

+ λ̂2
0 + B2

(K + 2)2s

)
,

where the final inequality holds because γ0 = γr = B√
s+1 and γ(K+2)r = B√

s+1(K+2)2s .

Next, we establish lowerbound of λ̂2
0. To that end, let Sn = {(vi, wi)}n

i=1 denote the n samples accessible to
the learner over the uniform grid of size N . Recall our notation vN

i := {vi(x) : x ∈ G} and wN
i := {wi(x) :
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x ∈ G} for discretized samples. Take a sample (vi, wi) ∼ µξ. Then, we must have vi = γkψk for some
k ∈ Zd. Consider the case that k ̸= 0. Then, by definition of the distribution µξ, it must be the case that
k ̸≡ 0 (mod ) N. Then, Lemma D.5 implies that

DFT(vN
i )(−0) = 1

Nd

∑
x∈G

γk ψk(x) e−2π i⟨x,0⟩ = γk√
2Nd

(∑
x∈G

e−2π i⟨k,x⟩ +
∑
x∈G

e2π i⟨k,x⟩

)
= 0.

On the other hand, if vi = γ0ψ0, then we have

DFT(vN
i )(−0) = 1

Nd

∑
x∈G

γ0ψ0(x) = γ0

Nd

∑
x∈G

1 = γ0.

Additionally, when vi = γ0ψ0, we have wi = γNr ψNr. In this case, Lemma D.5 implies that

DFT(wN
i )(−0) = γNr

Nd

∑
x∈G

ψNr(x) = γNr√
2Nd

(∑
x∈G

e−2π i⟨Nr,x⟩ +
∑
x∈G

e2π i⟨Nr,x⟩

)
= γNr√

2
2 =

√
2γNr.

Using these facts, we can write the empirical least-square loss as

1
n

n∑
i=1

∑
m∈Zd

≤K

∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2

= |λ0 −
√

2 γNr|2

n

n∑
i=1

1[vi = γ0ψ0] + 1
n

n∑
i=1

1[vi ̸= γ0ψ0]
∣∣DFT(wN

i )(−m)
∣∣2

+ 1
n

n∑
i=1

∑
m∈Zd

≤K
\{0}

∣∣λm DFT(vN
i )(−m) − DFT(wN

i )(−m)
∣∣2

Thus, the least squares estimator for λ0 must be λ̂0 =
√

2γNr. That is,

λ̂2
0 = 2γ2

Nr = 2B2

(s+ 1)|Nr|s∞
= 2B2

(s+ 1)N2s
.

Note that this choice of λ̂0 is valid as λ̂0 ≤ 1. Thus, so far, we have shown that

E
(v,w)∼µξ

[
∥T̂N

K v − w∥2
L2

]
− E

(v,w)∼µξ

[∥∥Tξv − w∥2
L2

∥∥] ≥ B2

3(s+ 1)

(
1[λ̂rξr ≤ 0]

|J N
M |

+ 2
N2s

+ 1
(K + 2)2s

)

Our proof will be complete upon establishing that

1
|J N

M |
E
ξ

[
E

Sn∼µξ

[
1[λ̂rξr ≤ 0]

]]
≥ 1

8n

for an appropriate choice of M . To that end, let µV
ξ be the marginal of µξ on V and SV

n ∈ Vn denote the
restriction of samples Sn ∈ (V × W)n to its first arguments. Then, we can change the order of expectations
to write

E
ξ

[
E

Sn∼µξ

[
1[λ̂rξr ≤ 0]

]]
= E

SV
n ∼µV

n

[
E
ξ

[
1[λ̂rξr ≤ 0]

]]
≥ 1

2 P[γrψr /∈ SV
n ]

To understand why the final inequality holds, observe that when the event γrψr /∈ SV
n occurs, the learner has

no information about ξr. This implies that ξr and λ̂r are independent. Consequently, given that γrψr /∈ SV
n ,

the event λ̂rξr ≤ 0 has a probability of at least 1/2 since ξr is sampled uniformly from {−1,+1}.

Next, it remains to pick M such that
P[γrψr /∈ SV

n ]
|J N

M |
≥ 1

4n.
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To get this, we choose M = 2n. It is easy to verify that |J N
M | ≥ n whenever N > 1. This is true because no

more than half of integers in {1, 2, . . . , 2n} are divisible by N . Thus, we have

P[γrψr /∈ SV
n ] =

(
1 − 1

3|J N
M |

)n

≥
(

1 − 1
3n

)n

≥ 1
2

for any n ≥ 1. Noting that |J N
M | ≤ 2n completes our proof.
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