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Abstract001

The interaction with LLMs through instruc-002
tions has been extensively investigated in the003
research community. However, previous stud-004
ies have treated the emergence of instructions005
and the training of LLMs on task data as006
separate processes, overlooking the inherent007
unity between the two. This paper proposes008
a novel neural network framework, VaiBot,009
that integrates VAE and VIB, designed to uni-010
formly model, learn, and infer both instruc-011
tion deduction and instruction induction tasks012
of LLMs. Through experiments, we demon-013
strate that VaiBot performs on par with exist-014
ing baseline methods in terms of deductive ca-015
pabilities while significantly surpassing them016
in inductive capabilities. We also find that017
VaiBot can scale up using general instruction-018
following data and exhibits excellent one-shot019
induction abilities. We finally synergistically020
integrate the deduction and induction processes021
of VaiBot for the task of inductive reasoning.022
Through t-SNE dimensionality reduction, we023
observe that its inductive-deductive process sig-024
nificantly improves the distribution of training025
parameters, enabling it to outperform baseline026
methods in inductive reasoning tasks. The027
code and data for this paper can be found028
at https://anonymous.4open.science/r/VaiBot-029
021F.030

1 Introduction031

With the rise of Large Language Models (LLMs),032

an increasing number of researchers and applica-033

tion scenarios are beginning to explore interacting034

with LLMs through instructions. Instructions are a035

type of natural language that delineates task objec-036

tives, characterized by a high level of abstraction037

and refined task knowledge.038

Existing research has approached the interaction039

between instructions and LLMs from two objec-040

tives: deduction and induction. Specifically, given041

an instruction k, task inputs xi, and targets yi, de-042

duction requires the model to generate the target043

Task LLM

Translate the given text
into English.

 0.03 1.71 ...  3.29
-2.16 0.85 ...  0.52
           ....

 1.02 -0.96 ... -2.28

... ...

... ...

Figure 1: The basic concept of unifying the modeling
of instruction deduction and induction of LLMs.

yi based on the instruction k and input xi; whereas 044

induction demands the model to predict the task 045

instruction k based on a large number of xi and yi 046

as observations. 047

However, the previous studies have treated the 048

instruction deduction and induction of LLMs as 049

separate processes (§2), overlooking the inherent 050

unity between the two. In fact, instructions are a 051

compression of task data by humans through nat- 052

ural language, while the parameterized gradient 053

descent training of the LLMs, also constitutes a 054

compression of task data. Therefore, the param- 055

eters of an LLM after training on specific tasks 056

should exhibit a high degree of correlation with 057

the task instructions. Consequently, we propose to 058

learn the mutual mapping between the instructions 059

and the parameters, aiming to unify the modeling 060

of instruction deduction and induction of LLMs 061

(Figure 1). 062

Building upon this concept, we introduce Vai- 063

Bot (Variational autoencoder and information 064

Bottleneck) , a novel framework that integrates the 065

Variational Autoencoder (VAE) (Kingma, 2013) 066

and Variational Information Bottleneck (VIB) 067

(Alemi et al., 2016) to uniformly model, learn, and 068

infer both instruction deduction and induction tasks 069
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of LLMs. VaiBot operates by first encoding the in-070

struction k into a latent representation z via an071

encoder. This latent z then serves a dual purpose:072

it is utilized by a decoder to reconstruct the origi-073

nal instruction k, thereby facilitating the induction074

process (VAE). Concurrently, z is employed as sup-075

plementary parameters for a Task LLM, aiming to076

predict the target yi from the given input xi, which077

is a deduction process (VIB). The two objectives078

together with the regularization term are end-to-079

end jointly optimized to learn the functions of the080

encoder, decoder, and Task LLM.081

We initially conducted a series of experiments to082

validate the effectiveness of VaiBot in both deduc-083

tion and induction tasks. The experimental results084

revealed that VaiBot’s deductive capabilities are085

on par with those of supervised fine-tuning (SFT)086

and meta-learning. In terms of inductive capabil-087

ities, VaiBot achieved more than a 40% improve-088

ment in in-distribution performance and over a 20%089

improvement in out-of-distribution performance090

compared to traditional induction methods (§2.2).091

Additionally, by conducting induction tasks with092

varying numbers of observed samples, we found093

that VaiBot exhibits superior 1-shot induction capa-094

bilities compared to data-based induction methods.095

We further trained VaiBot using general096

instruction-following data and observed that, as097

the volume of training increased, it developed the098

ability to generalize across tasks for both deduction099

and induction, demonstrating that the architecture100

can effectively scale up.101

Finally, we synergistically combine the deduc-102

tive and inductive processes of VaiBot to perform103

inductive reasoning. Compared to baseline meth-104

ods such as ICL and Instruction Induction (Hon-105

ovich et al., 2023), VaiBot is much more effective106

in conducting inductive reasoning. Through t-SNE107

dimensionality reduction, we observed that the108

induction-deduction process of VaiBot significantly109

improved the distribution of the latent, thereby en-110

abling the Task LLM to achieve superior reasoning111

performance.112

In summary, this paper makes the following con-113

tributions:114

• We propose a novel neural network framework,115

VaiBot, that integrates VAE and VIB, designed116

to uniformly model, learn, and infer both instruc-117

tion deduction and instruction induction tasks of118

LLMs.119

• We demonstrate that VaiBot performs on par with120

existing baseline methods in terms of deductive 121

capabilities while significantly surpassing them 122

in inductive capabilities. We also find that VaiBot 123

can scale up using general instruction-following 124

data and exhibits excellent one-shot induction 125

abilities. 126

• We synergistically integrate the deduction and in- 127

duction processes of VaiBot. Through t-SNE 128

dimensionality reduction, we observe that its 129

induction-deduction process significantly im- 130

proves the distribution of training parameters, 131

enabling it to outperform baseline methods in 132

inductive reasoning tasks. 133

2 Related Work 134

2.1 Instruction-based LLM Deduction 135

Given an instruction, how to ask LLM to perform 136

deduction based on it, i.e. instruction following, 137

has been widely considered by researchers. Pre- 138

vious studies such as IFEval (Zhou et al., 2023), 139

InfoBench (Qin et al., 2024), and RuleBench (Sun 140

et al., 2024b) have been instrumental in evaluat- 141

ing the capacity of large models to follow the in- 142

structions, also demonstrating that instruction fine- 143

tuning (IFT) can significantly bolster this capabil- 144

ity. 145

Different from the prompt-level instruction- 146

following paradigm, Meta-Learning methods like 147

Hint (Ivison et al., 2023) and TAGI (Liao et al., 148

2024) have tried training a hyper-network to encode 149

the instruction into some extra parameters of LLMs 150

to execute the instruction. However, these Meta- 151

Learning methods rely heavily on supervised train- 152

ing conducted in advance on each subtask to obtain 153

(instruction, parameter) pairs as training data for 154

the hyper-network. 155

VaiBot employs a similar hyper-network archi- 156

tecture that maps instructions to LLMs’ parameters, 157

but it further integrates a reconstruction process, 158

enabling the training of this hyper-network to no 159

longer depend on pre-prepared (parameter, instruc- 160

tion) pairs. Instead, it can be trained on general 161

instruction-following datasets. 162

2.2 Instruction-oriented LLM Induction 163

For the sake of interpretability and generalization, 164

some previous works also try to induce instruction 165

from task observations through LLMs. Some eval- 166

uation studies (Mirchandani et al., 2023; Gendron 167

et al., 2023; Mitchell et al., 2023) have consistently 168

demonstrated that current LLMs are poor at the 169
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Figure 2: The framework of VaiBot. The Training process is represented with filled colors and the inference process
is represented with border colors.

task of induction. To improve LLMs’ capability170

of induction, methods such as Hypothesis Search171

(Wang et al., 2023) and ItD (Sun et al., 2024a)172

have modeled induction as a sequence generation173

task, attempting to enhance the inductive abilities174

of large models through approaches like sampling-175

selecting and augmenting-finetuning.176

However, these methods are confined to data-177

based induction and overlook the fact that the pa-178

rameters of neural networks, once trained to con-179

verge on task data, provide highly indicative cues180

for the objectives of induction. VaiBot introduces181

parameter-based induction, and our experiments182

have demonstrated that this approach significantly183

outperforms the previous series of data-based in-184

duction methods.185

3 VaiBot186

VaiBot is trained to map a given textual knowledge187

k to a latent z, which not only can serve as the extra188

parameters of an LLM, to solve the downstream189

task (VIB); but can also used for reconstruct the190

textual knowledge k (VAE). It is mainly composed191

of three models:192

• Encoder. A textual encoder that encode the193

knowledge k to the latent z. This mapping is194

denoted as Enc(·).195

• Decoder. An auto-regressive decoder that de-196

code the latent z to the textual knowledge k. The197

distribution of decoder is denoted as pdec(·).198

• Task LLM. An LLM that solve the downstream 199

task. The distribution of Task LLM is denoted as 200

ptask(·). 201

In the following part of this section, we will in- 202

troduce how these three models are jointly trained 203

and how they are used for neural-symbolic bidirec- 204

tional inference. 205

3.1 Training 206

As shown in Figure 2, our training data consists of 207

triples (k, x, y), where k is the textual knowledge, 208

x, y are the input-target pairs that y can be inferred 209

from x using the textual knowledge k. 210

First, VaiBot uses the Encoder to encode the 211

knowledge k into a high-dimension diagonal nor- 212

mal distribution, and calculate the regularization 213

loss Jreg using Kullback–Leibler (KL) divergence. 214

µ,Σ = Enc(k) (1) 215

Lreg = DKL(N (·|µ,Σ)||N (·|0, I)) (2) 216

Then, the latent z is sampled from the encoded nor- 217

mal distribution, here, the reparametrization trick 218

(Kingma et al., 2015) is adopted to maintain the gra- 219

dient flow. VaiBot then uses the Decoder to attempt 220

to reconstruct the knowledge k from the latent rep- 221

resentation z, and calculate the reconstruction loss 222

Lrecon. This corresponds to the objective of VAE. 223

z ∼ N (·|µ,Σ) (3) 224

Lrecon = − log pdec(k|z) (4) 225
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Figure 3: The loss curve of VaiBot trained on SNI with respect to the training steps.

Meanwhile, the latent representation z is taken as226

the extra parameters of the Task LLM. The Task227

LLM is asked to infer on the given task instance228

x, y, and calculate the task loss Ltask. This corre-229

sponds to the objective of VIB.230

Ltask = − log ptask(y|z;x) (5)231

To maintain and leverage the existing well-trained232

natural language distribution of the Task LLM and233

auto-regressive Decoder, we add textual condition:234

instruction k for the Task LLM, and one pair of in-235

stance x, y for the Decoder. So the Eq 4,5 become236

into:237

Lrecon = − log pdec(k|z;x, y) (6)238

Ltask = − log ptask(y|z;x, k) (7)239

The final objective function is the weighted sum of240

the three loss terms, and we minimize it under the241

distribution of training data.242

L = E(k,x,y)∼pdataw0Lreg + w1Ltask + w2Lrecon

(8)243

3.2 Symbolic to Neural Inference244

As indicated by the orange border arrows in the245

Figure 2, given a textual knowledge k, to perform246

the inference on the task input x, VaiBot encodes247

the knowledge k into the latent representation z,248

and uses the Task LLM to generate an output via249

auto-regressive generation. 250

µ,Σ = Enc(k) (9) 251

z ∼ N (·|µ,Σ) (10) 252

ŷ ∼ ptask(·|z;x, k) (11) 253

3.3 Neural to Symbolic Inference 254

As indicated by the blue border arrows in the Fig- 255

ure 2, given the multiple instances T = (xi, yi)
n
i=1, 256

to infer their shared knowledge k, VaiBot first fine- 257

tune the Task LLM on the instances T to obtain 258

the converged latent representation z∗. Here, we 259

adopt an indirect training trick to fine-tune the Task 260

LLM, which is to create a trainable tensor k̃, and 261

then encode k̃ into the normal distribution to get the 262

trainable latent representation z̃, instead of directly 263

initializing the z̃, taking it as the leaf parameters of 264

the computation graph. 265

µ̃, Σ̃ = Enc(k̃) (12) 266

z̃ ∼ N (·|µ̃, Σ̃) (13) 267

J k̃
task(x, y) = − log ptask(y|x; z̃) (14) 268

Through minimizing J k̃
task on training task samples 269

x, y, we obtain the converged k̃. However, what 270

we want is the converged latent representation z∗: 271

k∗ = argmin
k̃

1

n

n∑
i=1

Jtask(xi, yi) (15) 272

µ∗,Σ∗ = Enc(k∗) (16) 273

z∗ ∼ N (·|µ∗,Σ∗) (17) 274
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Figure 4: The OOD induction & deduction performance
of VaiBot-pretrain with respect to the ratio of used pre-
trained data.

Finally, we randomly sample a pair of (x∗, y∗)275

from T to leverage the well-trained natural lan-276

guage distribution of the Decoder. Under this con-277

dition, we can decode the trained parameters z∗278

into explainable textual knowledge k:279

k̂ ∼ pdec(·|z∗;x∗, y∗) (18)280

4 Experiment Settings & Training281

In this section, we introduce the experiment set-282

tings and the training of the VaiBot. We employ283

Llama-2-7b-chat (Touvron et al., 2023) as the base284

language model M . Task LLM is M itself while285

Encoder, Decoder is M with two LoRA (Hu et al.,286

2021) of rank 16 and 1, respectively. To facili-287

tate efficient batch training & inference, we adopt288

prompt tuning (Lester et al., 2021) as the additional289

parameters of the Task LLM. The number of soft290

tokens is set to 10, and thus the dimension of z291

is 10 × 4096 = 40960. All other baselines that292

need training (later introduced in §5,6) will take293

the z of the same size as the training parameters294

for fair comparisons. The weights of the loss terms295

w0, w1, w2 are set to 1e-3, 1.0, 1.0, respectively.296

We adopt two popular multi-task instruction297

datasets: Super-Natural Instructions (SNI, Wang298

et al. 2022) and T0 split of P3 (P3, Sanh et al. 2021)299

for evaluation. We first split each dataset into seen300

tasks (90%) and unseen tasks (10%). For each301

subtask, we only leave 5 instances as test samples,302

and use the rest as training samples. Therefore,303

for methods that are trained on seen tasks, the test304

results on seen tasks reflect their sample-level gen-305
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Figure 5: The induction performance of VaiBot and SFT
on SNI with respect to the number of observed samples.
The accuracy is the average accuracy over all seen and
unseen tasks.

eralization ability, while the test results on unseen 306

tasks reflect their task-level generalization ability. 307

Besides training VaiBot with data from seen 308

tasks for 10 epochs (VaiBot-in-domain), we ad- 309

ditionally adopt around 437k instruction following 310

data (Appendix A) to pretrain VaiBot for 1 epoch 311

(VaiBot-pretrain). Note that, here we mean “pre- 312

train" by training VaiBot to newly learn to generate 313

and leverage the latent z from general textual data, 314

instead of randomly initializing the base model M . 315

In Figure 3, we present the training loss curves 316

for the three components during the training of 317

VaiBot-in-domain on the SNI dataset, plotted 318

against the training steps. The concurrent decrease 319

in both reconstruction loss and task loss demon- 320

strates that VaiBot effectively integrates the train- 321

ing processes of VAE and VIB. Regarding the reg- 322

ularization loss, the weight term w0 controls the 323

trade-off between reconstruction fidelity and the 324

quality of disentanglement within the learned latent 325

z (Higgins et al., 2017). Our experimental explo- 326

ration of various w0 values for the regularization 327

term revealed that the performance of VaiBot re- 328

mains robust across different settings, indicating a 329

relative insensitivity to this parameter. 330

5 Induction & Deduction 331

In this section, we verify the effectiveness of Vai- 332

Bot on separate deduction and induction tasks. In 333

the deduction task, the model is provided with task 334

knowledge k and input x, and asked to generate 335

the target y; In the induction task, the model is pro- 336
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Dataset SNI P3

method
seen tasks (90%) unseen tasks (10%) seen tasks (90%) unseen tasks (10%)

deduction induction deduction induction deduction induction deduction induction

prompting * 12.70 20.63 12.21 26.32 21.78 2.78 23.28 4.76
vanilla SFT 29.42 49.20 28.56 27.78 35.89 45.00 37.31 19.05
TAGI 32.02 - 23.33 - 36.33 - 47.62 -
ItD - 43.85 - 33.33 - 33.33 - 28.57

VaiBot-in-domain 33.26 85.56 21.11 44.44 48.67 78.33 58.10 28.57
VaiBot-pretrain * 30.37 36.36 32.22 50.00 38.22 20.00 49.52 19.05

Table 1: The induction & deduction performance of VaiBot and baselines on SNI and P3. Methods marked with *
are not trained on seen tasks. - indicates that the method is not applicable to that task.

vided with 5 test samples {x, y} as the observation,337

and asked to generate the task knowledge k. For338

the evaluation of both tasks, this paper adopts an339

external LLM (gpt-4o-mini1) as a judge to deter-340

mine whether the prediction is correct, the prompts341

for the judge are shown in the Appendix B and the342

examples of deduction and induction are shown in343

Appendix C.344

We adopt the following methods as the baselines:345

• prompting. This method simply prompts the346

LLM M with the task knowledge k and input x347

to infer the target y (deduction) and prompts the348

LLM M with multiple instances (x, y) to infer349

the task knowledge k (induction).350

• vanilla SFT. Based on the prompting method,351

we fine-tune the LLM M based on the training352

data of seen tasks to learn the task of deduction353

and induction.354

• TAGI. TAGI (Liao et al., 2024) is a typical meta-355

learning-based method that fuses the knowledge356

into the Task LLM through hyper-network. It357

first trains the “reference” parameters of the Task358

LLM on the training data, and then leverages the359

(knowledge, parameters) pairs to train the hyper-360

network. TAGI can only be used in the deduction361

task.362

• ItD. ItD (Sun et al., 2024a) is a recently proposed363

method that can empower the induction ability364

of the language model. It first decomposes the365

joint distribution of p(x, y, k) with a deduction366

perspective into the knowledge prior p(k) and367

deduction likelihood p(y|x, k)p(x|k), and sam-368

ple from them. Then, it fine-tunes the language369

model with the sampled data in the form of in-370

duction: p(k|x, y). ItD can only be used in the371

induction task.372

1https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

5.1 Comparison with Baselines 373

We first compare the accuracy of VaiBot on de- 374

duction and induction with baselines. As shown 375

in Table 1, while VaiBot-in-domain demonstrates 376

competitive deduction ability compared to SFT and 377

TAGI, it shows impressive induction ability com- 378

pared to other data-based induction methods, not 379

only outperforming ItD and vanilla SFT on the 380

seen tasks, but also on the unseen tasks by a large 381

margin. Moreover, the VaiBot-pretrain also demon- 382

strates competitive performance on two datasets 383

although it is not trained on the in-domain data. 384

These results indicate that VaiBot demonstrates ex- 385

cellent sample-level generalization and task-level 386

generalization abilities on both tasks of deduction 387

and induction. 388

5.2 Ablations 389

To verify the effectiveness of textual condition and 390

indirect training trick proposed in §3.1, we con- 391

duct an ablation study of VaiBot by dropping these 392

parts. As shown in Table 2, if dropping the tex- 393

tual condition x, y for the Decoder, or tuning z 394

without the indirect training trick, the induction 395

performance will greatly decrease; if dropping the 396

textual condition k for the Task LLM, the deduc- 397

tion performance will be harmed to some extent. 398

These findings verify that the textual conditions 399

and indirect training tricks we adopt are beneficial 400

for NestVaiBot. 401

5.3 Generalization with Scaling Up 402

To visualize the generalization process of VaiBot, 403

we pretrain it using varying proportions of the en- 404

tire pretraining dataset and evaluate its performance 405

on the induction and deduction tasks for SNI and 406

P3. The resulting performance curve is depicted 407

in Figure 4. From the curve, it is evident that Vai- 408
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Dataset SNI P3

method
seen task (90%) unseen task (10%) seen task (90%) unseen task (10%)

deduction induction deduction induction deduction induction deduction induction

VaiBot-in-domain 33.26 85.56 21.11 44.44 48.67 78.33 58.10 28.57
w/o textual condition x, y 31.65 0.53 16.67 0.00 45.67 11.67 54.29 4.76
w/o textual condition k 32.94 84.49 4.44 22.22 48.22 80.00 56.19 33.33
w/o indirect training 29.52 1.59 14.74 0.00 38.00 7.78 49.52 4.76

VaiBot-pretrain 30.37 36.36 32.22 50.00 38.22 20.00 49.52 19.05
w/o textual condition x, y 28.77 0.53 27.78 0.00 37.00 0.56 47.62 0.00
w/o textual condition k 18.29 36.90 10.00 44.44 24.44 19.44 31.43 28.57
w/o indirect training 28.98 2.14 26.67 0.00 40.72 4.42 48.57 3.57

Table 2: The ablation results of VaiBot on SNI and P3.

Dataset SNI P3

method seen task (90%) unseen task (10%) seen task (90%) unseen task (10%)

ICL 10.91 14.44 13.22 22.86
Instruction Induction 12.80 7.37 17.00 27.62

VaiBot-in-domain
SFT 11.98 5.56 27.00 30.48
Refined 33.37 3.33 46.89 59.05

VaiBot-pretrain
SFT 3.42 3.33 10.89 21.90
Refined 21.39 20.00 26.56 33.33

Table 3: The inductive reasoning results of VaiBot and baselines on SNI and P3.

Bot’s induction and deduction capabilities improve409

progressively as the volume of pretraining data410

increases. Notably, the deduction ability exhibits411

rapid growth and early convergence with increasing412

pretraining data, whereas the induction ability con-413

verges at a later stage. This observation aligns with414

the perspective highlighted in prior works (Bang415

et al., 2023; Tang et al., 2023; Sun et al., 2024a),416

which posit that "induction is harder than deduc-417

tion for LLMs." These findings further validate the418

inherent complexity of inductive reasoning com-419

pared to deductive reasoning in the context of large420

language models.421

5.4 Few-shot Induction422

To further highlight the superiority of VaiBot, we423

conduct a comparative analysis between VaiBot424

and SFT across varying numbers of observed sam-425

ples. Specifically, we train SFT with 1 to 6 ob-426

served samples and evaluate both VaiBot and SFT427

using the corresponding number of testing observa-428

tions. As illustrated in Figure 5, VaiBot achieves429

nearly optimal induction performance even when430

observing just 1 sample, whereas SFT requires a431

larger number of observed samples to enhance its432

induction capabilities. These results underscore433

VaiBot’s superiority in few-shot induction, demon-434

strating its ability to perform effectively even in 435

one-shot induction scenarios. 436

6 Inductive-Deductive Collaborative 437

Reasoning 438

To verify whether VaiBot can effectively col- 439

laborate the induction and deduction processes, 440

we further consider the inductive reasoning 441

task. In this task, models are asked to infer y 442

with input x and some few-shot demonstrations 443

x1, y1;x2, y2; ...;xn, yn. Compared with the task 444

of deduction, inductive reasoning provides no task 445

knowledge k to the model, and the model is sup- 446

posed to induce the task knowledge from the given 447

observations and then apply it to the test input. We 448

adopt the following methods for comparison: 449

• ICL. We adopt in-context learning (ICL) 450

as the basic method of inductive reason- 451

ing. Specifically, we splice the observations 452

xi, yi and the input x together into a prompt: 453

x1, y1;x2, y2; ...;xn, yn;x, and let the LLM to 454

generate the correspond y. 455

• Instruction Induction. Instruction Induction 456

(Honovich et al., 2023) proposed to explicitly 457

induce textual instruction k from the observa- 458

tions x1, y1;x2, y2; ...;xn, yn, and then prompt 459

7



Type
Ground truth
VaiBot-SFT

VaiBot-Refined

Figure 6: The t-SNE result of latent z on SNI.
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Figure 7: The t-SNE result of latent z on P3.

the LLM with the query x and instruction k to460

perform inductive reasoning.461

• VaiBot SFT. With the well-trained VaiBot, First,462

follow the inference process in §3.3, we fine-tune463

the Task LLM on the demonstrations, to obtain464

the converged parameters z∗. We use this fine-465

tuned z∗ for the Neural to Symbolic Inference466

ptask(·|z∗;x) (§3.3).467

• VaiBot Refined. In this method, we collaborate468

the inductive & deductive ability of VaiBot to469

perform inductive reasoning. We first leverage470

the z∗ to decode the induced task knowledge k̂.471

Then, follow the inference process in §3.2, we472

again encoded the knowledge k̂ into ẑ, and finally473

infer y with ptask(·|ẑ;x). Note that although we474

have obtained the textual knowledge k and we475

have proved it beneficial for deduction §5.2, we476

do not add it as the additional textual condition477

(i.e. ptask(·|ẑ;x, k)) as we want to directly com-478

pare the quality of z.479

6.1 Comparison with Baselines480

As illustrated in Table 3, the direct fine-tuned z∗481

(VaiBot SFT) demonstrates limited effectiveness482

in assisting the Task LLM to predict y based on483

x. However, a significant improvement is observed484

when z∗ is first decoded into k̂ and subsequently485

re-encoded into ẑ. This approach substantially en-486

hances the Task LLM’s performance with ẑ, sur-487

passing the ICL baseline by a considerable margin.488

These findings suggest that VaiBot effectively in-489

tegrates its deductive and inductive capabilities to490

facilitate inductive reasoning.491

6.2 Semantic Distribution of the Latent492

To elucidate why the decode-encode collaborative493

process of z significantly enhances VaiBot’s induc-494

tive reasoning capabilities, we generate and analyze 495

three distinct types of z: 496

• Ground truth. We use the VaiBot to encode the 497

annotated k of the dataset into z. 498

• SFT. The trained z∗ after VaiBot SFT. 499

• Refined. The ẑ that is obtained by VaiBot Re- 500

fined. 501

We employ t-SNE (Van der Maaten and Hinton, 502

2008) for dimensionality reduction, projecting all 503

z into a 2D plane and differentiating their types 504

with distinct colors. As depicted in Figure 6 and 505

Figure 7, the trained latent from SFT significantly 506

deviates from the ground truth latent. However, 507

by performing the induction-deduction collabora- 508

tive process, the refined latent becomes markedly 509

closer to and aligned with the ground truth (green 510

and blue). These findings demonstrate that Vai- 511

Bot effectively refines the trained latent, adapting 512

it to better align with true semantic representations, 513

thereby enhancing its inductive reasoning perfor- 514

mance. 515

7 Conclusion 516

This paper proposes VaiBot, a novel neural network 517

framework that integrates VAE and VIB, designed 518

to uniformly model, learn, and infer both instruc- 519

tion deduction and instruction induction tasks of 520

LLMs. A series of experiments are conducted to 521

verify the effectiveness of VaiBot, which performs 522

on par with existing baseline methods in terms of 523

deductive capabilities while significantly surpass- 524

ing them in inductive capabilities. Moreover, by 525

combining the process of induction and deduction 526

in VaiBot, we find that VaiBot can perform excel- 527

lent inductive reasoning through refining the latent. 528
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Limitations529

The scope of deduction and induction is limited530

to instruction in this work, while other forms of531

task information such as rules may compress more532

difficult and informative task knowledge. We will533

expand and scale up VaiBot to this scope in the534

future.535

Ethics Statement536

This paper proposes VaiBot, a novel neural network537

framework that integrates VAE and VIB, designed538

to uniformly model, learn, and infer both instruc-539

tion deduction and instruction induction tasks of540

LLMs. All experiments are conducted on publicly541

available datasets. Thus there is no data privacy542

concern. Meanwhile, this paper does not involve543

human annotations, and there are no related ethical544

concerns.545
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A Instruction-following Data for Pretraining VaiBot 659

We collect and process the instruction-following data from the following HuggingFace datasets for the 660

pretraining of VaiBot: 661

• xzuyn/manythings-translations-alpaca 662

• MBZUAI/LaMini-instruction 663

• tatsu-lab/alpaca 664

• silk-road/alpaca-data-gpt4-chinese 665

• yizhongw/self_instruct 666

B Prompts for the LLM Judge 667

Prompt for Deduction

Role: System
Here are an instruction, an input, an reference answer and a predicted answer. Please help me
determine if the predicted answer is correct. Only return “True" or “False".
Role: User
instruction: {k}
input: {x}
reference answer: {y}
predicted answer: {ŷ}

Figure 8: The prompt for the external LLM to judge if the deduction result ŷ is correct for the current case. k, x, y
stands for the knowledge, the input, and the target answer of the current cases, respectively.

Prompt for Induction

Role: System
Here are two instructions described in natural language. Please help me determine if these two
instructions are equivalent. Only return “True" or “False".
Role: User
transformation A: {k}
transformation B: {k̂}

Figure 9: The prompt for the external LLM to judge if the induction result k̂ is correct for the current case. k stands
for the knowledge of the current cases.

C Examples of Deduction and Induction 668

11



Example for Deduction

Instruction k:
In this task, you are given a country name and you need to return the capital city of the given country

Case 1:
Input x: Angola
Prediction ŷ: The capital city of Angola is Luanda.

Target y: Luanda
Score: 1

Case 2:
Input x: Australia
Prediction ŷ: The capital city of Australia is Canberra.

Target y: Canberra
Score: 1

Case 3:
Input x: Bangladesh
Prediction ŷ: Dhaka is the capital city of Bangladesh.

Target y: Dhaka
Score: 1

Case 4:
Input x: Armenia
Prediction ŷ: Yerevan.

Target y: Yerevan
Score: 1

Case 5:
Input x: Barbados
Prediction ŷ: The capital city of Barbados is Bridgetown.

Target y: Bridgetown
Score: 1

Figure 10: An example case of deduction task.
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Example for Induction

Observations:
Input x: Angola
Target y: Luanda

Input x: Australia
Target y: Canberra

Input x: Bangladesh
Target y: Dhaka

Input x: Armenia
Target y: Yerevan

Input x: Barbados
Target y: Bridgetown

Ground truth instruction k:
In this task, you are given a country name and you need to return the capital city of the given country

Predicted instruction k̂:
Name the capital of the given country.

Score:
1

Figure 11: An example case of induction task.
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