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Figure 1. Given a reference image and a target expression defined by a 3DMM and text, Joker generates a 3D model of the subject.

Abstract

We introduce Joker, a new method for the conditional

synthesis of 3D human heads with extreme expressions.

Given a single reference image of a person, we synthe-

size a volumetric human head with the reference’s identity

and a new expression. We offer control over the expres-

sion via a 3D morphable model (3DMM) and textual in-

puts. This multi-modal conditioning signal is essential since

3DMMs alone fail to define subtle emotional changes and

extreme expressions, including those involving the mouth

cavity and tongue articulation. Our method is built upon

a 2D diffusion-based prior that generalizes well to out-of-

domain samples, such as sculptures, heavy makeup, and

paintings while achieving high levels of expressiveness. To

improve view consistency, we propose a new 3D distillation

technique that converts predictions of our 2D prior into a

neural radiance field (NeRF). Both the 2D prior and our

distillation technique produce state-of-the-art results, which

are confirmed by our extensive evaluations. Also, to the best

of our knowledge, our method is the first to achieve view-

consistent extreme tongue articulation. Project Page

1. Introduction

Human head avatars have manifold applications in areas

such as AR/VR telepresence [33, 42, 53], video games [51,

73], and visual effects [37, 44]. To facilitate downstream

applications, techniques for creating 2D head avatars from

a single image, often controlled by keypoints, parametric

models, and other driving modalities, have been widely

studied [14, 15, 25, 49, 57, 60, 63, 64, 66]. However, in

many cases, a view-consistent 3D model of a human subject

is required to enable rendering in fully virtual environments.

To address this problem, multiple techniques for re-

constructing a 3D model of the human subject have been

developed [11, 12, 31, 36, 53–55]. Human expressions

and appearances, however, have a long-tailed distribution.

Mouth cavities and tongues are examples of the areas

that are traditionally difficult to capture and, thus, present

a challenge for modern avatar systems. Large head ro-

tations are further challenging scenarios, as such exam-

ples are missing in most of the existing human-centric

datasets [8, 29, 65, 72]. Some approaches [1, 45, 68] ad-

dressed this problem by training avatar reconstruction meth-
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ods using synthetic datasets of digital human assets ren-

dered via classical graphics pipelines. However, their pho-

torealism and expressiveness still remain subpar. Another

group of works [17, 18, 40, 42] extended linear paramet-

ric head models [2, 27, 34] with non-linear neural compo-

nents trained from multi-view datasets [32, 62]. However,

collecting such data is expensive, and these approaches can

not create avatars with controllable tongues or from a sin-

gle image. To address these challenges, we propose a novel

approach with multi-modal control for extreme expression

synthesis. Our method follows an existing line of works on

human-centric image synthesis [20, 21, 63] and fine-tunes a

pre-trained Stable Diffusion [47] model paired with a Con-

trolNet [69]. We then introduce multi-modal driving in-

puts to achieve robust and realistic novel-view synthesis of

rare and extreme expressions. Our conditioning signal com-

bines the parameters of a 3DMM with a textual prompt. We

found that text prompts greatly supplement the control with

3DMM parameters by resolving ambiguities w.r.t. subtle

emotional changes and tongue articulations.

View consistency is achieved by optimizing a 3D

NeRF [43] from the predictions of our diffusion prior us-

ing a novel distillation procedure. Existing 3D distillation

approaches [16, 46, 48, 56, 59, 61, 71] exploit 2D diffu-

sion models to predict pseudo-ground-truth target images

from noised renders of the current 3D representation. Most

of these methods update these target images for every opti-

mization step of the 3D representation – i.e., utilize dynamic

targets. In a recent concurrent work [16], it was shown that

improved performance can be achieved by generating all

pseudo ground truth images only once and then optimizing

the 3D representation against the generated static targets.

We found that neither dynamic nor static target-based

approaches yield optimal results for novel-expression 3D

distillation. Instead, we propose a new distillation proce-

dure based on progressively updated targets. For each time

step of a standard DDIM [52] denoising schedule, we use

a diffusion-based prior to predict all target images from

noised renderings of the 3D representation. We then op-

timize the 3D representation for several iterations against

these target images. Notably, we found it highly beneficial

to transition from the dynamically updated target images to

static target images at some point during the optimization

process. Thus, our proposed progressive distillation method

consists of two stages: i) optimization based on dynami-

cally updated targets and ii) optimization based on static

targets. We demonstrate that this procedure converges more

stably than dynamic-target approaches and is more robust

to multi-view inconsistencies than static-target approaches.

Ultimately, this yields 3D reconstructions of extreme ex-

pressions with high visual fidelity.

To evaluate our method, we collected new benchmark

samples that contain extreme expressions in both studio-

capture and in-the-wild environments. Thus, we evaluate

our method on three datasets: our proposed extreme expres-

sion benchmark, CelebV-Text [65], and NeRSemble [32].

We demonstrate an improved performance compared to ex-

isting baselines across all these benchmarks. To train our

method, we have also collected new metadata for the above-

mentioned datasets, such as textual descriptions of the facial

expressions and 3DMM fittings.

In summary, we contribute:

• a 2D diffusion model for single-shot extreme expression

synthesis with control through text prompts and 3DMM

parameters,

• a 3D distillation approach exploiting progressively up-

dated optimization targets to generate photorealistic 3D

reconstructions with extreme expressions,

• a new benchmark and metadata for existing training

datasets tailored for extreme expression synthesis.

We plan to make our full codebase, validation dataset, and

training dataset metadata publicly available.

2. Related work

We aim for controllable 3D head synthesis, given a ref-

erence image and a target expression. This target expres-

sion is defined in terms of parameters of a 3DMM [27, 34]

with additional textual control to allow the synthesis of ex-

pressions and appearances that fall outside the space of the

3DMM. Our approach is based on a learned conditional 2D

prior which is used for consistent distillation of the 3D head

model.

Conditional 2D Head Synthesis. Modern 2D head synthe-

sis methods rely on human-centric image- and video-based

datasets to train generative models capable of directly syn-

thesizing images with novel expressions from a single por-

trait image. Most of these methods utilize GANs [19] or

LDMs [47] to enable high realism of the predictions and

generalization capabilities of the trained models. GAN-

based reenactment methods [4, 13–15, 49, 50, 57, 66, 67]

directly predict an output image given a driving signal and

a source image. While achieving high visual quality and ex-

pressiveness for frontal-facing images, these methods typ-

ically suffer from mode collapse, resulting in low general-

ization capabilities for extreme expressions and head poses.

Diffusion-based approaches [6, 63] resolve some of

these limitations by relying on models that were pre-trained

on large-scale data, such as Stable Diffusion [47]. These

models can be adapted for human reenactment using a sep-

arately trained control network [69]. Such an approach

achieves a substantially higher degree of generalization than

the GAN-based methods trained from scratch using human-

centric image and video data. However, its limitations in-

clude a substantial change in the identity of the outputs

and a lack of explicit viewpoint control [6, 63]. Moreover,
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Figure 2. Method Overview. We train a 2D diffusion-based prior for novel pose and expression synthesis from a single reference image.

It is controlled through text prompts and 3DMM parameters. We leverage this 2D prior to optimize a Neural Radiance Field (NeRF) [43]

with a novel two-stage distillation procedure. During Stage 1, the NeRF is optimized against single-step-denoised predictions of the 2D

prior that are recalculated every N optimization iterations. In Stage 2, the target images are calculated once in a multi-step denoising

process and kept fixed during the NeRF optimization.

these methods use driving modalities such as keypoints [6]

or reenacted images produced by a pre-trained GAN-based

network [63], which have a limited expressiveness.

Conditional 3D Head Synthesis. 3D-aware head synthesis

methods largely address the challenge of view consistency.

These methods can also be trained using GAN-based train-

ing procedures. Typically, they combine a reconstructed 3D

human head model with neural rendering to introduce a high

degree of view-consistency [11, 12, 31, 36, 53, 54]. How-

ever, these methods have substantial limitations that include

a lack of expressiveness and low quality of rendered im-

ages. Moreover, they still lack view consistency, especially

in high-frequency features, since only the coarse head shape

is reconstructed explicitly while super-resolution modules

hallucinate the remaining details. These problems are ad-

dressed by a growing group of methods that modify pre-

trained diffusion models to produce view-consistent renders

via viewpoint conditioning [16, 39, 61]. They have been

further adapted to human avatar synthesis and can be trained

to include explicit pose control [3, 7, 24]. However, since

the views are still predicted in image space directly, the 3D

consistency of these methods is subpar. While some ap-

proaches [20, 63] attempted to resolve this issue with multi-

view-aware denoising techniques, the improvements still re-

main limited.

An alternative approach is the distillation of pre-trained

diffusion models into 3D representations using score dis-

tillation sampling (SDS) [28, 46, 48, 56, 59], which was

used in several previous works on human avatar synthe-

sis [26, 38]. However, these methods either fall short in

terms of realism [46] or are unstable w.r.t. the choice of the

base diffusion model, i.e. its denoising scheme and hyper-

parameters, such as classifier-free guidance scale [56, 59].

Contrary to the existing approaches for novel expression

synthesis, our method utilizes a progressive optimization

strategy of the underlying neural radiance field (NeRF) [43].

First, we utilize dynamically updated targets for supervi-

sion via single-step denoising, akin to a classical SDS,

which results in a blurry yet consistent reconstruction. Once

we achieve a coarse reconstruction, we use it to produce

fixed optimization targets using multi-step denoising, which

helps to complement the missing high-frequency details.

Compared to using fixed ground-truth targets throughout

the distillation process, as in the concurrent work [16], we

achieve a substantially higher degree of view consistency,

especially for the mouth cavity and tongue.

3. Method

Our method takes a portrait image as an input and creates

a photo-realistic 3D reconstruction with a driving expres-

sion specified via parameters of the Basel Face Model [27]

and text prompts, see Figure 2. We train a conditional 2D

prior that takes an image of a reference person as input and

predicts its novel-view renders with novel expressions (Sec-

tion 3.1). Exploiting this 2D prior and its predictions, we

propose a novel 3D distillation pipeline (Section 3.2) to op-

timize a view-consistent NeRF.

3.1. 2D Prior for Extreme Expression Synthesis

Our prior model is based on a Stable Diffusion [47] back-

bone. To convert it into a conditional synthesis model, we

follow [5, 7, 20, 63] and train a separate reference network

to input the information from the reference image into the

denoising network. Specifically, we share keys and values

between the self-attention layers of the reference network

and its denoising counterpart [20]. We then train a Control-

Net [69], which we refer to as a driving network, to condi-
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Figure 3. 3DMM- and text-guided 3D reconstruction. Through text guidance our model resolves ambiguities in the 3DMM control

signal, can formulate tongue articulation, and provides fine-grained emotion control. Note that the 3DMM input is kept fixed for both 3D

reconstructions of each row and only the text prompt changes.

tion our model on the parameters of a 3DMM. Compared to

previous methods [20, 63] and similar to a concurrent work

[7], we utilize mesh-based renders of the normal maps to

encode the driving head pose and expression. We have ob-

served that this conditioning style helps to achieve higher

view consistency of the results even without view-aware

noise or multi-view self-attention techniques [20].

In contrast to existing works [3, 7, 63], we also preserve

text-based conditioning from the base denoising model

and incorporate it into the reference and driving networks.

Text conditioning allows our model to synthesize extreme

expressions by supplementing 3DMM-based signals with

missing cues, such as tongue movements and emotion-

related appearance details. Also, contrary to previous

diffusion-based reenactment methods [7, 63], we found it

beneficial to fine-tune the decoding part of the denoising

network to improve identity preservation. To train this

model, we implemented an iterative training pipeline that

utilizes a subset of the in-the-wild CelebV-Text dataset [65]

followed by a short fine-tuning phase on the NeRSemble

dataset [32]. We supplemented these datasets with new

metadata that includes textual annotations of the expres-

sions and 3DMM fittings (see suppl. doc.).

3.2. 3D Distillation

Following [48, 56], we use a NeRF [43] formulation to rep-

resent our 3D reconstruction. During distillation, the NeRF

is rendered under several target views and encoded into the

latent space of the diffusion model. Then, noise is added

to these renders, and the 2D diffusion prior denoises the la-

tents and decodes them into the target images x̂0 that the

NeRF is optimized against.

Following previous works [48, 56, 61], we apply the dis-

tillation losses directly in the image domain rather than the

latent space. The optimization objective follows [61] and

consists of a combination of an L1 distance and a percep-

tual loss Lp [70] between the rendered images x and targets

x̂0:

Lrecon = Ec

[

∥x− x̂0∥1 + Lp(x, x̂0)
]

, (1)

where the expectation is taken over the viewing angles.

Our distillation procedure consists of two stages that dif-

fer in the way that the target images are updated. For Stage

1, the target images are repeatedly updated based on the

NeRF renderings to improve their multi-view consistency.

For Stage 2, the target images are predicted only once and

the NeRF is optimized against them until convergence.

Stage 1: Dynamic Target Optimization. During the first

stage, we frequently update the target images using the

noised NeRF renderings as input to the distillation prior.

We render the NeRF under several target views, apply

noise to the renders, and then use the 2D prior to generate

the new target images in one denoising step. The NeRF

is optimized against the target views for N iterations, after
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Figure 4. Out-of-distribution 3D reconstruction examples.

which we recalculate the targets and repeat the procedure.

We use 3D-consistent NeRF renderings to update the target

images to improve their view consistency. The main differ-

ence compared to the previous approaches [48, 56, 61] is

that we sample the noise levels deterministically following

a standard DDIM denoising scheduler with 100 steps, in-

stead of sampling them randomly. Furthermore, the NeRF

is optimized against the target images for N iterations be-

fore updating them whereas most existing methods update

the targets at every NeRF update. We found that this sub-

stantially improves the visual quality and consistency of the

reconstruction results (see Figure 6).

Stage 2: Fixed Target Optimization. Performing Stage 1

distillation alone tends to drift towards blurry results. The

reason for this lies in the NeRF optimization against the tar-

get images. During optimization, the NeRF effectively av-

erages over the inconsistencies in the target images and in-

troduces a low-frequency bias. This has a significant impact

on the distillation procedure. After the NeRF optimization,

its renderings will be more blurry than the target images.

The lack of high-frequency details in the NeRF renderings

is picked up by the 2D prior and propagates into the up-

dated target images. Optimizing the NeRF against them

leads to even more blurry reconstruction results and intro-

duces a positive feedback loop.

To effectively solve this phenomenon, we interrupt

Stage 1 at an intermediate noise level (after 60 out of

100 denoising steps) and generate the final target images

through standard DDIM sampling with the 40 remaining

steps. Afterward, the NeRF is optimized against the fi-

nal target images until convergence. While the optimiza-

tion procedure against the fixed target images has a low-

frequency bias as well, we avoid the repeated low-frequency

feedback loop of Stage 1 and converge to high-quality re-

sults.

Note that Stage 2 of our distillation procedure is simi-

lar to static-target approaches, with the difference that we

start the denoising process not from white noise but from

view-consistent renderings of a well-converged NeRF. This

largely improves the view consistency of the final target im-

ages, while the multi-step denoising procedure generates

high-frequency details. As a consequence, the predictions

of the 2D prior combine high view consistency and image

quality which results in superior NeRF optimization results

(see Figure 6).

3.3. Implementation Details

We train the 2D prior starting from pretrained weights of

Stable Diffusion v1.51. We use the AdamW optimizer [41]

with lr = 10−5, ´1 = 0.9, ´2 = 0.999, ϵ = 10−8, ¼ =
10−2. Our model is trained on 8 NVIDIA A100 SXM4-

80GB with a per-GPU batch size of 10 for 200,000 itera-

tions on CelebV-Text [65] and 30,000 more iterations on an

equal mix of CelebV-Text and NerSemble [32]. We refer to

the suppl. doc. for dataset and preprocessing details.

For the 3D distillation, we use the threestudio frame-

work [22] and largely follow the configuration of Image-

Dream [56]. To generate the target images, we render

BFM [27] normal maps on a regular 20 × 20 grid of the

frontal hemisphere with an azimuth ∈ [−22.5, 22.5] and

elevation ∈ [−10, 10]. The images are generated with a

classifier-free guidance scale of 19.0. We optimize the

NeRF for N = 130 iterations between each target im-

age update. During optimization, we randomly sample 64

patches of size 64×64 and gradually increase the resolution

of the target images from 64 to 512. The optimization takes

approximately 3 hours on a single NVIDIA A100 SXM4-

80GB GPU.

4. Experiments

Below we evaluate both our 2D prior and our 3D distillation

technique. Please refer to the suppl. doc. for detailed ab-

lation studies and additional experiments. To evaluate the

synthesis of the extreme facial expressions, the validation

sets of CelebV-Text and NeRSemble alone are not suffi-

1huggingface.co/runwayml/stable-diffusion-v1-5

huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 5. Comparison of our 2D diffusion prior for self- and cross-reenactment (row 1-2 and 3-4 respectively).

Self-reenactment Cross-reenactment

PSNR ↑ LPIPS ³ SSIM ↑ FID ³ CSIM ↑ AKD ³ AED ³ APD ³ FID ³ CSIM ↑ AED ³ APD ³
GOHA [35] 16.25 0.299 0.572 46.33 0.32 0.015 0.20 0.42 46.82 0.36 0.26 0.51

Real3D-Portrait [64] 16.58 0.322 0.592 31.68 0.46 0.021 0.23 0.47 31.54 0.57 0.30 0.59

Portrait4D-v2 [12] 14.13 0.393 0.494 19.96 0.49 0.081 0.18 0.38 20.71 0.56 0.25 0.52

AniFaceDiff [7] 16.24 0.360 0.577 29.64 0.50 0.034 0.17 0.41 29.34 0.53 0.25 0.52

X-Portrait [63] 14.77 0.357 0.493 10.66 0.61 0.051 0.20 0.68 10.79 0.75* 0.29 0.81

VOODOO 3D [54] 16.11 0.324 0.558 38.63 0.27 0.035 0.19 0.47 39.24 0.30 0.24 0.54

VOODOO XP [53] 13.74 0.397 0.483 24.59 0.49 0.075 0.15 0.45 24.83 0.43 0.21 0.52

Ours 18.63 0.212 0.619 7.57 0.62 0.007 0.11 0.31 8.48 0.57 0.22 0.49

Table 1. Quantitative comparison of our 2D diffusion prior in self- and cross-reenactment scenarios. *: Note that for extreme pose

changes, X-Portrait has a tendency to reproduce the reference image without adopting the driving pose, leading to a high identity similarity

score (CSIM) yet poor pose accuracy (APD).

cient: CelebV-Text only contains moderately extreme ex-

pressions, and NeRSemble is restricted to uniform lighting

and background scenarios. For this reason, we captured the

Joker benchmark for evaluation of extreme expression syn-

thesis, which will be made publicly available to the research

community, see suppl. doc.

4.1. Evaluation of 2D Prior

We compare our 2D diffusion prior against the following

baselines: GOHA [35], VOODOO 3D [54], VOODOO

XP [53], Real3D-Portrait [64], Portrait4D-v2 [12], Ani-

FaceDiff [7], and X-Portrait [63]. We refer to the suppl.

doc. for a detailed discussion of those and their implemen-

tation details. For the baseline results, we used the official

code repository of GOHA, VOODOO 3D, Real3D-Portrait,

Portrait4D, and X-Portrait; and obtained the results for An-

iFaceDiff and VOODOO XP from the authors.

Figure 5 qualitatively compares our 2D diffusion prior

with the baselines for the scenario of self- and cross-

reenactment. We visualize the best-performing baselines

and refer the reader to the suppl. doc. for further results.

The comparisons are conducted on the newly captured Joker

benchmark, which contains in-the-wild scenes with diverse

backgrounds, subject ethnicities, and genders. We observe

a significant qualitative improvement over all baselines.

These results are confirmed by the quantitative com-

parison, see Table 1. We evaluate standard metrics such

as peak signal-to-noise ratio (PSNR), learned perceptual

image patch similarity [70] (LPIPS), structural similarity

index measure [58] (SSIM), and Fréchet inception dis-



LPIPS ³ SSIM ↑ PSNR ↑ MSE ³
ProlificDreamer* [59] 0.43 0.52 15.6 0.028

ImageDream∗ [56] 0.25 0.79 20.2 0.011

Ours, Stage 1 Only 0.27 0.83 20.1 0.012

Ours, Stage 2 Only 0.18 0.81 22.0 0.007

Ours 0.19 0.82 21.5 0.008

Table 2. Quantitative comparison of our 3D distillation approach.

*: Replacing the method’s 2D prior with our model for fair com-

parison.

tance [23] (FID). We measure identity preservation by com-

paring the cosine similarity between the embeddings of a

face recognition network [9] for the predicted and ground

truth images (CSIM). Further, we report the average dis-

tance between the extracted keypoints (AKD), expression

(AED), and pose (APD) parameters using [10]. For the

cross-reenactment scenario where no ground truth data is

available, we evaluate the CSIM score between the refer-

ence image and the prediction and the AED and APD scores

between the driving image and prediction.

Since VOODOO 3D, VOODOO XP, and GOHA do not

synthesize the background, we mask out the backgrounds

of the other methods using MODNet [30] before evaluation.

The quantitative comparison is conducted on 10,000 images

for self- and cross-reenactment respectively, evenly sam-

pled from the validation sets of CelebV-Text and NeRSem-

ble, our recordings in a studio environment with uniform

lighting and background, and our recordings with in-the-

wild backgrounds and lighting. Table 1 shows a consis-

tent improvement over all existing methods. Note that

VOODOO XP, VOODOO 3D, Real3D-Portrait, GOHA,

and Portrait4D are single-step methods that enable real-time

inference, while AniFaceDiff, X-Portrait, and our method

are diffusion models that require several denoising steps.

Further, X-Portrait was trained on video sequences and with

a different crop size than our evaluation samples. However,

at the time of writing this paper, no code was available to

retrain the model.

Note that the very high CSIM identity similarity score

of X-Portrait for the cross-reenactment scenario is mislead-

ing. We found that for extreme pose changes, X-Portrait

tends to reproduce the reference image without adopting the

driving pose (see row 3 of Figure 5). Since for the cross-

reenactment scenario, we calculate CSIM between the ref-

erence image and the prediction, this artifact results in a

significantly overestimated CSIM score. This effect is con-

firmed by the comparatively high pose reconstruction er-

ror (APD) of X-Portrait in Table 1. Our method excels in

high-fidelity synthesis and identity preservation while be-

ing robust w.r.t. extreme expressions and poses both in the

reference and driving image.
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Figure 6. Comparison of 3D reconstructions from different dis-

tillation procedures. *: Replacing the method’s 2D prior with our

model for fair comparison.

4.2. Evaluation of 3D Distillation

We compare our novel distillation approach against two

state-of-the-art baselines: ImageDream [56] and Prolific-

Dreamer [59]. ImageDream [56] uses a diffusion prior

that predicts consistent multi-view images given a refer-

ence image and exploits this prior to perform multi-view

score distillation sampling. ProlificDreamer [59] general-

izes score distillation sampling to variational score distilla-

tion by treating the NeRF renderings as random variables

approximated by a pose-conditioned diffusion model that

is fine-tuned on the NeRF renderings during distillation.

For ImageDream, we use the official code base, for Pro-

lificDreamer we use the threestudio implementation [22].

For a fair comparison, we replace the 2D diffusion priors

of both baselines with our own prior. We further compare

against versions of our method that only use Stage 1 and

Stage 2 respectively. Note that the Stage-2-only setting is

similar to Cat3D [16]. However, Cat3D only considers a

novel view synthesis scenario where reference images of

the same scene are given. Instead, in our scenario the refer-



ence and output images differ drastically due to strong pose

and expression changes.

Figure 6 presents a qualitative comparison of the distilla-

tion procedures on samples from the NerSemble validation

set and our self-captured Joker benchmark with in-the-wild

scenarios. We observe that ProlificDreamer exhibits insta-

bilities during distillation. They are caused by inaccuracies

in the fine-tuned diffusion prior that approximates the prob-

ability distribution of the NeRF renderings. ImageDream

converges more stably, yet artifacts remain since even at the

end of the distillation procedure, denoising timesteps are

sampled randomly including high noise levels leading to in-

accurate estimates of the target images for the optimization

of the NeRF. These artifacts are resolved using the Stage 1

optimization of our approach that follows a deterministic

denoising schedule. However, using only Stage 1 yields

blurry synthesis results. As discussed in Section 3.2, the

low-frequency bias of Stage 1 stems from a repeated inter-

play between NeRF optimization and target image predic-

tion. When performing Stage 2 only, we suppress this effect

and can distill a NeRF with high-frequency details. How-

ever, note that in Stage 2 all target images are generated at

once and the NeRF is optimized against fixed targets. The

inconsistencies in these images cause synthesis artifacts like

semi-transparencies and misalignment artifacts in the eyes

and around the silhouette. Please refer to the suppl. video

for a dynamic comparison of the distillation results.

In Table 2, we also perform a quantitative comparison

on 30 samples from the NeRSemble validation set which

provides multi-view ground truth images. Our distillation

approach consistently improves over the baselines. We ob-

serve that while using both stages of our method qualita-

tively yielded the best combination of view consistency and

high-frequency detail, using only Stage 2 even improves the

scores slightly, however, at the cost of view consistency.

Please refer to the suppl. video for a dynamic visualization

of this effect. The suppl. doc. further provides an evaluation

of the impact of the classifier-free guidance scale and the

ratio between Stage 1 and Stage 2. We observe that our dis-

tillation generates plausible geometry and generalizes well

to challenging out-of-distribution samples (see Figure 4).

4.3. TextGuided Expression Synthesis

Figure 3 demonstrates the effectiveness of using text

prompts to control the 3D reconstruction and disambiguate

the control through 3DMM parameters: Each row presents

two reconstruction results that use the same reference image

and 3DMM parameters but different text prompts. We find

that text prompts provide an intuitive control mechanism to

specify the target emotion and tongue articulation. Please

refer to the suppl. doc. for a comparison against a model

without text control.

Reference Image Driving Image 3D Reconstruction

Figure 7. Failure cases of our method.

4.4. Limitations

Figure 7 visualizes failure cases of our method. We observe

that implausible colors may be synthesized for challenging

out-of-distribution samples in face regions that are not visi-

ble in the reference image. In rare cases, we find that even

for in-distribution samples the high cfg value (19.0) during

distillation causes unnatural colorizations. Please refer to

the suppl. doc. for an ablation study on this parameter dur-

ing distillation. For samples with a uniform background,

we observe a tendency of our model to project them to the

NerSemble lighting setting: compare rows 2 (NeRSemble)

and 3 (Joker benchmark) of Figure 7. Lastly, particularly

for dark curly hair, we observe a low-frequency bias. While

using only Stage 2 of our distillation procedure can reduce

this effect, this comes at the cost of reduced 3D consis-

tency. Further, note that we only consider static scenes in

our work. Extending it to 4D avatar synthesis is a fascinat-

ing topic for future research.

5. Conclusion

We introduced Joker, a novel method for conditional 3D hu-

man head synthesis with extreme expressions from a single

reference image. Based on control through 3DMM param-

eters and text prompts, our method produces high-quality

results and generalizes well to out-of-distribution samples.

The foundation of this approach is a 2D diffusion-based

prior which is learned on in-the-wild imagery of human

faces. We leverage this prior to progressively distill a 3D

volumetric representation of the target subject with a dif-

ferent facial expression. The textual description allows us

to specify the facial expression state beyond the parameters

of the 3DMM, including subtle emotional changes, as well

as extreme expressions with protruding tongue. We believe

that Joker is a stepping stone for creating high-resolution

3D content of people with a high degree of identity preser-

vation and emotional expressiveness.
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