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Abstract

Sketch Re-identification (Sketch Re-ID), which aims to retrieve target person from
an image gallery based on a sketch query, is crucial for criminal investigation, law
enforcement, and missing person searches. Existing methods aim to alleviate the
modality gap by employing semantic metrics constraints or auxiliary modal guid-
ance. However, they incur expensive labor costs and inevitably omit fine-grained
modality-consistent information due to the abstraction of sketches. To address this
issue, this paper proposes a novel Optimal Transport-based Labor-free Text Prompt
Modeling (OLTM) network, which hierarchically extracts coarse- and fine-grained
similarity representations guided by textual semantic information without any ad-
ditional annotations. Specifically, multiple target attributes are flexibly obtained
by a pre-trained visual question answering (VQA) model. Subsequently, a text
prompt reasoning module employs learnable prompt strategy and optimal transport
algorithm to extract discriminative global and local text representations, which
serve as a bridge for hierarchical and multi-granularity modal alignment between
sketch and image modalities. Additionally, instead of measuring the similarity of
two samples by only computing their distance, a novel triplet assignment loss is
further proposed, in which the whole data distribution also contributes to optimiz-
ing the inter/intra-class distances. Extensive experiments conducted on two public
benchmarks consistently demonstrate the robustness and superiority of our OLTM
over state-of-the-art methods.

1 Introduction

police

witness

gallery

Figure 1: The illustration of sketch
Re-ID. Different artists create sketches
based on clues provided by witness to
assist the police in identifying targets.

With the growing need for urban public safety, traditional
person re-identification (Re-ID) methods [1, 2, 3] are grad-
ually becoming inadequate for criminal investigations and
missing person tracking, as the individuals of interest may
not have been captured by surveillance cameras. To bol-
ster social security management and combat criminal activ-
ities, sketch person re-identification (Sketch Re-ID), which
utilizes eyewitness clues to draw professional sketches as
queries and match target images in a photo gallery database,
has received widespread attention from researchers and
scholars [4, 5, 6], as shown in Fig. 1. Nonetheless, due
to the considerable disparity in modal heterogeneity result-
ing from the varied sketch styles of different artists and the
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diverse postures of real pedestrians in monitoring, sketch Re-ID remains highly challenging and
necessitates further exploration and investigation.

Giving the high generalization and inherent abstraction of person characteristics in sketches, the
pedestrian features depicted in a single sketch (such as clothing and gender) may match multiple
similar real images, as illustrated in Fig. 1. A viable solution is to leverage the inter-modality
interaction within the feature space to achieve hard alignment. Such methods typically employ loss
constraints to directly map different modalities into a generic latent space [4, 7, 8, 9]. However,
this hard alignment manner may not fully capture the complex dependencies and correlations that
exist within and across modalities. To compensate for the lack of details in the above manner,
another branch is to introduce an intermediate modality to bridge two source modalities. For
instance, [10, 11] generate simulated sketches through adversarial learning, but the generated sketches
are inevitably corrupted with noise due to limited generation performance. Additionally, [7, 12]
construct benchmarks that contain textual information to alleviate modal gap; [6] improves inference
efficiency by introducing text only during the training process. Despite the fact that these additional
texts do contribute to mitigating the modal gap, they are all manually labeled, requiring significant
human labor in real-world applications. Moreover, existing text-guided methods [6, 7] only focus
on global text embeddings as masks, neglecting finer and richer local features. Therefore, this
paper aims to address two key challenges: i) developing sufficient textual information as a
transition mechanism without incurring additional costs, and ii) further exploring fine-grained
discriminative information for multi-granularity interaction.

To address the above issues, we propose the Optimal Transport-based Labor-free Text Prompt
Modeling (OLTM) framework, which implicitly incorporates text semantic information during
training, facilitating hierarchical and multi-granularity modal alignment. In particular, OLTM is
composed of three main components: i) text prompt reasoning (TPR); ii) text-injected coarse-grained
alignment module (TCA); iii) consensus-guided fine-grained interaction module (CFI). On the one
hand, to introduce text sequences without additional manual annotation, we dynamically transfer
pre-trained language-visual knowledge into the downstream task. Specifically, TPR first generates
multi-dimensional person attributes based on real images with a pre-trained visual question answering
(VQA) model. Then, these attributes are inserted as fixed parts into learnable prompts to obtain the
textual embedding representations. TCA integrates global parts of the embeddings to achieve the
coarse-grained alignment across modalities. On the other hand, to explore fine-grained information,
we employ optimal transport theory to enhance deep-level interaction. Concretely, TPR formulates
the mapping from local parts of the textual embeddings to more discriminative feature representations,
i.e., consensus, as an optimal transport problem. Subsequently, guided by consensus, CFI selectively
focuses on key details, extracting fine-grained conceptual representations for sketch-ID. In addition,
due to the significant heterogeneity gap between modalities, using Euclidean distance as a sole metric
to measure feature similarity is inadequate. Thus, we propose a triplet assignment loss to optimize
feature distance measurement and improve model performance. Extensive experiments are conducted
on two challenging benchmarks, which demonstrate the favorable comparison of OLTM with other
state-of-the-art methods.

The core contributions of this work are summarized as follows: (1) This paper proposes a novel
optimal transport-based labor-free text prompt modeling framework for sketch Re-ID. To our best
knowledge, this is the first attempt to apply VQA-generated text responses as a means to achieve
modal alignment in sketch Re-ID without any additional annotations. (2) A novel text prompt
reasoning module is deployed to dynamically extract global textual embeddings and discriminative
fine-grained consensus, which guide the hierarchical multi-granularity alignment module in injecting
semantic knowledge into the modeling process. (3) A new triplet assignment loss is proposed, which
optimizes inter-/intra-class distance by considering overall data distribution information.

2 Related Work

Sketch Re-identification As an important part of public safety guarantee, sketch Re-ID is a novel
and challenging task that aims to match a person image with given professional sketches. Existing
sketch Re-ID methods could be roughly classified into two groups according to their interaction
modes, i.e., hard alignment methods [4, 8, 9] and soft alignment methods [12, 10, 6]. The former try
to learn modality embeddings in a common latent space by employing some modality interaction
operations or semantic metrics. Pang et al. [4] pioneered a sketch-photo benchmark and introduced
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cross-domain adversarial learning to narrow the feature gap. Zhang et al. [9] proposed an advanced
cross-modal learning mechanism for handling non-corresponding information between modalities.
However, due to significant differences between modalities, this direct alignment paradigm inevitably
loses fine-grained modality-specific cues [13]. Hence, some of the latter methods investigate gentler
alignment techniques through transitional modality. For example, Chen et al. [10] designed a dynamic
updatable auxiliary sketch modality to increases the diversity of training samples; Zhai et al. [12]
introduced a multi-modal Re-ID task by combining text and sketch as query for retrieval, exploiting
their complementary advantages. Obviously, auxiliary modalities lacking detailed information may
introduce noise, while data annotation is a labor-intensive task. In this paper, we first attempt to use
text attributes generated by a reasonable VQA model as guidance for achieving multi-granularity
alignment across modalities in sketch Re-ID.

Optimal Transport For optimizing the moving cost between distributions, Optimal Transport (OT)
was first proposed by Kantorovich [14], which has shown significant potential in machine learning and
computer vision, e.g., domain adaptation [15, 16, 17], learning with noisy labels [18, 19], and feature
matching [20, 21]. Zhang et al. [22] incorporated OT into the re-ranking phase of image retrieval,
significantly improving accuracy and efficiency. Similarly, Sergio et al. [23] first applied OT in visual
place recognition and introduced a novel local feature aggregation method. In semi-supervised person
Re-ID, OT often achieves the mapping between pseudo labels and classes as a classifier [24, 25]. In
addition, Ling et al. [26] designed a assignment strategy for alleviating the intra-identity variations;
Wasserstein distance was used to rectify the original global distance between samples and provides
aligned distance estimation for local features [27]. Considering the enormous potential of OT in
feature aggregation and distribution mapping, our study adopts OT to assist fine-grained alignment
between modalities and guide the model in extracting the overall sample distribution pattern.

Prompt Learning Prompt learning initially garnered widespread attention and extensive research
in natural language processing [28, 29, 30], which has gradually demonstrated significant potential
in vision-language (V-L) models [31, 32, 33] and pure vision models [34, 35, 36]. Prompt learning
provides a flexible way to adapt pre-trained models to downstream tasks by training only additional
parameters. This enables prompts to capture task-specific information while guiding the fixed model’s
performance [37, 38]. In sketch-based image retrieval, [39] innovatively learns a unified prompt for
different branches in CLIP’s [40] visual encoding layer, fully exploiting CLIP’s zero-shot learning
potential. In text-to-image person Re-ID, [41] introduces a multi-prompt strategy to integrate text
prompts from various sources for fine-grained interaction. Furthermore, Li et al. [42] first attempt to
conduct in-depth research on zero-shot multi-modal ReID through a large foundational model. In
this paper, we delve into the significant application of prompt learning in sketch Re-ID, innovatively
generating global text representations by integrating fixed and learnable prompts, and utilizing OT to
reason consensus for effectively guiding detailed interactions across modalities.

3 Preliminaries

3.1 Problem Statement

To ensure clarity, we represent the gallery containing m images I as G = {Ii, yi}mi=1 and the query
set containing n sketches S as S = {Sj , yj}nj=1, where y ∈ {1, . . . , C} are the identity labels for
C distinct pedestrian entities. Notably, each entity may include multiple images and sketches. The
goal of Sketch Re-ID is to retrieve pedestrian images from the gallery G that match one or multiple
given sketch. Like [6], there exist two types of query methods: single sketch query and multiple
sketches query. This section will use single sketch query as an example, and the same applies to
multiple sketches query. Formally, we define a matching functionM : S × G → Rn×m that assigns
a similarity score to each pair (Ii, Sj). The objective is to learn a functionM such that for any sketch
Sj and image Ii, M(Ii, Sj) >M(Ik, Sj) if yi = yj and yk ̸= yj , (1)
where Ii and Ik are images from the gallery set, and yi and yk are their respective identity labels.

3.2 Optimal Transport

Optimal Transport is a mathematical theory that focuses on finding an efficient solution between two
probability distributions, minimizing the cost of transporting one distribution into another. We briefly
review the theoretical derivation of optimal transport. Let Γr := {x ∈ Rr

+|x⊤1r = 1} represents
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Figure 2: Overview of our proposed OLTM network. Our model includes four main parts, i.e., text
prompt reasoning (TPR), text-injected coarse-grained alignment Module (TCA), consensus-guided
fine-grained interaction module (CFI) and triplet assignment loss (TAL). Specifically, TPR flexibly
generates target characteristics through VQA, and combines prompt learning and optimal transport
to reason text global embedding and local consensus. TCA and CFI extract modality-specific
representations from image and sketch modalities to achieve hierarchical and multi-granularity
alignment. Finally, TAL is designed to optimize distance measurement between samples and improve
the model’s capacity to capture local relationships.

the probability simplex, where 1r is the r-dimensional vector of ones. Given two probability simplex
vectors α ∈ Γm and β ∈ Γn and a cost matrix C ∈ Rm×n, the objective of OT is to seek the optimal
transport plan P ∗ mapping α to β at the minimum cost:

dC(α,β) = min
P∈U(α,β)

⟨C,P ⟩,

U(α,β) =
{
P ∈ Rm×n

+ | P1n = α,P⊤1m = β
}
,

(2)

where U(α,β) denotes the transport polytope of α and β, i.e., the solution space of P . The above
problem is to find optimal solution P ∗ in a set of all possible joint probabilities of (X,Y ), where X
and Y represent random variables with marginal distribution α and β.

Eq. 8 indicates that OT is a linear programming problem which is theoretically solvable in polynomial
time, but its complexity becomes prohibitively high as the feature dimension increases [43]. To
this end, Sinkhorn algorithm [44] adopts an iterative strategy to obtain the optimal solution P ∗ =
Diag(u)KDiag(v) with near-square complexity [45]. u and v can be solved through alternately
iterating the following two equations: u(z) = α/(Kv(z−1)) and v(z) = β/(K⊤u(z)), where
K = exp(C/ϵ), ϵ is the regularization coefficient and z is the iterations (cf. Appendix). Since this
method integrates the importance of all features when solving the optimal solution, it can analyze the
overall data distribution.

4 The Proposed Method

4.1 Overall Architecture

Fig. 2 provides an overview of the OLTM architecture. The image and text encoders discussed in this
paper are based on CLIP [40], and any language-visual model utilizing a Transformer architecture may
also be employed. Notably, the image encoders utilized for both images and sketches employ shared
weights to ensure the mapping of features into a unified semantic space. For an input RGB image,
we obtain embeddings R = {Rcls, r1, . . . , rp} ∈ R(p+1)×d through the image encoder, where
p is the number of non-overlapping patches, Rcls and Rlocal = {ri}pi=1 represent d-dimensional
global and local features, respectively. Similarly, the embeddings of a sketch can be represented as
S = {Scls,Slocal} = {Scls, s1, . . . , sp} ∈ R(p+1)×d. Firstly, to provide reasonable text semantic
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guidance, Text Prompt Reasoning (TPR) generates attribute descriptions about pedestrians based on
the RGB image, and obtains the textual embeddings T = {T eos,T local} through prompt learning.
Then, TPR extracts the fine-grained consensus X from T local through clustering. Subsequently, Text-
injected Coarse-grained Alignment (TCA) module embeds global contextual information T eos into
visual features Rcls and Scls. Meanwhile, Consensus-guided Fine-grained Interaction (CFI) module
utilizes X to address fine-grained semantic misalignment between Rlocal and Slocal. Additionally,
due to the significant differences between sketches and RGB images, Euclidean distance between
independent samples may ignore the influence of overall sample distribution. Thus, we introduce
a more comprehensive distance measurement method and propose triplet assignment loss Ltal.
During training, all these modules will be jointly optimized through identity loss [46] Lid and Ltal:
LOLTM = Lid + ηLtal, where η is a scaling factor. During inference, only Rcls and Scls are used to
match queries for practical application requirements.

4.2 Text Prompt Reasoning

Significant image differences and inherent abstract nature, cause semantic misalignment during
knowledge acquisition, severely impacting model’s reasoning and generalization capabilities. To
address this issue, TPR introduces intermediate modality to guide alignment between modalities
without additional costs. Moreover, TPR employs a dynamic consensus acquisition strategy to
enhance the discriminative power of local text features.

Text Attribute Generation Sketches, unlike conventional Re-ID tasks, are vulnerable to subjective
emotions and drawing skills of artists, leading to a lack of detailed information crucial for model
learning. The text’s objectivity and flexibility prompt the model to focus more on semantic contextual
information during knowledge acquisition. However, directly generating a comprehensive textual
description of pedestrian images inevitably introduces irrelevant noise, thereby reducing model
performance. Therefore, we retain the advanced modeling capabilities of large-scale language-visual
models for images as possible. Specifically, for a given RGB image, TPR utilizes a pre-trained visual
question answering model to address k specific details (cf. Appendix) and acquire corresponding
descriptions for the target: att = {att1, att2, . . . , attk}. Importantly, this process introduces textual
detail guidance during model training but excludes text-related components during inference.

Learnable Prompt Strategy Inspired by [47], we combine the learnable prompt with original
text attributes, without incurring additional expert knowledge compared to the handcrafted prompt.
Concretely, TPR initially transform these attributes into tokens through CLIP tokenizer, i.e., a =
Tokenizer(att). Then, l learnable prompts {p1, p2, . . . , pl} are embedded into these fixed attributes
tokens, forming the textual description: q = {p1, a1, p2, a2, . . . , pl, ak}. This integration introduces
a dynamic knowledge learning mechanism that reduces noise introduction compared to handcrafted
prompts, while enhancing the flexibility of modal interaction and transferability of text embeddings.
Subsequently, the whole token q is fed into a frozen text encoder to generate text embeddings
T = {T sos, t1, t2, . . . , tn,T eos} ∈ R(n+2)×d, where T sos and T eos denote the [SOS] and [EOS]
token, n is the number of d-dimensional word tokens. Based on widely-used token selection, T eos
serves as the global feature, while T local = {tj}nj=1 represents a sequence of basic local tokens.

Dynamic Consensus Acquisition To more effectively address fine-grained semantic variations
(e.g., hats, shoes) across modalities, we explore methods to filter out non-informative features for
enhancing the representational capacity of text embedding for detailed information. Therefore, based
on local textual feature T local, we employ metric learning to draft a dynamic consensus acquisition
strategy for capturing the discriminative prototypical representations X .

To begin, in order to adaptively learn related-task knowledge, local text representations T local ∈ Rn×d

are fed into consensus multi-layer perceptron (ConMLP) blocks to achieve feature enhancement.
Then, a prototypical descriptor is formed by assigning all enhanced features to a set of atoms. The
cost matrix C ∈ Rn×m

+ can be calculated for assignment, where the (i, j)-th element Ci,j represents
the cost of assigning a feature to an atom. In other words, C evaluates the affinity between the
enhanced features and the prototypical atoms. Concretely, to introduce certain priors as guidance [23],
the enhanced features are used to learn the cost matrix through two fully connected layers initialized
randomly. In addition, some irrelevant information in textual features, such as those representing
association, may disrupt the model’s ability to learn the target details. Inspired by the solutions
used in graph matching and key-point matching [20, 23], we set a learnable "bin" in C. Due to the
differences between prior distributions, non-informative features can be assigned to it. Specifically,
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we extend the cost matrix from C to C̄ = [C, c̄] ∈ Rn×(m+1)
+ , and c̄ = w1n, where w is a learnable

parameter and 1n = [1, . . . , 1]⊤ ∈ Rn represents n-dimensional vector of ones. Following Sec. 3.2,
we consider that assignment where the enhanced features’ mass, α = 1n, should be assigned to the
atoms or the "bin", β = [1⊤

m, n−m]⊤, is an optimal transport problem:

dC̄(α,β) = min
P∈U(α,β)

⟨C̄,P ⟩,

U(α,β) = {P ∈ Rn×(m+1)
+ |P1m+1 = α,P⊤1n = β}.

(3)

The optimal assignment plan can be solved by Sinkhorn algorithm (cf. Appendix) through iterative
strategy. For better descriptors quality, the extra "bin" is discarded to obtain the optimal assignment
P ∈ Rn×m

+ . Finally, the augmented comprehensive representation, i.e., consensus X ∈ Rm×d, is
obtained by aggregating enhanced textual features and optimal transport plan: X = P⊤T local.

4.3 Hierarchical and Multi-granularity Modal Alignment

TPR develops a robust transitional means to facilitate reasonable and efficient modal alignment. In
order to leverage effectively the multi-granularity textual information, TCA utilizes global embedding
to achieve coarse-grained modal interaction, while CFI optimizes fine-grained alignment based on
enhanced comprehensive representation.

Text-injected Coarse-grained Alignment Module TCA utilizes transformer architecture, known
for its efficiency in modeling long-distance dependencies, to capture global information, as shown
in Fig. 2. Furthermore, we implement a cross-attention mechanism using global text embedding to
emphasize contextual information injection at the beginning. For an input pair (R,S), cross-attention
mechanism computes the query using text global representation T eos and derives the key and value
from modality-specific global features Rcls and Scls :

QR/S = T eos ·wQ,KR/S = (R/S)cls ·wK ,V R/S = (R/S)cls ·wV ,

CA(R/S,T eos) = Attention(QR/S ,KR/S ,V R/S),
(4)

where R/S signifies identical operations across both modalities; wQ, wK and wV denote shared
learnable parameters, while QR/S , KR/S and V R/S represent query, key and value for either
the RGB or sketch modality, respectively. After obtaining the fusing features that contain textual
knowledge, TCA introduces the standard transformer blocks to refine modality-specific features.
Finally, we can acquire the final global concept representations R

′

cls and S
′

cls for sketch Re-ID.

Consensus-guided Fine-grained Interaction Module Due to the inherent complexity of sketches
and RGB images and the potential for semantic misalignment during learning, capturing detail
variations in modalities is crucial. Fortunately, the fine-grained consensus X provided by TPR, which
contains rich detail information, offers a key solution to this problem. CFI adopts a transformer
structure based on multi-head cross attention, and it converts the original local feature Rlocal and
Slocal to more discriminative representations through for robust Re-ID:

Q̂R/S = X ·wQ̂, K̂R/S = (R/S)local ·wK̂ , V̂ R/S = (R/S)local ·wV̂ ,

Head
R/S
h = Attention(Q̂R/S , K̂R/S , V̂ R/S),

MH(R/S,X) = Concat(Head
R/S
1 , . . . ,Head

R/S
H ),

(5)

where wQ̂, wK̂ and wV̂ denote the parameters of project layers of h-th head for both modalities. As
a result, the text detail information about pedestrian characteristics can assist our model to address
the problem caused by the diversity and uncertainty of sketches and RGB images. Eventually, the
local concept representations R

′

local and S
′

local can be obtained.

4.4 Triplet Assignment Loss

The triple loss, a commonly-used matching loss in cross-modal learning, performs well in performance
through adjusting the distance of hardest negatives in scenarios like image-text matching [12, 48]
and video-text retrieval [49]. However, this strategy independently trains each semantic part with
equal contribution, disregarding the overall data distribution impact when multiple samples from
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Table 1: Comparison with state-of-the-art methods on Market-Sketch-1K dataset. Both training
and testing set uses all sketches. ‘S’ and ‘M’ represent single-query and multi-query, respectively.
‘Backbone’ refers to network structure used by each method, mainly including: ResNet50 [50] and
CLIP [40]. Bold values represent the optimal results.

Methods Query Backbone Reference mAP Rank@1 Rank@5 Rank@10

DDAG [51] S ResNet50 ECCV’2020 12.13 11.22 25.40 35.02
CM-NAS [52] S ResNet50 ICCV’2021 0.82 0.70 2.00 3.90

CAJ [53] S ResNet50 ICCV’2021 2.38 1.48 3.97 7.34
MMN [54] S ResNet50 MM’2021 10.41 9.32 21.98 29.58
DART [55] S ResNet50 CVPR’2022 7.77 6.58 16.75 23.42

DCLNet [56] S ResNet50 MM’2022 13.45 12.24 29.20 39.5
DSCNet [57] S ResNet50 TIFS’2022 14.73 13.84 30.55 40.34
DEEN [58] S ResNet50 CVPR’2023 12.62 12.11 25.44 30.94

BDG [6] S ResNet50 MM’2023 19.61 18.10 38.95 50.75
M 24.45 24.70 50.40 63.45

UNIReID [7] S CLIP CVPR’2023 34.97 31.52 57.17 70.46
M 55.18 56.63 82.33 91.97

OLTM (Ours) S CLIP - 38.35 36.75 63.88 74.05
M 62.55 69.48 90.36 95.18

different modalities exhibit slight differences. This oversight may lead to inaccurate estimation of
sample distances and potentially result in sub-optimal local minima [27]. To this end, we propose a
new triplet assignment loss (TAL) to establish a more rational measure for evaluating the proximity
of local features.

For an input positive pair (Ri,Si) in a mini-batch x, the feature representations obtained through
model inference are R

′

i and S
′

i. If we treat the feature sets of all samples for each of two modalities in
x as two discrete distributions, their alignment can be considered an optimal transport problem. The
cost matrix Ĉ is derived from pairwise feature similarities: Ĉi,j = [(R

′

i)
⊤S

′

j ]+. We aim to acquire
the optimal transport matrix P ∗ with the least amount of cost, where P ∗

i,j represents the assignment
weight of (Ri,Sj) obtained after balancing the overall distribution. TAL can be represented based
on triplet loss as the weighted sum of the original distance and the optimal assignment distance,
dynamically updated at a certain rate γ:

Ltal(Ri,Si) = [m−D(Ri,Si) +D(Ri, Ŝh)]+ + [m−D(Ri,Si) +D(R̂h,Si)]+,

D(Ri,Si) = γE(Ri,Si) + (1− γ)(1− P ∗
i,i)E(Ri,Si)

(6)

where [x]+ = max(x, 0), R̂h = argmaxRj ̸=Ri
D(Rj ,Si) and Ŝh = argmaxSj ̸=Si

D(Ri,Sj) are
the most similar negatives in x for (Ri,Si), and E(Ri,Si) = ∥R

′

i − S
′

i∥2 denotes the Euclidean
distance between feature representations.

5 Experiment

5.1 Experiment Setup

Datasets Two publicly available benchmark datasets, namely PKU-Sketch [4] and Market-Sketch-1K
[6], are utilized for performance evaluation. Both of them are sketched and annotated by professional
artists. PKU-Sketch is the first publicly Sketch Re-ID dataset, containing data for 200 pedestrians,
with each individual being represented through one sketch and two photos. In accordance with the
setting of [4], we randomly select 150 identities for training and 50 for testing, and final results are
derived from the average of 10 experimental runs. Market-Sketch-1K is a large-scale dataset derived
from the Market-1501 [1], which is created by six artists based on descriptions, featuring multiple
perspectives and artistic styles. The training set consists of 2,332 sketches and 12,936 photos, while
the testing set comprises 2,375 sketches and 19,732 photos. Following the experimental setup in [6],
our method will be evaluated in three settings: single-query, multi-query, and cross-style retrieval.
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Table 2: Comparison with state-of-the-art methods on PKU-Sketch dataset. ‘Backbone’ includes
GoogleNet [62], VGG-16 [63], ResNet50, ViT [64], and CLIP. ‘-’ denotes the unavailable results. ‘†’
indicates that we reproduce UNIReID results following our training configuration.

Methods Backbone Reference mAP Rank@1 Rank@5 Rank@10

TripleSN [65] - CVPR’2016 - 9.0 26.8 42.2
GNSiamese [66] GoogleNet TOG’2016 - 28.9 54.0 62.4

AFLNet [4] GoogleNet MM’2018 - 34.0 56.3 72.5
LMDI [8] VGG-16 Neuro’2020 - 49.0 70.4 80.2

SKetchTrans [10] ViT MM’2022 - 84.6 94.8 98.2
CCSC [9] ViT MM’2022 83.7 86.0 98.0 100.0

SKetchTrans+ [5] ViT PAMI’2023 - 85.8 96.0 99.0
UNIReID† [7] CLIP CVPR’2023 88.7 92.4 98.0 99.6
DALNet [11] ResNet50 AAAI’2024 86.2 90.0 98.6 100.0

OLTM (Ours) CLIP - 91.4 94.0 99.4 100.0

(b) Market-Sketch-1K (Multi-Query) (c) PKU-Sketch(a) Market-Sketch-1K (Single-Query)

Figure 3: The Rank-5 retrieval results on two datasets. For the Market-Sketch-1K dataset, both
single-query and multi-query scenarios are presented. Green border indicates correctly retrieved
target pedestrians, while yellow border indicates incorrectly matched pedestrians.

Evaluation Metrics In line with [4, 9, 6, 59], we use Rank-k metrics (k = 1, 5, 10) and mean
Average Precision (mAP) as evaluation metrics. The higher values of the above three metrics, the
better performance.

Implementation Details OLTM uses a pre-trained CLIP-ViT-B/16 [40] as image encoder, and
extracts text features with a pre-trained CLIP Text Transformer. Fine-grained text attributes are
derived from a ViLT-based [60] VQA model. Importantly, our VQA model is replaceable. To avoid
the cost overhead from multiple calls to VQA model during training and inference, text attribute
generation is performed during the data processing stage. For multi-query scenarios, we input a
weighted sum of multiple sketches. Input images are resized to 288 × 144, and augmented with
random horizontal flipping and style augmentation [61]. More experimental configuration details are
available in the supplementary materials.

5.2 Comparison with State-of-the-Art Methods

Performance on Market-Sketch-1K. The experimental results for Market-Sketch-1K are shown
in Tab. 1. OLTM significantly outperforms all state-of-the-art methods in both single-query and
multi-query settings. In the single-query scenario, OLTM achieves an mAP of 38.35% and a Rank-1
of 36.75%, surpassing state-of-the-art method by 3.38% and 5.23%, respectively. In the multi-query
scenario, OLTM achieves an mAP of 62.55% and a Rank-1 of 69.48%, exceeding state-of-the-art
methods by 7.37% and 12.85%, respectively. This result is primarily due to the introduction of
textual semantic information in the training process of OLTM, which implicitly guides images
and sketches to focus on modality-invariant features. Through hierarchical and multi-granularity
alignment, the model is able to uncover discriminative fine-grained information, leading to more
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Table 3: Ablation studies on Market-Sketch-1K dataset. Training and testing are under the multi-query
setting. "Handcrafted" and "VQA" denote manually annotated and VQA generated text attributes,
respectively. "Template" represents the sentence template defined by experts. "Prompt" denotes the
learnable text prompts. The ‘Baseline’ uses an image encoder to process both modalities and employs
simple cross-attention to integrate the global features. ‘Lhtl’ [67] represents the hard triplet loss. Bold
values represent the optimal results.

Prompt setting Module Loss Metrics
Handcrafted VQA Template Prompt Baseline TCA CFI LID Lhtl Ltal mAP Rank@1

- - - -

✓ ✓ ✓ ✓ - ✓

55.47 60.04
✓ - ✓ - 61.46 68.07
✓ - - ✓ 61.81 67.47
- ✓ ✓ - 61.76 65.46

- ✓ - ✓ ✓ - - ✓ - ✓ 57.74 60.84
✓ ✓ - 61.10 65.66

- ✓ - ✓ ✓ ✓ ✓ ✓ - - 54.93 57.83
✓ ✓ - 61.63 66.06

- ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ 62.55 69.48

accurate queries. The visualization results on Market-Sketch-1K are shown in Fig. 3. When sketch
possesses clearly distinguishable features, query results are satisfactory. In contrast, when sketch
closely resembles multiple images, making its features challenging to distinguish with the naked eye,
the model encounters errors that are justifiable. In addition, to test the generalization capability of
OLTM on unknown styles, cross-style retrieval evaluation is performed on Market-Sketch-1K, and
detailed results are in supplementary material.

Performance on PKU-Sketch. Tab. 2 presents the model’s performance on PKU-SKetch dataset.
The results indicate that our OLTM outperforms all competitors by a significant margin. For example,
mAP and Rank-1 of OLTM are remarkably high at 91.4 and 94.0, surpassing state-of-the-art method
by 5.2% and 4.0%, respectively. Because the sketches on PKU-Sketch contain more detailed
information, they can assist multi-granularity interaction in acquiring more fine-grained knowledge.
Fig. 3 illustrates the top-5 visualization results of OLTM on PKU-Sketch. Our method can accurately
identify the target pedestrians despite challenges such as variations in posture, viewpoint, occlusion,
sketch abstraction, and different painting styles.

5.3 Ablation Study

In this section, ablation experiments are conducted on Market-Sketch-1K to evaluate the effectiveness
of each component within the OLTM framework.

The Effectiveness of Text Prompt Reasoning. To evaluate the contribution of different prompt
setting, we train the model with different combination of each setting. As shown in Tab. 3, the
combination of VQA and Prompt brings significant contribution. Compared to the strategy of
directly aligning different modalities, leveraging TPR to implicitly guide the alignment results in
improvements of 7.08% in mAP and 9.44% in rank-1. This significant improvement is primarily
attributed to introducing textual information during the training phase, which enables the model to
effectively capture semantic correlations between images and sketches during inference. Furthermore,
compared to manually annotated fixed attributes, those generated by VQA enhance the model’s
performance by adaptively adjusting the level of detail on which it focuses. Moreover, the introduction
of learnable prompts improved the mAP and rank-1 by 0.79% and 4.02%, respectively, compared
to fixed templates. Prompt learning can enhance the network’s learning and reasoning capabilities,
allowing it to more flexibly adapt to diverse modalities and enhance its sensitivity to subtle distinctions.

The Effectiveness of Our Designed Modules. To validate the effectiveness of the TCA and CFI
module, we progressively integrate them into the baseline and evaluate performance. The results in
Tab. 3 indicate that both modules significantly enhance the alignment and interaction capabilities
of model across modalities. Specifically, TCA improves mAP and rank-1 by 3.36% and 4.82%
compared to baseline, respectively. The introduction of textual information in TCA effectively
provides semantic guidance for coarse-grained alignment between modalities, enabling the model
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to focus more on similar semantic relationships. Furthermore, the integration of CFI has increased
mAP and rank-1 by 1.45% and 3.82%, respectively. CFI selectively focuses on key regions in visual
concept representations through semantic consensus. This process optimizes feature interaction and
ensures capturing more detailed information at a fine-grained level.

Table 4: Performance of TAL
Ltal with various baselines.
‘+’ represents WRT; ‘*’ repre-
sents HTL Lhtl.

Methods mAP R@1

BDG+ 24.45 24.70
BDG + TAL 27.79 27.71

baseline∗ 57.74 60.84
baseline + TAL 58.41 61.04

OLTM∗ 61.63 66.06
OLTM + TAL 62.55 69.48

The Effectiveness of Triplet Assignment Loss. The experimental
results in Tab. 3 demonstrate that the combination of proposed TAL
Ltal and identity loss LID achieves optimal performance. The identity
loss ensures that the model correctly identifies different individual
identities, while TAL further optimizes feature space by pulling posi-
tive samples closer and pushing negative samples apart. Additionally,
to verify the generalization of TAL, as shown in Tab. 4, we achieve
superior performance across various network frameworks by substi-
tuting TAL for the weighted regularization triplet loss (WRT) [59]
and hard triplet loss (HTL). Balancing between Euclidean distance
and optimal transport distance can significantly enhance model per-
formance. Please refer to the supplementary materials for more
verification experiments on the key role of overall data distribution
in enhancing sample feature distance.

6 Conclusion

In this paper, we present a optimal transport-based labor-free text prompt modeling (OLTM) frame-
work for sketch re-identification. OLTM embeds text prompt reasoning module and distance measure-
ment into transformer for achieving hierarchical multi-granularity alignment through the guidance of
text semantics, leveraging the advantages of prompt learning and optimal transport. In addition, to
address the limitations of Euclidean distance in measuring sample similarity, we propose a triplet
assignment loss that guarantees a more effective standard based on the overall data distribution.
Extensive experiments conducted on two public datasets indicate outstanding performance compared
to other state-of-the-art methods for sketch Re-ID.

Discussion: In this work, we employ text injection and sample distance optimization to direct the
model’s attention toward key details, thereby minimizing performance losses due to modal gap and
sample abstraction. However, our experiments revealed that when confronted with extremely vague
sketch samples (i.e., those that human cannot discern features or match), the model’s identification
process deteriorates into a random selection among multiple potential outcomes. Therefore, sketch
Re-ID heavily depend on the quality of sketches. Enhancing the discriminability of sketches without
incurring additional labor costs is a topic worthy of further exploration in future research.
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A Details about Optimal Transport

This section mainly introduces optimal transport and its corresponding algorithm, Sinkhorn-Knopp
[44]. Let Γr := {x ∈ Rr

+|x⊤1r = 1} represents the probability simplex, where 1r is the r-
dimensional vector of ones. Given two probability simplex vectors α ∈ Γm and β ∈ Γn and a cost
matrix C ∈ Rm×n, the objective of OT is to seek the optimal transport plan P ∗ mapping α to β at
the minimum cost:

dC(α, β) = min
P∈U(α,β)

⟨C,P ⟩,

U(α, β) =
{
P ∈ Rm×n

+ | P1n = α, P⊤1m = β
}
,

(7)

where U(α, β) denotes the transport polytope of α and β, i.e., the solution space of P . The above
problem is to find optimal solution P ∗ in a set of all possible joint probabilities of (X,Y ), where X
and Y represent random variables with marginal distribution α and β.

Generally, optimal transport (OT) problem is a linear programming problem that can theoretically be
solved in polynomial time. However, in the actual solving process, it involves the square of anchor
feature dimensions at all scales, requiring near-cubic complexity [68]. Therefore, consider optimizing
the problem through iteration. This method optimizes the solving process by adding an entropy
constraint to the OT problem, transforming Eq. 7 into a non-linear convex form with a regularization
term:

dC(α, β) = min
P∈U(α,β)

⟨C,P ⟩+ δE(P ),

U(α, β) =
{
P ∈ Rm×n

+ | P1n = α, P⊤1m = β
}
,

(8)

where δ is a hyper-parameter and E(P ) = P (logP − 1) is the entropy of P . Introducing a
regularization term is equivalent to introducing a prior knowledge: without considering the cost
matrix C, the distribution of assignment matrix P is expected to be as uniform as possible. Eq. 8
is an entropy-regularized OT (EOT) problem and can be solved by Sinkhorn-Knopp algorithm [44]
based on iterative updates of vectors. According to the Lagrange Multiplier Method, the conditional
extremum problem (i.e., Eq. 8) can be transformed into an unconditional extremum problem:

d̂C(α, β) = min
P
⟨C,P ⟩+ δE(P ) + µ(P1n − α) + ρ(P⊤1m − β) (9)

where, µ and ρ are the Lagrange multipliers. If we take its derivative and set it to 0, we can find P ∗:

P ∗ = exp(−µ

δ
)exp(−C

δ
)exp(−ρ

δ
) (10)

Let u = exp(−µ
δ ), v = exp(−ρ

δ ) and K = exp(−C
δ ), two constraint of Eq. 8 needs to be met

simultaneously. Thus, one possible solution is to iterate enough times according to the following
iteration formula:

uz =
α

Kvz−1
, vz =

β

K⊤uz
. (11)

Eq. 11 is called as Sinkhorn-Knopp iteration. After z iterations, P ∗ can be obtained by the following
equation:

P ∗ = Diag(u)KDiag(v) (12)

It is worth noting that the process of updating u and v (i.e., Eq. 11) alternately can be simplified to a
single step: uz ← α/K(β/K⊤uz−1). Furthermore, when all elements of α are positive, this single
step can be further simplified as: uz ← 1./K̂(β/K⊤uz−1), where K̂ = Diag(1./α)K. The overall
flow of Sinkhorn-Knopp is described by Algorithm 1.

B Details about Triplet Assignment Loss

B.1 Derivation for Gradient

This appendix provides some details on gradient derivation. To simplify representation and analysis,
we focus on a single direction, following the approach in [69], considering that sketch-to-image
retrieval and image-to-sketch retrieval are symmetrical. Moreover, we assume that there is only one
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Algorithm 1 The OT problem via Sinkhorn-Knopp

Require: Cost matrix C, weights α, β
Require: Hyper-parameter δ, iterations i = 1, max iteration z

1: Initialize K = e−C/δ , K̂ = Diag(1./α)K, u0 = 1n/n
2: while u changes or i is less than or equal z do
3: ui ← 1./K̂(β/K⊤ui−1)
4: i← i+ 1
5: end while
6: Get optimal value u∗ = u
7: v∗ = β/K⊤u∗

8: return optimal flow matrix P ∗ = Diag(u∗)KDiag(v∗)

paired image for each sketch in the mini-batch. Consequently, we can simplify TRL and TAL as
shown below:

Ltrl(Ri, Si) = [m− r⊤i si + r̂⊤i si]+,

Ltal(Ri, Si) = [m− d(ri, si) + d(r̂i, si))]+, d(r, s) = γr⊤s+ (1− γ)(1− exp(− r⊤s
δ ))r⊤s

(13)
where δ is the hyper-parameter of OT problem, r̂i and ri are the hardest negative sample and positive
sample of the anchor sample si, respectively. These l2-normalized features are embedded by the
modality-specific models, i.e., fθr (·) and fθs(·). Due to the truncation operation [x]+, we only
discuss the case of L > 0 that could generate gradients. For TRL, the gradients to the parameters θr
and θs are:

∂Ltrl

∂θs
=

∂Ltrl

∂si

∂si
∂θs

,
∂Ltrl

∂θr
=

∂Ltrl

∂ri

∂ri
∂θr

+
∂Ltrl

∂r̂i

∂r̂i
∂θr

. (14)

Since the learning of normalized features can be viewed as the movement process of points on a unit
hyperplane, we only consider the loss gradients with respect to ri, r̂i and si are:

∂Ltrl

∂ri
= −si,

∂Ltrl

∂si
= r̂i − ri,

∂Ltrl

∂r̂i
= si. (15)

For our TAL, the gradients to the parameters θr and θs are:

∂Ltal

∂θs
=

∂Ltal

∂si

∂si
∂θs

,
∂Ltal

∂θr
=

∂Ltal

∂ri

∂ri
∂θr

+
∂Ltal

∂r̂i

∂r̂i
∂θr

. (16)

Since the result of exp(− r⊤s
δ ) is obtained through several iterations of Sinkhorn-Knopp algorithm,

this part does not conduct gradients and can be simplified as a coefficient δ̂ = 1−exp(− r⊤s
δ ) ∈ [0, 1].

Thus, the gradients for ri, r̂i and si are:

∂Ltal

∂ri
= −[γ + (1− γ)δ̂]si,

∂Ltal

∂r̂i
= [γ + (1− γ)δ̂]si,

∂Ltal

∂si
= γ(r̂i − ri) + (1− γ)δ̂(r̂i − ri).

(17)

B.2 The Effectiveness of Triplet Assignment Loss

We have included visual analysis in Fig. 4, which illustrates the convergence curve and sample
distances during training. Figure 1(a) shows that conventional triplet loss converges prematurely. In
contrast, our proposed triplet assignment loss exhibits higher volatility, reducing the risk of suboptimal
local minima. Additionally, Figure 1(b) shows that a specific sketch sample (red box in the top left
image) may have similar Euclidean distances to multiple RGB samples. The triplet assignment loss
comprehensively considers the distribution of all samples (red box in the lower right image), offering
broader possibilities for selecting the most relevant ones.
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(a) The convergence curves of different losses (b) The distance distribution across modalities

Euclidean distance (𝐸) Optimal transport matrix (𝑃∗)

Optimal assignment distance

( 1 − 𝑃∗ 𝐸)
Adjustment distance (𝐷 )

Epoch

Figure 4: The effectiveness analysis of Triplet Assignment Loss. In Figure (b), the vertical axis
represents RGB images, and the horizontal axis represents sketches. For each ID, 4 training examples
are sampled, so the 4x4 cells on the diagonal represent positive sample pairs.

C Computational Complexity

Our OLTM achieves the trade-off between performance enhancement and computational complexity.
To this end, we select several methods for comparing parameters, floating-point operations (FLOPs),
and frames per second (FPS), as shown in the Tab. 5 below. The results show that OLTM gets
remarkable performance while maintaining reasonable computational costs. The reason is that: 1)
only TCA module is required for inference; 2) the Visual Question Answering(VQA) model is used
during data processing.

Table 5: The number of parameters, FLOPs, and FPS of different methods, where bold indicates
the best performance in this field and underline indicates the second-best performance. VI denotes
visible-infrared person re-identification.

Methods Field Backbone Reference Paras(M) FLOPs(G) FPS

DDAG[53] VI ResNet50 ECCV’2020 95.6 5.2 13.2
CM-NAS[54] VI ResNet50 ICCV’2021 24.5 5.2 14.8

CAJ[55] VI ResNet50 ICCV’2021 71.6 5.2 13.1
DEEN[56] VI ResNet50 CVPR’2023 89.3 13.8 7.7

CCSC[9] Sketch ViT MM’2022 203.9 383.8 -
BDG[6] Sketch ResNet50 MM’2023 222.9 5.2 14.9

UNIReID[7] Unified CLIP CVPR’2023 149.6 9.3 8.2

OLTM (Ours) Sketch CLIP - 181.9 6.2 11.7

D Additional Experimental Results

D.1 Experimental Setup

Implementation Details The dimensions of image and text features are set to 512. Within a
batch, we randomly select 8 identities, each comprising 4 images and 4 sketches. Each image is
associated with 9 fine-grained textual attributes. To ensure more reliable comparisons, the random
seeds are all set to 0. In the Text Prompt Reasoning module, ConMLP consists of a stack of N = 2
identical MLPs, where θmlp represents the trainable parameters. The iteration number of the Optimal
Transport algorithm is 3. In the Triplet Assignment Loss, the iteration number of the Optimal
Transport algorithm is 50. The model is trained with the Adam optimizer, starting with a learning
rate of 1e-5, decaying with a cosine scheduler. The model is implemented in PyTorch on the RTX
4090 24GB GPU.
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D.2 Experiment Result

Cross-style Retrieval Given the extensive Market-Sketch-1K dataset, where each person is sketched
by six different artists, notable variations exist across these sketches. Consequently, we devise this
experiment to assess our model’s resilience to diverse artistic styles. Experimental setups involve
sketches labeled as S1 to S6, each originating from different artists. Models are trained on sketches
by specific artists and tested on sketches by others. And, "single query" denotes separate queries for
sketches by different artists of the same individual, while "multi query" indicates queries combining
multiple sketches of the same person. The specific details of these experiments are presented in
Tab. 6.

Table 6: Testing on unseen styles. We report the mAP score.
a) single-query train and single-query test

train
test

S6 S5,6 S4...6 S3...6 S2...6

S1 25.83 22.41 22.71 23.47 22.96
S1,2 27.10 22.72 23.18 26.47 –
S1...3 25.75 26.60 26.83 – –
S1...4 32.60 30.07 – – –
S1...5 33.87 – – – –

b) multi-query train and multi-query test

train
test

S6 S5,6 S4...6 S3...6 S2...6

S1 – – – – –
S1,2 – 31.82 33.68 39.49 –
S1...3 – 34.30 36.49 – –
S1...4 – 39.42 – – –
S1...5 – – – – –

c) single-query train and multi-query test

train
test

S6 S5,6 S4...6 S3...6 S2...6

S1 – 29.17 30.35 34.65 34.49
S1,2 – 31.23 34.34 41.05 –
S1...3 – 34.52 37.65 – –
S1...4 – 40.10 – – –

d) multi-query train and single-query test

train
test

S6 S5,6 S4...6 S3...6 S2...6

S1,2 27.10 22.68 23.35 24.81 –
S1...3 26.97 25.13 31.96 – –
S1...4 29.99 27.79 – – –
S1...5 31.96 – – – –

Multi-query Setting Similar to [6], "multi-query" involves combining multiple sketches of the
same ID during both training and inference. Our paper employs a straightforward fusion method by
averaging the image features from multiple sketches. Tab. 7 below provides a comparative analysis of
various fusion strategies. The results demonstrate that the basic and simple fusion method achieves
the best experimental performance.

Table 7: Performance comparison of different multi-query experimental methods.
Methods mAP Rank@1 Rank@5 Rank@10

Simple Fusion 62.55 69.48 90.36 95.18
Average Pooling 60.95 66.27 88.15 94.38

Non-local Attention 60.98 65.66 90.16 94.98

Overfitting Analysis To mitigate overfitting, we apply various data augmentation techniques,
including random cropping, rotation, and style augmentation. Furthermore, to validate the model’s
robustness and generalization, we conduct supplementary evaluation experiments on two large-scale
datasets (SYSU-MM01 and RegDB) for visible-infrared person re-ID, as shown in Tab. 8. The results
demonstrate that our OLTM achieves comparable performance in the visible-infrared domain.

Parameter Analysis For the Triplet Assignment Loss proposed in our work, we compute the
sample distance using Eq. 18. Fig. 5 illustrates an analysis of the hyper-parameter γ. It can be
observed that setting γ = 0.3 yields the best performance in Rank-1 and mAP.

D(Ri, Si) = γE(Ri, Si) + (1− γ)(1− P ∗
i,i)E(Ri, Si) (18)

where E(Ri, Si) = ∥R
′

i − S
′

i∥2 denotes the Euclidean distance between feature representations.

In Dynamic Consensus Acquisition, the cost matrix C ∈ Rn×m
+ can be calculated for assignment,

where the (i, j)-th element Ci,j represents the cost of assigning a feature to an atom. Concretely,
to introduce certain priors as guidance [23], the enhanced features are used to learn the cost matrix
through two fully connected layers initialized randomly. m is a hyper-parameter that needs to be set.
Fig. 6 analyzes the values of m, showing that the best performance in terms of Rank-1 and mAP is
achieved when m = 32.
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Table 8: Comparison results of our method on visible-infrared datasets, namely SYSU-MM01 and
RegDB. Market-Sketch-1K is a sketch dataset used for reference. "VI" and "Sketch" represent their
respective task domains.

Methods Domain
SYSU-MM01 RegDB Market-Sketch-1K

All Search Indoor Search VIS to IR IR to VIS Sketch to VIS
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

DDAG[53] VI 54.8 53.0 61.0 68.0 69.3 63.5 68.1 61.8 11.2 12.1
CM-NAS[54] VI 60.8 58.9 68.0 52.4 82.8 79.3 81.7 77.6 0.7 0.8
CAJ[55] VI 69.9 66.9 76.3 80.4 85.0 79.1 84.8 77.8 1.5 2.4
DART[57] VI 68.7 66.3 72.5 78.2 83.6 75.7 82.0 73.8 6.6 7.8
DCLNet[58] VI 70.8 65.3 73.5 76.8 81.2 74.3 78.0 70.6 12.2 13.5
OLTM(Ours) Sketch 70.6 68.6 76.2 80.4 84.8 77.2 83.9 75.5 36.8 38.4

Figure 5: Analysis of the hyperparameter γ Figure 6: Analysis of the hyperparameter m

Qualitative Analysis Fig. 7 shows the Rank-5 results of OLTM and the baseline on the Market-
Sketch-1K dataset. The left and right parts show the retrieval results of the baseline and OLTM,
respectively. We can observe that OLTM can focus on more fine-grained discriminative information,
such as bag and hat. In contrast, the baseline only considers global information matching, which
leads to performance degradation.

Figure 7: The Rank-5 retrieval results under the multi-query setting on the Market-Sketch-1K dataset
are presented. On the left side are the retrieval results of the baseline, and on the right side are the
retrieval results of OLTM. Green borders indicate successful retrieval of the target pedestrian, while
red borders indicate incorrect results. Yellow boxes represent fine-grained information.
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E Analysis of VQA Models

E.1 The Setup of the VQA Problems

Through extensive statistical analysis, we have formulated 9 specific questions to obtain the corre-
sponding fine-grained textual attributes for a given image. These nine questions are as follows:

1. What is the gender of this person?

2. Is this person with long or short hair?

3. What is the color of this person’s shirt?

4. Is this person wearing long sleeves or short sleeves?

5. Is this person wearing pants or a dress underneath?

6. What is the color of this person’s lower garment?

7. Is this person carrying a backpack?

8. Is this person wearing a hat?

9. Is this person wearing glasses?

E.2 Replaceability of VQA Model

The VQA model is inherently substitutable. Essentially, any visual-language model which is capable
of generating target attribute information from images can serve as an alternative. We also use other
VQA models to demonstrate their substitutability, as shown in the Tab. 9 below.

Table 9: Performance comparison of different VQA models.
Methods mAP R@1 R@5 R@10

BLIP [70] 62.63 67.87 91.37 96.79
GIT [71] 62.33 68.47 90.76 96.59

VILT (ours) 62.55 69.48 90.36 95.18

E.3 The Fine-grained Recognition Ability of VQA Model

The VQA model has the capability to describe fine-grained recognition information for the following
reasons: 1) The VQA model generates detailed attributes about various aspects of the pedestrian target
(e.g., hair, backpack, hat), rather than relying on complete descriptive sentences. 2) We provide a
visualization comparison, as shown in Fig. 8. This comparison demonstrates that using text attributes
can guide effectively the attention of model.

Sketch Modality Visible Modality

Figure 8: Visualization of attention maps. The Green and Red box indicate presence and absence
of text attribute guidance, respectively. The Orange box represents partial text attribute guidance
(excluding head-related information).
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E.4 Background Information

We conduct additional background evaluation on Market-Sketch-1k dataset based on our initial studies.
Specifically, we formulate the question ’What is the background of this image?’ to extract textual
attributes about background. The extracted background details are illustrated in Fig. 9. However, the
introduction of background information result in a decrease of 2.81 in Rank-1 and 1.62 in mAP. This
decline can be attributed to the absence of corresponding background information in the sketches,
which potentially interferes with the model’s learning process.

male

short hair

yellow sleeves

short  sleeves

shorts

gray shorts

with bag

without hat

with glasses

bike

male

short hair

green sleeves

short  sleeves

pants

blue pants

with bag

without hat

with glasses

tree

Figure 9: The text attributes generated by VQA model on RGB images. Red indicates background
information obtained from the question: "What is the background of this image?".

E.5 The Availability of Text Attributes

To verify the effectiveness of different text attributes, we have provided additional ablation experi-
ments in Tab. 10 below. The results show a significant decrease in model performance after discarding
several hard-distinguished attributes (e.g., color and gender) in sketches. As shown in Fig. 10,
sketches convey gender-related information through factors like body shape, and the contrast between
light and dark areas effectively highlights specific color details. The TPR module injects detailed
information into modal interactions during training. This enables the model to focus on these nuances
autonomously, even without TPR during inference.

Table 10: Building on the original experimental setup, this comparison evaluates performance by
removing the fine-grained textual attributes of gender, up color, and down color.

gender up color down color mAP Rank@1 Rank@5 Rank@10

✓ ✓ ✓ 62.55 69.48 90.36 95.18
- ✓ ✓ 62.28 68.07 89.96 95.18
- - ✓ 61.64 67.67 89.76 94.98
- - - 61.35 67.07 89.16 94.78

Figure 10: Comparative analysis of RGB images and corresponding sketches. Gender-related factors
in sketches include body shape and hair, and the contrast highlights color details.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The abstract and introduction provide a concise overview of
the research area, the novel approaches introduced, and the key contributions, ensuring that
readers have a clear understanding of what the paper aims to achieve and the significance of
its findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the "Discussion" at the end of the paper, we discuss in detail the limitations
of this work. However, our experiments revealed that when confronted with extremely
vague sketch samples (i.e., those that human cannot discern features or match), the model’s
identification process deteriorates into a random selection among multiple potential out-
comes. Therefore, sketch Re-ID heavily depend on the quality of sketches. Enhancing the
discriminability of sketches without incurring additional labor costs is a topic worthy of
further exploration in future research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All formulas and proofs in the paper are numbered and cross-referenced. The
paper provides complete proofs of the formulas, and for those appearing in the supplementary
material, a brief proof sketch is provided in the main text. The proofs in the paper are
rigorously reasoned, adhere to accepted mathematical principles, and do not omit any critical
steps. The theorems and lemmas relied upon in the proofs are appropriately referenced and
cross-referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. The experimental section of the paper provides detailed descriptions
of experimental setups, configurations, and other relevant details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

24



(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: This paper does not currently provide open-access code, but it is planned to be
made public in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results. It includes information such as data splits, hyperparameters, how they were chosen,
the type of optimizer used, and any other relevant details regarding the training and testing
procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars suitably and correctly defined, nor does it
provide other appropriate information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provides sufficient information on the computer
resources needed to reproduce the experiments (type of compute workers, memory).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential positive societal impacts of the work. See
introduction 1
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

27



Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and the license and terms of use explicitly mentioned and properly
respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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