Under review as submission to TMLR

PipelineRL: Faster On-policy Reinforcement Learning
for Long Sequence Generation

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning (RL) is increasingly utilized to enhance the reasoning capabilities
of Large Language Models (LLMs). However, effectively scaling these RL methods presents
significant challenges, primarily due to the difficulty in maintaining high AI accelerator
utilization without generating stale, off-policy data that harms common RL algorithms.
This paper introduces PipelineRL, an approach designed to achieve a superior trade-off be-
tween hardware efficiency and data on-policyness for LLM training. PipelineRL employs
concurrent asynchronous data generation and model training, distinguished by the novel
in-flight weight updates. This mechanism allows the LLM generation engine to receive up-
dated model weights with minimal interruption during the generation of token sequences,
thereby maximizing both the accelerator utilization and the freshness of training data. Ex-
periments conducted on long-form reasoning tasks using 128 H100 GPUs demonstrate that
PipelineRL achieves approximately ~ 2z faster learning compared to conventional RL base-
lines while maintaining highly on-policy training data. A scalable and modular open-source
implementation of PipelineRL is also released as a key contribution.

1 Introduction

Reinforcement Learning (RL) has recently become a popular tool to enhance the reasoning and agentic
capabilities of Large Language Models (LLMs) (Guo et al., 2025; Wei et al., [2025). While RL expands
the range of training signals one can use to enhance LLMs, this advanced learning paradigm comes with
extra challenges, including being particularly hard to effectively scale to more compute. The scaling difficulty
arises from the fact that Al accelerators (like GPUs and TPUs) deliver high throughput only when generating
sequences at a large batch size. Hence, naively adding more accelerators to an on-policy RL setup brings
increasingly diminishing learning speed improvements because the per-accelerator throughput decreases,
while the overall generation latency reaches a plateau. The common workaround of generating training data
for multiple optimizer steps results in a lag between the currently trained policy and the behavior policy
that generates the training data. The lagging off-policy data is known to harm the commonly used effective
RL algorithms (Noukhovitch et al.l [2024), including, REINFORCE (Williams, {1992)), PPO (Schulman et al.,
2017) and GRPO (Shao et all |2024; |Guo et al.| [2025), because these algorithms were designed to be trained
with on-policy or near on-policy data, with the behavior and current policy being very close.

In this paper, we present the PipelineRL approach to RL for LLMs that achieves a better trade-off between
hardware utilization and on-policy learning. Like prior work on efficient RL (Espeholt et al., |2018} [2019)),
PipelineRL features concurrent asynchronous data generation and training. PipelineRL adapts prior asy-
chronous RL ideas to long-sequence generation with LLMs by introducing in-flight weight updates. As shown
in Figure (I} during an in-flight weight update the LLM generation engine only briefly pauses to receive the
model weights via a high-speed inter-accelerator network, and then proceeds to continue the generation of
in-progress token sequences. In-flight updates eliminate the wasteful waits for the last sequence to finish,
ensure high accelerator utilization at a constant generation batch size, and maximize the policy adherence
of the recently generated tokens.



Under review as submission to TMLR

inference batch size decreases constant batch size inference
] I I ]
v 2 & T I -
o L ] % g i i L weights through time
o o
o L 1 E § — v / Optim ~ Optim  Optim //
r S5 & step0  step1 = step2 GPU idle
| 77 /
Time v Time .
a) Conventional RL. b) Pipeline RL with inflight weight updates.

Figure 1: a) Conventional RL alternates between using all the GPUs for generation and then training. b)
PipelineRL runs generation and training concurrently, always using the freshest model weights for generations
thanks to the in-flight weight updates.

Our experiments on RL training for long-form reasoning show that on 4 DGX-H100 nodes, PipelineRL
learns ~ 2x faster than the comparable conventional RL baseline. We also observe that PipelineRL training
data stays highly on-policy, and that models trained by PipelineRL perform comparably to similarly trained
models from the literature. Lastly, a key contribution of this work is a scalable and modular PipelineRL
implementation that we release as open-source software.

2 Background

2.1 Reinforcement Learning for Large Language Models

Reinforcement learning (RL) is commonly used to train Large Language Models (LLM) to respect human
preferences (Ouyang et all 2022) for the LLM’s outputs or to perform long-form reasoning to solve prob-
lems (Guo et all [2025). One can view LLM’s weights as parameterizing a multi-step policy that assigns
probabilities to the next token y; given the prompt x and the previously generated tokens y;:

m(ylz) = Hﬂ(yi|$7y<z’)~ (1)
i=1

Recent works have shown that variations of basic policy gradient algorithms such as REINFORCE (Williams),
1992) are as effective for training LLMs as more sophisticated alternatives (Ahmadian et all, 2024} Roux]
et al. L m Given a set of prompts z1,...,zm,, REINFORCE maximizes the expected return J (m) of the
policy 7 by following an estimate V.J(7) of the policy gradient V.J(r):

J( l Z Yy~ (- |$,)R(x37 )] (2)

S

SH
MSE

VJ(T(' - yN7r( |mJ)V10gﬂ-(y ‘ 217]) (.’B],y)] (3)
J:l
1 I
ViJ(m) = — SN (Rj,y5) — valws, yj<e) Viog m(yse | 25, yj.<1), (4)
j=1t=1

where R(z;,y) is the reward and vs(z;,y;<;) is a value function learned by minimizing (R(z;,y;) —
2

v (5, Yj<t))

In most practical RL setups, the current policy m will often differ from the behavior policy p that generates

Yk, due to the weights lagging, quantization or implementation difference between the inference and training

softwares. This difference is usually handled by either a trust region constraint (Schulman et al. [2017) or
using Importance Sampling (IS). In practice, the importance sampling weights are truncated to reduce the




Under review as submission to TMLR

Algorithm 1 Conventional RL

Require: Current policy .
Require: Optimizer state opt_ state.
Require: Number of optimizer steps per RL step G.
Require: Training batch size B.
while True do
// generation > RL step starts
wT > Initialize behavior policy p
sequences <— generate BG sequences from p
batches < split sequences in G batches of size B
// training
lag < 0 > lag between p and 7
for batch in batches do
m, opt__state < optimizer_step(m, opt_ state, batch)
lag <+ lag + 1
end for > RL step ends
end while

variance of the estimator (Munos et al., [2016} Espeholt et al., 2018):

m Tj
Vrs(r)=— 3> min ( e | 7;) wﬂ)) (s, 55) — v (w5, u5c0) Viog mlsa | i ysct)  (5)
= w(yk | x5)

The Effective Sample Size (ESS) (Kong), [1992) is commonly used to quantify the quality of importance
sampling estimators in RL (Schlegel et al.l 2019; |[Fakoor et al., |2020). When using off-policy RL, ESS
measures how many samples from the current policy m would yield equivalent performance to weighted
samples from the behavior policy u. The (normalized) ESS is defined as:

ESS = (Zw) /NZw? (6)

where w; are importance weights for a sample of size N. This metric effectively ranges between 0 and 1
when normalized, with values closer to 1 indicating more efficient sampling, e.g. the ESS of on-policy data
is exactly 1. Small ESS will result in a high variance REINFORCE gradient estimate and might destabilize
the learning process.

2.2 Conventional RL

Most RL implementations alternate between generating sequences and training the policy on the generated
data. We refer to this approach as Conventional RL and describe it in detail in Algorithm [I} When training
involves doing G > 1 optimizer steps, the current policy 7 gets ahead of the behavior policy p that was used
to generate the data. We adopt the term lag g to refer to the number of optimizer steps between p and .

2.3 Efficient Sequence Generation with LLMs

Transformer models generate sequences one token at a time, left-to-right. To make this process efficient,
advanced generation (inference) engines such as vLLM and SGLang process a batch of sequences at a time,
while carefully managing their past keys and values in a paged structure called KV cache (Kwon et al.|
2023b). All modern generation engines support adding new generation requests in-flight to the ones in
progress without stopping the generation process. Based on accelerator specifications, generation engines
should achieve the maximum generation throughput at very large batch sizes of several thousand sequencesE]

Thttps://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html


https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

Under review as submission to TMLR

-
N
®

o

=}

S

IS

mm Wall-clock (s)

N
o
@

0
[ —
s g 500 Throughput (x10° tok/s) | 2
© 5000 g I o
h o388 [ v 38
55 4000 & 5 400 S
o 3000 B = § =
2 E 640 ] 300 2y
L 2000 € o £
=} 2 768 £ 200 [
1000 = E 13
£ 896 100 =
™ ° .
@ ’\,b A > ,\’/1,% ,{:)b (,)\,’» Q’Lb‘ th‘b 1024 i 0
. NV 0 100 200 300 400 1024 896 768 640 512 384 256 128
Batch Size Seconds since generation starts Number of sequences per GPU
(a) Throughput vs batch size. (b) Inference batch size vs time. (¢) Time vs Throughput.

Figure 2: Analysis of generation times and throughput. We perform all measurements using a vLLM
engine serving a Qwen 2.5 7B model on a H100 GPU. (a) Short prompt generation throughput increases up
to batch size 256. (b) Generation batch size gradually decreases to suboptimal values as the engine finishes
sequences (c¢) Generation time reaches a plateau and throughput decreases as the number of sequences per
GPU goes down. We report the average of 5 runs and 95% CI.

Algorithm 2 PipelineRL: Actor and Trainer Processes

Require: Current policy weights 7.
Require: Generation batch size H.
Require: Training sequence queue Qrain-
Actor Process:
1: function ACTOR
2 sequences in progress Sprog < ||
3 while True do
4 Stin, Sprog < pop finished sequences from Sp,oq
5: Qtrain-put(Sfin) > Send finished segs to the trainer
6 if len(Sprog < H) then
7 add H — len(Sprog) prompts to Sproq
8
9

end if
: if Trainer requests weight update then > In-flight check for new weights
10: p +— receive_weight__update()
11: end if
12: Sprog +— generate next tokens with p
13: end while

14: end function

Trainer Process:
15: function TRAINER(7, opt_ state)

16: batch < []

17: while True do

18: request__actor_ weight_ update(m) > In-flight weight update
19: batch < get B sequences from Qyrqin

20: m, opt__state < optimizer_step(m, opt_ state, batch)

21: end while

22: end function

In practice, at very large batch sizes, the per-sequence latency can become prohibitively high, KV cache may
grow too large to fit in accelerator memory, or the request queue management overheads can dominate.



Under review as submission to TMLR

3 The learning speed ceiling of Conventional RL

Reinforcement learning for LLMs can be slow when the LLM is trained to generate long sequences of tokens,
e.g., long-form reasoning to solve mathematical problems, because each generation can take up to several
minutes. Here we explain why it is challenging to effectively scale up long sequence RL, i.e. to effectively use
a larger number of accelerators N to make average reward R(t) at time ¢ grow faster. As a mathematical
function, one can view R(t) as a composition of the functions R(S) and S(t), where S is the number of
samples the RL learner will have processed by time t. A faster RL learner will have a higher learning speed

AR which we can express as the product of learning effectiveness and learning throughput as follows:

At

AR AR AS

== A5 X o (7)

At AS At

—~ -~ —~

speed effectiveness  throughput
The Conventional RL algorithm from Algorithm |1{ has the highest 2—? when it is fully on-policy, i.e., when
one performs only one optimizer step per each RL step. Yet the throughput %‘f in the pure on-policy case
can be low because the accelerators will be working on at most batch size B samples at a time. Increasing
the number of accelerators N will yield diminishing returns in increasing %, because the throughput of
each accelerator will decrease when the number of samples per accelerator % goes below the optimal range
(Figure . For example, see Figure for inference throughput for a 7B Qwen model on a single H100
GPU. One can see that the throughput increases almost linearly up to the generation batch size of 128.
Hence, e.g. using 2N GPUs to generate 32 samples will not be much faster than using N GPUs to generate
64. Furthermore, as the LLM finishes the shorter generations, there will be fewer longer generations still in
progress, see Figure for an illustration. Hence, to make good use of the hardware, one should use each
accelerator to generate many times more sequences than the optimal batch size.

Commonly, to increase the throughput, most practitioners perform multiple G > 1 optimizer steps per RL
step, which entails generating BG rollouts at each generation stage. This way, one can often achieve a
higher throughput % by increasing N up to a point when % becomes too small. It is, however, known
from the literature that going too off-policy by using a high value of G will eventually decrease the learning
effectiveness % (Noukhovitch et al., [2024). Clearly, at some points, the rollouts from the old policy become
too stale and no longer useful as the source of learning signal for the current policy. Hence, given a fixed
optimizer batch size B, one scales up Conventional RL by increasing G and N until the product ﬁ—g%‘f no

longer improves, and the hard ceiling of % for the given number of accelerators N is achieved.

4 Pushing the learning speed ceiling with PipelineRL

The Pipeline RL method differs from Conventional RL in two aspects: (1) running training and generation
in parallel asynchronously, and (2) updating the generation weights after every optimizer step in-flight,
i.e. without stopping the sequence generation. Algorithm [2| provides an abstracted formal description of
PipelineRL in terms of two concurrent Actor and Trainer processes that communicate via a sample queue
and a high-bandwidth weight transfer network.

The effectiveness-throughput trade-off for PipelineRL is the opposite of that of Conventional RL. Namely,

adding more accelerators to a PipelineRL setup leads to a linear increase of %7 but may eventually harm

ﬁ—g. In Figure |3| we illustrate how PipelineRL produces mized-policy sequences in which earlier tokens

are more off-policy than the recent ones. Doubling N will double the lag of the earliest tokens as well as
the average lag in the PipelineRL batch. Notably, the off-policyness profile is different for PipelineRL and
its conventional counterpart. Taking the average token lag as a proxy for off-policyness, in PipelineRL all
batches are equally off-policy, whereas for Conventional RL later batches become progressively more off-
policy. This difference makes it hard to analytically reason about the %If improvement that PipelineRL
can bring over the baseline, because ﬁ—g can only be estimated empirically by running RL experiments. In
supplementary material, we present our simulation of how, for the same maximum lag g,,q, PipelineRL can
learn 1.5x faster than Conventional RL. The empirical gains can be even lzzrger, depending on how frequently
R

one can make weight updates without hurting the learning effectiveness 3.



Under review as submission to TMLR

Token lag

Optim step

|| || ||

a) Conventional RL G=3 b) PipelineRL N accelerators c) PipelineRL 2N accelerators

Figure 3: For Conventional RL, the token lag increases with the number of optimizer steps. In PipelineRL
with N accelerators, the token lag varies throughout the sequence, where earlier tokens have higher lag. The
lag structure in each batch is the same. Doubling the PipelineRL accelerators, everything else constant,
double the lag of early tokens.

POST /request_weight_update Weight inifiniband
—> Iniriniban
POST /init_process_group i update a
> ---> Streaming
o F HTTP
/data/0/0 [~ -~ P|
Inference Inference Ref Ref ) trainer O
weights weights weights weights !
i
Ref LLMO Ref LLM1 ‘ O Weights
'
POST v1/chat/completion POS'I'\\M/chaUcomp\fet\on N @ Stream
i
) T | Process
i
i
actor0 [ -»| /actor/0/0 [--M preprocessO  F---»/qata/0/T [~~~ P
trainer T

Figure 4: The three pipeline stages of PipelineRL implementation: actor, preprocessor and trainer. Earlier
stages stream the data to the latter ones using Redis as the streaming broker.

Configuring PipelineRL vs Conventional RL For a fixed batch size B and a number of accelerators
N, one can configure Conventional RL by choosing the number of optimizer steps G, trading off the learning
effectiveness for the throughput. The PipelineRL configuration can likewise be mostly reduced to a single
parameter, namely the number of training accelerators 1T' out of N available ones. Setting a higher T will
almost linearly decrease the time t;.q;, that is needed for the trainer to process B sequences and perform
an optimizer step. T effectively determines the optimal generation batch size H to be used at all N — T
accelerators. Using a lower H leads to a lower maximum generation latency 4., which consequently reduces
the maximum l1ag gmaz = [tgen/tirain |- Hence, it makes sense to use the smallest H that suffices to produce
enough training data. Consequently, the maximum lag g4, for PipelineRL grows with the number of
training accelerators T', as higher T' requires a higher H and leads to a lower #;,q;, and a higher t4e,. On
the contrary, the sample throughput of PipelineRL grows with 7" up to a point when N — T accelerators
cannot generate enough data for the over-powered trainer. We recommend avoiding extreme configurations
with T too high (very high lag G) and T too low (bad hardware utilization, one can just as well scale down
the compute).



Under review as submission to TMLR

040 040 /
B 2
Soss goss
4 4
0.30 0.30 /
025 0.25
—— PipelineRL ) —— PipelineRL 02 —— PipelineRL
0.20 ConvRL G=8 020 ConvRL G=8 ConvRL G=8
ConvRL G=16 ’ ConvRL G=16 ConvRL G=16
0415 —— ConvRL G=32 0.15 —— ConvRL G=32 0.0 —— ConvRL G=32
0 50 100 150 200 250 300 350 00 02 04 06 08 1.0 0 50 100 150 200 250 300 350
Time (minute) Samples (1e6) e Time (minutes)
(a) Reward vs time. (b) Reward vs samples. (c) Samples vs time.

Figure 5: (a) PipelineRL attains the same average reward faster than the conventional RL baselines. (b)
PipelineRL achieves the same sample efficiency as G = 8 and G = 16. (c) PipelineRL generates samples 2x
faster than the conventional RL G = 32 baseline.

Architecture and Implementation Details Our PipelineRL implementation concurrently runs many
distributed vLLM generation engines and DeepSpeed training workers in a three stage pipeline that we de-
scribe in Figure[d The middle Preprocessor stage that we omitted from Algorithm [2]for simplicity, computes
reference model log-probabilities often used in Reinforcement Learning from Human Feedback (Ouyang et al.,
2022)). The PipelineRL architecture is highly modular — any generation software that supports the three
HTTP API endpoints that PipelineRL requires can be easily integrated in the future. The three APIs are
the popular /v1/chat/completions for generation, /init_process_group for creating the weight transfer
process group, and /request_weight_update for initiating the in-flight weight update. Key optimizations
in PipelineRL include online sequence packing for fast training and using ring buffers to minimize the lag
when earlier pipeline stages run faster than the later ones, e.g. when the trainer makes a checkpoint.

5 Experiments

For the experimental validation of PipelineRL’s high learning effectiveness ﬁ—g and throughput %, we

have chosen the challenging task of training a base (i.e. not instruction-tuned) model to perform long-form
reasoning to solve mathematical problems. We find this task to be a great testbed for PipelineRL because the
policy undergoes rapid changes over the course of training. In particular, the length of generated sequences
grows dramatically (Guo et all [2025), making it essential to stay on-policy for effective learning.

Experimental setup. For each experiment, we train the Qwen 2.5 base model (Yang et al., 2024) with 7B
parameters on 17K math problems from the OpenReasoner Zero dataset (Hu et al., 2025 for 1024 optimizer
steps with the batch size B = 1024 and maximum sequence length of 32k. We use Adam optimizer (Kingma;,
2014) with the learning rate le-6. We run the PipelineRL experiments on 16 DGX-H100 nodes, using 48
GPUs for generation at batch size H = 64 and 80 GPUs for training. We tweak PipelineRL to simulate
Conventional RL by accumulating and shuffling a buffer of BG samples at the Preprocessor stage before the
G optimizer steps of each RL step start. To estimate the Conventional RL throughput, we use 2 nodes for
generation at batch size H = 64 and 2 nodes for training, and then add a correction for training on 8x fewer
GPUs than what an efficient Conventional RL implementation with a quick generation-training transition
could use. To estimate the inference throughput on 128 GPUS instead of 16 GPUs, we submit % batches of
% and take the maximum completion time. We give reward 1 to completed sequence with the correct
answer and 0 otherwise. We also give a soft penalty to the model when it produces between 30k and 32k
tokens. We train every model with importance weighted REINFORCE as described in Section [2| and clamp
the importance weights to 5. For our experiment we use vLLM (Kwon et al., 2023a)) to generate trajectories



Under review as submission to TMLR

0 PipelineRL ConvRL G=8 ConvRL G=16 ConvRL G=32
50
40
o
5
= 30
©
s
20
10
0
00 02 04 06 08 1000 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Samples 1eb Samples 1e6 Samples 1e6 Samples 1e6
(a) Max lag.
PipelineRL ConvRL G=8 ConvRL G=16 ConvRL G=32

1.000

‘“%

o
©
©
a

= 0.985

Effective Sample Size (ESS)
@
8

0.980
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1e6 1e6 1e6

Samples Samples Samples Samples 1e6

(b) Effective sample size.

Figure 6: In Figure @ PipelineRL attains a higher max lag that every conventional RL method, but as
observed in Figure[6D] the Effective Sample Size is similar to G=8. This indicates that while the max lag is
quite high, PipelineRL stays mostly on-policy as measured by the ESS.

Table 1: Success rate of models trained with PipelineRL compared to results in the literature.

Method Math 500 AIME24 # samples (-10° ) training data
Qwen 2.5 base 7b 31.6 3.3 - -

SimpleRL Zero
QZeng et al.L |2025D
OpenReasoner Zero

(Hu et all [2025) ~ 82.0 ~ 20.0 8.2 OpenReasoner

PipelineRL (batch size 1024) 81 17.5 2.0 OpenReasoner
PipelineRL (batch size 4096) 84.6 19.8 6.2 OpenReasoner

78.2 20.0 0.82 Math Level 3-5

and use DeepSpeed (Rasley et all, [2020) through accelerate to train the model. We did not recompute the
KV cache after each in-flight updates as it did significantly improved on-policyness, see Figure [7]

PipelineRL learns faster due to higher throughput. We compare the learning speed of PipelineRL
to that of Conventional RL with G' = 32 optimizer steps, as that was the maximum G for which Conventional
RL training was stable. PipelineRL achieves the same reward values approximately ~ 2z faster than this
baseline (Figure due to ~ 2z faster sample throughput (Figure . The main cause of the throughput
increase is that GPU utilization for G = 32 experiment on 128 GPUs is relatively low for each GPU when
it has to generate just 32 x 1024/128 = 256 sequences (see Figure . Further increasing G to 64 results in
divergence, see Figure

PipelineRL learns effectively. To better measure learning effectiveness % of PipelineRL, we also run

Conventional RL experiments with G = 8, G = 16, and G = 32 optimizer steps. Notably, the R(S) curves
are indistinguishable for all compared methods up to a point where G = 32 is slower and unstable, likely



Under review as submission to TMLR

1e-3 1e-3 1e-3
7
5 6
1.5
_ 4 5
o
+
4
33 1.0
= 3
J2
<
05 2
! 1
0 0.0 0
0 10 20 30 0 10 20 30 0 10 20 30
Lag (9) Lag (9) Lag (9)
a) Starting checkpoint C=0 b) Starting checkpoint C=100 c) Starting checkpoint C=190
—— Conventional RL —— PipelineRL with KV cache recomputed —— PipelineRL

Figure 7: For three different starting checkpoints, PipelineRL with and without KV cache recomputation
stay more on-policy than Conventional RL as measured by the KL divergence.

because of going too far off-policy. This result validates that PipelineRL’s signature in-flight weight updates
do no harm to the sequence generation process.

PipelineRL matches comparable results on reasoning tasks. Table[I]compares the test performance
of PipelineRL to similar experiments that start training from the same Qwen 2.5 7B model. In this exper-
iment we used batch size 4096 because we found it leads to a higher performance. On the math reasoning
benchmarks MATH500 (Hendrycks et all [2021)) and AIME2024 (Li et al., 2024). PipelineRL matches or
exceeds the success rate of Open Reasoner Zero and SimpleRL Zero.

PipelineRL stays more on-policy. To gain a better understanding of which training methods stay more
on-policy, we plot the evolution of the max lag and the ESS on-policyness measure throughout the training.
Figure [6a] shows that PipelineRL obtains a higher max lag than the conventional RL baselines. Notably some
tokens have a lag of more than 50k samples. However Figure [6b] shows that, in terms of ESS, PipelineRL
maintains a similar on-policyness as G = 8. We further observe that the ESS of G = 16 and in particular
G = 32 drops throughout training.

5.1 Impact of in-flight weight updates on on-policyness

In this section, we compare the sampling distribution of in-flight weight updates to 1) conventional RL with
different max lag and 2) in-flight weight update with KV cache recomputation. For this experiment, we
save a set of consecutive checkpoints C;, one after every optimizer step. To replicate the in-flight weight
update, we start from a checkpoint and update the weights of the behavior policy every g% tokens with the
subsequent checkpoint, where L is the maximum sequence length and gyax is the maximum lag. Specifically,
the PipelineRL behavior policy is defined as:

= ﬂc(ﬂﬂl:tl) cee ﬂc+g(iﬂt9:t9+1 | fl:tla cee i‘tg_l:tg) (8)

where t1 = g and tg =t,1
next updates due to the bubble at the beginning of training, see Figure I 11| b). We also use & to stress that
the KV cache for the previous tokens is stale - as it was computed under previous model weights. We then
compute the KL between the mixed behavior policy pc.c+g and the on-policy behavior policy pcyq. We
also report the KL with the mixed behavior policy with updated KV cache which we denote as PipelineRL
with KV cache recomputed. To replicate conventional RL, we sample N sequences from the behavior policy
w = pc and compute the KL with on-policy behavior policy pc4g4 for different lag k.

In this experiment, we fine-tune Qwen 2.5 base 7B on the OpenReasoner Zero (Hu et al., 2025 data for
222 optimizer steps. We consider three stages in training to measure KL-divergence: starting at checkpoint



Under review as submission to TMLR

0, 100, and 190. The maximum lag gmax is set to 32 and the maximum sequence length L is 2048. As
presented in Figure [7] the distribution of mixed-policy sequences closely aligns with that of fully on-policy
sequences across all three stages in the training. In contrast, off-policy sequences exhibit consistently higher
divergences as lag increases. Also, using stale KV-cache for mixed policy sequences introduces only slightly
higher divergence compared to recomputing the cache. This supports our design choice in Pipeline-RL to
opt for the more efficient approach of retaining the KV cache.

6 Related work

Asynchronous and high-throughput RL has been extensively studied. IMPALA (Espeholt et al., [2018)
decoupled acting from learning to maximize GPU utilization. Like PipelineRL, IMPALA used truncated
importance weights to estimate the value function from off-policy samples. Furthermore, IMPALA kept the
policy weights constant for the length of an episode. SeedRL (Espeholt et all 2019)) proposed to update
the model’s parameters during an episode, resulting in trajectories where different actions were sampled
by different policies. OpenAl Five (OpenAl et all [2019) was trained using asynchronous PPO to achieve
superhuman performance on Dota 2. These previous works were focused on RL for video games and learns
from partial rollouts. PipelineRL only learns from completed rollouts. Closer to our work, (Noukhovitch
et al., [2024) explores asynchronous RL for LLMs. In their approach, data generation for the next G optimizer
steps is synchronized with training on the previous G optimizer steps, leading to higher off-policyness than
Conventional RL, unlike PipelineRL. The same study shows that offline methods such as DPO (Rafailov
et al.l [2023)) can better tolerate off-policyness.

There exist several other scalable open-source RL implementations. veRL (Sheng et al. |2024]) implements
Conventional RL efficiently by using a sophisticated hybrid generation-training engine that supports quick
transitions between training and generation on the same GPUs. We believe veRL’s throughput would be
similar to our Conventional RL baseline. Without the hybrid engine, in OpenRLHF (Hu et al.l 2024)
training GPUs idle during generation and vice-versa. Concurrently, Magistral(Mistral-Al et al., 2025|) also
introduced in-flight weight updates.

7 Conclusion and Discussion

We have shown how in-flight weight updates help PipelineRL break the learning speed ceiling of the con-
ventional two-stage RL approach. We believe that for long sequence generation, in particular, this speedup
would be very difficult to attain with another asynchronous RL approach, as synchronous waits for genera-
tion to finish would hurt the throughput and/or learning effectiveness. The stale KV-cache risk that in-flight
updates introduce can be mitigated by recomputing the KV cache after each update, which can be done fast
at a high GPU utilization, but will still lower the throughput.

We believe PipelineRL may be particular useful for training LLMs to excel at agentic behaviors that involve
multiple LLM generations interspersed with environment interactions. Another promising direction for
future work is to study when the recent low lag tokens in PipelineRL are helpful, and on the contrary, where
PipelineRL’s constantly high lag of early tokens in long sequences hurts. Furthermore, there might exist
better RL algorithms when combined with PipelineRL than traditional algorithms such as REINFORCE
with truncated importance sampling.

Limitations PipelineRL will only bring a limited throughput increase over Conventional RL if the LLM
is asked to generate the exact same number of tokens for the same prompt. In this unlikely scenario,
Conventional RL will be likewise capable of maintaining a constant generation batch size. The PipelineRL’s
stable average token lag and the low lag of recent tokens in each batch may, however, still affect the learning
effectiveness. The PipelineRL throughput advantages will likewise decrease in setups with scarce or extensive
compute resources. In the former case, each GPU will get enough generation tasks for the GPU utilization
to be high. In the latter, the learning speed will be bounded not by the hardware utilization but by the best
possible generation latency and by the environment feedback delay.

10



Under review as submission to TMLR

References

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet
Ustiin, and Sara Hooker. Back to basics: Revisiting REINFORCE style optimization for learning from
human feedback in LLMs. arXiv preprint arXiv:2402.14740, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed deep-RL with importance weighted
actor-learner architectures. In International conference on machine learning, pp. 1407-1416. PMLR, 2018.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. SEED RL: Scalable
and efficient deep-RL with accelerated central inference. arXiv preprint arXiv:1910.06591, 2019.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P30O: Policy-on policy-off policy optimization.
In Uncertainty in artificial intelligence, pp. 1017-1027. PMLR, 2020.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. arXiv preprint
arXiv:2103.03874, 2021.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. OpenRLHF: An Easy-to-
use, Scalable and High-performance RLHF Framework, November 2024. URL http://arxiv.org/abs/
2405.11143. arXiv:2405.11143 [cs].

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
Reasoner-Zero: An open source approach to scaling up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290, 2025.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Augustine Kong. A note on importance sampling using standardized weights. University of Chicago, Dept.
of Statistics, Tech. Rep, 348:14, 1992.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention, 2023a. URL https://arxiv.org/abs/2309.06180.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez,
Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model Serving with
PagedAttention, September 2023b. URL http://arxiv.org/abs/2309.06180. arXiv:2309.06180 [cs].

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. NuminaMath: The largest public dataset in Al4Maths with
860k pairs of competition math problems and solutions. Hugging Face repository, 13:9, 2024.

Mistral-Al, :, Abhinav Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason
Rute, Joep Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, Léonard Blier,
Lucile Saulnier, Matthieu Dinot, Maxime Darrin, Neha Gupta, Roman Soletskyi, Sagar Vaze, Teven Le
Scao, Yihan Wang, Adam Yang, Alexander H. Liu, Alexandre Sablayrolles, Amélie Héliou, Amélie Mar-
tin, Andy Ehrenberg, Anmol Agarwal, Antoine Roux, Arthur Darcet, Arthur Mensch, Baptiste Bout,
Baptiste Roziere, Baudouin De Monicault, Chris Bamford, Christian Wallenwein, Christophe Renaudin,
Clémence Lanfranchi, Darius Dabert, Devon Mizelle, Diego de las Casas, Elliot Chane-Sane, Emilien
Fugier, Emma Bou Hanna, Gauthier Delerce, Gauthier Guinet, Georgii Novikov, Guillaume Martin, Hi-
manshu Jaju, Jan Ludziejewski, Jean-Hadrien Chabran, Jean-Malo Delignon, Joachim Studnia, Jonas

11


http://arxiv.org/abs/2405.11143
http://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180

Under review as submission to TMLR

Amar, Josselin Somerville Roberts, Julien Denize, Karan Saxena, Kush Jain, Lingxiao Zhao, Louis Mar-
tin, Luyu Gao, Lélio Renard Lavaud, Marie Pellat, Mathilde Guillaumin, Mathis Felardos, Maximilian
Augustin, Mickaél Seznec, Nikhil Raghuraman, Olivier Duchenne, Patricia Wang, Patrick von Platen, Pa-
tryk Saffer, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomeéne
Chagniot, Pierre Stock, Pravesh Agrawal, Romain Sauvestre, Rémi Delacourt, Sanchit Gandhi, Sandeep
Subramanian, Shashwat Dalal, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal, Szymon
Antoniak, Thibault Schueller, Thibaut Lavril, Thomas Robert, Thomas Wang, Timothée Lacroix, Va-
leriia Nemychnikova, Victor Paltz, Virgile Richard, Wen-Ding Li, William Marshall, Xuanyu Zhang, and
Yunhao Tang. Magistral, 2025. URL https://arxiv.org/abs/2506.10910.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy rein-
forcement learning. Advances in neural information processing systems, 29, 2016.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and Aaron
Courville. Asynchronous RLHF: Faster and more efficient off-policy RL for language models. arXiw
preprint arXiv:2410.18252, 2024.

OpenAl, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Jézefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with large scale deep reinforcement learning, 2019. URL https://arxiv.org/abs/1912.06680.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728-53741, 2023.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In KDD, pp. 3505-3506, 2020.
URL https://doi.org/10.1145/3394486.3406703.

Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex Fréchette,
Carolyne Pelletier, Eric Thibodeau-Laufer, Sindor Toth, and Sam Work. Tapered off-policy REINFORCE:
Stable and efficient reinforcement learning for LLMs. arXiv preprint arXiv:2508.14286, 2025.

Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance resampling for
off-policy prediction. Advances in Neural Information Processing Systems, 32, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. arXiv preprint arXiv:2409.19256,
2024.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel
Synnaeve, Rishabh Singh, and Sida I Wang. SWE-RL: Advancing LLM reasoning via reinforcement
learning on open software evolution. arXiw preprint arXiv:2502.18449, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

12


https://arxiv.org/abs/2506.10910
https://arxiv.org/abs/1912.06680
https://doi.org/10.1145/3394486.3406703

Under review as submission to TMLR

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. SimpleRL-Zoo:
Investigating and taming zero reinforcement learning for open base models in the wild. arXiv preprint

arXiv:2503.18892, 2025.

A Analyical estimate of PipelineRL speedup for fixed max lag

In this additional section we estimate how much faster PipelineRL can be compared to Conventional RL for
the same value of maximum token lag gpq.. We will be using the following notation, mostly the same as in
the main text:

e N is the number of accelerators

e S = B( is the number of sequences that are processed in each Conventional RL step

e L is the maximum and L is the average sequence length for the current policy 7

o K = SL is total number of tokens that Conventional RL processes in each optimizer step

We will additionally use U(h) to refer to the accelerator’s maximum flops utilization when running typical
Transformer kernels at batch size h.

A.1 Units

To compare throughputs of different RL approaches it useful to adopt time and throughput units that don’t
depend on the particular GPU model and the LLM size. To this end we introduce a time unit called flash:

Fgen

/= M (9)
where Fi., is the number of FLOPs required for one token forward pass for the chosen LLM, and M is
the maximum theoretical FLOPs throughput for the given GPU. The meaning of a flash is the theoretically
smallest amortized time that a token generation can take. Thus generating K tokens will take at least K
flashes, though at a more typical generation utilization of ~ 0.1 rate it will take 10K flashes. For very long
sequences F.,, can vary significantly due to attention FLOPs becoming a large part of total FLOPs, but for
simplicity here we will abstract away from this detail.

Having introduced flash f as the unit, we will measure the system throughput in tokens per flash.
Let 7 be the amortized training time per token. 7 will be similar at scale for PipelineRL and Conventional

RL, because both approaches can benefit from sequence packing.

A.2 Conventional RL throughput

We can express Conventional RL throughput as follows:

K
Tconv = (gen (10)

in
conv + téﬁ%f

where t9¢"  and t{7%" are times that generation and training take respectively. Let’s look at these terms

closer:
L

: h(l)/N f

e =Y G (1)
2 Ty

. Kt
ttrazn — 12
conv N ( )

13



Under review as submission to TMLR

GPU utilization as a function of the batch size h

0.8 1

0.7

0.6 1

0.5 A

0.4 A

U(h)

0.3 1

0.2 1

0.1 1

0.0 A

0 200 400 600 800 1000

Figure 8: H100 utilization at batch size h as the ratio of maximum theoretical bf16 FLOPS throughput. We
use (4096, h) - (h,16384) matrix multiplications for the measurement. For every h we consider padding up
to h 4 64 to increase the speed, because empirically we observed large utilization bumps when & is divisible
by a higher power of 2 (up to 128).

where h(l) is the number of sequences still in progress after | steps of decoding, and U(h) is the GPU
utilization at batch size h. To understand Equation , recall that generating k tokens by definitions takes
k flashes under perfect GPU utilization and k/U (k) at the utilization U (k).

We can rewrite this in terms of tokens / flash throughputs:

1

Tconv = q}m + 1 (13)
K

Teonv = L (14)
S h()/N
2 TOW/N)

; N

cony = — (15)

T

At low batch size per GPU at step I, hx(l) = h(l)/N, the ratio hx(1)/U(hn(l)) will only decrease very
slowly as a function of N, because for modern GPUs % is nearly constant for small z. This is the formal
explanation for Conventional RL’s decreasing efficiency as N grows.

The maximum token lag in the setup we described above is S — 1.

14



Under review as submission to TMLR

RL throughput vs max lag gmax
128 GPUs and batch size 128

—— Conventional RL N=128
20 - Pipeline RL N=128

<

0

0

[r—

2

o 157 1/57x faster

S

5

£ 104

()]

>

o

=

2 51

0 I/ T T T T T
0 50 100 150 200 250
Lag gmax

Figure 9: Pipeline RL and Conventional RL throughputs as the function of the maximum lag g4, for a
setup with NV = 128 GPUs and batch size B = N.
A.3 PipelineRL throughput

For PipelineRL the system throughput is determined by the slowest pipeline stage. Using the concepts
introduced above, the throughput of PipelineRL can be estimated as follows:

Tpipeline = min(rgz’e;eline’ r;f)ri‘giﬁne) (16)

T;gf;:eline = U(H)I (17)
, N-T

T;Z’Ii’z;ﬁne = f (18)

To understand the maximum lag of Pipeline RL consider the fact that the generation GPUs will produce
HIL tokens during the time it takes to generate the longest possible sequence of length L. On average there
will be % sequences in these tokens. Thus, in the worst case when an optimizer step happened just before
the longest sequence generation started, a long sequence will be used for training g,az = %
steps later than its generation started.

| optimizer

To build a same-lag equivalent for a conventional RL system, one needs to maximize 7pipeine(H,I) while
keeping [%] < S — 1. We found this problem difficult to solve analytically, and performed a straight-
forward search of all (H,I) configurations for our investigations below.

A.4 A PipelineRL speedup case study

To compute the exact throughput boost that PipelineRL brings it is necessary to make assumptions about
the sequence length distribution and the hardware that is used for the experiments. For the case-study below,
we assume uniform length distribution from 1 to the max length L and H100 as the GPU. We visualize the
GPU utilization table U(h) in Figure [8 The reader can see that U(h) grows almost linearly up to h ~ 200,
which makes it possible to compress the generation on fewer GPUs at a higher utilization. For a setup with

15



Under review as submission to TMLR

N = 128 GPUs and training batch B = 128 we considered all possible (I, H) configurations of PipelineRL
and plotted their throughput as a function of the lag gma.. Figure [0 shows that PipelineRL can be up to
1.57x faster for gpq. ~ 133. This lag value can to be too high for many practical setups, but with a higher
batch size of e.g. B = 2048 the same number of sequences to be generated by each GPU will correspond to
a practical 16x lower lag ¢az ~ 8.

The mechanics of how PipelineRL achieved the improvement are as follows:

. rgen = 1697 Tt’rain = 17087 I'pipeline = 1697 H = 1927 I'=44

pipeline pipeline

o 19N =183 rirain — 96 02 reony = 10.7

conv conv

Clearly, the root cause of PipelineRL’s speedup is that the 44 generation GPUs can produce 16.9 tokens per
flash, that is more efficient than having 128 GPUs produce 18.3 tokens per flash in the Conventional RL
case.

B Additional Results

—— ConvRL G=64
05 T 10wy~ 'R
04 \ — \ 08
5 0.6
[3] .
I 0.3
’ 8
% / |
=] Y | 04
@ 02
0.1 | 0.2
0.0 ¥ 0.0 —— ConvRL G=64
0.0 02 04 0.6 0.8 10 0.0 02 04 0.6 0.8 10
Samples 1e6 Samples 1e6
(a) G=64 reward. (b) G=64 Effective Sample Size.

Figure 10: G=64 diverges.

16



	Introduction
	Background
	Reinforcement Learning for Large Language Models
	Conventional RL
	Efficient Sequence Generation with LLMs

	The learning speed ceiling of Conventional RL
	Pushing the learning speed ceiling with PipelineRL
	Experiments
	Impact of in-flight weight updates on on-policyness

	Related work
	Conclusion and Discussion
	Analyical estimate of PipelineRL speedup for fixed max lag
	Units
	Conventional RL throughput
	PipelineRL throughput
	A PipelineRL speedup case study

	Additional Results

