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Figure 1: Overview of our key innovations. (a) Illustration of the proposed automatic triplet syn-
thesis pipeline, along with our proposed training framework CoAlign. (b) Representative samples
from our CIRHS dataset, covering various real-world scenes and objects, as well as diverse editing
operations including object or scene change, quantity variation, and viewpoint shift, etc.

ABSTRACT

As a challenging vision-language (VL) task, Composed Image Retrieval (CIR)
aims to retrieve target images using multimodal (image+text) queries. Although
many existing CIR methods have attained promising performance, their reliance
on costly, manually labeled triplets hinders scalability and zero-shot capability.
To address this, we propose a scalable pipeline for automatic triplet generation,
along with a fully synthetic dataset named Composed Image Retrieval on High-
quality Synthetic triplets (CIRHS). Our pipeline leverages a large language model
(LLM) to generate diverse prompts, controlling a text-to-image generative model
to produce image pairs with identical elements in each pair, which are then filtered
and reorganized to form the CIRHS dataset. In addition, we introduce Hybrid
Contextual Alignment (CoAlign), a novel CIR framework, which can accomplish
global alignment and local reasoning within a broad context, enabling the model
to learn robust and informative representations. By utilizing the synthetic CIRHS
dataset, CoAlign achieves outstanding zero-shot performance on three commonly
used benchmarks, demonstrating for the first time the feasibility of training CIR
models on a fully synthetic dataset. Furthermore, under supervised training, our
method outperforms the state-of-the-art supervised CIR approaches, validating
the effectiveness of our proposed retrieval framework. The code and the CIRHS
dataset will be open-sourced.

1 INTRODUCTION

Composed Image Retrieval (CIR) (Vo et al., 2019; Wu et al., 2021; Liu et al., 2021) has attracted
increasing attention in recent years, aiming to retrieve target images based on a query consisting
of a reference image and a relative caption. By integrating information from both modalities, CIR
can attain more precise and flexible searches, and provide a superior user experience compared
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with conventional unimodal retrieval (Datta et al., 2008). With the emergence of large-scale vision-
language pretraining models (VLMs) (Radford et al., 2021; Alayrac et al., 2022; Li et al., 2023),
CIR has made significant progress and found numerous applications.

Existing supervised CIR approaches (Baldrati et al., 2022; Liu et al., 2024; Xu et al., 2024) heavily
rely on manually annotated triplets, which are both time-consuming and labor-intensive to construct.
Moreover, due to the limited scale of available datasets such as FashionIQ (Wu et al., 2021) with
only 46.6k triplets and CIRR (Liu et al., 2021) with just 28.8k, these methods suffer from poor
generalization performance. Consequently, several studies present Zero-Shot Composed Image Re-
trieval (ZS-CIR). Early approaches (Saito et al., 2023; Baldrati et al., 2023) employ an inversion
network (Gal et al.) trained on massive image-text pairs. However, these methods have the inher-
ent task discrepancy (Byun et al., 2024), making them suboptimal solutions. Additionally, some
training-free approaches (Karthik et al., 2024; Yang et al., 2024b) introduce large language model
(LLM) reasoning into ZS-CIR. While promising, they often fail to capture fine-grained visual de-
tails and the high complexity of model architecture makes it infeasible to conduct domain-specific
fine-tuning, thus limiting their applicability. Recent studies (Ventura et al., 2024; Gu et al., 2024a)
have designed automated pipelines for creating large-scale triplet datasets, and they also unify the
model architecture for both ZS-CIR and supervised CIR. Compared with previous methods, this
line of work enables more robust generalization while preserving the ability to fine-tune on domain-
specific datasets. However, they face two limitations: (1) The relative captions cover only a narrow
range, primarily focusing on substitution, which results in a lack of diversity. (2) The reference and
target images produced by image editing (Brooks et al., 2023) are often of low quality, with severe
artifacts and unrealistic appearances.

To deal with the above limitations, we propose a scalable pipeline for automatic triplet synthesis
as illustrated in Figure 1(a), which generates high-quality CIR triplets in three stages. In Stage
1, an LLM is employed to generate numerous textual quadruplets, each consisting of two image
captions as well as two relative captions that describe how one image can be transformed into the
other. Guided by a carefully crafted instruction with randomized elements, the LLM-generated
image captions cover a wide range of real-world objects and scenes, while the relative captions
include diverse editing operations such as substitution, removal, and composition, thus effectively
relieving the first issue mentioned before. However, textual quadruples are insufficient for training
CIR models, as the LLM-generated image captions need to be converted into corresponding images.

Therefore, in Stage 2, we focus on how to obtain high-quality images corresponding to the tex-
tual quadruples. A straightforward solution is to use a text-to-image generative model (T2I-GM) to
independently synthesize an image from each caption. However, this will inevitably faces a draw-
back: CIR requires consistency in shared elements between the reference and target images, while
independent generation may result in uncontrollable visual discrepancies. We notice that T2I-GMs
are capable of preserving strong intra-image consistency. Consequently, we combine the two image
captions in each textual quadruple into a single prompt using a predefined template. This prompt
is fed into the T2I-GM to generate an image containing two semantically related sub-images in a
single forward pass, which are cropped to serve as the reference and target images, respectively.

Stage 3 performs data filtering, where the generated images and relative captions are reorganized
into CIR triplets. These triplets are scored by a multimodal large language model (MLLM) based
on three criteria: image-text fidelity, image quality and triplet alignment. Afterwards, we compute
a weighted sum of the three scores and discard the bottom 15% of the triplets, resulting in a high-
quality and fully synthetic dataset of 534k triplets, namely Composed Image Retrieval on High-
quality Synthetic triplets (CIRHS), with representative samples shown in Figure 1(b).

Moreover, we propose a unified framework, Hybrid Contextual Alignment (CoAlign), for both su-
pervised and zero-shot CIR. CoAlign optimizes the model within a broad context, combining global
and local objectives to learn robust and fine-grained representations. Extensive experiments on three
popular benchmarks validate the effectiveness of our method under both supervised and zero-shot
CIR settings, as well as the feasibility of training CIR models using purely synthetic data. To sum
up, our contributions are threefold:

• We propose a scalable pipeline for automatic CIR triplet synthesis, tackling previous limitations
such as low image quality, unrealistic appearances, and the lack of diversity in relative captions. With
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a) High-quality Synthetic Triplets Generation 

b) End-to-End Optimization of Our CoAlign with Synthetic Triplets
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Figure 2: Overall framework of our method. (a) The triplet synthesis pipeline involves three
stages: generating diverse textual quadruples via an LLM, synthesizing and reorganizing consistent
image pairs into triplets, and filtering low-quality samples using an MLLM. (b) The model architec-
ture of CoAlign. The left side illustrates the encoding process of the query and target using different
modes, while the right shows the global and local optimization objectives employed by CoAlign.

this pipeline, we obtain a large-scale, fully synthetic CIR dataset named CIRHS, which consists of
534k high-quality triplets.

• We propose a novel CIR framework, Hybrid Contextual Alignment (CoAlign), which optimizes
the model within a broad context by combining global alignment and local reasoning. It is simple
yet effective and can enhance the robustness of learned representations.

• Experiments show the superior performance under both supervised and zero-shot CIR settings. To
the best of our knowledge, this is also the first work to verify the feasibility of training CIR models
entirely on synthetic data.

2 RELATED WORK

Composed Image Retrieval (CIR) is primarily evaluated on the fashion domain (Wu et al., 2021)
and real-world scenarios (Liu et al., 2021; Baldrati et al., 2023). Mainstream methods (Baldrati et al.,
2022; Liu et al., 2024; Xu et al., 2024) leverage the cross-modal alignment of VLMs and apply early
or late fusion to integrate the two modalities in the composed query. Recently, zero-shot CIR has
gained attention, with textual inversion (Saito et al., 2023; Baldrati et al., 2023; Gu et al., 2024b; Gal
et al.) becoming a key technique. This method maps the input image to a pseudo-word token, which
is then combined with the relative caption and encoded by a text encoder. Other works (Karthik
et al., 2024; Yang et al., 2024b) use LLMs for target caption generation, reformulating CIR as text-
to-image retrieval. However, their complex architectures hinder domain-specific fine-tuning and
practical deployment. Due to the lack of labeled triplets, recent efforts have focused on automatically
constructing CIR triplets. Some methods (Ventura et al., 2024; Levy et al., 2024) derive similar
image pairs from public databases and generate relative captions via handcrafted rules or LLMs.
CompoDiff (Gu et al., 2024a) and VISTA (Zhou et al., 2024) synthesize target images through
editing (Brooks et al., 2023), but they are limited by the quality of the generated images. In contrast,
our method generates high-quality, diverse triplets with photorealistic reference and target images.

Text-to-Image Generation has evolved from early GAN-based methods (Goodfellow et al., 2020)
to more complex multimodal frameworks. Currently, diffusion models (Ho et al., 2020) dominate
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tasks like text-to-image synthesis (Podell et al., 2023b; Ramesh et al., 2022b), image translation (Sa-
haria et al., 2022), and controllable generation (Zhang et al., 2023; Mou et al., 2024). Notably, latent
diffusion models (LDM) (Rombach et al., 2022) improve image-text fidelity while reducing compu-
tational cost, paving the way for excellent works supporting high-resolution image generation, such
as Stable Diffusion (Podell et al., 2023a) and DALL-E (Ramesh et al., 2022a). Recently, diffusion
transformers (DiT) (Peebles & Xie, 2023) further enhance scalability, with advanced models like
PixArt (Chen et al., 2024a) and Flux (Labs, 2024) achieving state-of-the-art generation quality.

3 METHODOLOGY

As shown in Figure 2, our method consists of two parts: 3.1 presents our automatic triplet synthesis
pipeline, including textual quadruple generation, consistent image pair synthesis, and data filter-
ing, while 3.2 describes our proposed CIR framework, CoAlign, detailing its model architecture,
optimization strategy, and inference workflow.

3.1 HIGH-QUALITY TRIPLET SYNTHESIS FOR CIR

Diverse Quadruple Generation. End-to-end generation of CIR triplets is highly challenging.
Therefore, in Stage 1, we first generate their textual counterparts. Specifically, we design an in-
struction template P(object, edit, style) to guide an LLM gllm(·) in producing textual quadruples,
as shown below. The three parameters are sampled from predefined sets crafted by GPT-4o (OpenAI
et al., 2024), covering diverse objects, editing operations, and image styles.

gllm(p) → ⟨CIr , Cr→t, Ct→r, CIt⟩, (1)

where the reference caption CIr and the target caption CIt are used to synthesize Ir and It, sharing
at least one semantic entity, while the relative caption Cr→t captures the modification from Ir to
It. Additionally, the inverse caption Ct→r describes the change from It to Ir, enabling bidirectional
triplet construction and thereby improving efficiency. The instruction p ∼ P varies with each
input, encompassing various common objects and editing operations such as object composition
and scenario change. Furthermore, style information is embedded in CIr and CIt for generation
across multiple domains. Below is an illustration of the template P .

Using the elements: {suggested objects}. {editing operations}. {image styles}, please help me
generate a quadruple that meets the requirements of CIR.

Consistent Image Pair Synthesis. After obtaining the textual quadruplets, a T2I-GM can synthe-
size Ir and It using CIr and CIt , respectively. However, it doesn’t ensure consistency of shared
elements between the two generated images. That is, Ir and It may differ significantly, making
them unsuitable for constructing CIR triplets.

HD 4k square grid layout for left and right images, Left: {CIr}, Right: {CIt}.

In contrast, we leverage the inherent consistency of generative models, i.e., they have the ability to
generate identical elements within a single image. To this end, we define a prefix to specify the
desired image layout and integrate CIr and CIt into a single prompt as shown above, which is then
fed into the T2I-GM to generate a single image containing two side-by-side sub-images. Ir and It
are finally obtained by cropping the left and right parts, as illustrated in Figure 2(a).

To fully leverage the textual quadruples, we synthesize n1 image pairs for each (CIr , CIt) based
on different random seeds, yielding {(Iir, Iit)}ni=1. By combining these images with their relative
captions, we obtain 2n CIR triplets, i.e., {(Iir, Cr→t, I

i
t)}ni=1 ∪ {(Iit , Ct→r, I

i
r)}ni=1. Additionally,

we introduce an identifier, namely triplet identity (TID), and assign the same TID to triplets sharing
the same relative caption. Triplets with the same TID exhibit a certain degree of similarity, making
label smoothing (Müller et al., 2019) possible during training.

Data Filtering. To refine the raw synthesized triplets, Stage 3 incorporates a multimodal large
language model (MLLM) (Bai et al., 2025) to score them across three aspects on a scale from 1 to

1Considering scalability and efficiency, we select n = 10.
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Table 1: Performance comparison with existing supervised CIR methods. The best results are
marked in bold, and the second-best results are underlined. † indicates that the method is pretrained
on its own constructed triplet dataset.

CIRR FashionIQ

Method Recall@K Recalls@K Dress Shirt Toptee Average

K=1 K=5 K=1 K=3 K=10 K=50 K=10 K=50 K=10 K=50 K=10 K=50

TIRG (Vo et al., 2019) 14.61 48.37 22.67 65.14 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39
MAAF (Dodds et al., 2020) 10.31 33.03 21.05 61.60 23.80 48.60 21.30 44.20 27.90 53.60 24.30 48.80
CIRPLANT (Liu et al., 2021) 19.55 52.55 39.20 79.49 17.45 40.41 17.53 38.81 61.64 45.38 18.87 41.53
ARTEMIS (Delmas et al., 2024) 16.96 46.10 39.99 75.67 27.16 52.40 21.78 43.64 29.20 53.83 26.05 50.29
CLIP4CIR (Baldrati et al., 2022) 38.53 69.98 68.19 94.17 33.81 59.40 39.99 60.45 41.41 65.37 38.32 61.74
TG-CIR (Wen et al., 2023) 45.25 78.29 72.84 95.13 45.22 69.66 52.60 72.52 56.14 77.10 51.32 73.09
Re-ranking (Liu et al., 2023) 50.55 81.75 80.04 96.58 48.14 71.43 50.15 71.25 55.23 76.80 51.17 73.13
BLIP4CIR+Bi (Liu et al., 2024) 40.15 73.08 72.10 95.93 42.09 67.33 41.76 64.28 46.61 70.32 43.49 67.31
CASE† (Levy et al., 2024) 48.68 79.98 76.39 95.86 47.44 69.36 48.48 70.23 50.18 72.24 48.79 70.68
CoVR† (Ventura et al., 2024) 49.69 78.60 75.01 93.16 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25
CompoDiff† (Gu et al., 2024a) 32.39 57.61 67.88 94.07 38.39 51.03 41.68 56.02 45.70 57.32 39.81 51.90
CaLa (Jiang et al., 2024) 49.11 81.21 76.27 96.46 42.38 66.08 46.76 68.16 50.93 73.42 46.69 69.22
SPRC (Xu et al., 2024) 51.96 82.12 80.65 96.60 49.18 72.43 55.64 73.89 59.35 78.58 54.72 74.97

CoAlign (Ours) 54.07 83.81 80.87 97.04 49.43 72.04 56.48 75.61 58.85 78.99 54.92 75.55

10: (1) image quality of both Ir and It, including the clarity, noise, artifacts, etc. (2) image-text
fidelity (e.g., Ir ↔ CIr ), and (3) triplet alignment (e.g., Ir + Cr→t ↔ It). The average score is
computed via a weighted sum and a threshold α is then applied to filter out low-quality triplets,
which accounts for about 15%.

Utilizing this pipeline, we build the large-scale CIRHS dataset with 534k high-quality synthetic
triplets. Experiments will verify the scalability and effectiveness of this pipeline. Additional details
on triplet synthesis, including the full prompts and more examples, are in Appendix B.

3.2 END-TO-END OPTIMIZATION WITH SYNTHETIC TRIPLETS

CoAlign Model Architecture. As shown in Figure 2(b), inspired by BLIP-2 (Li et al., 2023), our
model consists of a frozen image encoder and a lightweight Querying Transformer (Q-Former),
which incorporates learnable queries for efficient multimodal feature extraction. CoAlign reuses the
Q-Former’s two distinct encoding modes: image-grounded encoding (jointly conditioned on visual
and textual inputs) and pure image encoding (visual-only processing).

Given an input triplet ⟨Ir, Cr→t, It⟩, the query side uses the frozen image encoder to extract features
from the reference image Ir. The resulting visual features, together with the relative caption Cr→t,
are forwarded to the Q-Former. The output [CLS] token is then passed through a query projection
layer to produce the query feature fq ∈ Rd. Similarly, on the target side, the frozen image encoder
processes the target image It, generating visual features that are then passed through the Q-Former
in its pure image encoding mode. The output token embeddings corresponding to the learnable
queries of the Q-Former undergo max-pooling across the sequence dimension, followed by a target
projection layer, to obtain the target feature ft ∈ Rd.

Hybrid Contextual Alignment. To achieve comprehensive alignment between the composed query
and its target images, CoAlign jointly conducts optimization from both global and local perspectives.

Global Contextual Alignment. Conventional contrastive learning (He et al., 2020; Oord et al., 2018)
focuses on the diagonal elements of the similarity matrix. However, this becomes suboptimal for the
proposed CIRHS dataset, where each query may correspond to multiple target images (same TID).
To this end, CoAlign combines distribution matching (Zhang & Lu, 2018; Jiang & Ye, 2023) and
label smoothing (Müller et al., 2019) to perform global contextual alignment, enabling the model to
extract useful information within a broader context, i.e. the entire similarity matrix, rather than rely-
ing solely on the diagonal elements, thereby facilitating the learning of more robust representations.
Specifically, for a mini-batch of size N , each query is associated with a set S = {(f i

q, f
j
t ), yi,j}Nj=1,

where yi,j = 1 denotes a hard-matched pair, yi,j = β, β ∈ (0, 1) represents a soft-matched pair
(sharing the same TID), and yi,j = 0 indicates an unmatched pair. Then the matching probabilities
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are computed via a softmax over S:

pi,j =
exp(sim(f i

q, f
j
t )/τ)∑N

k=1 exp(sim(f i
q, f

k
t )/τ)

, (2)

where sim(·, ·) is the cosine similarity, and τ is a learnable temperature parameter that controls
the sharpness of the probability distribution. The label distribution, representing the true matching
probability, is computed as qi,j = yi,j/Σ

N
k=1yi,k and the global contextual alignment loss from

query to target is calculated by the KL divergence:

Lq2t =
1

N

N∑
i=1

N∑
j=1

pi,j log(
pi,j

qi,j + ϵ
), Lgca = Lq2t + Lt2q, (3)

where ϵ is used to prevent numerical issues. In the same way, Lt2q can be obtained by exchanging
fq and ft in Equation 2, and the global contextual alignment loss Lgca is the bidirectional sum.

Local Contextual Reasoning. Complementary to global contextual alignment, we propose lo-
cal contextual reasoning to capture finer-grained information within each triplet. Unlike masked
language/image modeling (MLM/MIM) (He et al., 2022; Devlin et al., 2019), CoAlign adopts a
lightweight decoder and performs bidirectional masked feature prediction (MFP) (Wei et al., 2022)
at the latent level. For a composed query and its hard-matched target (fq, ft), we first randomly
mask out elements along the feature dimension with a probability of 30%. Following BERT (De-
vlin et al., 2019), the masked elements are replaced with 10% random, 10% unchanged, and 80%
set to zero, yielding the masked pair (f̃q, f̃t). Subsequently, a rearrange operation is performed to
group and concatenate the features to obtain [fq, f̃t] ∈ R2d and [ft, f̃q] ∈ R2d, which are passed
through the latent decoder Φ (a two-layer MLP) to predict the masked elements. The reconstruction
is supervised by the bidirectional local contextual reasoning loss Llcr:

Llcr = E[||fq − Φ([ft, f̃q])||22 + ||ft − Φ([fq, f̃t])||22]. (4)

The overall training objective L is a weighted sum of the global and local terms, where γ is a
hyperparameter,

L = Lgca + γLlcr. (5)

Inference Workflow. Given an image gallery with pre-extracted features V = {f j
t }Nj=1, we compute

the cosine similarity between a query fq and each f j
t , returning the top-K most similar images as

the retrieval results.

4 EXPERIMENTS

4.1 THE CIRHS DATASET

Table 2: Statistics of common CIR datasets. We compare
our CIRHS dataset with existing benchmarks.

Dataset Domain Triplets Images Text
length

CIRR Natural 36,554 21,185 59.51
FashionIQ Fashion 30,132 7,988 27.13
LaSCo Natural 389,305 121,479 30.70
WebVid-CoVR Natural 1,644,276 130,559 23.36
ST18M Synthetic 18,000,000 - -

CIRHS (Ours) Synthetic 534,758 534,758 53.17

We construct CIRHS, a fully syn-
thetic dataset containing 534k
triplets. Table 2 summarizes its
statistics. Compared with existing
manually annotated datasets (Wu
et al., 2021; Liu et al., 2021), CIRHS
is significantly larger in scale.
Although smaller than WebVid-
CoVR (Ventura et al., 2024) and
ST18M (Gu et al., 2024a), CIRHS
offers advantages in quality and
diversity. WebVid-CoVR is con-
strained by the lack of diversity in
relative captions (mainly object or
scene change). ST18M, on the other hand, based on image editing to generate CIR triplets, suffers
from poor generation quality due to unrealistic outputs and visual artifacts. In contrast, CIRHS
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Table 3: Performance comparison with existing zero-shot CIR methods. The best results are
marked in bold, and the second-best results are underlined. † indicates that the dataset is synthetic.

Method Training Data
Zero-shot Composed Image Retrieval

FashionIQ CIRR CIRCO

R@10 R@50 R@1 R@5 Rs@1 Avg. mAP@5 mAP@10

PALAVRA (Cohen et al., 2022) - 19.76 37.25 16.62 43.49 41.61 42.55 4.61 5.32
Pic2Word (Saito et al., 2023) CC3M 24.70 43.70 23.90 51.70 - - - -
SEARLE (Baldrati et al., 2023) ImageNet1K 27.61 47.90 24.87 52.31 53.80 53.06 11.68 12.73
ContextI2W (Tang et al., 2024) CC3M 27.80 48.90 25.60 55.10 - - - -
KEDs (Suo et al., 2024) CC3M 26.80 47.90 26.40 54.80 - - - -
Slerp+TAT (Jang et al., 2024) CC3M 32.77 53.32 33.98 61.74 68.55 54.76 18.46 19.41
Image2Sentence (Du et al.) CC3M 29.79 49.19 30.84 61.06 - - 11.33 12.25
CIReVL (Karthik et al., 2024) - 32.19 52.36 34.65 64.29 67.95 66.12 26.77 27.59

Comparison with methods based on CIR triplet construction

CoVR (Ventura et al., 2024) WebVid-CoVR 27.70 44.63 38.48 66.70 69.28 67.99 21.43 22.33
CASE (Levy et al., 2024) LaSCo+CoCo - - 35.40 65.78 64.29 65.04 - -
CompoDiff (Gu et al., 2024a) ST18M† 39.02 51.71 26.71 55.14 64.54 59.84 15.33 17.71

CLIP4CIR (Baldrati et al., 2022) CIRHS† (Ours) 26.94 47.73 29.64 62.16 57.78 59.97 20.17 21.98
BLIP4CIR (Liu et al., 2024) CIRHS† (Ours) 30.89 52.74 25.76 55.12 55.08 55.10 18.73 20.02
SPRC (Xu et al., 2024) CIRHS† (Ours) 37.44 57.91 38.32 68.93 69.34 69.14 21.76 23.12
CoAlign (Ours) CIRHS† (Ours) 39.11 60.29 41.17 71.68 70.65 71.17 23.47 25.29

is designed to ensure both semantic diversity and high visual quality. Experiments also show that
534k triplets are sufficient to train strong CIR models. Note that the most time-consuming part,
image generation, is a one-off process, taking an average of 7.2 seconds per image pair (i.e., two
triplets) on a single H800 GPU. We will make all our data and code publicly available, so repeated
consumption of computational resources will not be necessary.

4.2 EXPERIMENTAL SETUP

Evaluation Benchmarks. FashionIQ (Wu et al., 2021) simulates online shopping environment,
with 30,134 triplets derived from 77,684 fashion-related images. CIRR (Liu et al., 2021) is the first
open-domain dataset, containing 21,552 real-life images. CIRCO (Baldrati et al., 2023) builds on
the COCO 2017 unlabeled split (Lin et al., 2014), with each query corresponding to multiple target
images. More details about these datasets can be found in Appendix A.

Comparison with ZS-CIR methods. Table 3 compares existing zero-shot CIR methods. Our
approach is the only one trained solely on synthetic triplets while achieving strong performance.
Among methods based on CIR triplet construction, it outperforms all others across all metrics. No-
tably, CIRHS is compatible with any CIR framework, e.g., SPRC and CLIP4CIR also perform well
when trained on it. On CIRCO, our method ranks second. This is primarily due to the large visual
discrepancies between reference and target images inherent in CIRCO, where retrieval relies heav-
ily on the relative caption. This reliance deviates from the original intent of CIR and makes it more
favorable to training-free methods such as CIReVL. However, the complex architectures of such
methods hinder domain-specific fine-tuning, whereas our approach supports it.

Evaluation Metrics. Recall@K is the main metric for CIRR and FashionIQ, with CIRR also report-
ing Recalls@K on visually similar subsets and overall performance as Avg. = Recall@5+Recalls@1

2 .
For CIRCO, where each query has multiple targets, mAP@K is used as the primary metric.

Implementation Details. (1) We construct CIRHS using 8 H800 GPUs, with Qwen2.5-32B (Yang
et al., 2024a) as the LLM, Flux.1-dev (Labs, 2024) as the T2I-GM, and Qwen2.5-VL-32B (Bai
et al., 2025) as the MLLM for filtering. Each textual quadruple generates 10 side-by-side images at
512 × 1056 resolution, which are then cropped into 512 × 512 reference-target image pairs. The
MLLM scores each triplet (scale 1-10) on three aspects, and a weighted sum (0.3, 0.2, 0.5) with
threshold α = 7.5 filters out 15% of low-quality triplets. (2) For CoAlign, we adopt BLIP-2 (Li
et al., 2023) with a frozen ViT-G/14 (Dosovitskiy et al., 2020) (224px input), trained for 10 epochs
on CIRHS using AdamW (LR 5e-6, batch size 128, β = 0.6, γ = 0.4) on a H800 GPU. For
CIRR and FashionIQ, we train from scratch for 50 and 30 epochs with initial LRs of 1e-5 and 2e-5,
respectively, using the same batch size 128.
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Table 4: Ablation experiments on CoAlign.
Best results are in bold. To validate GCA,
we introduce the image-text contrastive loss
(ITC) (He et al., 2020) for comparison.

Components CIRR FashionIQ

ITC GCA LCR R@5 Rs@1 R@10 R@50

Under the zero-shot CIR setting.

✓ 69.66 69.57 38.07 59.30
✓ 71.64 69.93 39.04 59.91
✓ ✓ 71.68 70.65 39.11 60.29

Adopt the supervised CIR setting.

✓ - 82.92 79.86 54.53 74.86
✓ - ✓ 83.81 80.87 54.92 75.55

Table 5: Results with Different Datasets. For
efficiency, we train the models on 100k sampled
triplets from each dataset and evaluate them un-
der zero-shot settings.

Dataset Filter CIRR FashionIQ

R@5 Rs@1 R@10 R@50

WebVid-CoVR - 67.28 70.19 36.45 57.66
LaSCo - 68.55 69.11 33.12 54.87
ST18M - 60.00 57.59 30.60 51.00
Independent ✓ 70.17 68.97 37.19 58.47

CIRHS (Ours) ✗ 70.65 68.75 37.24 59.47
✓ 71.18 70.32 37.76 59.28

4.3 QUANTITATIVE RESULTS

Comparison with supervised CIR approaches. Table 1 presents a comparison of existing super-
vised CIR methods. Our method, CoAlign, achieves the best overall performance on both FashionIQ
and CIRR. Specifically, SPRC focuses on sentence-level prompt optimization but lacks local under-
standing. CaLa (Jiang et al., 2024) aims to capture fine-grained query-target relations but suffers
from suboptimal global alignment. In contrast, CoAlign adopts hybrid contextual alignment, jointly
optimizing both global and local objectives in a simple yet effective manner.

4.4 QUALITATIVE RESULTS
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Figure 3: Hyperparameter and data scale analysis. Left:
Sensitivity analysis of CoAlign on different hyperparameters.
Right: Impact of data scale on zero-shot performance.

Figure 4(a) presents visualizations.
(1) The top two rows illustrate our
model’s strong multimodal reason-
ing, covering object composition
and fine-grained semantics. (2)
The bottom two rows show fail-
ure cases. Both CIRR and Fash-
ionIQ contain false negatives, e.g.,
the top two predictions in row 3
are actually correct. Row 4 shows
an ambiguous relative caption, a
common issue in FashionIQ. The
model tends to prefer outputs with
similar backgrounds, likely due to
consistency constraints in dataset
construction. Since background
changes are not specified, such out-
puts remain acceptable.

4.5 ABLATION STUDY

CoAlign Model. We train multiple versions of our model, as shown in Table 4. Under the zero-shot
setting, we introduce the widely used image-text contrastive (ITC) loss (He et al., 2020; Li et al.,
2021), which optimizes only the diagonal of the similarity matrix, to evaluate the impact of Global
Contextual Alignment (GCA) in learning from broader cross-modal contexts. Results show that
GCA is effective, and that combining it with Local Contextual Reasoning (LCR) further enhances
performance. Similar gains are observed under supervised training. Note that in the supervised
setting, where each composed query has only one target image, ITC and GCA become functionally
equivalent.

Results with Different Datasets. To evaluate our triplet synthesis pipeline, we train CoAlign with
identical settings across multiple datasets. As presented in Table 5, models trained on CIRHS outper-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

F
a
il
ur

e
 C

a
se

Relative Caption: be a same breed dog with his puppy running

S
uc

ce
ss

 C
a
se

Relative Caption: change the bottle to a coffee cup, replace the 
background with white. Add a plus sign and the lid to the right side

Relative Caption: show three bottles of soft drink

Relative Caption: is two-colored and has smaller graphic 
+ is half black and grey with a chest design

(a) Qualitative results on CIRR and FashionIQ.

in
co

ns
is
te

nc
y

FLux.1 

Prompt: HD 4k square grid 
layout... Left:𝑪𝑰𝒓 Right:𝑪𝑰𝒕 Prompt:𝑪𝑰𝒓 Prompt:𝑪𝑰𝒕

FLux.1 FLux.1 

H
ig
h
-
qu

a
li
ty

C
on

si
st

e
nc

y

(a) Our CIRHS (b) Independent

(c) ST18M (CompoDiff)

SD1.5Prompt:𝑪𝑰𝒓 Edit
𝑪𝒓→𝒕

L
ow

-
qu

a
li
ty

U
nr

e
a
li
st

ic

(b) Comparison of three triplet synthesis meth-
ods. Our approach (a) outperforms (b) and (c) in
both generation quality and consistency.

Figure 4: Visualization results on FashionIQ and CIRR, as well as the visualization of three
data synthesis paradigms.

form those trained on real-world datasets like WebVid-CoVR (Ventura et al., 2024) and LaSCo (Levy
et al., 2024), owing to the rich semantic diversity introduced by the LLM and the strong alignment
of synthesized triplets. Compared to ST18M (Gu et al., 2024a), CIRHS mitigates issues of noise
and artifacts common in image editing-based methods, yielding higher-quality reference and target
images and boosting performance. We also assess an alternative strategy using independent prompts
CIr and CIt for the T2I-GM (denoted Independent in Table 5), which suffers from poor consistency,
making it suboptimal for CIR triplet construction. Figure 4(b) provides a visual comparison of three
triplet synthesis paradigms, further supporting the above conclusion. Finally, removing low-quality
samples leads to improved performance, confirming the effectiveness of our filtering strategy. Ad-
ditional results using different MLLMs as filters are reported in Appendix B.

Hyperparameter and Data Scale Analysis. (1) The left side of Figure 3 shows the effects of β
(soft label intensity) and γ (loss weighting hyperparameter). The performance first increases, then
declines, peaking at β = 0.6 and γ = 0.4. (2) The right side shows that performance improves with
more training data, saturating around 300k samples. This demonstrates that CIRHS-534k provides
sufficient scale for strong CIR performance.

5 CONCLUSION

We propose a scalable pipeline for synthesizing high-quality CIR triplets, addressing prior limita-
tions such as low image quality and poor semantic diversity. With this pipeline, we build a large-
scale synthetic dataset, Composed Image Retrieval on High-quality Synthetic triplets (CIRHS). The
pipeline employs an LLM to generate diverse, semantically rich quadruples that guide a T2I-GM to
produce consistent image pairs, which are then filtered and reorganized into triplets. Furthermore,
we introduce Hybrid Contextual Alignment (CoAlign), a new CIR framework that jointly optimizes
global and local objectives within a broad context. Trained solely on CIRHS, CoAlign achieves
strong zero-shot performance on three benchmarks. To our knowledge, it is the first CIR model
trained entirely on synthetic data to reach this level of performance. Under supervised settings,
CoAlign also outperforms existing methods, validating the effectiveness of our retrieval framework.
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A USAGE OF LLM

In our work, the LLM is primarily used for paper refinement. Additionally, we employ it to generate
high-quality textual quadruples. The details are provided in Section 3.1, and the instructions used to
prompt the LLM are detailed in Section C.1.

B CIR BENCHMARK DETAILS

This section provides an overview of the three benchmarks, i.e., FashionIQ, CIRR, and CIRCO,
involved in our study. We describe the characteristics, size, and specific tasks associated with each
dataset to highlight their relevance.

FashionIQ Wu et al. (2021) is designed to promote conversational interfaces for online shopping,
offering a more interactive approach than traditional keyword-based search systems. The dataset
contains 30,134 triplets constructed from 77,684 images, categorized into three classes: Dress, Shirt,
and Toptee. It also includes product descriptions and visual attribute labels. FashionIQ is split into
training, validation, and test sets with a ratio of 6:2:2. Some examples of FashionIQ triplets are
presented in Figure 9(a).

CIRR Liu et al. (2021) is developed to address the limitation of CIR benchmarks being domain-
specific, like FashionIQ, by extending it to open-domain scenarios. CIRR consists of 36,554 an-
notated triplets, collected from a large number of visually similar images in the NLVR Suhr et al.
(2019) dataset. These images are processed using ResNet-152 He et al. (2016), pre-trained on Im-
ageNet Russakovsky et al. (2015). It is randomly divided into training, validation, and test splits
(8:1:1 ratio). However, CIRR faces challenges such as ambiguous, unnecessary descriptions in the
captions, and numerous false negatives (FNs), which may lead to evaluation inaccuracies. Repre-
sentative examples from CIRR are illustrated in Figure 9(b).

CIRCO Baldrati et al. (2023) is built using images from the COCO dataset Lin et al. (2014) and
is the first CIR benchmark designed specifically for zero shot CIR, where each query corresponds
to multiple ground truths (average of 4.53). It consists of a validation split (220 samples) and a test
split (800 samples), with no training set included. As CIRCO is designed for zero shot CIR, results
on the test split are submitted to a remote server for evaluation. Its multiple ground truths provide
robust metrics for mean average precision (mAP), making it a valuable benchmark for zero-shot
evaluation. Figure 9(c) shows examples from CIRCO.

C MORE DETAILS FOR TRIPLET SYNTHESIS

A CIR triplet consists of three components: a reference image Ir, a relative caption C, and a target
image It. Synthesizing such data poses two major challenges: (1) generating an image pair (Ir, It)
that shares fully overlapping elements while simultaneously modifying certain others; and (2) em-
ploying precise textual descriptions to accurately capture the relative transformations between the
two images. To address these challenges, we propose an automatic pipeline, which decomposes the
synthesis process into three stages. First, a large language model (LLM) is utilized to generate di-
versified quadruples. Second, based on the generated textual quadruples, a text-to-image generative
model (T2I-GM) synthesizes the corresponding image pair, resulting in tow triplets (Ir, Cr→t, It)
and (It, Ct→r, Ir). Third, we employ a multi-modal large language model (MLLM) to score and fil-
ter the generated triplets based on three aspects, discarding low-quality samples. Figure 6 illustrates
the full prompts used as input to the LLM and MLLM.

C.1 DIVERSE QUADRUPLE GENERATION

Diverse textual quadruples (CIr , Cr→t, Ct→r, CIt) are generated using an LLM. A quadruple in-
cludes the reference caption CIr , the target caption CIt , the relative caption Cr→t describes the
modification from CIr to CIt , while the inverse relative caption Ct→r captures the transformation
in the opposite direction, from CIt to CIr . To accomplish this, we adopt Qwen2.5-32B2 Yang et al.

2Qwen/Qwen2.5-32B-Instruct
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Figure 5: A word cloud of CIRHS, displaying all words from the relative captions according to
their frequency.

(2024a) as the LLM. The relative captions cover various editing operations such as object substitu-
tion, addition, removal, quantity change, direct addressing, and viewpoint shift. The image captions,
i.e., CIr and CIt , explicitly specify the objects or scenes to be included, covering a wide range of
commonly occurring items and environments in the real world. In addition, style information is em-
bedded into the image captions, enabling the synthesis of data across multiple domains and thereby
enhancing the robustness of CIRHS. As shown in Figure 6, each prompt ensures consistent format
and prefix.

For example, in cases involving object substation, the prompts clarify that CIr and CIt should de-
scribe different objects while keeping all other elements unchanged. Moreover, Cr→t and Ct→r

must only reflect the differences between CIr and CIt . To further enhance output quality and diver-
sity, each prompt includes three high-quality annotated examples, randomly sampled from a curated
set of 100 high-quality triplets generated by GPT-4o OpenAI et al. (2024). These examples not
only stabilize the LLM’s output but also reduce redundancy caused by similar input prompts. Each
prompt contains an object randomly drawn from a set of 200 common categories, also generated by
GPT-4o, and a style selected from 20 predefined options, with an emphasis on realism while pre-
serving diversity. Finally, the LLM generates structured outputs that serve as inputs for the synthesis
of consistent image pair.

C.2 CONSISTENT IMAGE PAIR SYNTHESIS

Given a textual quadruple (CIr , Cr→t, Ct→r, CIt), we synthesize a pair of images (Ir, It) by trans-
forming CIr and CIt into corresponding images. Due to the stochastic nature of diffusion models,
the key challenge lies in maintaining consistency across shared elements in both images. Fortu-
nately, diffusion models inherently support the generation of identical objects within a single image,
an ability commonly referred to as the in-context capability Hui et al. (2025). We exploit this prop-
erty by synthesizing a single image containing two side-by-side sub-images, ensuring high visual
consistency of shared elements across Ir and It.

To implement this, CIr and CIt are embedded into a side-by-side prompt template and fed into the
T2I-GM, for which we adopt FLUX.1-dev3 Labs (2024), producing a 512× 1056 resolution image.
This configuration allows us to split the image into two 512× 512 sub-images, forming the desired
pair (Ir, It). The added padding helps mitigate artifacts from cropping and ensures higher visual
fidelity. As illustrated in Figure 6, this approach offers significant advantages over independent
generation, as it better preserves shared visual elements while allowing for controlled differences.
Each quadruple is used to generate 10 (Ir, It) pairs, which are combined with relative captions in
both directions, resulting in 20 triplets per quadruple. This design makes our data synthesis pipeline
highly efficient. Among the 20 generated triplets, the two sets of 10 triplets in the same direction are
theoretically equivalent. However, some visual differences may still exist across generated image

3black-forest-labs/FLUX.1-dev
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Please help me generate a prompt following the same structure as my examples but with new content. Use the prefix: 'HD 4k, 
square grid layout for left and right images. Each image is independent.' Dynamically replace subject and style placeholders. 
Ensure the left panel contains a distinct primary subject replaced by a different subject in the right panel while maintaining 
identical backgrounds and secondary elements. Right Relative Prompt is an abbreviation of the Right description when the Left 
subject is known. Left Relative Prompt is an abbreviation of the Left description when the Right subject is known. Relative prompts 
must directly state the subject replacement. Three examples: {example_str} Note: One image's primary subject should be {object} 
while the other uses a different subject. All non-subject elements (background, props, lighting) must remain identical. Use explicit 
'replaced by/changed to' phrasing. Left image uses {style_left} style, right uses {style_right} style - mention styles in relative 
prompts only when differing. If styles match, omit style references. While meeting all the above requirements, the final output 
should be reasonable and not allowed to completely overlap with any example.

man, woman, boy, girl, teenager, adult, elderly person, couple, 
crowd, person running, person walking, person sitting, person 
standing, family, group of people, T-shirt, jeans, dress, sneaker, 
jacket, coat, hat, glove, boot, skirt, sweater, blouse, tie, suit, sandals, 
shorts, scarf, belt, sock, underwear, backpack, handbag, watch, dog, 
cat, horse, cow, sheep, bird, fish, elephant, tiger, lion, bear, monkey, 
rabbit, deer, wolf, fox, squirrel, mouse, chicken, duck, penguin, 
dolphin, whale, shark, turtle, frog, car, bus, truck, bicycle, 
motorcycle, train, airplane, ship, boat, subway train, taxi, ambulance, 
fire truck, police car, chair, table, sofa, bed, lamp, book, clock, 
telephone, computer, television, refrigerator, microwave oven, oven, 
sink, bathtub, toilet, window, door, rug, curtain, vase, plate, cup, 
spoon, fork, knife, bowl, smartphone, laptop, camera, headphones, 
speaker, keyboard, touchpad, printer, monitor, calculator, remote 
control, flashlight, umbrella, tree, flower, grass, sun, moon, cloud, 
sky, road, building, bridge, sign, traffic light, mailbox, fence, rock, 
mountain, river, beach, cap, glasses, pencil, pen, notebook, scissors, 
eraser, envelope, stamp, money, alarm clock, calendar, map, globe, 
trophy, medal, guitar, piano, soccer ball, basketball, baseball bat, 
tennis racket, swimming pool, park, garden, zoo, museum, restaurant, 
school, hospital, supermarket, library, theater, stadium, beach ball, 
balloon, kite, toy, doll, teddy bear, puzzle, chess set, computer mouse, 
keypad, display, laser printer, scanner, microphone, tripod, 
sunglasses, beret, waistband, shawl, mitten, ankle boot, slipper, high-
heeled shoe, rucksack, clutch, wallet, key, lock

Object List Style List

Photorealistic
Animated

Oil Painting
Watercolor

Sketch
Ink Wash

Impressionist
Pop Art
Comic

Cartoon
3D Rendered

Vintage
Collage

Low-Poly
Graffiti
Line Art

Illustration
Cyberpunk
Minimalist
Pixel Art

Examples

LLM Output

Prompt:

        HD 4k, square grid layout for left 
and right images.  Each image is 
independent, photorealistic style. Left: 
A beach ball floats in shallow water 
near a sandy shore with seashells and 
rocks scattered around. Right: A 
frisbee replaces the beach ball in 
shallow water near the same sandy 
shore with the same seashells and 
rocks scattered around.

Right Relative Prompt: 

Beach ball replaced by frisbee.

Left Relative Prompt:

Frisbee changed to beach ball.

Step 2: Constant Image Pair Synthesis
Beach ball replaced 

by frisbee.

Frisbee changed to 
beach ball.

Evaluate these two images from three dimensions (1-10 scale, 1=worst, 10=best). First dimension 
'Image_quality': Assess the technical quality of both images considering sharpness, noise, and artifacts. 
Higher scores indicate both images have excellent quality and minimal defects. Second dimension 'Align': 
Evaluate how well image1 matches the description '{data['Left']}' and image2 matches '{data['Right']}'. 
Check for accurate representation of objects, colors, positions, and scene elements described. Higher 
scores mean precise visual-text alignment for both images. Third dimension 'relative_prompt_quality': 
Judge how accurately image1 combined with '{data['Right Relative Prompt']}' describes image2, and 
vice versa for image2 with '{data['Left Relative Prompt']}' to describe image1. Deduct points if prompts 
describe non-changing elements or miss critical differences. Higher scores indicate prompts precisely 
capture mutual modifications while maintaining other elements unchanged. Output format must be: 
'Image_quality': score, 'Align': score, 'Relative_prompt_quality': score. using single quotes. Only 
provide the scores dictionary, no explanations.

'Image_quality': 9, 
'Align': 9, 
'Relative_prompt_quality': 10

Step 1: Diversified Quadruple Generation

Step 3: Data Filtering

Figure 6: Pipeline of high-quality triplet construction with detailed instruction design. The
illustrated example demonstrates the generation of a triplet involving an object substitution. The
construction for other types of editing operation follow a similar design paradigm.

pairs. To address this, we introduce the Triplet IDentity (TID), where triplets sharing the same
relative caption are assigned the same TID, allowing label smoothing Müller et al. (2019) to be
applied among triplets sharing the same TID.
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On a rocky shore, 
with waves gently 

lapping at the 
rocks nearby.

It stands in a lush 
green meadow, 
surrounded by 
wildflowers.

It grazes in a 
fenced pasture 
next to a rustic 
wooden fence.

Minimalist, from 
the front, it 

turns into a black 
top hat.

Photorealistic,view 
from the left, a 
chocolate on the 

table.

Here is a polar 
bear holding a 

bouquet of white 
roses.

Oil Painting, white 
rose replaced by 

white rabbit.

Photorealistic, the 
object is white 

rose.

Belt replaced by 
hammer.

Hammer changed 
to belt.

Teacup replaced 
by wooden 
figurine.

Wooden figurine 
changed to 

porcelain teacup.

Watercolor, the 
plate appears 

without the red 
apple slice.

Photorealistic, a 
red apple slice 
placed neatly in 

the center.

There is no vase 
here.

Here is a vase 
filled with 

colorful roses.

The alleyway lacks 
the woman.

It features a 
woman in a black 

leather jacket and 
sunglasses.

Turn into a penguin 
with a red rose in 

its mouth

Turned into a 
golden spoon and 
two black olives.

Turned into a 
silver fork and a 

green olive.

Cartoon, become 
three cats.

Animated, there is 
only a cat on the 

sofa, 

There are four 
identical cups 

here.

The number has 
changed from four 

to one.

Turn into five 
identical balls.

Five balls become 
one.

Photorealistic, it is 
placed in a simple 
vase on a rustic 
wooden table.

Pixel Art, it tall in 
a lush green field.

The same turtle 
swims in a vibrant 
coral reef teeming 
with colorful fish.

Sketch, change 
to side view.

Photorealistic, 
shot from a low 
frontal angle.

Change to frontal 
perspective 

shooting.

The hat is 
photographed from 

the right side.

Shooting from top 
to bottom.

Shot directly from 
the front of the 

frog.
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Figure 7: Additional examples from the CIRHS dataset. Each row presents a typical type of
editing operation, and each example serves as two CIR triplets.

The same living room couch with four 
identical black clutches placed on the 
same cushion next to the same vase 

of flowers

Three 
black  

clutches 

Low-quality Images: 
blurriness, misaligned layouts, 

and other visual artifacts.
Text-image Misalignment:

𝑪𝑰𝒓 ↮ 𝑰𝒓 or 𝑪𝑰𝒕 ↮ 𝑰𝒕

Triplet Misalignment:
𝑰𝒓 + 𝑪𝑰𝒓 ↮ 𝑰𝒕

A living room couch with one black 
clutch placed on the cushion next to 

a vase of flowers

This spoon lies on a white linen tablecloth in 
an elegant dining room

The spoon is submerged halfway in a glass of 
water on a marble kitchen countertop

On a worn-
out wooden 

table

Figure 8: Some low-quality samples. The figure presents examples from three dimensions. Left:
Samples with low image quality scores, mainly exhibiting issues such as blurriness, incorrect layout,
and other visual artifacts. Middle: Image–text misalignment, where the generated images do not
correspond well to the input captions used for synthesis. Right: Triplet inconsistency, where the
relationship between the reference and target images fails to match the relative caption.

C.3 DATA FILTERING

To ensure the overall quality, we employ an MLLM, namely Qwen2.5-VL-32B4 Bai et al. (2025),
with carefully designed evaluation prompts to score and filter the synthesized triplets. The evaluation
considers three dimensions: (1) Image quality, which assesses clarity, noise, and artifacts in both Ir
and It; (2) Image-text fidelity, which measures how well the images match the textual descriptions,
i.e., Ir ↔ CIr , It ↔ CIt ; and (3) Triplet alignment, which evaluates whether Ir and Cr→t together
can accurately infer It. The MLLM assigns scores from 1 to 10 for each dimension and aggregates
them into an average score. Based on this score, we filter the generated triplets and retain only
high-quality samples in the CIRHS dataset. Some low-quality samples are illustrated in Figure 8. In

4Qwen/Qwen2.5-VL-32B-Instruct
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Relative captions:
(1) is gray with stribe design
(2) is darker

Relative captions:
(1) has longer sleeves and 

an image of dog
(2) is black

Relative captions:
(1) has more colorful stripes
(2) cut shoulder

(a) FashionIQ. Left: Dress; Middle: Shirt; Right: Toptee.

Relative caption:
Stack up the white cups

Relative caption:
The background water is 
missing and the focus is on 
the man with the three dogs

Relative caption:
has one cheetah looking to 
the camera and yellow 
flowers the left side

(b) CIRR, which is the first open-domain CIR dataset.

Relative caption:
has two of them and they 
are vertical

Relative caption:
has a screen in the 
background and is darker

Relative caption:
is resting on a table and 
the photo has a hot dog 
instead of a burger

(c) CIRCO, which is also a real-world dataset.

Figure 9: Representative examples from the three CIR benchmarks. For each example, the
reference image is shown on the left, the target image on the right, and the corresponding relative
caption is displayed below.

Table 6: Results using different MLLMs as filtering modules. For efficiency, we train the models
on 100k sampled triplets from CIRHS and the evaluation is based on zero-shot settings.

Filtering Model CIRR FashionIQ

R@1 R@5 Rs@1 R@10 R@50

Base (w/o filter) 38.46 70.65 68.75 37.24 59.47
Ovis2-16B 40.19 71.23 69.66 37.57 59.76
InternVL3-14B 40.23 71.02 70.48 37.64 59.19
Qwen2.5-VL-7B 39.49 70.98 69.27 37.11 58.97
Qwen2.5-VL-32B 41.17 71.18 70.32 37.76 59.28

addition, we evaluate the performance of different MLLMs as filtering modules, including Ovis2 Lu
et al. (2024), InternVL Chen et al. (2024b), and Qwen2.5-VL Bai et al. (2025). As shown in Table X,
all models lead to performance improvements when used for filtering, though the differences among
them are relatively minor. Considering both stability and scalability, we adopt Qwen2.5-VL-32B,
the most widely used model in the open-source community, as our final filtering module.

C.4 SAMPLE ILLUSTRATIONS FROM THE CIRHS DATASET

Figure 7 shows representative samples in the CIRHS dataset, demonstrating its high quality and se-
mantic diversity. Notably, the rightmost column showcases examples involving cross-domain image
pairs, a unique feature of CIRHS not covered by existing CIR datasets. In addition, as presented
in Figure 5, we visualize the relative captions in the CIRHS dataset as a word cloud based on word
frequency, illustrating a wide range of editing operations as well as real-world objects and scenes.

18


	Introduction
	Related Work
	Methodology
	High-quality Triplet Synthesis for CIR
	End-to-end Optimization with Synthetic Triplets

	Experiments
	The CIRHS Dataset
	Experimental Setup
	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	Usage of LLM
	CIR Benchmark Details
	More Details for Triplet Synthesis
	Diverse Quadruple Generation
	Consistent Image Pair Synthesis
	Data Filtering
	Sample Illustrations from the CIRHS Dataset


