AUTOMATIC SYNTHESIS OF HIGH-QUALITY TRIPLET DATA FOR COMPOSED IMAGE RETRIEVAL

Anonymous authors

000

001

002003004

010 011 012

013

014

021

023

025

026

028

031

034

038

039

040

041

042

043

044

045

046

047

049

052

Paper under double-blind review

a) High-quality Triplets Synthesis b) Representative examples in the CIRHS dataset

Figure 1: **Overview of our key innovations.** (a) Illustration of the proposed automatic triplet synthesis pipeline, along with our proposed training framework CoAlign. (b) Representative samples from our CIRHS dataset, covering various real-world scenes and objects, as well as diverse editing operations including object or scene change, quantity variation, and viewpoint shift, etc.

ABSTRACT

As a challenging vision-language (VL) task, Composed Image Retrieval (CIR) aims to retrieve target images using multimodal (image+text) queries. Although many existing CIR methods have attained promising performance, their reliance on costly, manually labeled triplets hinders scalability and zero-shot capability. To address this, we propose a scalable pipeline for automatic triplet generation, along with a fully synthetic dataset named Composed Image Retrieval on Highquality Synthetic triplets (CIRHS). Our pipeline leverages a large language model (LLM) to generate diverse prompts, controlling a text-to-image generative model to produce image pairs with identical elements in each pair, which are then filtered and reorganized to form the CIRHS dataset. In addition, we introduce Hybrid Contextual Alignment (CoAlign), a novel CIR framework, which can accomplish global alignment and local reasoning within a broad context, enabling the model to learn robust and informative representations. By utilizing the synthetic CIRHS dataset, CoAlign achieves outstanding zero-shot performance on three commonly used benchmarks, demonstrating for the first time the feasibility of training CIR models on a fully synthetic dataset. Furthermore, under supervised training, our method outperforms the state-of-the-art supervised CIR approaches, validating the effectiveness of our proposed retrieval framework. The code and the CIRHS dataset will be open-sourced.

1 Introduction

Composed Image Retrieval (CIR) (Vo et al., 2019; Wu et al., 2021; Liu et al., 2021) has attracted increasing attention in recent years, aiming to retrieve target images based on a query consisting of a reference image and a relative caption. By integrating information from both modalities, CIR can attain more precise and flexible searches, and provide a superior user experience compared

 with conventional unimodal retrieval (Datta et al., 2008). With the emergence of large-scale vision-language pretraining models (VLMs) (Radford et al., 2021; Alayrac et al., 2022; Li et al., 2023), CIR has made significant progress and found numerous applications.

Existing supervised CIR approaches (Baldrati et al., 2022; Liu et al., 2024; Xu et al., 2024) heavily rely on manually annotated triplets, which are both time-consuming and labor-intensive to construct. Moreover, due to the limited scale of available datasets such as FashionIQ (Wu et al., 2021) with only 46.6k triplets and CIRR (Liu et al., 2021) with just 28.8k, these methods suffer from poor generalization performance. Consequently, several studies present Zero-Shot Composed Image Retrieval (ZS-CIR). Early approaches (Saito et al., 2023; Baldrati et al., 2023) employ an inversion network (Gal et al.) trained on massive image-text pairs. However, these methods have the inherent task discrepancy (Byun et al., 2024), making them suboptimal solutions. Additionally, some training-free approaches (Karthik et al., 2024; Yang et al., 2024b) introduce large language model (LLM) reasoning into ZS-CIR. While promising, they often fail to capture fine-grained visual details and the high complexity of model architecture makes it infeasible to conduct domain-specific fine-tuning, thus limiting their applicability. Recent studies (Ventura et al., 2024; Gu et al., 2024a) have designed automated pipelines for creating large-scale triplet datasets, and they also unify the model architecture for both ZS-CIR and supervised CIR. Compared with previous methods, this line of work enables more robust generalization while preserving the ability to fine-tune on domainspecific datasets. However, they face two limitations: (1) The relative captions cover only a narrow range, primarily focusing on substitution, which results in a lack of diversity. (2) The reference and target images produced by image editing (Brooks et al., 2023) are often of low quality, with severe artifacts and unrealistic appearances.

To deal with the above limitations, we propose a scalable pipeline for automatic triplet synthesis as illustrated in Figure 1(a), which generates high-quality CIR triplets in three stages. In Stage 1, an LLM is employed to generate numerous textual quadruplets, each consisting of two image captions as well as two relative captions that describe how one image can be transformed into the other. Guided by a carefully crafted instruction with randomized elements, the LLM-generated image captions cover a wide range of real-world objects and scenes, while the relative captions include diverse editing operations such as substitution, removal, and composition, thus effectively relieving the first issue mentioned before. However, textual quadruples are insufficient for training CIR models, as the LLM-generated image captions need to be converted into corresponding images.

Therefore, in Stage 2, we focus on how to obtain high-quality images corresponding to the textual quadruples. A straightforward solution is to use a text-to-image generative model (T2I-GM) to independently synthesize an image from each caption. However, this will inevitably faces a drawback: CIR requires consistency in shared elements between the reference and target images, while independent generation may result in uncontrollable visual discrepancies. We notice that T2I-GMs are capable of preserving strong intra-image consistency. Consequently, we combine the two image captions in each textual quadruple into a single prompt using a predefined template. This prompt is fed into the T2I-GM to generate an image containing two semantically related sub-images in a single forward pass, which are cropped to serve as the reference and target images, respectively.

Stage 3 performs data filtering, where the generated images and relative captions are reorganized into CIR triplets. These triplets are scored by a multimodal large language model (MLLM) based on three criteria: image-text fidelity, image quality and triplet alignment. Afterwards, we compute a weighted sum of the three scores and discard the bottom 15% of the triplets, resulting in a high-quality and fully synthetic dataset of 534k triplets, namely Composed Image Retrieval on High-quality Synthetic triplets (CIRHS), with representative samples shown in Figure 1(b).

Moreover, we propose a unified framework, Hybrid Contextual Alignment (CoAlign), for both supervised and zero-shot CIR. CoAlign optimizes the model within a broad context, combining global and local objectives to learn robust and fine-grained representations. Extensive experiments on three popular benchmarks validate the effectiveness of our method under both supervised and zero-shot CIR settings, as well as the feasibility of training CIR models using purely synthetic data. To sum up, our contributions are threefold:

• We propose a scalable pipeline for automatic CIR triplet synthesis, tackling previous limitations such as low image quality, unrealistic appearances, and the lack of diversity in relative captions. With

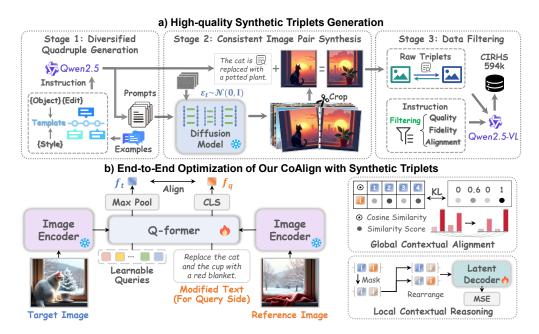


Figure 2: **Overall framework of our method.** (a) The triplet synthesis pipeline involves three stages: generating diverse textual quadruples via an LLM, synthesizing and reorganizing consistent image pairs into triplets, and filtering low-quality samples using an MLLM. (b) The model architecture of CoAlign. The left side illustrates the encoding process of the query and target using different modes, while the right shows the global and local optimization objectives employed by CoAlign.

this pipeline, we obtain a large-scale, fully synthetic CIR dataset named CIRHS, which consists of 534k high-quality triplets.

- We propose a novel CIR framework, Hybrid Contextual Alignment (CoAlign), which optimizes the model within a broad context by combining global alignment and local reasoning. It is simple yet effective and can enhance the robustness of learned representations.
- Experiments show the superior performance under both supervised and zero-shot CIR settings. To the best of our knowledge, this is also the first work to verify the feasibility of training CIR models entirely on synthetic data.

2 Related Work

Composed Image Retrieval (CIR) is primarily evaluated on the fashion domain (Wu et al., 2021) and real-world scenarios (Liu et al., 2021; Baldrati et al., 2023). Mainstream methods (Baldrati et al., 2022; Liu et al., 2024; Xu et al., 2024) leverage the cross-modal alignment of VLMs and apply early or late fusion to integrate the two modalities in the composed query. Recently, zero-shot CIR has gained attention, with textual inversion (Saito et al., 2023; Baldrati et al., 2023; Gu et al., 2024b; Gal et al.) becoming a key technique. This method maps the input image to a pseudo-word token, which is then combined with the relative caption and encoded by a text encoder. Other works (Karthik et al., 2024; Yang et al., 2024b) use LLMs for target caption generation, reformulating CIR as text-to-image retrieval. However, their complex architectures hinder domain-specific fine-tuning and practical deployment. Due to the lack of labeled triplets, recent efforts have focused on automatically constructing CIR triplets. Some methods (Ventura et al., 2024; Levy et al., 2024) derive similar image pairs from public databases and generate relative captions via handcrafted rules or LLMs. CompoDiff (Gu et al., 2024a) and VISTA (Zhou et al., 2024) synthesize target images through editing (Brooks et al., 2023), but they are limited by the quality of the generated images. In contrast, our method generates high-quality, diverse triplets with photorealistic reference and target images.

Text-to-Image Generation has evolved from early GAN-based methods (Goodfellow et al., 2020) to more complex multimodal frameworks. Currently, diffusion models (Ho et al., 2020) dominate

tasks like text-to-image synthesis (Podell et al., 2023b; Ramesh et al., 2022b), image translation (Saharia et al., 2022), and controllable generation (Zhang et al., 2023; Mou et al., 2024). Notably, latent diffusion models (LDM) (Rombach et al., 2022) improve image-text fidelity while reducing computational cost, paving the way for excellent works supporting high-resolution image generation, such as Stable Diffusion (Podell et al., 2023a) and DALL-E (Ramesh et al., 2022a). Recently, diffusion transformers (DiT) (Peebles & Xie, 2023) further enhance scalability, with advanced models like PixArt (Chen et al., 2024a) and Flux (Labs, 2024) achieving state-of-the-art generation quality.

3 METHODOLOGY

As shown in Figure 2, our method consists of two parts: 3.1 presents our automatic triplet synthesis pipeline, including textual quadruple generation, consistent image pair synthesis, and data filtering, while 3.2 describes our proposed CIR framework, CoAlign, detailing its model architecture, optimization strategy, and inference workflow.

3.1 HIGH-QUALITY TRIPLET SYNTHESIS FOR CIR

Diverse Quadruple Generation. End-to-end generation of CIR triplets is highly challenging. Therefore, in Stage 1, we first generate their textual counterparts. Specifically, we design an instruction template $\mathcal{P}(object, edit, style)$ to guide an LLM $g_{llm}(\cdot)$ in producing textual quadruples, as shown below. The three parameters are sampled from predefined sets crafted by GPT-40 (OpenAI et al., 2024), covering diverse objects, editing operations, and image styles.

$$g_{llm}(p) \to \langle C_{I_r}, C_{r \to t}, C_{t \to r}, C_{I_t} \rangle,$$
 (1)

where the reference caption C_{I_r} and the target caption C_{I_t} are used to synthesize I_r and I_t , sharing at least one semantic entity, while the relative caption $C_{r \to t}$ captures the modification from I_r to I_t . Additionally, the inverse caption $C_{t \to r}$ describes the change from I_t to I_r , enabling bidirectional triplet construction and thereby improving efficiency. The instruction $p \sim \mathcal{P}$ varies with each input, encompassing various common objects and editing operations such as object composition and scenario change. Furthermore, style information is embedded in C_{I_r} and C_{I_t} for generation across multiple domains. Below is an illustration of the template \mathcal{P} .

Using the elements: {suggested objects}. {editing operations}. {image styles}, please help me generate a quadruple that meets the requirements of CIR.

Consistent Image Pair Synthesis. After obtaining the textual quadruplets, a T2I-GM can synthesize I_r and I_t using C_{I_r} and C_{I_t} , respectively. However, it doesn't ensure consistency of shared elements between the two generated images. That is, I_r and I_t may differ significantly, making them unsuitable for constructing CIR triplets.

```
HD 4k square grid layout for left and right images, Left: \{C_{I_r}\}, Right: \{C_{I_t}\}.
```

In contrast, we leverage the inherent consistency of generative models, i.e., they have the ability to generate identical elements within a single image. To this end, we define a prefix to specify the desired image layout and integrate C_{I_r} and C_{I_t} into a single prompt as shown above, which is then fed into the T2I-GM to generate a single image containing two side-by-side sub-images. I_r and I_t are finally obtained by cropping the left and right parts, as illustrated in Figure 2(a).

To fully leverage the textual quadruples, we synthesize n^1 image pairs for each (C_{I_r}, C_{I_t}) based on different random seeds, yielding $\{(I_r^i, I_t^i)\}_{i=1}^n$. By combining these images with their relative captions, we obtain 2n CIR triplets, i.e., $\{(I_r^i, C_{r \to t}, I_t^i)\}_{i=1}^n \cup \{(I_t^i, C_{t \to r}, I_r^i)\}_{i=1}^n$. Additionally, we introduce an identifier, namely triplet identity (TID), and assign the same TID to triplets sharing the same relative caption. Triplets with the same TID exhibit a certain degree of similarity, making label smoothing (Müller et al., 2019) possible during training.

Data Filtering. To refine the raw synthesized triplets, Stage 3 incorporates a multimodal large language model (MLLM) (Bai et al., 2025) to score them across three aspects on a scale from 1 to

¹Considering scalability and efficiency, we select n = 10.

Table 1: **Performance comparison with existing supervised CIR methods.** The best results are marked in bold, and the second-best results are underlined. † indicates that the method is pretrained on its own constructed triplet dataset.

	CIRR			FashionIQ								
Method	Reca	Recall@K Recall _s @		$l_s@K$	Dress		Shirt		Toptee		Average	
	K=1	K=5	K=1	K=3	K=10	K=50	K=10	K=50	K=10	K=50	K=10	K=50
TIRG (Vo et al., 2019)	14.61	48.37	22.67	65.14	14.87	34.66	18.26	37.89	19.08	39.62	17.40	37.39
MAAF (Dodds et al., 2020)	10.31	33.03	21.05	61.60	23.80	48.60	21.30	44.20	27.90	53.60	24.30	48.80
CIRPLANT (Liu et al., 2021)	19.55	52.55	39.20	79.49	17.45	40.41	17.53	38.81	61.64	45.38	18.87	41.53
ARTEMIS (Delmas et al., 2024)	16.96	46.10	39.99	75.67	27.16	52.40	21.78	43.64	29.20	53.83	26.05	50.29
CLIP4CIR (Baldrati et al., 2022)	38.53	69.98	68.19	94.17	33.81	59.40	39.99	60.45	41.41	65.37	38.32	61.74
TG-CIR (Wen et al., 2023)	45.25	78.29	72.84	95.13	45.22	69.66	52.60	72.52	56.14	77.10	51.32	73.09
Re-ranking (Liu et al., 2023)	50.55	81.75	80.04	96.58	48.14	71.43	50.15	71.25	55.23	76.80	51.17	73.13
BLIP4CIR+Bi (Liu et al., 2024)	40.15	73.08	72.10	95.93	42.09	67.33	41.76	64.28	46.61	70.32	43.49	67.31
CASE [†] (Levy et al., 2024)	48.68	79.98	76.39	95.86	47.44	69.36	48.48	70.23	50.18	72.24	48.79	70.68
CoVR [†] (Ventura et al., 2024)	49.69	78.60	75.01	93.16	44.55	69.03	48.43	67.42	52.60	74.31	48.53	70.25
CompoDiff [†] (Gu et al., 2024a)	32.39	57.61	67.88	94.07	38.39	51.03	41.68	56.02	45.70	57.32	39.81	51.90
CaLa (Jiang et al., 2024)	49.11	81.21	76.27	96.46	42.38	66.08	46.76	68.16	50.93	73.42	46.69	69.22
SPRC (Xu et al., 2024)	<u>51.96</u>	82.12	80.65	<u>96.60</u>	49.18	72.43	55.64	73.89	59.35	<u>78.58</u>	54.72	74.97
CoAlign (Ours)	54.07	83.81	80.87	97.04	49.43	72.04	56.48	75.61	58.85	78.99	54.92	75.55

10: (1) image quality of both I_r and I_t , including the clarity, noise, artifacts, etc. (2) image-text fidelity (e.g., $I_r \leftrightarrow C_{I_r}$), and (3) triplet alignment (e.g., $I_r + C_{r \to t} \leftrightarrow I_t$). The average score is computed via a weighted sum and a threshold α is then applied to filter out low-quality triplets, which accounts for about 15%.

Utilizing this pipeline, we build the large-scale CIRHS dataset with 534k high-quality synthetic triplets. Experiments will verify the scalability and effectiveness of this pipeline. Additional details on triplet synthesis, including the full prompts and more examples, are in Appendix B.

3.2 END-TO-END OPTIMIZATION WITH SYNTHETIC TRIPLETS

CoAlign Model Architecture. As shown in Figure 2(b), inspired by BLIP-2 (Li et al., 2023), our model consists of a frozen image encoder and a lightweight Querying Transformer (Q-Former), which incorporates learnable queries for efficient multimodal feature extraction. CoAlign reuses the Q-Former's two distinct encoding modes: image-grounded encoding (jointly conditioned on visual and textual inputs) and pure image encoding (visual-only processing).

Given an input triplet $\langle I_r, C_{r \to t}, I_t \rangle$, the query side uses the frozen image encoder to extract features from the reference image I_r . The resulting visual features, together with the relative caption $C_{r \to t}$, are forwarded to the Q-Former. The output [CLS] token is then passed through a query projection layer to produce the query feature $f_q \in \mathbb{R}^d$. Similarly, on the target side, the frozen image encoder processes the target image I_t , generating visual features that are then passed through the Q-Former in its pure image encoding mode. The output token embeddings corresponding to the learnable queries of the Q-Former undergo max-pooling across the sequence dimension, followed by a target projection layer, to obtain the target feature $f_t \in \mathbb{R}^d$.

Hybrid Contextual Alignment. To achieve comprehensive alignment between the composed query and its target images, CoAlign jointly conducts optimization from both global and local perspectives.

Global Contextual Alignment. Conventional contrastive learning (He et al., 2020; Oord et al., 2018) focuses on the diagonal elements of the similarity matrix. However, this becomes suboptimal for the proposed CIRHS dataset, where each query may correspond to multiple target images (same TID). To this end, CoAlign combines distribution matching (Zhang & Lu, 2018; Jiang & Ye, 2023) and label smoothing (Müller et al., 2019) to perform global contextual alignment, enabling the model to extract useful information within a broader context, i.e. the entire similarity matrix, rather than relying solely on the diagonal elements, thereby facilitating the learning of more robust representations. Specifically, for a mini-batch of size N, each query is associated with a set $\mathcal{S} = \{(f_q^i, f_t^j), y_{i,j}\}_{j=1}^N$, where $y_{i,j} = 1$ denotes a hard-matched pair, $y_{i,j} = \beta$, $\beta \in (0,1)$ represents a soft-matched pair (sharing the same TID), and $y_{i,j} = 0$ indicates an unmatched pair. Then the matching probabilities

are computed via a softmax over S:

270

271272

273274

275

276

277278279

281

283

284

285

287

288

289

290

291

292

293

295

296 297

298

299

300 301

303

304305306

307 308

310

311

312

313

314

315

316

317

318

319

320

321

322

323

$$p_{i,j} = \frac{\exp(sim(f_q^i, f_t^j)/\tau)}{\sum_{k=1}^{N} \exp(sim(f_q^i, f_t^k)/\tau)},$$
 (2)

where $sim(\cdot,\cdot)$ is the cosine similarity, and τ is a learnable temperature parameter that controls the sharpness of the probability distribution. The label distribution, representing the true matching probability, is computed as $q_{i,j}=y_{i,j}/\Sigma_{k=1}^N y_{i,k}$ and the global contextual alignment loss from query to target is calculated by the KL divergence:

$$\mathcal{L}_{q2t} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} p_{i,j} \log(\frac{p_{i,j}}{q_{i,j} + \epsilon}), \quad \mathcal{L}_{gca} = \mathcal{L}_{q2t} + \mathcal{L}_{t2q},$$
(3)

where ϵ is used to prevent numerical issues. In the same way, \mathcal{L}_{t2q} can be obtained by exchanging f_q and f_t in Equation 2, and the global contextual alignment loss \mathcal{L}_{gca} is the bidirectional sum.

Local Contextual Reasoning. Complementary to global contextual alignment, we propose local contextual reasoning to capture finer-grained information within each triplet. Unlike masked language/image modeling (MLM/MIM) (He et al., 2022; Devlin et al., 2019), CoAlign adopts a lightweight decoder and performs bidirectional masked feature prediction (MFP) (Wei et al., 2022) at the latent level. For a composed query and its hard-matched target (f_q, f_t) , we first randomly mask out elements along the feature dimension with a probability of 30%. Following BERT (Devlin et al., 2019), the masked elements are replaced with 10% random, 10% unchanged, and 80% set to zero, yielding the masked pair $(\tilde{f}_q, \tilde{f}_t)$. Subsequently, a rearrange operation is performed to group and concatenate the features to obtain $[f_q, \tilde{f}_t] \in \mathbb{R}^{2d}$ and $[f_t, \tilde{f}_q] \in \mathbb{R}^{2d}$, which are passed through the latent decoder Φ (a two-layer MLP) to predict the masked elements. The reconstruction is supervised by the bidirectional local contextual reasoning loss \mathcal{L}_{lcr} :

$$\mathcal{L}_{lcr} = \mathbb{E}[||f_q - \Phi([f_t, \tilde{f}_q])||_2^2 + ||f_t - \Phi([f_q, \tilde{f}_t])||_2^2]. \tag{4}$$

The overall training objective \mathcal{L} is a weighted sum of the global and local terms, where γ is a hyperparameter,

$$\mathcal{L} = \mathcal{L}_{aca} + \gamma \mathcal{L}_{lcr}. \tag{5}$$

Inference Workflow. Given an image gallery with pre-extracted features $\mathcal{V} = \{f_t^j\}_{j=1}^N$, we compute the cosine similarity between a query f_q and each f_t^j , returning the top-K most similar images as the retrieval results.

4 EXPERIMENTS

4.1 THE CIRHS DATASET

We construct CIRHS, a fully synthetic dataset containing triplets. Table 2 summarizes its statistics. Compared with existing manually annotated datasets (Wu et al., 2021; Liu et al., 2021), CIRHS is significantly larger in scale. Although smaller than WebVid-CoVR (Ventura et al., 2024) and ST18M (Gu et al., 2024a), CIRHS offers advantages in quality and WebVid-CoVR is condiversity. strained by the lack of diversity in relative captions (mainly object or

Table 2: **Statistics of common CIR datasets.** We compare our CIRHS dataset with existing benchmarks.

Dataset	Domain	Triplets	Images	Text length
CIRR	Natural	36,554	21,185	59.51
FashionIQ	Fashion	30,132	7,988	27.13
LaSCo	Natural	389,305	121,479	30.70
WebVid-CoVR	Natural	1,644,276	130,559	23.36
ST18M	Synthetic	18,000,000	-	-
CIRHS (Ours)	Synthetic	534,758	534,758	53.17

scene change). ST18M, on the other hand, based on image editing to generate CIR triplets, suffers from poor generation quality due to unrealistic outputs and visual artifacts. In contrast, CIRHS

Table 3: **Performance comparison with existing zero-shot CIR methods.** The best results are marked in bold, and the second-best results are underlined. † indicates that the dataset is synthetic.

				Zero-shot Composed Image Retrieval					
Method	Training Data	Fashi	ionIQ	CIRR				CIRCO	
		R@10	R@50	R@1	R@5	R _s @1	Avg.	mAP@5	mAP@10
PALAVRA (Cohen et al., 2022)	-	19.76	37.25	16.62	43.49	41.61	42.55	4.61	5.32
Pic2Word (Saito et al., 2023)	CC3M	24.70	43.70	23.90	51.70	-	-	-	-
SEARLE (Baldrati et al., 2023)	ImageNet1K	27.61	47.90	24.87	52.31	53.80	53.06	11.68	12.73
ContextI2W (Tang et al., 2024)	CC3M	27.80	48.90	25.60	55.10	-	-	-	-
KEDs (Suo et al., 2024)	CC3M	26.80	47.90	26.40	54.80	-	-	-	-
Slerp+TAT (Jang et al., 2024)	CC3M	32.77	53.32	33.98	61.74	68.55	54.76	18.46	19.41
Image2Sentence (Du et al.)	CC3M	29.79	49.19	30.84	61.06	-	-	11.33	12.25
CIReVL (Karthik et al., 2024)	-	32.19	52.36	34.65	64.29	67.95	66.12	26.77	27.59
	Comparison with	nethods	based on	CIR tripl	et constr	uction			
CoVR (Ventura et al., 2024)	WebVid-CoVR	27.70	44.63	38.48	66.70	69.28	67.99	21.43	22.33
CASE (Levy et al., 2024)	LaSCo+CoCo	-	-	35.40	65.78	64.29	65.04	-	-
CompoDiff (Gu et al., 2024a)	$ST18M^{\dagger}$	39.02	51.71	26.71	55.14	64.54	59.84	15.33	17.71
CLIP4CIR (Baldrati et al., 2022)	CIRHS [†] (Ours)	26.94	47.73	29.64	62.16	57.78	59.97	20.17	21.98
BLIP4CIR (Liu et al., 2024)	CIRHS [†] (Ours)	30.89	52.74	25.76	55.12	55.08	55.10	18.73	20.02
SPRC (Xu et al., 2024)	CIRHS [†] (Ours)	37.44	57.91	38.32	68.93	69.34	69.14	21.76	23.12
CoAlign (Ours)	CIRHS [†] (Ours)	39.11	60.29	41.17	71.68	70.65	71.17	23.47	25.29

is designed to ensure both semantic diversity and high visual quality. Experiments also show that 534k triplets are sufficient to train strong CIR models. Note that the most time-consuming part, image generation, is a one-off process, taking an average of 7.2 seconds per image pair (i.e., two triplets) on a single H800 GPU. We will make all our data and code publicly available, so repeated consumption of computational resources will not be necessary.

4.2 EXPERIMENTAL SETUP

Evaluation Benchmarks. FashionIQ (Wu et al., 2021) simulates online shopping environment, with 30,134 triplets derived from 77,684 fashion-related images. CIRR (Liu et al., 2021) is the first open-domain dataset, containing 21,552 real-life images. CIRCO (Baldrati et al., 2023) builds on the COCO 2017 unlabeled split (Lin et al., 2014), with each query corresponding to multiple target images. More details about these datasets can be found in Appendix A.

Comparison with ZS-CIR methods. Table 3 compares existing zero-shot CIR methods. Our approach is the only one trained solely on synthetic triplets while achieving strong performance. Among methods based on CIR triplet construction, it outperforms all others across all metrics. Notably, CIRHS is compatible with any CIR framework, e.g., SPRC and CLIP4CIR also perform well when trained on it. On CIRCO, our method ranks second. This is primarily due to the large visual discrepancies between reference and target images inherent in CIRCO, where retrieval relies heavily on the relative caption. This reliance deviates from the original intent of CIR and makes it more favorable to training-free methods such as CIReVL. However, the complex architectures of such methods hinder domain-specific fine-tuning, whereas our approach supports it.

Evaluation Metrics. Recall@K is the main metric for CIRR and FashionIQ, with CIRR also reporting Recall_s@K on visually similar subsets and overall performance as $Avg. = \frac{Recall@5 + Recall_s@1}{2}$. For CIRCO, where each query has multiple targets, mAP@K is used as the primary metric.

Implementation Details. (1) We construct CIRHS using 8 H800 GPUs, with Qwen2.5-32B (Yang et al., 2024a) as the LLM, Flux.1-dev (Labs, 2024) as the T2I-GM, and Qwen2.5-VL-32B (Bai et al., 2025) as the MLLM for filtering. Each textual quadruple generates 10 side-by-side images at 512×1056 resolution, which are then cropped into 512×512 reference-target image pairs. The MLLM scores each triplet (scale 1-10) on three aspects, and a weighted sum (0.3, 0.2, 0.5) with threshold $\alpha = 7.5$ filters out 15% of low-quality triplets. (2) For CoAlign, we adopt BLIP-2 (Li et al., 2023) with a frozen ViT-G/14 (Dosovitskiy et al., 2020) (224px input), trained for 10 epochs on CIRHS using AdamW (LR 5e-6, batch size 128, $\beta = 0.6$, $\gamma = 0.4$) on a H800 GPU. For CIRR and FashionIQ, we train from scratch for 50 and 30 epochs with initial LRs of 1e-5 and 2e-5, respectively, using the same batch size 128.

378 379 380

382

394

395

396

397

398

399

400 401

402 403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420 421

422

423

424

425

426

427

428

429

430

431

Table 4: Ablation experiments on CoAlign. (ITC) (He et al., 2020) for comparison.

C	Components		CI	RR	FashionIQ				
ITC	GCA	LCR	R@5	R@5 R _s @1		R@50			
	Under the zero-shot CIR setting.								
/			69.66	69.57	38.07	59.30			
	1		71.64	69.93	39.04	59.91			
	1	✓	71.68	70.65	39.11	60.29			
	Adopt the supervised CIR setting.								
/	-		82.92	79.86	54.53	74.86			
✓	-	✓	83.81	80.87	54.92	75.55			

Best results are in bold. To validate GCA, Table 5: Results with Different Datasets. For we introduce the image-text contrastive loss efficiency, we train the models on 100k sampled triplets from each dataset and evaluate them under zero-shot settings.

Dataset	Filter	CI	RR	FashionIQ		
		R@5	R _s @1	R@10	R@50	
WebVid-CoVR	-	67.28	70.19	36.45	57.66	
LaSCo	-	68.55	69.11	33.12	54.87	
ST18M	-	60.00	57.59	30.60	51.00	
Independent	1	70.17	68.97	37.19	58.47	
CIRHS (Ours)	×	70.65 71.18	68.75 70.32	37.24 37.76	59.47 59.28	

QUANTITATIVE RESULTS

Comparison with supervised CIR approaches. Table 1 presents a comparison of existing supervised CIR methods. Our method, CoAlign, achieves the best overall performance on both FashionIQ and CIRR. Specifically, SPRC focuses on sentence-level prompt optimization but lacks local understanding. CaLa (Jiang et al., 2024) aims to capture fine-grained query-target relations but suffers from suboptimal global alignment. In contrast, CoAlign adopts hybrid contextual alignment, jointly optimizing both global and local objectives in a simple yet effective manner.

4.4 QUALITATIVE RESULTS

Figure 4(a) presents visualizations. (1) The top two rows illustrate our model's strong multimodal reasoning, covering object composition and fine-grained semantics. The bottom two rows show failure cases. Both CIRR and FashionIQ contain false negatives, e.g., the top two predictions in row 3 are actually correct. Row 4 shows an ambiguous relative caption, a common issue in FashionIQ. The model tends to prefer outputs with similar backgrounds, likely due to consistency constraints in dataset Since background construction. changes are not specified, such outputs remain acceptable.

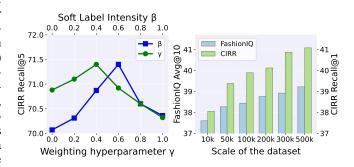


Figure 3: **Hyperparameter and data scale analysis.** Left: Sensitivity analysis of CoAlign on different hyperparameters. Right: Impact of data scale on zero-shot performance.

4.5 ABLATION STUDY

CoAlign Model. We train multiple versions of our model, as shown in Table 4. Under the zero-shot setting, we introduce the widely used image-text contrastive (ITC) loss (He et al., 2020; Li et al., 2021), which optimizes only the diagonal of the similarity matrix, to evaluate the impact of Global Contextual Alignment (GCA) in learning from broader cross-modal contexts. Results show that GCA is effective, and that combining it with Local Contextual Reasoning (LCR) further enhances performance. Similar gains are observed under supervised training. Note that in the supervised setting, where each composed query has only one target image, ITC and GCA become functionally equivalent.

Results with Different Datasets. To evaluate our triplet synthesis pipeline, we train CoAlign with identical settings across multiple datasets. As presented in Table 5, models trained on CIRHS outper-

(a) Qualitative results on CIRR and FashionIQ.

(b) Comparison of three triplet synthesis methods. Our approach (a) outperforms (b) and (c) in both generation quality and consistency.

Figure 4: Visualization results on FashionIQ and CIRR, as well as the visualization of three data synthesis paradigms.

form those trained on real-world datasets like WebVid-CoVR (Ventura et al., 2024) and LaSCo (Levy et al., 2024), owing to the rich semantic diversity introduced by the LLM and the strong alignment of synthesized triplets. Compared to ST18M (Gu et al., 2024a), CIRHS mitigates issues of noise and artifacts common in image editing-based methods, yielding higher-quality reference and target images and boosting performance. We also assess an alternative strategy using independent prompts C_{I_r} and C_{I_t} for the T2I-GM (denoted *Independent* in Table 5), which suffers from poor consistency, making it suboptimal for CIR triplet construction. Figure 4(b) provides a visual comparison of three triplet synthesis paradigms, further supporting the above conclusion. Finally, removing low-quality samples leads to improved performance, confirming the effectiveness of our filtering strategy. Additional results using different MLLMs as filters are reported in Appendix B.

Hyperparameter and Data Scale Analysis. (1) The left side of Figure 3 shows the effects of β (soft label intensity) and γ (loss weighting hyperparameter). The performance first increases, then declines, peaking at $\beta=0.6$ and $\gamma=0.4$. (2) The right side shows that performance improves with more training data, saturating around 300k samples. This demonstrates that CIRHS-534k provides sufficient scale for strong CIR performance.

5 CONCLUSION

We propose a scalable pipeline for synthesizing high-quality CIR triplets, addressing prior limitations such as low image quality and poor semantic diversity. With this pipeline, we build a large-scale synthetic dataset, Composed Image Retrieval on High-quality Synthetic triplets (CIRHS). The pipeline employs an LLM to generate diverse, semantically rich quadruples that guide a T2I-GM to produce consistent image pairs, which are then filtered and reorganized into triplets. Furthermore, we introduce Hybrid Contextual Alignment (CoAlign), a new CIR framework that jointly optimizes global and local objectives within a broad context. Trained solely on CIRHS, CoAlign achieves strong zero-shot performance on three benchmarks. To our knowledge, it is the first CIR model trained entirely on synthetic data to reach this level of performance. Under supervised settings, CoAlign also outperforms existing methods, validating the effectiveness of our retrieval framework.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.

- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
 - Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Effective conditioned and composed image retrieval combining clip-based features. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 21466–21474, 2022.
 - Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed image retrieval with textual inversion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15338–15347, 2023.
 - Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18392–18402, 2023.
 - Jaeseok Byun, Seokhyeon Jeong, Wonjae Kim, Sanghyuk Chun, and Taesup Moon. Reducing task discrepancy of text encoders for zero-shot composed image retrieval. *arXiv* preprint arXiv:2406.09188, 2024.
 - Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James T Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. In *ICLR*, 2024a.
 - Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024b.
 - Niv Cohen, Rinon Gal, Eli A Meirom, Gal Chechik, and Yuval Atzmon. "this is my unicorn, fluffy": Personalizing frozen vision-language representations. In *European conference on computer vision*, pp. 558–577. Springer, 2022.
 - Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval: Ideas, influences, and trends of the new age. *ACM Computing Surveys (Csur)*, 40(2):1–60, 2008.
 - Ginger Delmas, Rafael S Rezende, Gabriela Csurka, and Diane Larlus. Artemis: Attention-based retrieval with text-explicit matching and implicit similarity. In *International Conference on Learning Representations*, 2024.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 - Eric Dodds, Jack Culpepper, Simao Herdade, Yang Zhang, and Kofi Boakye. Modality-agnostic attention fusion for visual search with text feedback. *arXiv preprint arXiv:2007.00145*, 2020.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2020.
 - Yongchao Du, Min Wang, Wengang Zhou, Shuping Hui, and Houqiang Li. Image2sentence based asymmetrical zero-shot composed image retrieval. In *The Twelfth International Conference on Learning Representations*.
 - Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In *The Eleventh International Conference on Learning Representations*.
 - Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.

- Geonmo Gu, Sanghyuk Chun, Wonjae Kim, HeeJae Jun, Yoohoon Kang, and Sangdoo Yun. Compodiff: Versatile composed image retrieval with latent diffusion. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856.
 - Geonmo Gu, Sanghyuk Chun, Wonjae Kim, Yoohoon Kang, and Sangdoo Yun. Language-only training of zero-shot composed image retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13225–13234, 2024b.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9729–9738, 2020.
 - Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Cihang Xie, and Yuyin Zhou. Hq-edit: A high-quality dataset for instruction-based image editing. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Young Kyun Jang, Dat Huynh, Ashish Shah, Wen-Kai Chen, and Ser-Nam Lim. Spherical linear interpolation and text-anchoring for zero-shot composed image retrieval. In *European Conference on Computer Vision*, pp. 239–254. Springer, 2024.
 - Ding Jiang and Mang Ye. Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2787–2797, 2023.
 - Xintong Jiang, Yaxiong Wang, Mengjian Li, Yujiao Wu, Bingwen Hu, and Xueming Qian. Cala: Complementary association learning for augmenting comoposed image retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2177–2187, 2024.
 - S Karthik, K Roth, M Mancini, Z Akata, et al. Vision-by-language for training-free compositional image retrieval. In *The Twelfth International Conference on Learning Representations*. OpenReview. net, 2024.
 - Black Forest Labs. Flux: Official inference repository for flux.1 models. https://github.com/black-forest-labs/flux, 2024. Accessed: 2024-11-12.
 - Matan Levy, Rami Ben-Ari, Nir Darshan, and Dani Lischinski. Data roaming and quality assessment for composed image retrieval. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 2991–2999, 2024.
 - Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum distillation. *Advances in neural information processing systems*, 34:9694–9705, 2021.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
 Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
 Proceedings, Part V 13, pp. 740–755. Springer, 2014.

- Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image retrieval on real-life images with pre-trained vision-and-language models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2125–2134, 2021.
 - Zheyuan Liu, Weixuan Sun, Damien Teney, and Stephen Gould. Candidate set re-ranking for composed image retrieval with dual multi-modal encoder. *arXiv preprint arXiv:2305.16304*, 2023.
 - Zheyuan Liu, Weixuan Sun, Yicong Hong, Damien Teney, and Stephen Gould. Bi-directional training for composed image retrieval via text prompt learning. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 5753–5762, January 2024.
 - Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis: Structural embedding alignment for multimodal large language model, 2024. URL https://arxiv.org/abs/2405.20797.
 - Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–4304, 2024.
 - Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? *Advances in neural information processing systems*, 32, 2019.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
 - OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023a.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023b.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
 - Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022a.
 - Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022b.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
 - Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH* 2022 conference proceedings, pp. 1–10, 2022.

- Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and Tomas
 Pfister. Pic2word: Mapping pictures to words for zero-shot composed image retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19305–19314, 2023.
 - Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for reasoning about natural language grounded in photographs, 2019. URL https://arxiv.org/abs/1811.00491.
 - Yucheng Suo, Fan Ma, Linchao Zhu, and Yi Yang. Knowledge-enhanced dual-stream zero-shot composed image retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26951–26962, 2024.
 - Yuanmin Tang, Jing Yu, Keke Gai, Jiamin Zhuang, Gang Xiong, Yue Hu, and Qi Wu. Context-i2w: mapping images to context-dependent words for accurate zero-shot composed image retrieval. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5180–5188, 2024.
 - Lucas Ventura, Antoine Yang, Cordelia Schmid, and Gül Varol. Covr: Learning composed video retrieval from web video captions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5270–5279, 2024.
 - Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing text and image for image retrieval-an empirical odyssey. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6439–6448, 2019.
 - Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer. Masked feature prediction for self-supervised visual pre-training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14668–14678, 2022.
 - Haokun Wen, Xian Zhang, Xuemeng Song, Yinwei Wei, and Liqiang Nie. Target-guided composed image retrieval. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 915–923, 2023.
 - Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Rogerio Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback. In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp. 11307–11317, 2021.
 - Xinxing Xu, Yong Liu, Salman Khan, Fahad Khan, Wangmeng Zuo, Rick Siow Mong Goh, Chun-Mei Feng, et al. Sentence-level prompts benefit composed image retrieval. In *The Twelfth International Conference on Learning Representations*, 2024.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024a.
 - Zhenyu Yang, Dizhan Xue, Shengsheng Qian, Weiming Dong, and Changsheng Xu. Ldre: Llm-based divergent reasoning and ensemble for zero-shot composed image retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 80–90, 2024b.
 - Lymin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.
 - Ying Zhang and Huchuan Lu. Deep cross-modal projection learning for image-text matching. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 686–701, 2018.
 - Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and Yongping Xiong. Vista: Visualized text embedding for universal multi-modal retrieval. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3185–3200, 2024.

A USAGE OF LLM

 In our work, the LLM is primarily used for paper refinement. Additionally, we employ it to generate high-quality textual quadruples. The details are provided in Section 3.1, and the instructions used to prompt the LLM are detailed in Section C.1.

B CIR BENCHMARK DETAILS

This section provides an overview of the three benchmarks, i.e., FashionIQ, CIRR, and CIRCO, involved in our study. We describe the characteristics, size, and specific tasks associated with each dataset to highlight their relevance.

FashionIQ Wu et al. (2021) is designed to promote conversational interfaces for online shopping, offering a more interactive approach than traditional keyword-based search systems. The dataset contains 30,134 triplets constructed from 77,684 images, categorized into three classes: Dress, Shirt, and Toptee. It also includes product descriptions and visual attribute labels. FashionIQ is split into training, validation, and test sets with a ratio of 6:2:2. Some examples of FashionIQ triplets are presented in Figure 9(a).

CIRR Liu et al. (2021) is developed to address the limitation of CIR benchmarks being domain-specific, like FashionIQ, by extending it to open-domain scenarios. CIRR consists of 36,554 annotated triplets, collected from a large number of visually similar images in the NLVR Suhr et al. (2019) dataset. These images are processed using ResNet-152 He et al. (2016), pre-trained on ImageNet Russakovsky et al. (2015). It is randomly divided into training, validation, and test splits (8:1:1 ratio). However, CIRR faces challenges such as ambiguous, unnecessary descriptions in the captions, and numerous false negatives (FNs), which may lead to evaluation inaccuracies. Representative examples from CIRR are illustrated in Figure 9(b).

CIRCO Baldrati et al. (2023) is built using images from the COCO dataset Lin et al. (2014) and is the first CIR benchmark designed specifically for zero shot CIR, where each query corresponds to multiple ground truths (average of 4.53). It consists of a validation split (220 samples) and a test split (800 samples), with no training set included. As CIRCO is designed for zero shot CIR, results on the test split are submitted to a remote server for evaluation. Its multiple ground truths provide robust metrics for mean average precision (mAP), making it a valuable benchmark for zero-shot evaluation. Figure 9(c) shows examples from CIRCO.

C More Details for Triplet Synthesis

A CIR triplet consists of three components: a reference image I_r , a relative caption C, and a target image I_t . Synthesizing such data poses two major challenges: (1) generating an image pair (I_r, I_t) that shares fully overlapping elements while simultaneously modifying certain others; and (2) employing precise textual descriptions to accurately capture the relative transformations between the two images. To address these challenges, we propose an automatic pipeline, which decomposes the synthesis process into three stages. First, a large language model (LLM) is utilized to generate diversified quadruples. Second, based on the generated textual quadruples, a text-to-image generative model (T2I-GM) synthesizes the corresponding image pair, resulting in tow triplets $(I_r, C_{r \to t}, I_t)$ and $(I_t, C_{t \to r}, I_r)$. Third, we employ a multi-modal large language model (MLLM) to score and filter the generated triplets based on three aspects, discarding low-quality samples. Figure 6 illustrates the full prompts used as input to the LLM and MLLM.

C.1 DIVERSE QUADRUPLE GENERATION

Diverse textual quadruples $(C_{I_r}, C_{r \to t}, C_{t \to r}, C_{I_t})$ are generated using an LLM. A quadruple includes the reference caption C_{I_r} , the target caption C_{I_t} , the relative caption $C_{r \to t}$ describes the modification from C_{I_r} to C_{I_t} , while the inverse relative caption $C_{t \to r}$ captures the transformation in the opposite direction, from C_{I_t} to C_{I_r} . To accomplish this, we adopt Qwen2.5-32B² Yang et al.

²Qwen/Qwen2.5-32B-Instruct

Figure 5: A word cloud of CIRHS, displaying all words from the relative captions according to their frequency.

(2024a) as the LLM. The relative captions cover various editing operations such as object substitution, addition, removal, quantity change, direct addressing, and viewpoint shift. The image captions, i.e., C_{I_r} and C_{I_t} , explicitly specify the objects or scenes to be included, covering a wide range of commonly occurring items and environments in the real world. In addition, style information is embedded into the image captions, enabling the synthesis of data across multiple domains and thereby enhancing the robustness of CIRHS. As shown in Figure 6, each prompt ensures consistent format and prefix.

For example, in cases involving object substation, the prompts clarify that C_{I_r} and C_{I_t} should describe different objects while keeping all other elements unchanged. Moreover, $C_{r \to t}$ and $C_{t \to r}$ must only reflect the differences between C_{I_r} and C_{I_t} . To further enhance output quality and diversity, each prompt includes three high-quality annotated examples, randomly sampled from a curated set of 100 high-quality triplets generated by GPT-40 OpenAI et al. (2024). These examples not only stabilize the LLM's output but also reduce redundancy caused by similar input prompts. Each prompt contains an object randomly drawn from a set of 200 common categories, also generated by GPT-40, and a style selected from 20 predefined options, with an emphasis on realism while preserving diversity. Finally, the LLM generates structured outputs that serve as inputs for the synthesis of consistent image pair.

C.2 CONSISTENT IMAGE PAIR SYNTHESIS

Given a textual quadruple $(C_{I_r}, C_{r \to t}, C_{t \to r}, C_{I_t})$, we synthesize a pair of images (I_r, I_t) by transforming C_{I_r} and C_{I_t} into corresponding images. Due to the stochastic nature of diffusion models, the key challenge lies in maintaining consistency across shared elements in both images. Fortunately, diffusion models inherently support the generation of identical objects within a single image, an ability commonly referred to as the in-context capability Hui et al. (2025). We exploit this property by synthesizing a single image containing two side-by-side sub-images, ensuring high visual consistency of shared elements across I_r and I_t .

To implement this, C_{I_r} and C_{I_t} are embedded into a side-by-side prompt template and fed into the T2I-GM, for which we adopt FLUX.1-dev³ Labs (2024), producing a 512×1056 resolution image. This configuration allows us to split the image into two 512×512 sub-images, forming the desired pair (I_r, I_t) . The added padding helps mitigate artifacts from cropping and ensures higher visual fidelity. As illustrated in Figure 6, this approach offers significant advantages over independent generation, as it better preserves shared visual elements while allowing for controlled differences. Each quadruple is used to generate 10 (I_r, I_t) pairs, which are combined with relative captions in both directions, resulting in 20 triplets per quadruple. This design makes our data synthesis pipeline highly efficient. Among the 20 generated triplets, the two sets of 10 triplets in the same direction are theoretically equivalent. However, some visual differences may still exist across generated image

³black-forest-labs/FLUX.1-dev

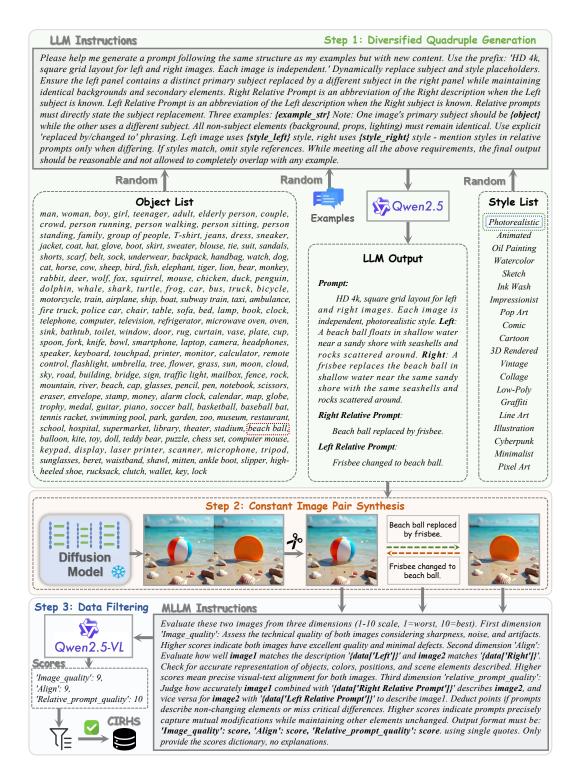


Figure 6: **Pipeline of high-quality triplet construction with detailed instruction design.** The illustrated example demonstrates the generation of a triplet involving an object substitution. The construction for other types of editing operation follow a similar design paradigm.

pairs. To address this, we introduce the Triplet IDentity (TID), where triplets sharing the same relative caption are assigned the same TID, allowing label smoothing Müller et al. (2019) to be applied among triplets sharing the same TID.

Figure 7: Additional examples from the CIRHS dataset. Each row presents a typical type of editing operation, and each example serves as two CIR triplets.

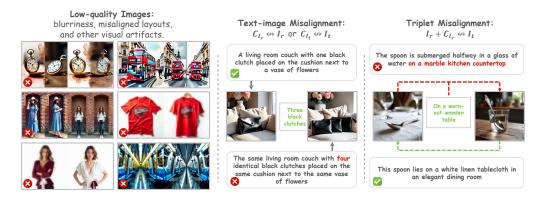


Figure 8: **Some low-quality samples.** The figure presents examples from three dimensions. Left: Samples with low image quality scores, mainly exhibiting issues such as blurriness, incorrect layout, and other visual artifacts. Middle: Image—text misalignment, where the generated images do not correspond well to the input captions used for synthesis. Right: Triplet inconsistency, where the relationship between the reference and target images fails to match the relative caption.

C.3 DATA FILTERING

To ensure the overall quality, we employ an MLLM, namely Qwen2.5-VL-32B⁴ Bai et al. (2025), with carefully designed evaluation prompts to score and filter the synthesized triplets. The evaluation considers three dimensions: (1) Image quality, which assesses clarity, noise, and artifacts in both I_r and I_t ; (2) Image-text fidelity, which measures how well the images match the textual descriptions, i.e., $I_r \leftrightarrow C_{I_r}$, $I_t \leftrightarrow C_{I_t}$; and (3) Triplet alignment, which evaluates whether I_r and $C_{r \to t}$ together can accurately infer I_t . The MLLM assigns scores from 1 to 10 for each dimension and aggregates them into an average score. Based on this score, we filter the generated triplets and retain only high-quality samples in the CIRHS dataset. Some low-quality samples are illustrated in Figure 8. In

⁴Qwen/Qwen2.5-VL-32B-Instruct

Relative caption:
The background water is
missing and the focus is on
the man with the three dogs

Relative caption: has one cheetah looking to the camera and yellow flowers the left side

Relative caption: Stack up the white cups

(b) **CIRR**, which is the first open-domain CIR dataset.

(c) CIRCO, which is also a real-world dataset.

Figure 9: **Representative examples from the three CIR benchmarks.** For each example, the reference image is shown on the left, the target image on the right, and the corresponding relative caption is displayed below.

Table 6: **Results using different MLLMs as filtering modules.** For efficiency, we train the models on 100k sampled triplets from CIRHS and the evaluation is based on zero-shot settings.

Filtering Model		CIRR	FashionIQ		
1 morang mada	R@1	R@5	R _s @1	R@10	R@50
Base (w/o filter)	38.46	70.65	68.75	37.24	59.47
Ovis2-16B	40.19	71.23	69.66	37.57	59.76
InternVL3-14B	40.23	71.02	70.48	37.64	59.19
Qwen2.5-VL-7B	39.49	70.98	69.27	37.11	58.97
Qwen2.5-VL-32B	41.17	71.18	70.32	37.76	59.28

addition, we evaluate the performance of different MLLMs as filtering modules, including Ovis2 Lu et al. (2024), InternVL Chen et al. (2024b), and Qwen2.5-VL Bai et al. (2025). As shown in Table X, all models lead to performance improvements when used for filtering, though the differences among them are relatively minor. Considering both stability and scalability, we adopt Qwen2.5-VL-32B, the most widely used model in the open-source community, as our final filtering module.

C.4 SAMPLE ILLUSTRATIONS FROM THE CIRHS DATASET

Figure 7 shows representative samples in the CIRHS dataset, demonstrating its high quality and semantic diversity. Notably, the rightmost column showcases examples involving cross-domain image pairs, a unique feature of CIRHS not covered by existing CIR datasets. In addition, as presented in Figure 5, we visualize the relative captions in the CIRHS dataset as a word cloud based on word frequency, illustrating a wide range of editing operations as well as real-world objects and scenes.