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Abstract

We consider a non-convex constrained optimization problem, where the objective
function is weakly convex and the constraint function is either convex or weakly
convex. To solve this problem, we consider the classical switching subgradient
method, which is an intuitive and easily implementable first-order method whose
oracle complexity was only known for convex problems. This paper provides
the first analysis on the oracle complexity of the switching subgradient method
for finding a nearly stationary point of non-convex problems. Our results are
derived separately for convex and weakly convex constraints. Compared to existing
approaches, especially the double-loop methods, the switching gradient method
can be applied to non-smooth problems and achieves the same complexity using
only a single loop, which saves the effort on tuning the number of inner iterations.

1 Introduction

Continuous optimization with nonlinear constraints arises from many applications of machine learning
and statistics. Examples include Neyman-Pearson classification [62] and learning with fairness
constraints [77]. In this paper, we consider the following general nonlinear constrained optimization

f∗ ≡ min
x∈X

f(x) s.t. g(x) ≤ 0, (1)

where X ⊂ Rd is a closed convex set that allows a computationally easy projection operator, f
is weakly-convex, g is either convex or weakly convex, and functions f and g are not necessarily
smooth. When g(x) ≡ maxi=1,...,m gi(x), (1) is equivalent to an optimization problem with multiple
nonlinear constraints gi(x) ≤ 0 for i = 1, . . . ,m.

A weakly convex function can be non-convex, so computing an optimal solution of (1) is challenging
in general even without constraints. For this reason, theoretical analysis for gradient-based algorithms
for non-convex problems mostly focuses on an algorithm’s (oracle) complexity for finding an ϵ-
stationary solution for (1). When a problem is non-smooth, finding an ϵ-stationary solution is
generally difficult even if the problem is convex [47]. Hence, in this paper, we consider finding a
nearly ϵ-stationary solution for (1), whose definition will be stated later in Definition 3.2.

In the past decade, there have been many studies on non-convex constrained optimization. However,
most of the existing algorithms and their theoretical complexity analysis are developed by assuming
f and gi’s are all smooth or can be written as the sum of a smooth and a simple non-smooth functions.
A non-exhaustive list of the works under such an assumption includes [34, 80, 81, 55, 44, 45, 43, 52,
63, 53, 50, 12, 22, 9, 21, 40, 51]. Their results cannot be applied to (1) due to non-smoothness in the
problem.
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Non-smoothness is common in optimization in machine learning, e.g., when a non-smooth loss
function is applied, but there are much fewer studies on non-smooth non-convex constrained opti-
mization. Under the weak-convexity assumption, an effective approach for solving a non-smooth
non-convex problem with theoretical guarantees is the (inexact) proximal point method, where a
quadratic proximal term is added to objective and constraint functions to construct a strongly convex
constrained subproblem and then a sequence of solutions can be generated by solving this subproblem
inexactly and updating the center of the proximal term. Oracle complexity for this method to find a
nearly ϵ-stationary has been established by [13, 54, 39] under different constraint qualifications.

The inexact proximal point method is a double-loop algorithm where the inner loop is another
optimization algorithm for solving the aforementioned strongly convex subproblems. The complexity
results in [13, 54, 39] require the inner loop solves each subproblem to a targeted optimality gap.
However, the optimality gap is hard to evaluate and thus cannot be used to terminate the inner
loop. Although the number of inner iterations needed to achieve the targeted gap can be bounded
theoretically, the bound usually involves some constants that are unknown or can only be estimated
conservatively. Hence, using the theoretical iteration bound to stop the inner loop usually leads to
significantly more inner iterations than needed, making the whole algorithm inefficient. In practices,
users often need to tune the number of inner iterations to improve algorithm’s efficiency, which is an
inconvenience common to most double-loop methods.

On the contrary, a single-loop algorithm is usually easier to implement as it does not require tuning the
number of inner iterations. Therefore, the main contribution of this paper is showing that a single-
loop first-order algorithm can find a nearly ϵ-stationary point of (1) with oracle complexity O(1/ϵ4),
which matches state-of-the-art results obtained only by the double-loop methods [13, 54, 39]. The
algorithm we study is the classical switching subgradient (SSG) method proposed by Polyak [59]
in 1967, which is intuitive and easy to implement but has only been analyzed before in the convex
case. We first show that the SSG method has complexity complexity O(1/ϵ4) when g is convex.
Then, we show that the same complexity result holds when g is weakly convex and appropriate
constraint qualification holds. We also present some practical examples where all of our assumptions
hold, including a fair classification problem subject to the demographic parity constraint [1]. Our
technical novelty is inventing a switching stepzize rule to accompany the switching subgradient.
In particular, we use a fixed stepsize when the solution is updated by the objective’s subgradient
while use an adaptive Polyak’s stepsize [33, 60] when the solution is updated by the constraint’s
subgradient. This allows us to leverage the local error bound of the constraint function to keep the
solution nearly feasible during the algorithm, which prevents the solution from being trapped at
an infeasible stationry point. To the best of our knowledge, this paper is the first to establish the
complexity of a single-loop first-order method for weakly convex non-smooth nonlinear constrained
optimization. In the appendix, we also extend our algorithms and complexity analysis to the stochastic
setting.

2 Related work

Non-convex constrained optimization has a long history [36, 16, 29, 17, 30, 6, 18] and the interest on
this subject has been still growing in the machine learning community because of its new applications
such as learning with fairness constraints (see e.g., [77]).

In recent literature, the prevalent classes of algorithms for non-convex constrained optimization
include the augmented Lagrangian method (ALM), the penalty method [37, 79, 80, 81, 38, 42, 55,
44, 45, 69, 43, 52, 63, 53, 50, 40, 51], and the sequential quadratic programming method [11, 34,
12, 22, 10, 9, 8, 21]. Besides, an inexact projected gradient method is developed by [15] and a level
conditional gradient method is developed by [20]. However, these works all focus on the case where
g is smooth and f is either smooth or equals f1 + f2, where f1 is smooth and non-convex while f2 is
non-smooth and convex and has a simple structure that allows a closed-form solution for the proximal
mapping argminy{f2(y) +

ρ
2∥y − x∥2} for any x. There are relatively fewer works on non-convex

non-smooth constrained problems. An alternating direction method of multipliers (ADMM) and an
ALM are studied by [75] and [78], respectively, for non-convex non-smooth problems with linear
constraints while our study considers nonlinear non-smooth constraints. The methods by [20] and
[12] can be extended to a structured non-smooth case where f = f1 + f2 with f1 being smooth
non-convex and f2 = maxy{y⊤Ax − ϕ(y)} with a convex ϕ, and g has a similar structure. The
method by [14] can handle a specific non-smooth non-convex constraint, i.e., g(x) = λ∥x∥1 − h(x)
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where h is a convex and smooth. Compared to these works, our results apply to a more general
non-smooth problem without those structure assumptions.

When f and g in (1) are weakly convex and non-smooth, the inexact proximal point method has been
studied by [13, 54, 39] under different constraint qualifications and different notions of stationarity.
Their complexity analysis utilizes the relationship between the gradient of the Moreau envelope
of (1) and the near stationarity of a solution, which is originally used to analyze complexity of
subgradient methods for weakly convex non-smooth unconstrained problems [24, 25, 27, 2, 28, 61,
83]. Our analysis utilizes a similar framework. The methods [13, 54, 39] are double-loop while our
algorithm only uses a single loop and achieves the same complexity of O(1/ϵ4) as them under similar
assumptions.

The SSG algorithm is first proposed by Polyak [59]. It has been well-studied for convex problems [58,
7, 49, 67, 72, 73, 65, 68, 66, 3] and quasi-convex problems [67]. This paper provides the first
complexity analysis for the SSG method under weak convexity assumption. Non-smooth non-convex
optimization has also been studied without weak convexity assumption by [82, 46, 64, 47, 19, 70,
71]. These works analyze the complexity of first-order methods for computing an (ϵ, δ)-Goldstein
approximate stationary point, which is a more general stationarity notation than what we consider
here. However, these works only focus on unconstrained problems.

3 Algorithm and near stationarity

Let ∥ · ∥ be the ℓ2-norm. For h : Rd → R ∪ {+∞}, the subdifferential of h at x is

∂h(x) =
{
ζ ∈ Rd

∣∣ h(x′) ≥ h(x) + ⟨ζ,x′ − x⟩+ o(∥x′ − x∥), x′ → x
}
,

and ζ ∈ ∂h(x) is a subgradient of h at x. We say h is µ-strongly convex (µ ≥ 0) on X if

h(x) ≥ h(x′) + ⟨ζ,x− x′⟩+ µ

2
∥x− x′∥2

for any (x,x′) ∈ X × X and any ζ ∈ ∂h(x′). We say h is ρ-weakly convex (ρ ≥ 0) on X if

h(x) ≥ h(x′) + ⟨ζ,x− x′⟩ − ρ

2
∥x− x′∥2

for any (x,x′) ∈ X × X and any ζ ∈ ∂h(x′). We denote the normal cone of X at x by NX (x) and
the relative interior of X by relint(X ). We say a point x is ϵ-feasible if x ∈ X and g(x) ≤ ϵ. Let
δX (x) be the zero-infinity characteristic function of set X , projX (·) be the projection mapping to X ,
and dist(x,A) := miny∈A ∥x− y∥ for set A.

We make the following assumptions on (1) throughout the paper.
Assumption 3.1. Functions f and g are continuous with ∂f(x) ̸= ∅ and ∂g(x) ̸= ∅ on X , and there
exists M such that ∥ζf∥ ≤ M and ∥ζg∥ ≤ M for any x ∈ X , ζf ∈ ∂f(x) and ζg ∈ ∂g(x).

Since (1) is non-convex, finding an ϵ-optimal solution is intractable in general. For a non-convex
problem, the target is typically to find a stationary point of (1), which is a point x∗ ∈ X that satisfies
the following Karush-Kuhn-Tucker (KKT) conditions:

ζ∗
f + λ∗ζ∗

g ∈ −NX (x∗), λ∗g(x∗) = 0, g(x∗) ≤ 0, λ∗ ≥ 0,

where λ∗ ∈ R is a Lagrangian multiplier, ζ∗
f ∈ ∂f(x∗) and ζ∗

g ∈ ∂g(x∗). Typically, an exact
stationary point can only be approached by an algorithm at full convergence, which may require
infinitely many iterations. Within a finite number of iterations, an algorithm can only generate an
ϵ-stationary point [13], which is a point x̂ ∈ X satisfying

dist
(
ζ̂f + λ̂ζ̂g,−NX (x̂)

)
≤ ϵ, |λ̂g(x̂)| ≤ ϵ2, g(x̂) ≤ ϵ2, λ̂ ≥ 0, (2)

where λ̂ ∈ R is a Lagrangian multiplier, ζ̂f ∈ ∂f(x̂) and ζ̂g ∈ ∂g(x̂). However, because f and g are
non-smooth, computing an ϵ-stationary point is still challenging even for an unconstrained problem.
Nevertheless, under the weak convexity assumption, it is possible to compute a nearly ϵ-stationary
point, which we will introduce next.

Given ρ̂ ≥ 0, ρ̃ ≥ 0 and x ∈ X , we define a quadratically regularized problem of (1) as
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Algorithm 1 Switching Subgradient (SSG) Method by Polyak [59]

1: Input: x(0) ∈ X , total number of iterations T , tolerance of infeasibility ϵt ≥ 0, stepsize ηt, and
a starting index S for generating outputs.

2: Initialization: I = ∅ and J = ∅.
3: for iteration t = 0, 1, · · · , T − 1 do
4: if g(x(t)) ≤ ϵt then
5: Set x(t+1) = projX (x(t) − ηtζ

(t)
f ) for any ζ

(t)
f ∈ ∂f(x(t)) and, if t ≥ S, I = I ∪ {t}.

6: else
7: Set x(t+1) = projX (x(t) − ηtζ

(t)
g ) for any ζ(t)

g ∈ ∂g(x(t)) and, if t ≥ S, J = J ∪ {t}.
8: end if
9: end for

10: Output I: x(τ) with τ randomly sampled from I using Prob(τ = t) = ηt/
∑

s∈I ηs.
11: Output II: x(τ) with τ randomly sampled from I ∪ J using Prob(τ = t) = ηt/

∑
s∈I∪J ηs.

φ(x) ≡ min
y∈X

{
f(y) +

ρ̂

2
∥y − x∥2, s.t. g(y) + ρ̃

2
∥y − x∥2 ≤ 0

}
, (3)

x̂(x) ≡ argmin
y∈X

{
f(y) +

ρ̂

2
∥y − x∥2, s.t. g(y) + ρ̃

2
∥y − x∥2 ≤ 0

}
. (4)

Following the literature on weakly convex optimization [24, 27, 23, 13, 54, 39], we use the value of
∥x̂(x)− x∥ as a measure of the quality of a solution x because it can be interpreted as a stationarity
measure. For the purpose of illustration, we assume for now that x̂(x) is uniquely defined and there
exists a Lagrangian multiplier λ̂ ∈ R such that the following KKT conditions of (4) holds.

ζ̂f + ρ̂(x̂(x)− x) + λ̂
(
ζ̂g + ρ̃(x̂(x)− x)

)
∈ −NX (x̂(x)),

λ̂

(
g(x̂(x)) +

ρ̃

2
∥x̂(x)− x∥2

)
= 0, g(x̂(x)) +

ρ̃

2
∥x̂(x)− x∥2 ≤ 0, λ̂ ≥ 0,

(5)

where ζ̂f ∈ ∂f(x̂(x)) and ζ̂g ∈ ∂g(x̂(x)). Therefore, as long as ∥x̂(x)− x∥ ≤ ϵ , we have

dist
(
ζ̂f + λ̂ζ̂g,−NX (x̂(x))

)
≤ (ρ̂+ λ̂ρ̃)ϵ, |λ̂g(x̂(x))| = λ̂ρ̃ϵ2/2, g(x̂(x)) ≤ 0. (6)

This means x̂(x) is an O(ϵ)-stationary point of the original problem (1) in the sense of (2). Since x
is within an ϵ-distance from x̂(x), we call such an x a nearly ϵ-stationary point of (1). We formalize
this definition as follows.
Definition 3.2. Suppose x̂(x) is defined in (4) with ϵ ≥ 0. A (stochastic) point x ∈ X is a (stochastic)
nearly ϵ-stationary point of (1) if E[∥x̂(x)− x∥] ≤ ϵ.

Of course, we can claim x̂(x) is an O(ϵ)-stationary point of (1) based on (6) only when λ̂ in (5)
exists and does not go to infinity as ϵ approaches zero. Fortunately, we can show in Lemmas 4.2
and 5.2 that this is true under some constraint qualifications, which justifies Definition 3.2.

We present the SSG method in Algorithm 1 for finding a nearly ϵ-stationary point of (1). At iteration
t, we check if the current solution x(t) is nearly feasible in the sense that g(x(t)) ≤ ϵt for a pre-
determined tolerance of infeasibility ϵt. If yes, the algorithm performs a subgradient step along the
subgradient of f . Otherwise, the algorithm switches the updating direction to the subgradient of g.
The algorithm records the iteration indexes of the nearly feasible solutions in set I and other indexes
in set J . The final output is randomly sampled from the iterates in I or I ∪ J with a distribution
weighted by the stepsizes ηt’s. An index S is set so the algorithm only starts to record I and J when
t ≥ S. We study the theoretical oracle complexity of Algorithm 1 for finding a nearly ϵ-stationary
point, which is defined as the total number of times for which the algorithm queries the subgradient
or function value of f or g. Our results are presented separately when g is convex and when g is
weakly convex.

4 Convex constraints

In this section, we first consider a relatively easy case where f is weakly convex but g is convex. In
particular, we make the following assumptions in addition to Assumption 3.1 in this section.
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Assumption 4.1. The following statements hold:

A. f(x) is ρ-weakly convex on X and g(x) is convex on X .

B. (Slater’s condition) There exists xfeas ∈ relint(X ) such that g(xfeas) < 0.

C. There exists D ∈ R such that ∥x− x′∥ ≤ D for any x and x′ in X .

In this section, we choose parameters in (3) such that

ρ̂ > ρ and ρ̃ = 0. (7)

Under Assumption 4.1, (7) guarantees that (3) is strictly feasible, its objective function is (ρ̂− ρ)-
strongly convex and its constraint function is convex, so x̂(x) in (4) is unique and λ̂ in (5) exists. We
first present an upper bound of λ̂ that is independent of x. The proof is in Section A.1.
Lemma 4.2. Suppose Assumptions 3.1 and 4.1 hold. Given any x ∈ X , let x̂(x) be defined as in (4)
with (ρ̂, ρ̃) satisfying (7) and λ̂ be the associated Lagrangian multiplier satisfying (5). We have

λ̂ ≤ Λ := (MD + ρ̂D2)/(−g(xfeas)). (8)

For simplicity of notation, we denote x̂(x(t)) defined in (4) by x̂(t). Let Eτ [·] be the expectation
taken only over the random index τ when the algorithms stop. We present the convergence properties
of Algorithm 1 when ϵt and ηt are static and diminishing. The proof is provided in Section A.4.

Theorem 4.3. Suppose Assumptions 3.1 and 4.1 hold and Λ is as in (8). Let x̂(x(t)) be defined
as in (4) with (ρ̂, ρ̃) satisfying (7) and x(τ) is generated by Output I. Algorithm 1 guarantees
Eτ [∥x̂(τ) − x(τ)∥] ≤ ϵ and Eτ [g(x

(τ))] ≤ ϵ2(ρ̂−ρ)
1+Λ in either of the following cases.

Case I: S = 0, ϵt =
ϵ2(ρ̂−ρ)
1+Λ , ηt =

2ϵ2(ρ̂−ρ)
5(1+Λ)M2 and T ≥ 25M2D2(1+Λ)2

4ϵ4(ρ̂−ρ)2 = O(1/ϵ4).

Case II: S = T/2, ϵt = 5MD√
t+1

, ηt = D
M

√
t+1

and T ≥ 50M2D2(1+Λ)2

ϵ4(ρ̂−ρ)2 = O(1/ϵ4).

Algorithm 1 is single-loop with O(1) oracle complexity per iteration, so its total complexity is just
T = O(1/ϵ4), which matches the start-of-the-art complexity by [13, 54, 39]. This result can be
generalized to the case where there exist additional linear equality constraints Ax = b. See the
extension of Lemma 4.2 in Section A.1 and Remark A.2.

Assumption 4.1C can be relaxed to only require that the feasible set, i.e., S = {x ∈ X | g(x) ≤ 0},
is bounded instead of X . The same complexity can be achieved by Algorithm 1 by using a switching
step size rule similar to ηt in Proposition 5.5. This result is provided in Section A.8 but we recommend
interested readers to read Section 5 first to get introduced to this special step size.

Remark 4.4. Property Eτ [g(x
(τ))] ≤ ϵ2(ρ̂−ρ)

1+Λ in the theorems above is not required by Definition 3.2.
By Assumption 3.1A, Eτ [g(x

(τ))] ≤ Eτ [g(x̂
(τ))] + MEτ [∥x̂(τ) − x(τ)∥] ≤ Mϵ, which means

a nearly ϵ-stationary point must be O(ϵ)-feasible by definition. Property Eτ [g(x
(τ))] ≤ ϵ2(ρ̂−ρ)

1+Λ

implies O(ϵ2)-feasibility for the output, which is even better.

When g is µ-strongly convex with µ > 0, we can show that the complexity of Algorithm 1 is still
O(1/ϵ4) but one can simply set ϵt = 0, which makes ηt the only tuning parameter. This makes this
single-loop method even more attractive. Due to space limit, we include this result in Section A.5.
We also extend our result to the stochastic case in Section A.6 and A.7.

5 Weakly convex constraints

Next we consider the case where both f and g are weakly convex but not necessarily convex. Let

g+(x) = max{g(x), 0}, L = {x ∈ X | g(x) = 0} and S = {x ∈ X | g(x) ≤ 0}.

We make the following assumptions in addition to Assumption 3.1 in this section.
Assumption 5.1. The following statements hold:
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A. f(x) and g(x) are ρ-weakly convex on X .

B. There exist ϵ̄ > 0, θ > 0 and ρ̄ > ρ such that, for any ϵ̄2-feasible solution x, there exists
y ∈ relint(X ) such that g(y) + ρ̄

2∥y − x∥2 ≤ −θ.

C. f := infx∈X f(x) > −∞.

Assumption 5.1B is called the uniform Slater’s condition by [54]. We will present two real-world
examples in Section B.1 that satisfy this assumption, including a fair classification problem under
demographic parity constraint, which is one of the applications in our numerical experiments in
Section 6.2. In this section, we choose parameters in (3) such that

ρ̄ ≥ ρ̂ = ρ̃ > ρ. (9)

Under Assumption 5.1, (9) guarantees that (3) is uniformly strictly feasible for any ϵ2-feasible x, and
the objective and constraint functions of (3) are both (ρ̂− ρ)-strongly convex, so x̂(x) is uniquely
defined and λ̂ in (5) exists. In addition, Assumption 5.1 has the following three implications that play
important roles in our complexity analysis.

First, λ̂ in (5) can be bounded by a constant independent of x and ϵ as long as x is ϵ2-feasible with
ϵ ≤ ϵ̄. This result is similar to Lemma 1 by Ma et al. [54] except that they require X to be bounded
but we do not. The proof is given in Section B.2.
Lemma 5.2. Suppose Assumptions 3.1 and 5.1 hold. Given any ϵ2-feasible x with any ϵ ≤ ϵ̄, let x̂(x)
defined as in (4) satisfying (9) and λ̂ is the associated Lagrangian multiplier satisfying (5). We have

∥x̂(x)− x∥ ≤ M/ρ̂ and λ̂ ≤ Λ′ := 2M/
√
2θ(ρ̂− ρ). (10)

Second, the subgradient of the constraint function g(x) + δX (x) on L is uniformly away from the
origin. The proof is provided in Section B.2.
Lemma 5.3. Suppose Assumptions 3.1 and 5.1 hold. It holds for any x ∈ L that

min
ζg∈∂g(x),u∈NX (x)

∥ζg + u∥ ≥ ν :=
√
2θ(ρ̂− ρ). (11)

Lastly, note that S is the optimal set of minx∈X g+(x), which is a ρ-weakly convex non-smooth
optimization problem with an optimal value of zero. Lemma 5.3 implies that g+(x) is sharp near the
boundary of S, meaning that g+(x) satisfies a linear error bound in an O(1)-neighborhood of S. A
similar result for a convex g+ is given in Lemma 1 in [76]. In the lemma below, we extend their result
for a weakly convex g+. The proof is in Section B.2 and the second conclusion is directly from [26].
Lemma 5.4. Suppose Assumptions 3.1 and 5.1 hold. It holds for any x satisfying dist(x,S) ≤ ν

ρ that

(ν/2)dist(x,S) ≤ g+(x). (12)

Moreover, ν ≤ 2M and minx∈X g+(x) has no stationary point satisfying 0 < dist(x,S) < ν
ρ .

Since g is non-convex, Algorithm 1 may not even find a nearly feasible solution if x(t) is trapped
at a stationary point of g with g(x) > 0, that is, a sub-optimal stationary point of minx∈X g+(x).
Fortunately, the second conclusion of Lemma 5.4 indicates that this situation can be avoided by
keeping dist(x(t),S) = O(ϵ2) during the algorithm. To do so, we start with x(0) ∈ S and use ϵt =
O(ϵ2) in Algorithm 1. Moreover, we apply a switching stepsize rule that sets ηt = O(ϵ2) when t ∈ I

and ηt = g(x(t))/∥ζ(t)
g ∥2 when t ∈ J , the latter of which is known by the Polyak’s stepsize [33, 60].

This way, when g(x(t)) ≤ ϵt, (12) ensures dist(x(t),S) = O(ϵ2). When g(x(t)) > ϵt, (12) ensures
dist(x(t),S) Q-linearly converges to zero [26], which also guarantees dist(x(t),S) = O(ϵ2). As a
result, we have g(x(t)) ≤ ϵ2 for any t, so problem (3) with x = x(t) and (ρ̂, ρ̃) satisfying (9) will be
strictly feasible according to Assumption 5.1B. This finding is given in the proposition below with its
proof in Section B.3.

Proposition 5.5. Suppose Assumptions 3.1 and 5.1 hold and ϵ ≤ ϵ̄. Also, suppose x(t) is generated
by Algorithm 1 using x(0) ∈ S, ϵt = ν

4 min
{
ϵ2/M, ν/(4ρ)

}
and

ηt =

{ ν
4M2 min

{
ϵ2/M, ν/(4ρ)

}
if t ∈ I

g(x(t))/∥ζ(t)
g ∥2 if t ∈ J.
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Then dist(x(t),S) ≤ min
{
ϵ2/M, ν/(4ρ)

}
and g(x(t)) ≤ ϵ2 for any t ≥ 0. As a consequence, x(t)

is ϵ2-feasible to (3) where x = x(t) and (ρ̂, ρ̃) satisfies (9).

Let x̂(t) be x̂(x(t)) defined in (4) with (ρ̂, ρ̃) satisfying (9). The complexity result for the case of
weakly convex constraints is as follows. The proof can be found in Section B.3.

Theorem 5.6. Under the same assumptions as Proposition 5.5, Algorithm 1 guarantees Eτ [∥x̂(τ) −
x(τ)∥] ≤ Cϵ and Eτ [g(x

(τ))] ≤ ϵ2, where C := 2
√

1+Λ′

ρ̂−ρ , if we use Output II and set

S = 0 and T ≥
8M2

(
f(x(0))− f + 3M2/(2ρ̂)

)
ρ̂(1 + Λ′)νϵ2 min {ϵ2/M, ν/(4ρ)} = O(1/ϵ4).

This theorem indicates that Algorithm 1 finds a nearly (Cϵ)-stationary point with complexity O(1/ϵ4).
To obtain a nearly ϵ-stationary point with ϵ ≤ ϵ̄, one only needs to replace ϵ in ηt, ϵt and T in this
theorem above by ϵ/max{C, 1} . This will only change the constant factor in the O(1/ϵ4) complexity.
This complexity matches the start-of-the-art complexity by [13, 54, 39].

6 Numerical experiments

We demonstrate the performance of the SSG method on two fairness-aware classification problems,
which are instances of (1) with convex and weakly convex g’s, respectively. We compare with
two different double-loop inexact proximal point (IPP) methods [13, 54, 39]. The IPP method
approximately solves a strongly convex constrained subproblem in each outer iteration, and we use
the SSG method in this paper and the ConEx method in [13] as the solvers (inner loop) because they
both have the best theoretical complexity for that subproblem. We use IPP-SSG and IPP-ConEx to
denote these two implementations of the IPP method. All experiments are conducted using MATLAB
2022b on a computer with the CPU 3.20GHz x Intel Core i7-8700 and 16GB memory.

6.1 Classification problem with ROC-based fairness

Given a feature vector a ∈ Rd and a class label b ∈ {1,−1}, the goal in a binary linear classification
problem is to learn a model x ∈ Rd to predict b based on the score x⊤a. Let D = {(ai, bi)}ni=1 be a
training set and ℓ(·) be a convex non-increasing loss function. Model x can be learned by solving

L∗ = min
x∈W

{
L(x) :=

1

n

n∑
i=1

ℓ(bix
⊤ai)

}
, (13)

where W = {x ∈ Rd | ∥x∥ ≤ r}. Solving (13) may ensure good classification performance of x
but not its fairness. Suppose there exist two additional datasets. One contains the feature vectors of
a protected group, denoted by Dp = {api }

np

i=1, and the other one contains the feature vectors of an
unprotected group, denoted by Du = {aui }

nu
i=1. We want to enhance the fairness of x between these

two groups using the ROC-based fairness metric proposed by [74]. Suppose we set a threshold θ and
classify data a as positive if x⊤a ≥ θ and as negative otherwise. The ROC-based fairness measure
and its continuous approximation are defined as

max
θ∈Θ

∣∣∣ 1
np

np∑
i=1

I(x⊤api ≥ θ)− 1

nu

nu∑
i=1

I(x⊤aui ≥ θ)
∣∣∣

≈ R(x) :=max
θ∈Θ

∣∣∣ 1
np

np∑
i=1

σ(x⊤api − θ)− 1

nu

nu∑
i=1

σ(x⊤aui − θ)
∣∣∣, (14)

where σ(z) = exp(z)/(1 + exp(z)) is the sigmoid function and Θ is a finite set of thresholds. If the
value of this measure is small, model x produces similar predicted positive rates for the protected
and unprotected groups on various θ’s, indicating the fairness of the model. To obtain a fair x, we
balance (13) and (14) by solving

min
x∈W

R(x) s.t. L(x) ≤ L∗ + κ, (15)
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Table 1: Information of the datasets. Groups are males VS females in a9a, users with age within
[25, 60] VS outside [25, 60] in bank, and caucasian VS non-caucasian in COMPAS.

DATASETS n d LABEL GROUPS

A9A 48,842 123 INCOME GENDER
BANK 41,188 54 SUBSCRIPTION AGE

COMPAS 6,172 16 RECIDIVISM RACE

a9a bank COMPAS
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Figure 1: Performances vs number of iterations on classification problems with ROC-based fairness.

where κ is a slackness parameter indicating how much we are willing to increase the classification
loss in order to reduce R(x) to obtain a more fair model. Problem (15) is an instance of (1) satisfying
Assumptions 3.1 and 4.1 with ρ = β where β is defined in (77) in Section B.1.

We solve (15) on three datasets: a9a [41], bank [56] and COMPAS [4]. The information of these
datasets is given in Table 1. We split each dataset into two subsets with a ratio of 2 : 1. The larger set
is used as D in the constraint and the smaller set is further split into Dp and Du based on a binary
group variable listed in Table 1.

In our experiments, we choose ℓ(z) = (1− z)+ and first solve (13) using the subgradient method
with a large enough number of iterations to obtain L∗ and a solution xERM. Then we set κ =
0.001L∗ and r = 5∥xERM∥, and let Θ consist of 400 points equally spaced between mini x

⊤
ERMai −

0.5(maxi x
⊤
ERMai −mini x

⊤
ERMai) and maxi x

⊤
ERMai + 0.5(maxi x

⊤
ERMai −mini x

⊤
ERMai).

All methods are initialized at xERM. We implemented the SSG method with both static and diminishing
stepsizes. For the static stepsize, we select ϵt from {10−6, 2× 10−6, 5× 10−6, 10−5} and ηt from
{2×10−4, 5×10−4, 10−3, 2×10−3}. For the diminishing stepsize, we set ϵt = E1√

t+1
and ηt =

E2√
t+1

and select E1 from {5× 10−5, 10−4, 2× 10−4, 5× 10−4} and E2 from {0.02, 0.05, 0.1, 0.2}. We
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select the best set of parameters that produces the smallest objective value after 5000 iterations.
For IPP, we select ρ̂ from max{ρ, 1} × {1, 1.5, 2} for all three datasets, and the proximal point
subproblem is approximately solved by SSG and ConEx both with 100 iterations. For IPP-SSG, we
apply a static stepsize with ϵt and ηt tuned in the same way as SSG. For IPP-ConEx, following the
notation in [13], we set θt = t

t+1 , ηt = c1(t+1) and τt =
c2
t+1 , and select c1 from {20, 50, 100, 200}

and c2 from {0.002, 0.005, 0.01, 0.02} by the same procedure adopted by SSG.

We report the performances versus number of iterations of all methods on each dataset in Figure 1.
The performances versus the used CPU time will be given in Section C in the Appendix. For SSG,
the x-axis represents the total number of iterations while, for IPP, it represents the total number of
inner iterations across all outer iterations. The y-axis in each row represents the objective value,
infeasibility and near stationarity achieved at each iteration, respectively. To measure near stationarity,
we solve (3) with x = x(t) and parameters (7) using the SSG method with 2500 iterations and use
the last iterate as an approximation of x̂(x(t)). We make sure that the change of ∥x̂(x(t))− x(t)∥ is
less than 1% if the number of iterations is increased to 5000. Then we plot ∥x̂(x(t))− x(t)∥ as near
stationarity in Figure 1. Since computing x̂(x(t)) with a high precision for each t is time-consuming,
we only report near stationarity at 100 equally spaced iterations.

According to Figure 1, the SSG method with a diminishing stepsize has the best performance on all
three datasets in the sense that it reduces the objective value and the (approximate) near stationarity
measure faster than others while keeping the solutions nearly feasible. However, the SSG method
with a static stepsize is not always better than the IPP methods. This is consistent with our theoretical
finding that the SSG and IPP methods have the same oracle complexity.

6.2 Classification problem with demographic parity

Following the notation in the previous subsection, we consider a binary classification problem with a
constraint enforcing demographic parity [1]. The measure of demographic parity and its continuous
approximation are∣∣∣ 1

np

np∑
i=1

I(x⊤ap
i ≥ 0)− 1

nu

nu∑
i=1

I(x⊤au
i ≥ 0)

∣∣∣ ≈ R0(x) :=
∣∣∣ 1
np

np∑
i=1

σ(x⊤ap
i )−

1

nu

nu∑
i=1

σ(x⊤au
i )
∣∣∣. (16)

Fairness measure R0(x) is a special case of R(x) with Θ = {0}. If R0(x) is small, model x produces
similar predicted positive rates for the protected and unprotected groups. To obtain a fair x, we
balance (13) and (16) by solving

minL(x) + λSCAD(x) s.t. R0(x) ≤ κ. (17)

Different from (15), the fairness measure is used as the constraint in (17) while the objective function
becomes the empirical hinge loss plus the smoothly clipped absolute deviation (SCAD) regularizer
[35] for promoting a sparse solution. Here, λ is a regularization parameter and

SCAD(x) :=

d∑
i=1

s(xi), s(xi) =

 2|xi| 0 ≤ |xi| ≤ 1
−x2

i + 4|xi|+ 1 1 < |xi| ≤ 2
3 2 < |xi|.

(18)

We prove in Section B.1 that (17) is an instance of (1) satisfying Assumptions 3.1 and 5.1 with
ρ = max{2λ, β} where β is defined in (77) in Section B.1.

We set λ = 0.2 for all datasets and set κ = 0.005, 0.02 and 0.02 for a9a, bank and COMPAS,
respectively. For SSG, we select ϵt from {10−6, 2 × 10−6, 5 × 10−6, 10−5} and select ηt from
{10−4, 2 × 10−4, 5 × 10−4, 7.5 × 10−4} for t ∈ I while set ηt = g(x(t))/∥ζ(t)

g ∥2 for t ∈ J . We
select the best set of parameters that produces the smallest objective value after 50000 iterations. For
IPP, we select ρ̂ from max{ρ, 1} × {1, 1.5, 2} and the proximal point subproblem is approximately
solved by SSG and ConEx both with 600 iterations. For IPP-SSG, we apply a static stepsize
with ϵt and ηt tuned in the same way as SSG. For IPP-ConEx, following the notation in [13], we
set θt = t

t+1 , ηt = c1(t + 1) and τt = c2
t+1 and select c1 from {20, 50, 100, 200} and c2 from

{0.002, 0.005, 0.01, 0.02} by the same procedure adopted by SSG. Due to the limit of space, we
present the performances vs number of iterations and CPU runtime of all methods in Figure 3 and
Figure 4 respectively in Section C in the Appendix.
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7 Conclusion

We study the oracle complexity of the switching subgradient (SSG) method for finding a nearly
ϵ-stationary point of a non-smooth weakly convex constrained optimization problem. We show that
the complexity of the SSG method matches the best result in literature that is achieved only by
double-loop methods. On the contrary, the SSG method is single-loop and easier to implement with
reduced tuning effort. This is the first complexity result for a single-loop first-order method for a
weakly-convex non-smooth constrained problem.
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