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Abstract

Much of reinforcement learning theory is built on top of oracles that are compu-
tationally hard to implement. Specifically for learning near-optimal policies in
Partially Observable Markov Decision Processes (POMDPs), existing algorithms
either need to make strong assumptions about the model dynamics (e.g. determinis-
tic transitions) or assume access to an oracle for solving a hard optimistic planning
or estimation problem as a subroutine. In this work we develop the first oracle-free
learning algorithm for POMDPs under reasonable assumptions. Specifically, we
give a quasipolynomial-time end-to-end algorithm for learning in “observable”
POMDPs, where observability is the assumption that well-separated distributions
over states induce well-separated distributions over observations. Our techniques
circumvent the more traditional approach of using the principle of optimism un-
der uncertainty to promote exploration, and instead give a novel application of
barycentric spanners to constructing policy covers.

1 Introduction

Markov Decision Processes (MDPs) are a ubiquitous model in reinforcement learning that aim
to capture sequential decision-making problems in a variety of applications spanning robotics to
healthcare. However, modelling a problem with an MDP makes the often-unrealistic assumption
that the agent has perfect knowledge about the state of the world. Partially Observable Markov
Decision Processes (POMDPs) are a broad generalization of MDPs which capture an agent’s inherent
uncertainty about the state: while there is still an underlying state that updates according to the
agent’s actions, the agent never directly observes the state, but instead receives samples from a state-
dependent observation distribution. The greater generality afforded by partial observability is crucial
to applications in game theory [BS18], healthcare [Hau00, HF00b], market design [WME+22], and
robotics [CKK96].

Unfortunately, this greater generality comes with steep statistical and computational costs. There
are well-known statistical lower bounds [JKKL20, KAL16], which show that in the worst case, it is
statistically intractable to find a near-optimal policy for a POMDP given the ability to play policies
on it (the learning problem), even given unlimited computation. Furthermore, there are worst-case
computational lower bounds [PT87, Lit94, BDRS96, LGM01, VLB12], which establish that it is
computationally intractable to find a near-optimal policy even when given the exact parameters of the
model (the substantially simpler planning problem).

Nevertheless there is a sizeable literature devoted to overcoming the statistical intractability of
the learning problem by restricting to natural subclasses of POMDPs [KAL16, GDB16, ALA16,
JKKL20, XCGZ21, KECM21a, KECM21b, LCSJ22]. There are far fewer works attempting to
overcome computational intractability, and all make severe restrictions on either the model dynamics
[JKKL20, KAL16] or the structure of the uncertainty [BDRS96, KECM21a]. The standard practice
is to simply sidestep computational issues by assuming access to strong oracles such as ones that
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solve Optimistic Planning (given a constrained, non-convex set of POMDPs, find the maximum value
achievable by any policy on any POMDP in the set) [JKKL20] or Optimistic Maximum Likelihood
Estimation (given a set of action/observation sample trajectories, find a POMDP which obtains
maximum value conditioned on approximately maximizing the likelihood of seeing those trajectories)
[LCSJ22]. Unsurprisingly, these oracles are computationally intractable to implement. Is there
any hope for giving computationally efficient, oracle-free learning algorithms for POMDPs under
reasonable assumptions? The naïve approach would require exponential time, and thus even a
quasi-polynomial time algorithm would represent a dramatic improvement.

A necessary first step towards solving the learning problem is having a computationally efficient
planning algorithm. Few such algorithms have provable guarantees under reasonable model assump-
tions, but recently it was shown [GMR22] that there is a quasipolynomial-time planning algorithm
for POMDPs which satisfy an observability assumption. Let H ∈ N be the horizon length of the
POMDP, and for each state s and step h ∈ [H], let Oh(·|s) denote the observation distribution at
state s and step h. Then observability is defined as follows:
Assumption 1.1 ([EDKM07, GMR22]). Let γ > 0. For h ∈ [H], let Oh be the matrix with columns
Oh(·|s), indexed by states s. We say that the matrix Oh satisfies γ-observability if for each h, for
any distributions b, b′ over states, ‖Ohb−Ohb′‖1 ≥ γ ‖b− b′‖1. A POMDP satisfies (one-step)
γ-observability if all H of its observation matrices do.

Compared to previous assumptions enabling computationally efficient planning, observability is much
milder because it makes no assumptions about the dynamics of the POMDP, and it allows for natural
observation models such as noisy or lossy sensors [GMR22]. It is known that statistically efficient
learning is possible under somewhat weaker assumptions than observability [JKKL20], however
these works rely on solving a planning problem that is computationally intractable. This raises the
question: Is observability enough to remedy both the computational and statistical woes of learning
POMDPs? In particular, can we get not only efficient planning but efficient learning too?

Overview of results. This work provides an affirmative answer to the questions above: we give
an algorithm (BaSeCAMP, Algorithm 3) with quasi-polynomial time (and sample) complexity for
learning near-optimal policies in observable POMDPs – see Theorem 3.1. While this falls just short
of polynomial time, it turns out to be optimal in the sense that even for observable POMDPs there is
a quasi-polynomial time lower bound for the (simpler) planning problem under standard complexity
assumptions [GMR22]. A key innovation of our approach is an alternative technique to encourage
exploration: whereas essentially all previous approaches for partially observable RL used the principle
of optimism under uncertainty to encourage the algorithm to visit states [JKKL20, LCSJ22], we
introduce a new framework based on the use of barycentric spanners [AK08] and policy covers
[DKJ+19]. While each of these tools has previously been used in the broader RL literature to promote
exploration (e.g. [LS17, FKQR21, DKJ+19, AHKS20, DGZ22, JKSY20, MHKL20]), they have not
been used specifically in the study of POMDPs with imperfect observations,1 and indeed our usage
of them differs substantially from past instances.

The starting point for our approach is a result of [GMR22] (restated as Theorem 2.1) which implies
that the dynamics of an observable POMDP P may be approximated by those of a Markov decision
processM with a quasi-polynomial number of states. If we knew the transitions ofM, then we could
simply use dynamic programming to find an optimal policy forM, which would be guaranteed to be
a near-optimal policy for P . Instead, we must learn the transitions ofM, for which it is necessary
to explore all (reachable) states of the underlying POMDP P . A naïve approach to encourage
exploration is to learn the transitions of P via forwards induction on the layer h, using, at each step h,
our knowledge of the learned transitions at steps prior to h to find a policy which visits each reachable
state at step h. Such an approach would lead to a policy cover, namely a collection of policies which
visits all reachable latent states.

A major problem with this approach is that the latent states are not observed: instead, we only
see observations. Hence a natural approach might be to choose policies which lead to all possible
observations at each step h. This approach is clearly insufficient, since, e.g., a single state could
emit a uniform distribution over observations. Thus we instead compute the following stronger
concept: for each step h, we consider the set X of all possible distributions over observations at

1Policy covers have been used in the special case of block MDPs [DKJ+19, MHKL20], namely where
different states produce disjoint observations.
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step h under any general policy, and attempt to find a barycentric spanner of X , namely a small
subset X ′ ⊂ X so that all other distributions in X can be expressed as a linear combination of
elements of X ′ with bounded coefficients. By playing a policy which realizes each distribution in
such a barycentric spanner X ′, we are able to explore all reachable latent states, despite having no
knowledge about which states we are exploring. This discussion omits a key technical aspect of the
proof, which is the fact that we can only compute a barycentric spanner for a set X corresponding
to an empirical estimate M̂ ofM. A key innovation in our proof is a technique to dynamically use
such barycentric spanners, even when M̂ is inaccurate, to improve the quality of the estimate M̂. We
remark that a similar dynamic usage of barycentric spanners appeared in [FKQR21]; we discuss in
the appendix why the approach of [FKQR21], as well as related approaches involving nonstationary
MDPs [WL21, WDZ22, WYDW21], cannot be applied here.

Taking a step back, few models in reinforcement learning (beyond tabular or linear MDPs) admit
computationally efficient end-to-end learning algorithms – indeed, our main contribution is a way
to circumvent the daunting task of implementing any of the various constrained optimistic planning
oracles assumed in previous optimism-based approaches. We hope that our techniques may be useful
in other contexts for avoiding computational intractability without resorting to oracles.

2 Preliminaries

For sets T ,Q, let QT denote the set of mappings from T → Q. Accordingly, we will identify
RT with |T |-dimensional Euclidean space, and let ∆(T ) ⊂ RT consist of distributions on T . For
d ∈ N and a vector v ∈ Rd, we denote its components by v(1), . . . ,v(d). For integers a ≤ b,
we abbreviate a sequence (xa, xa+1, . . . , xb) by xa:b. If a > b, then we let xa:b denote the empty
sequence. Sometimes we refer to negative indices of a sequence x1:n: in such cases the elements with
negative indices may be taken to be aribtrary, as they will never affect the value of the expression. See
Appendix B.1 for clarification. For x ∈ R, we write [x]+ = max{x, 0}, and [x]− = −min{x, 0}.
For sets S, T , the notation S ⊂ T allows for the possibility that S = T .

2.1 Background on POMDPs

In this paper we address the problem of learning finite-horizon partially observable Markov decision
processes (POMDPs). Formally, a POMDP P is a tuple P = (H,S,A,O, b1, R,T,O), where:
H ∈ N is a positive integer denoting the horizon length; S is a finite set of states of size S := |S|; A
is a finite set of actions of size A := |A|; O is a finite set of observations of size O := |O|; b1 is the
initial distribution over states; and R,T,O are given as follows. First, R = (R1, . . . , RH) denotes
a tuple of reward functions, where, for h ∈ [H], Rh : O → [0, 1] gives the reward received as a
function of the observation at step h. (It is customary in the literatue [JKKL20, LCSJ22] to define
the rewards as being a function of the observations as opposed to being observed by the algorithm
as separate information.) Second, T = (T1, . . . ,TH) is a tuple of transition kernels, where, for
h ∈ [H], s, s′ ∈ S, a ∈ A, Th(s′|s, a) denotes the probability of transitioning from s to s′ at step
h when action a is taken. For each a ∈ A, we will write Th(a) ∈ RS×S to denote the matrix with
Th(a)s,s′ = Th(s|s′, a). Third, O = (O1, . . . ,OH) is a tuple of observation matrices, where for
h ∈ [H], s ∈ S, o ∈ O, (Oh)o,s, also written as Oh(o|s), denotes the probability observing o while
in state s at step h. Thus Oh ∈ RO×S for each h. Sometimes, for disambiguation, we will refer to
the states S as the latent states of the POMDP P .

The interaction (namely, a single episode) with P proceeds as follows: initially a state s1 ∼ b1 is
drawn from the initial state distribution. At each step 1 ≤ h < H , an action ah ∈ A is chosen (as a
function of previous observations and actions taken), P transitions to a new state sh+1 ∼ Th(·|sh, ah),
a new observation is observed, oh+1 ∼ Oh+1(·|sh+1), and a reward of Rh+1(oh+1) is received (and
observed). We emphasize that the underlying states s1:H are never observed directly. As a matter of
convention, we assume that no observation is observed at step h = 1; thus the first observation is o2.

2.2 Policies, value functions

A deterministic policy σ is a tuple σ = (σ1, . . . , σH), where σh : Ah−1 ×Oh−1 → A is a mapping
from histories up to step h, namely tuples (a1:h−1, o2:h), to actions. We will denote the collection
of histories up to step h by Hh := Ah−1 × Oh−1 and the set of deterministic policies by Πdet,
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meaning that Πdet =
∏H
h=1AHh . A general policy π is a distribution over deterministic policies;

the set of general policies is denoted by Πgen := ∆(
∏H
h=1AHh). Given a general policy π ∈ Πgen,

we denote by σ ∼ π the draw of a deterministic policy from the distribution π; to execute a general
policy π, a sample σ ∼ π is first drawn and then followed for an episode of the POMDP. For a
general policy π and some event E , write PPa1:H−1,o2:H ,s1:H∼π(E) to denote the probability of E when
s1:H , a1:H−1, o2:H is drawn from a trajectory following policy π for the POMDP P . At times we
will compress notation in the subscript, e.g., write PPπ (E) if the definition of s1:H , a1:H−1, o2:H is
evident. In similar spirit, we will write EPa1:H−1,o2:H ,s1:H∼π[·] to denote expectations.

Given a general policy π ∈ Πgen, define the value function for π at step 1 by V π,P1 (∅) =

EPo1:H∼π
[∑H

h=2Rh(oh)
]
, namely as the expected reward received by following π.

Our objective is to find a policy π which maximizes V π,P1 (∅), in the PAC-RL model [KS02]: in
particular, the algorithm does not have access to the transition kernel, reward function, or observation
matrices of P , but can repeatedly choose a general policy π and observe the following data from a
single trajectory drawn according to π: (a1, o2, R2(o2), a2, . . . , aH−1, oH , RH(oH)). The challenge
is to choose such policies π which can sufficiently explore the environment.

Finally, we remark that Markov decision processes (MDPs) are a special case of POMDPs where
O = S and Oh(o|s) = 1[o = s] for all h ∈ [H], o, s ∈ S . For the MDPs we will consider, the initial
state distribution will be left unspecified (indeed, the optimal policy of an MDP does not depend on
the initial state distribution). Thus, we consider MDPsM described by a tupleM = (H,S,A, R,T).

2.3 Belief contraction

A prerequisite for a computationally efficient learning algorithm in observable POMDPs is a com-
putationally efficient planning algorithm, i.e. an algorithm to find an approximately optimal policy
when the POMDP is known. Recent work [GMR22] obtains such a planning algorithm taking
quasipolynomial time; we now introduce the key tools used in [GMR22], which are used in our
algorithm as well.

Consider a POMDP P = (H,S,A,O, b1, R,T,O). Given some h ∈ [H] and a history
(a1:h−1, o2:h) ∈ Hh, the belief state bPh (a1:h−1, o2:h) ∈ ∆(S) is given by the distribution of
the state sh conditioned on taking actions a1:h−1 and observing o2:h in the first h steps. Formally,
the belief state is defined inductively as follows: bP1 (∅) = b1, and for 2 ≤ h ≤ H and any
(a1:h−1, o2:h) ∈ Hh,

bPh (a1:h−1, o2:h) = UPh−1(bPh−1(a1:h−2, o2:h−1); ah−1, oh),

where for b ∈ ∆(S), a ∈ A, o ∈ O, UPh (b; a, o) ∈ ∆(S) is the distribution defined by

UPh (b; a, o)(s) :=
Oh+1(o|s) ·

∑
s′∈S b(s′) · Th(s|s′, a)∑

x∈S Oh+1(o|x)
∑
s′∈S b(s′) · Th(x|s′, a)

.

We call UPh the belief update operator. The belief state bPh (a1:h−1, o2:h) is a sufficient statistic for the
sequence of future actions and observations under any deterministic policy. In particular, the optimal
policy can be expressed as a function of the belief state, rather than the entire history. Thus, a natural
approach to plan a near-optimal policy is to find a small set B ⊂ ∆(S) of distributions over states
such that each possible belief state bPh (a1:h−1, o2:h) is close to some element of B. Unfortunately,
this is not possible, even in observable POMDPs [GMR22, Example D.2]. The main result of
[GMR22] circumvents this issue by showing that there is a subset B ⊂ ∆(S) of quasipolynomial
size (depending on P) so that bPh (a1:h−1, o2:h) is close to some element of B in expectation under
any given policy. To state the result of [GMR22], we need to introduce approximate belief states:
Definition 2.1 (Approximate belief state). Fix a POMDP P = (H,S,A,O, b1, R,T,O). For any
distribution D ∈ ∆(S), as well as any choices of 1 ≤ h ≤ H and L ≥ 0, the approximate belief state
bapx,P
h (ah−L:h−1, oh−L+1:h; D) is defined as follows, via induction on L: in the case that L = 0,

then we define

bapx,P
h (∅; D) :=

{
b1 : h = 1

D : h > 1,
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and for the case that L > 0, define, for h > L,

bapx,P
h (ah−L:h−1, oh−L+1:h; D) := UPh−1(bapx,P

h−1 (ah−L:h−2, oh−L+1:h−1; D); ah−1, oh).

We extend the above definition to the case that h ≤ L by defining
bapx,P
h (ah−L:h−1, oh−L+1:h; D) := bapx,P

h (amax{1,h−L}:h−1, omax{2,h−L+1}:h; D). In words, the
approximate belief state bapx,P

h (ah−L:h−1, oh−L+1:h; D) is obtained by applying the belief update
operator starting from the distribution D at step h−L, if h−L > 1 (and otherwise, starting from b1,
at step 1). At times, we will drop the superscript P from the above definitions and write bh,b

apx
h .

The main technical result of [GMR22], stated as Theorem 2.1 below (with slight differences, see
Appendix B), proves that if the POMDP P is γ-observable for some γ > 0, then for a wide range of
distributions D , for sufficiently large L, the approximate belief state bapx,P

h (ah−L:h−1, oh−L+1:h; D)
will be close to (i.e., “contract to”) the true belief state bPh (a1:h−1, o2:h).

Theorem 2.1 (Belief contraction; Theorems 4.1 and 4.7 of [GMR22]). Consider any γ-observable
POMDP P , any ε > 0 and L ∈ N so that L ≥ C ·min

{
log(1/(εφ)) log(log(1/φ)/ε)

γ2 , log(1/(εφ))
γ4

}
. Fix

any π ∈ Πgen, and suppose that D ∈ ∆S satisfies bPh (a1:h−L−1,o2:h−L)(s)
D(s) ≤ 1

φ for all (ah−1, o2:h).
Then

EP(a1:h−1,o2:h)∼π

∥∥∥bPh (a1:h−1, o2:h)− bapx,P
h (ah−L:h−1, oh−L+1:h; D)

∥∥∥
1
≤ ε.

2.4 Visitation distributions

For a POMDP P = (H,S,A,O, b1, R,T,O), policy π ∈ Πgen, and step h ∈ [H], the (latent) state
visitation distribution at step h is dP,πS,h ∈ ∆(S) defined by dP,πS,h (s) := PPs1:H∼π(sh = s), and the

observation visitation distribution at step h is dP,πO,h ∈ ∆(O) defined by dP,πO,h := PPo1:H∼π(oh =

·) = Oh · dP,πS,h . As will be discussed in Section 4.1, Theorem 2.1 implies that the transitions of the
POMDP P can be approximated by those of an MDPM whose states consist of L-tuples of actions
and observations. Thus we will often deal with such MDPsM of the formM = (H,Z,A, R,T)
where the set of states has the product structure Z = AL × OL. We then define o : Z → O
by o(a1:L, o1:L) = oL. For such MDPs, we define the observation visitation distributions by
dM,π

O,h (o) := PMz1:H∼π(o(zh) = o). Finally, for o ∈ O, we let eo ∈ RO denote the oth unit vector;

thus, for instance, we have dP,πO,h (o) = 〈eo, dP,πO,h 〉.

3 Main result: learning observable POMDPs in quasipolynomial time

Theorem 3.1 below states our main guarantee for BaSeCAMP (Barycentric Spanner policy Cover with
Approximate MDP; Algorithm 3).

Theorem 3.1. Given any α, β, γ > 0 and γ-observable POMDP P , BaSeCAMP with parameter
settings as described in Section C.1 outputs a policy which is α-suboptimal with probability at least
1− β, using time and sample complexity bounded by (OA)CL log(1/β), where C > 1 is a constant

and L = min
{

log(HSO/(αγ))
γ4 , log2(HSO/(αγ))

γ2

}
.

It is natural to ask whether the complexity guarantee of Theorem 3.1 can be improved further.
[GMR22, Theorem 6.4] shows that under the Exponential Time Hypothesis, there is no algorithm
for planning in γ-observable POMDPs which runs in time (SAHO)o(log(SAHO/α)/γ) and produces
α-suboptimal policies, even if the POMDP is known. Thus, up to polynomial factors in the exponent,
Theorem 3.1 is optimal. It is plausible, however, that there could be an algorithm which runs in
quasipolynomial time yet only needs polynomially many samples; we leave this question for future
work.
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4 Algorithm description

4.1 Approximating P with an MDP.

A key consequence of observability is that, by the belief contraction result of Theorem 2.1, the
POMDP P is well-approximated by an MDPM of quasi-polynomial size. In more detail, we will
apply Theorem 2.1 with φ = 1/S, D = Unif(S), and some L = poly(log(S/ε)/γ) sufficiently
large so as to satisfy the requirement of the theorem statement. The MDP M has state space
Z := AL × OL, horizon H , action space A, and transitions PMh (·|zh, ah) which are defined via
a belief update on the approximate belief state bapx,P

h (zh; Unif(S))2: in particular, for a state
zh = (ah−L:h−1, oh−L+1:h) ∈ Z ofM, action ah, and subsequent observation oh+1 ∈ O, define

PMh ((ah−L+1:h, oh−L+2:h+1)|zh, ah) := e>oh+1
·OPh+1 · TPh (ah) · bapx,P

h (zh; Unif(S)). (1)

The above definition should be compared with the probability of observing oh+1 given history
(a1:h, o2:h) and policy π when interacting with the POMDP P , which is

PPoh+1∼π(oh+1|a1:h, o2:h) = e>oh+1
·OPh+1 · TPh (ah) · bPh (a1:h−1, o2:h). (2)

Theorem 2.1 gives that
∥∥∥bPh (a1:h−1, o2:h)− bapx,P

h (ah−L:h−1, oh−L+1:h; Unif(S))
∥∥∥

1
is small in

expectation under any general policy π, which, using (1) and (2), gives that, for all π ∈ Πgen and
h ∈ [H],

Ea1:h,o2:h∼π
∑

oh+1∈O

∣∣PMh (oh+1|zh, ah)− PPh (oh+1|a1:h, o2:h)
∣∣ ≤ ε. (3)

(Above we have written zh = (ah−L:h−1, oh−L+1:h) and, via abuse of notation, PMh (oh+1|zh, ah) in
place of PMh ((ah−L+1:h, oh−L+2:h+1)|zh, ah).) The inequality (3) establishes that the dynamics of
P under any policy may be approximated by those of the MDPM. Crucially, this implies that there
exists a deterministic Markov policy forM which is near-optimal among general policies for P; the
set of such Markov policies forM is denoted by Πmarkov

Z . Because of the Markovian structure of
M, such a policy can be found in time polynomial in the size ofM (which is quasi-polynomial in
the underlying problem parameters), ifM is known. Of course,M is not known.

Approximately learning the MDPM. These observations suggest the following model-based
approach of trying to learn the transitions ofM. Suppose that we know a sequence of general policies
π1, . . . , πH (abbreviated as π1:H ) so that for each h, πh visits a uniformly random state of P at step
h− L (i.e. dP,π

h

S,h−L = Unif(S)). Then we can estimate the transitions ofM as follows: play πh for
h−L−1 steps and then playL+1 random actions, generating a trajectory (a1:h, o2:h+1). Conditioned
on zh = (ah−L:h−1, oh−L+1:h) and final action ah, the last observation of this sample trajectory,
oh+1, would give an unbiased draw from the transition distribution PMh (·|zh, ah). Repeating this
procedure would allow estimation of PMh (see Lemma E.1).

This idea is formalized in the procedure ConstructMDP (Algorithm 1): given a sequence of
general policies π1, . . . , πH (abbreviated π1:H ), ConstructMDP constructs an MDP, denoted
M̂ = M̂(π1:H), which empirically approximates M using the sampling procedure described
above. For technical reasons, M̂ actually has state space Z := AL · OL, where O := O ∪ {osink}
and osink is a special “sink observation” so that, after osink is observed, all future observations are
also osink. Furthermore, we remark that dP,π

h

S,h−L does not have to be exactly uniform – it suffices if
πh visits all states of P at step h− L with non-negligible probability.

4.2 Exploration via barycentric spanners

The above procedure for approximating M with M̂ omits a crucial detail: how can we find the
“exploratory policies” π1:H? Indeed a major obstacle to finding such policies is that we never directly

2For simplicity, descriptions of the reward function of M are omitted; we refer the reader to the appendix for
the full details of the proof

6



observe the states of P . By repeatedly playing a policy π on P , we can estimate the induced
observation visitation distribution dP,πO,h−L, which is related to the state visitation distribution via the

equality O†h−L · d
P,π
O,h−L = dP,πS,h−L. Unfortunately, the matrix Oh−L is still unknown, and in general

unidentifiable.

On the positive side, we can attempt to learnM layer by layer – in particular, when learning the hth
layer, we can assume that we have learned previous layers, i.e., dM̂,π

O,h−L approximates dM,π
O,h−L, and

therefore dP,πO,h−L. Even though M̂ does not have underlying latent states, we can define “formal”

latent state distributions on M̂ in analogy with P , i.e. dM̂,π
S,h−L := O†h−L · d

M̂,π
O,h−L. But this does not

seem helpful, again because Oh−L is unknown. Our first key insight is that a policy πh, for which

dM̂,πh

S,h−L puts non-negligible mass on all states, can be found (when it exists) via knowledge of M̂ and

the technique of Barycentric Spanners – all without ever explicitly computing dM̂,πh

S,h−L.

Barycentric spanners. Suppose we knew that the transitions of our empirical estimate M̂ approxi-
mate those ofM up to step h, and we want to find a policy πh for which the (formal) latent state
distribution dM̂,πh

S,h−L is non-negligible on all states. Unfortunately, the set of achievable latent state

distributions {O†h−L · d
M̂,π
O,h−L : π ∈ Πgen} ⊂ RS is defined implicitly, via the unknown observation

matrix Oh−L. But we do have access to XM̂,h−L := {dM̂,π
O,h−L : π ∈ Πgen} ⊂ RO, the set of

achievable distributions over the observation at step h − L. In particular, for any reward function
on observations at step h − L, we can efficiently (by dynamic programming) find a policy π that
maximizes reward on M̂ over all policies. In other words, we can solve linear optimization problems
over X . By a classic result [AK08], we can thus efficiently find a barycentric spanner for XM̂,h−L:

Definition 4.1 (Barycentric spanner). Consider a subset X ⊂ Rd. For B ≥ 1, a set X ′ ⊂ X of size d
is a B-approximate barycentric spanner of X if each x ∈ X can be expressed as a linear combination
of elements in X ′ with coefficients in [−B,B].

Using the guarantee of [AK08] (restated as Lemma D.1) applied to the set XM̂,h−L, we can find,

in time polynomial in the size of M̂, a 2-approximate barycentric spanner π̃1, . . . , π̃O of XM̂,h−L;
this procedure is formalized in BarySpannerPolicy (Algorithm 2). Thus, for any policy π, the
observation distribution dM̂,π

O,h−L induced by π is a linear combination of the distributions {dM̂,π̃i

O,h−L :

i ∈ [O]} with coefficients in [−2, 2]. Since dM̂,π
S,h−L = O†h−L · d

M̂,π
O,h−L for all π, it follows that the

formal latent state distribution dM̂,π
S,h−L induced by π is a linear combination of the formal latent state

distributions {dM̂,π̃i

S,h−L : i ∈ [O]} with the same coefficients. Now, intuitively, the randomized mixture
policy πmix = 1

O (π̃1 + · · ·+ π̃O) should explore every reachable state; indeed, we show the following
guarantee for BarySpannerPolicy:

Lemma 4.1 (Informal version & special case of Lemma D.2). In the above setting, under some

technical conditions, for all s ∈ S and π ∈ Πgen, it holds that dM̂,πmix

S,h−L (s) ≥ 1
4O2 · dM̂,π

S,h−L(s).

But recall the original goal: a policy πh which explores P – not M̂. Unfortunately, those states in P
which can only be reached with probability that is small compared to the distance between P and M̂
may be missed by πmix. When we use πmix to compute the next-step transitions of M̂, this will lead
to additional error when applying belief contraction (Theorem 2.1), and therefore additional error
between P and M̂. If not handled carefully, this error will compound exponentially over layers.

4.3 The full algorithm via iterative discovery

The solution to the dilemma discussed above is to not try to construct our estimate M̂ ofM layer
by layer, hoping that at each layer we can explore all reachable states of P despite making errors in
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Algorithm 1 ConstructMDP
1: procedure ConstructMDP(L,N0, N1, π

1, . . . , πH )
2: for 1 ≤ h ≤ H do
3: Let π̂h be the policy which follows πh for the first max{h−L−1, 0} steps and thereafter

chooses uniformly random actions.
4: Draw N0 independent trajectories from the policy π̂h:
5: Denote the data from the ith trajectory by ai1:H−1, o

i
2:H , for i ∈ [N0].

6: Set zih = (aih−L:h−1, o
i
h−L+1:h) for all i ∈ [N0], h ∈ [H].

7: // Construct the transitions PM̂h (zh+1|zh, ah) as follows:
8: for each zh = (ah−L:h−1, oh−L+1:h) ∈ Z, ah ∈ A do
9: // Define PM̂h (·|zh, ah) to be the empirical distribution of zih+1|zih, aih, as follows:

10: For oh+1 ∈ O, define ϕ(oh+1) := |{i : (aimax{1,h−L}:h, o
i
max{2,h−L+1}:h+1) =

(amax{1,h−L}:h, omax{2,h−L+1}:h+1)}|.
11: if

∑
oh+1

ϕ(oh+1) ≥ N1 then

12: Set PM̂h ((ah−L+1:h, oh−L+2:h+1)|zh, ah) := ϕ(oh+1)∑
o′
h+1

ϕ(o′h+1) for all oh+1 ∈ O.

13: Set RM̂h (zh, ah) := RPh (oih) for some i with oih = oh. . RPh (oih) is observed.
14: else
15: Let PM̂h (·|zh, ah) put all its mass on (ah−L+1:h, (oh−L+2:h, o

sink)).
16: for each zh = (ah−L:h−1, oh−L+1:h) ∈ Z\Z and ah ∈ A do
17: Let PM̂h (·|zh, ah) put all its mass on (ah−L+1:h, (oh−L+2:h, o

sink)).
18: Let M̂ denote the MDP (Z, H,A, RM̂,PM̂).
19: return the MDP M̂, which we denote by M̂(π1:H).

Algorithm 2 BarySpannerPolicy

1: procedure BarySpannerPolicy(M̂, h) . M̂ is MDP on state space Z , horizon H; h ∈ [H]
2: if h ≤ L then return an arbitrary general policy.
3: Let O be the linear optimization oracle which given r ∈ RO, returns

arg maxπ∈Πmarkov
Z

〈r, dπ,M̂O,h−L〉 and maxπ∈Πmarkov
Z

〈r, dπ,M̂O,h−L〉 . Note that O can be implemented

in time Õ(|Z| ·HO) using dynamic programming
4: Using the algorithm of [AK08] with oracle O , compute policies {π1, . . . , πO} so that

{dπ
i,M̂

O,h−L : i ∈ [O]} is a 2-approximate barycentric spanner of {dπ,M̂O,h−L : π ∈ Πmarkov
Z }.

. This algorithm requires only O(O2 logO) calls to O

5: return the general policy 1
O ·
∑O
i=1 π

i.

earlier layers of M̂. Instead, we have to be able to go back and “fix” errors in our empirical estimates
at earlier layers. This task is performed in our main algorithm, BaSeCAMP (Algorithm 3). For some
K ∈ N, BaSeCAMP runs for a total of K iterations: at each iteration k ∈ [K], BaSeCAMP defines H
general policies, πk,1, . . . , πk,H ∈ Πgen (abbreviated πk,1:H ; step 4). The algorithm’s overall goal is
that, for some k, for each h ∈ [H], πk,h explores all latent states at step h− L that are reachable by
any policy.

To ensure that this condition holds at some iteration, BaSeCAMP performs the following two main
steps for each iteration k: first, it calls Algorithm 1 to construct an MDP, denoted M̂(k), using the
policies πk,1:H . Then, for each h ∈ [H], it passes the tuple (M̂(k), h) to BarySpannerPolicy,
which returns as output a general policy, πk+1,h,0. Then, policies πk+1,h are produced (step 7) by
averaging πk+1,h′,0, for all h′ ≥ h. The policies πk+1,h are then mixed into the policies πk+1,h for
the next iteration k+ 1. It follows from properties of BarySpannerPolicy that, in the event that the
policies πk,h are not sufficiently exploratory, one of the new policies πk+1,h visits some latent state
(s, h′) ∈ S × [H], which was not previously visited by πk,1:H with significant probability. Thus,
after a total of K = O(SH) iterations k, it follows that we must have visited all (reachable) latent
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states of the POMDP. At the end of these K iterations, BaSeCAMP computes an optimal policy for
each M̂(k) and returns the best of them (as evaluated on fresh trajectories drawn from P; step 12).

Algorithm 3 BaSeCAMP (Barycentric Spanner policy Cover with Approximate MDP)
1: procedure BaSeCAMP(L,N0, N1, α, β,K)
2: Initialize π1,1, . . . , π1,H to be arbitrary policies.
3: for k ∈ [K] do
4: For each h ∈ [H], set πk,h = 1

k

∑K
k′=1 π

k′,h.
5: Run ConstructMDP(L,N0, N1, π

k,1:H) and let its output be M̂(k).
6: For each h ∈ [H], let πk+1,h,0 be the output of BarySpannerPolicy(M̂(k), h).
7: For each h ∈ [H], define πk+1,h := 1

H−h+1

∑H
h′=h π

k+1,h′,0.

8: // Choose the best optimal policy amongst all M̂(k)

9: for k ∈ [K] do
10: Let πk? denote an optimal policy of M̂(k).
11: Execute πk? for 100H2 logK/β

α2 trajectories and let the mean reward across them be r̂k.
12: Let k? = arg maxk∈[K] r̂

k.
13: return πk

?

? .

5 Proof Outline

We now briefly outline the proof of Theorem 3.1; further details may be found in the appendix. The
high-level idea of the proof is to show that the algorithm BaSeCAMP makes a given amount of progress
for each iteration k, as specified in the following lemma:
Lemma 5.1 (“Progress lemma”: informal version of Lemma I.2). Fix any iteration k in Algorithm 3,
step 3. Then, for some parameters δ, φ with α� δ � φ > 0, one of the following statements holds:

1. Any (s, h) with dP,π
k,h

S,h−L (s) < φ satisfies dP,πS,h−L(s) ≤ δ for all general policies π.

2. There is some (h, s) ∈ [H]× S so that:

dP,π
k,h

S,h−L (s) < φ ·H2S, yet, for all k′ > k: dP,π
k′,h

S,h−L (s) ≥ φ ·H2S.

Given Lemma 5.1, the proof of Theorem 3.1 is fairly straightforward. In particular, each (h, s) ∈
[H]× S can only appear as the specified pair in item 2 of the lemma for a single iteration k. Thus, as
long as K > HS, item 1 must hold for some value of k, say k? ∈ [K]. In turn, it is not difficult to
show from this that the MDP M̂(k?) is a good approximation of P , in the sense that for any general
policy π, the values of π in M̂(k?) and in P are close (Lemma H.3). Thus, the optimal policy πk

?

? of
M̂(k?) will be a near-optimal policy of P , and steps 9 through 12 of BaSeCAMP will identify either
the policy πk

?

? or some other policy πk
′

? which has even higher reward on P .

Proof of the progress lemma. The bulk of the proof of Theorem 3.1 consists of the proof of
Lemma 5.1, which we proceed to outline. Suppose that item 1 of the lemma does not hold, meaning
that there is some π ∈ Πgen and some (h, s) ∈ [H]× S so that dP,π

k,h

S,h−L (s) < φ yet dP,πS,h−L(s) > δ;
i.e., πk,h does not explore (s, h− L), but the policy π does. Roughly speaking, BaSeCAMP ensures
that item 2 holds in this case, using the following two steps:

(A) First, we show that 〈es,O†h−L ·d
M̂(k),π
O,h−L 〉 ≥ δ

′, where δ′ is some parameter satisfying δ � δ′ � φ.

In words, the estimate of the underlying state distribution provided by M̂(k) also has the property
that some policy π visits (s, h−L) with non-negligible probability (namely, δ′). While this statement
would be straightforward if M̂(k) were a close approximation P , this is not necessarily the case
(indeed, if it were the case, then item 1 of Lemma 5.1 would hold). To circumvent this issue, we
introduce a family of intermediate POMDPs indexed by H ′ ∈ [H] and denoted Pφ,H′(πk,1:H),
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which we call truncated POMDPs. Roughly speaking, the truncated POMDP Pφ,H′(πk,1:H) diverts
transitions away from all states at step H ′ − L which πk,H

′
does not visit with probability at least

φ. This modification is made to allow Theorem 2.1 to be applied to Pφ,H′(πk,1:H) and any general
policy π. By doing so, we may show a one-sided error bound between Pφ,H′(πk,1:H) and M̂(k)

(Lemma G.4) which, importantly, holds even when the policies πk,1:H may fail to explore some
states. It is this one-sided error bound which implies the lower bound on 〈es,O†h−L · d

M̂(k),π
O,h−L 〉.

(B) Second, we show that the policy πk+1,h,0 produced by BarySpannerPolicy in step 6 explores
(s, h− L) with sufficient probability. To do so, we first use Lemma 4.1 to conclude that 〈es,O†h−L ·
dM̂

(k),πk+1,h,0

O,h−L 〉 ≥ δ′

4O2 . The more challenging step is to use this fact to conclude a lower bound

on dP,π
k+1,h,0

S,h−L (s); unfortunately, the one-sided error bound between P and M̂(k) that we used in
the previous paragraph goes in the wrong direction here. The solution is to use Lemma H.3, which
has the following consequence: either dP,π

k+1,h,0

S,h−L (s) is not too small, or else the policy πk+1,h,0

visits some state at a step prior to h− L which was not sufficiently explored by any of the policies
πk,1:H (see Section C for further details). In either case πk+1,h,0 visits a state that was not previously
explored, and the fact that πk+1,h,0 is mixed in to πk

′,h′ for k′ > k, h′ ≤ h (steps 4, 7 of BaSeCAMP)
allows us to conclude item 2 of Lemma 5.1.

6 Conclusion

In this paper we have demonstrated the first quasipolynomial-time (and quasipolynomial-sample)
algorithm for learning observable POMDPs. Several interesting directions for future work remain:

• It is straightforward to show that a γ-observable POMDP is Ω(γ/
√
S) weakly-revealing

in the sense of [LCSJ22, Assumption 1]. Thus, the results of [JKKL20, LCSJ22] imply
that γ-observable POMDPs can be learned with polynomially many samples, albeit by
computationally inefficient algorithms. Thus, as discussed following Theorem 3.1, it is
natural to wonder whether we can achieve the best of both worlds: is there a quasipolynomial-
time algorithm that only needs polynomially many samples, or can one show a computational-
statistical tradeoff?

• It is also natural to ask whether an analogue of Assumption 1.1 for the `2 norm, namely
that ‖Ohb−Ohb′‖2 ≥ γ‖b− b′‖2 for all h ∈ [H], is sufficient for computationally efficient
learnability. Even the planning version of this question (where the parameters of the POMDP
are known and the problem is to find a near-optimal policy) is open.
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