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Abstract

Large language models (LLMs) have shown
remarkable capabilities in general domains,
but their application to multi-omics biology
remains underexplored. To address this gap,
we introduce Biology-Instructions, the first
large-scale instruction-tuning dataset for multi-
omics biological sequences, including DNA,
RNA, proteins, and multi-molecules. This
dataset bridges LLMs and complex biological
sequence-related tasks, enhancing their versatil-
ity and reasoning while maintaining conversa-
tional fluency. We also highlight significant
limitations of current state-of-the-art LLMs
on multi-omics tasks without specialized train-
ing. To overcome this, we propose ChatMulti-
Omics, a strong baseline with a novel three-
stage training pipeline, demonstrating supe-
rior biological understanding through Biology-
Instructions. Both resources are publicly avail-
able, paving the way for better integration of
LLMs in multi-omics analysis. The Biology-
Instructions is publicly available at link.

1 Introduction

Understanding the complex activities across var-
ious omics in living organisms is of paramount
importance. This includes studying DNA regula-
tory elements that control gene expression (Emils-
son et al., 2008), RNA regulation (Mattick, 2004)
that influences protein synthesis, and the functional
properties of proteins themselves (Marcotte et al.,
1999). These molecular processes critically af-
fect the development of diseases and the synthe-
sis of drugs within organisms. Recent BERT-like
encoder-only models (Devlin, 2018) have achieved
significant advances in natural language under-
standing tasks.

When applied to genome or protein understand-
ing tasks, these models (Zhou et al., 2023; Rives
et al., 2021) are capable of capturing complex in-
trinsic relationships within biological sequences,
achieving high accuracy in tasks such as promoter

prediction. However, their reliance on specific clas-
sification or regression heads to predict a single task
at a time limits their versatility, and their repeated
fine-tuning sessions with different prediction heads
to address multiple tasks further complicate the
training, inference, and deployment processes.

In contrast, powerful general-purpose large lan-
guage models (LLMs) such as GPT-4 (Achiam
etal., 2023) and Gemini (Achiam et al., 2023; Team
et al., 2023) based on vast amounts of natural lan-
guage tasks and data that encompass the general
knowledge system of humanity, have shown sub-
stantial potential in domain-specific tasks. These
decoder-only models approach every task as a com-
pletion task through next-token prediction objec-
tive, and offer an alternative by integrating vari-
ous biological sequence-related tasks using natural
language as an intermediary while retaining con-
versational capabilities. Therefore, utilizing LLMs
combined with unified training and dataset con-
struction techniques can make it possible to replace
BERT-like models with the complicated fine-tuning
pipeline.

Recently, some studies have explored lever-
aging LLMs for tasks related to biological se-
quences through instruction tuning, such as
ChatNT (Richard et al., 2024) and ProLlama (Lv
et al., 2024). Although showing promising re-
sults, these models are trained on instruction-tuning
datasets containing only basic language patterns,
underutilizing the full linguistic capabilities of the
original LLMs. Moreover, these models mainly
focus on single-omics data for either protein or
DNA, limiting their potential to provide important
multi-omics understanding ability as a unified foun-
dational language model. Inspired by multimodal
LLMs like MiniGPT-4 (Zhu et al., 2023), we see
an opportunity to extend this approach to biology.
In biology, where molecular interactions are fun-
damentally grounded in the central dogma (Crick,
1970), integrating multi-omics data holds immense
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Figure 1: Comparative examples showcasing ChatMultiOmics performance against baseline models on multi-
molecular tasks. (a) Enhancer-Promoter Interaction Prediction (Min et al., 2021) after stage2 training. (b)
Antibody-Antigen Neutralization (AAN) (Zhang et al., 2022) after stage3 training. Note that AAN is not included
in stage3 training, which showcases our model’s task generalization capability.

potential for generating mutually reinforcing in-
sights.

Our study attempts to answer a key question:
can instruction-tuned language models, proficient
in understanding human language, also excel in
understanding biological sequences to address bio-
logically critical tasks? The motivation behind this
inquiry lies in the intrinsic parallels between biolog-
ical sequence data and human language—both are
discrete, sequential, abundant, and rich in encoded
information. These shared characteristics suggest
that, with appropriate adaptation, instruction-tuned
LLMs could unlock transformative capabilities in
biology.

To properly investigate the gap between hu-
man language and biological sequences understand-
ing, we introduce Biology-Instructions, the first
large-scale, multi-omics biology sequence-related
instruction-tuning benchmark supporting 21 dis-
tinct tasks. This benchmark covers DNA, RNA,
proteins and multi-molecular prediction tasks for
a comprehensive understanding of biology. With
Biology-Instructions, we conduct a comprehen-
sive evaluation of kinds of open-source and closed-
source LLLMs, and reveal that most models includ-
ing the state-of-the-art GPT-40, perform at near-
random levels on biological sequence-related un-
derstanding tasks without prior specialized train-
ing. This suggests the lack of inherent biological

sequence knowledge in LLMs and highlights the
need for methods to effectively integrate these tasks
with LLMs.

Furthermore, we attempt to activate the biologi-
cal multi-omics sequence understanding ability of
LLMs with the constructed instruction data. We
discover that solely performing instruction tuning
on Biology-Instructions cannot yield satisfactory
results. To address this gap, we propose a three-
stage training pipeline: (1) train the model on un-
supervised DNA, RNA, and protein sequences; (2)
train the model on the question-answer pairs of
Biology-Instructions; (3) train the model on rea-
soning data. The first stage serves as a warm-up
to enhance the model’s ability to understand bio-
logical sequences. In the second stage, the model
follows natural language instructions to interpret
biological sequences. In the third stage, the model
leverages the implicitly learned knowledge base
to perform reasoning and deepen its understand-
ing of biological sequences. We include reasoning
data that starts with biological sequence analysis
and concludes with results based on prior analyses
and reasoning. This approach ensures that mod-
els maintain comprehensive conversational abili-
ties while gaining deeper insights into biological
sequences and tasks. We have implemented this
training pipeline on Llama3.1-8b-Instruct (Dubey
et al., 2024) using Biology-Instructions, resulting



in significant performance improvements shown in
Figure 1. Our findings and experiences are thor-
oughly documented. The contributions of this study
can be summarized as:

* Multi-omics Instruction-Following Data.
We present the first dataset specifically de-
signed for multi-omics instruction-following,
which includes reasoning instruction data and
multi-sequence, multi-molecule instruction
data. This dataset aims to improve the abil-
ity of LLMs to comprehend and analyze bi-
ological sequences. To ensure the quality of
biology-instructions, we conduct a compre-
hensive multi-stage quality control process,
as detailed in Appendix E.

¢ Multi-omics Instruction-Following Bench-
mark. We benchmark Biology-Instructions
on open-source and closed-source LLMs.
Our results reveal that even current LLMs can
not solve biological sequences-related tasks.

Biology-Specific LLMs and Three-Stage
Training Pipeline. We develop a biology-
focused LLM capable of handling tasks re-
lated to multi-omics sequences by training
an open-source LLLM on biology-specific in-
structions. We propose an efficient and novel
three-stage pipeline to enhance the biology
learning ability of LLM based on some impor-
tant findings.

2 Biology-Instructions

2.1 Overview of Biology-Instructions

To build a large-scale biology instruction-following
dataset, we have gathered biology sequence data
from a substantial aggregation of sources. This
effort has resulted in a dataset encompassing 21
subtasks related to multi-omics fields. The Biology-
Instructions exhibits the following characteristics:

Multi-omics Biology-Instructions comprises 21
subtasks across three types of omics, including
single-omics tasks and multi-omics interaction
tasks. As shown in Section 4, joint training of
different omics not only enhances efficiency by
accomplishing multiple omics tasks with a single
model but also improves the model’s capability in
a specific omics domain.

Large Scale With over 3 million training sam-
ples, the Biology-Instructions dataset provides

an extensive foundation for biological sequences-
related instruction data. This large-scale dataset
enables models to better understand the traits and
functions of biological sequences, leading to more
accurate and comprehensive responses to given
questions.

High Quality To ensure the quality of the
dataset, we manually draft question and answer
templates for each task type and expand the tem-
plate pool using Cluade-3.5-sunnet and GPT-4o0.
The resulting number of question-answer template
pairs for each task ranges from 10,000 to 100,000,
depending on the data magnitude of each task type.
Throughout this process, we emphasize the impor-
tance of diversity in grammar and language style,
ensuring that samples in the Biology-Instructions
dataset have different question-answer styles. For
examples of question-answer template pairs, please
refer to Table 9.

Reasoning data Although previous stud-
ies (Richard et al., 2024; Liu et al., 2024b; Lv
et al., 2024) have demonstrated large-scale primary
instruction-following datasets can teach LLMs
to answer biological sequences-related questions,
they often fail to fully harness the powerful lan-
guage abilities of LLMs, as they focus primarily
on basic language patterns. In other words, they
fail to leverage the powerful conversational abil-
ities of these models to form natural and fluent
dialogues or to utilize reasoning to improve the
validity of the output results. To address this limi-
tation, we design a prompt that requires powerful
closed-source LL.Ms to reformulate answers for a
subset of the validation set of Biology-Instructions
and provide polished answers ready for end users
to read and understand, based on given questions
and original answers. We encourage the model to
deeply analyze the sequence and question first and
then generate a final polished answer grounded in
previous analysis and reasoning.

2.2 Biology-Instructions Construction

2.2.1 Tasks

As presented in Figure 2, the Biology-Instructions
dataset comprises 21 tasks: 6 DNA tasks, 6 RNA
tasks, 5 protein tasks, and 4 multi-molecule tasks.
When considering the number of input sequences,
there are 4 multi-molecule interaction tasks and 17
single-molecule tasks. Tasks were sourced from
high-impact literature, journals, and competitions,
ensuring coverage of biologically critical aspects
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Figure 2: Distribution of tasks across four omics types in our dataset.

in structure, function, and engineering across DNA,
RNA, proteins, and their interactions. We focus on
predictive sequence-understanding tasks, leaving
generative applications, such as sequence design,
for future research. To the best of our knowledge,
Biology-Instructions is the first instruction dataset
to include multi-omics tasks and multi-molecule
interaction tasks. For detailed task definitions and
distribution, please refer to Appendix B.2.

2.2.2 Templates

To convert the original classification and regres-
sion task dataset into an instruction tuning dataset,
we employ question-answer templates to integrate
the data. The primary objective of creating these
templates is to teach the model how to follow bi-
ological instructions and complete tasks without
overfitting to specific language patterns. To achieve
this, we prioritize diversity in language styles, ex-
pressive tones and lengths during the template con-
struction process. We manually constructed 10
question templates and 10 answer templates for
each task, covering various styles including, but
not limited to, request, concise, informal, and aca-
demic styles. Then, we used GPT-40 and Claude-
3.5-sunnet to expand the templates. Depending on
the data volume for each task, we included 100
to 300 question templates and 100 to 300 answer
templates. Ultimately, each task resulted in 10,000
to 100,000 question-answer template pairs. Since

biological sequences are generally much lengthier
than natural language prompts, we place the bio-
logical sequence at the very beginning of question
templates for single biology sequence tasks for non-
interaction tasks. This approach helps prevent the
prompts from being overwhelmed by the lengthy bi-
ological sequences, ensuring that the model can ac-
curately understand the question and complete the
task. Figure 10 provides examples of the instruc-
tion prompts constructed for each type of omics,
illustrating the diversity and structure of the tem-
plates used in the dataset.

2.2.3 Reasoning data construction

Similar to the data construction method used by
LIaVA (Liu et al., 2024a). For a biology sequence
X, and its related question X, simple answer Y,
we prompt GPT-40-Mini to construct an optimized
answer Y, based on the given information. Gener-
ally, the instruction data were transformed to the
format USER: X, X, ASSISTANT:Y,,.

In the system prompt used for GPT-40-Mini, as
shown in Figure 9, we emphasized the following
key points to ensure the production of high-quality
data: (1) first understand the provided biological
sequence and the question; (2) analyze the bio-
logical sequence at the nucleotide or amino acid
level, aiming to extract question-related informa-
tion from the sequence; (3) refine the answer based
on the previous analysis, including a rational ex-
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planation and a chain of thought approach, espe-
cially for complex questions; (4) list any relevant
knowledge and information from reliable sources,
and cite these sources appropriately; (5) return the
polished answer in an end-to-end style, exclud-
ing any information from the standard answer and
task hint. By following this approach, we gathered
8000 final Al-polished training data points without
two multi-molecule tasks: antibody-antigen neu-
tralization and RNA-protein interaction prediction
to study transfer learning for reasoning capabil-
ity. Figure 3 provides an overview of the complete
construction process for Biology-Instructions, in-
cluding the data collection, template construction,
and reasoning data construction stages.

2.3 Evaluation Pipeline and Metrics

Our evaluation framework is designed to assess the
performance of each model’s output on Biology-
Instructions in a robust approach. The task types,
regardless of their respective omics, can be orga-
nized into single-label regression, multi-label re-
gression, binary classification, multi-class classifi-
cation, and multi-label classification, each requir-
ing specialized evaluation metrics to capture model
performance nuances. The evaluation pipeline in-
volves pre-processing data from models’ output,
grouping entries by task, and then computing task-
specific metrics. The metrics outcomes for report-
ing are all scaled by 100 and rounded to 2 decimals.
Detailed information is provided in Appendix B.3.

3 Model

As shown in Figure 4, we train a model based on
Llama3.1-8B-Instruct (Dubey et al., 2024) named
ChatMultiOmics using multi-omics pre-training
data and Biology-Instructions. In general, we per-
form a three-stage training paradigm to enhance
the interactive biological sequence-related chat per-
formance of the final biology assistant. For specific
training details such as training strategy, please
refer to Appendix C.

3.1 Stage 1: biological sequences continued
pre-training

Although the memory savings facilitated by
LoRA (Devalal and Karthikeyan, 2018) are not
that obvious when optimizer states are distributed
across GPUs compared with training on a single
GPU, LoRA can still significantly reduce training
time by minimizing communication between data
parallel ranks. However, directly applying LoRA to
train a chat model on Biology-Instructions results
in suboptimal performance on specific downstream
tasks. Specifically, the model shows near-random
performance in classification and regression tasks.
As noted by (Ghosh et al.), LoRA supervised fine-
tuning (SFT) primarily leverages pre-trained knowl-
edge to generate well-formed answers based on the
output format learned from SFT data. We suspect
that large-scale LoRA instruction tuning on biolog-
ical sequence-related data suffers due to the lack
of pre-training on biological sequence data, which
is evident from the baseline results. Therefore,
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continued pre-training of the model is essential
for better performance. This involves teaching the
model with biological sequences to enable it to
understand the nature and functions of biological
sequences. For this process, we utilized unlabeled
human DNA data from the Genome Reference Con-
sortium Human Genome (GRCh) (Harrow et al.,
2012), human non-coding RNA data from RNA-
Central (rna, 2019), and protein sequences from
UniRef50 (Suzek et al., 2007) during the first phase
of pre-training. This initial pre-training served as
a foundational warm-up to improve the model’s
comprehension across multi-omics biological se-
quences.

We employed LoRA+ (Hayou et al., 2024) for
all linear layers of our model, training on a con-
tinued pre-training dataset. LORA+ demonstrates
superior convergence compared to vanilla LoRA by
increasing the learning rate of the zero-initialized
weight B relative to the base learning rate for
normal-initialized weight A and other trainable pa-
rameters. Hayou et al. (2024) observed that setting
the learning rate of weight B to 16 times that of
weight A results in more effective model conver-
gence. However, our experiments revealed that
while LoRA+ indeed improves convergence rates,
applying a large learning rate multiplier can lead
to instability during the continued pre-training pro-
cess for biological sequences. Based on this obser-
vation, we opted for a more conservative learning
rate multiplier of 4. We trained the normalization
layers of the model alongside LoRA parameters.

3.2 Stage 2: massive instruction tuning

In Stage 2, we employ the Biology-Instructions
dataset, excluding the reasoning sub-dataset. In
the initial attempts of the training process, we
find that the imbalance among tasks within the
dataset can pose challenges for the model in dis-
tinguishing between different tasks. To mitigate

this, we randomly select 30 percent of the train-
ing data and prepend a task label in the format
”[Classification/Regression:task_name]” at
the beginning of each question. This method effec-
tively aids the model in identifying different tasks
and output objectives.

We use a system prompt Ps.: ”You are a knowl-
edgeable and helpful biology assistant. Please an-
swer my biology sequence-related questions in a
clear and concise manner. For regression tasks,
please return a number.” This prompt helps the
model to differentiate biology sequence-related
tasks from other tasks. As illustrated in Figure
7, we maintain the data format: SYSTEM:P;,
USER: X, X, ASSISTANT:Y,, consistent with the
Llama3.1 instruct-tuned model chat completion for-
mat, which is crucial for optimal model perfor-
mance.

3.3 Stage 3: Reasoning instruction tuning

In stage 3, we use the reasoning sub-dataset from
Biology-Instructions to fine-tune the model. To
keep the classification and regression performance
of the model, we additionally select 3000 samples
from the validation set composed of non-reasoning
data to be trained simultaneously.

To better control the behavior of the model, a
more detailed system prompt P,y was used for
reasoning data: ~’You are a highly knowledgeable
Al assistant specializing in biology, particularly
in sequence-related topics. Your primary task is
to provide clear, accurate, and comprehensive an-
swers to biology questions. When analyzing and
interpreting sequences, ensure to provide step-by-
step explanations to make your responses natural
and easy to understand. Engage with the user
by asking clarifying questions if needed and of-
fer detailed insights into the biological sequences.”
In this case, the format of training samples of
reasoning data is transformed to SYSTEM: P,y
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4 Results

4.1 Experimental Setups

To evaluate the biological sequence understand-
ing capabilities of current LLMs and deter-
mine if our method can enhance LLMs’ perfor-
mance, we compare ChatMultiOmics with vari-
ous open-source general-purpose LLMs: Llama3.1-
8B-Instruct (Dubey et al., 2024), Llama2-7B-
Chat (Touvron et al., 2023), Alpaca-7B (Taori
et al., 2023), Vicuna-v1.5-7B (Chiang et al.,
2023), Qwen2-7B (Bai et al., 2023), GLM4-9B-
Chat (GLM et al., 2024), and Galactica-1.3b (Tay-
lor et al., 2022). Additionally, we include com-
parisons with SOTA closed-source LLMs: GPT-
40 and GPT-40-Mini. We also evaluate biology-
specialized LLMs: InstructProtein-1.3B (Wang
etal.,2023), Llama-molinst-protein-7B (Fang et al.,
2023), and BioMedGPT-LM-7B (Zhang et al.,
2023). To ensure well-formed and quantifiable an-
swers, we restrict the output format for all baselines
and provide them with task information, enabling
them to understand both what to output and how
to format their output. The experimental results
are visualized in Figure 5, showcasing the com-
parative performance of various LLMs across four
types of datasets: DNA, RNA, protein, and multi-
molecule interactions.For the full experimental
results, please refer to Appendix D.

4.2 Findings.1: Generic LLMs are not
capable of biological understanding

To assess whether LLMs can effectively tackle
tasks related to biological sequences, we con-
ducted comprehensive experiments using both
open-source and closed-source general-purpose

LLMs. For open-source LLMs, we selected mod-
els of comparable size to our model, ChatMulti-
Omics. For closed-source LLMs, we evaluated
SOTA models such as GPT-40 and its streamlined
version, GPT-40-mini.The results unequivocally
demonstrate that all open-source LLMs of simi-
lar size to ChatMultiOmics fail to surpass average
performance levels. Similarly, the closed-source
LLMs, GPT-40 and GPT-40-mini, exhibit perfor-
mance on par with the open-source models.

Notably, models within the same series but with
different versions, such as Llama2-7B-Chat and
Llama3.1-8B-Instruct, as well as models within the
same series but of different sizes, like GPT-40 and
GPT-40-mini, show comparable performance on
tasks involving biological sequences.These find-
ings suggest that the language capabilities of these
models do not directly correlate with their perfor-
mance in understanding biological sequences. This
implies that natural language performance does not
determine the effectiveness of these models in bio-
logical sequence understanding tasks, indicating a
significant lack of pre-trained biological sequence
knowledge. Despite LLMs possessing extensive
text-based biological knowledge, they struggle to
establish a connection between this knowledge and
biological sequences, and they are unable to delve
into the molecular level to analyze biological se-
quences effectively.

4.3 Findings.2: Current biology-specified
LLMs can not handle multi-omics tasks

Biology-specified LLMs have demonstrated re-
markable performance on a variety of tasks. For
instance, the Llama-molinst-protein-7B model ex-
cels in five key areas of protein understanding, in-
cluding the prediction of catalytic activity, protein
design, protein function prediction, and more. De-
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spite these impressive achievements, these meth-
ods exhibit limitations. Notably, they lack transfer
learning capabilities across multi-omics tasks and
fail to outperform general-purpose baselines even
in single-omics tasks, and in some cases, these
models even cannot follow the instructions. This
indicates that while specialized LLMs are highly
effective within their specific domains, their appli-
cability and efficiency in broader, more integrative
biological studies remain constrained.

4.4 Findings.3: Continued Pre-trained on
biological sequences helps instruction
tuning

Previous studies have utilized LoRA (Fang et al.,
2023; Lv et al., 2024) for model training. Howeyver,
our experimental findings suggest that employing
LoRA to fine-tune models on Biology-Instructions
does not result in performance enhancements. For
LoRA fine-tuning, the quality and quantity of the
pre-training on related knowledge appear to be a
critical factor for achieving good results, as indi-
rectly proved by the experimental setup in (Fang
et al., 2023), where full fine-tuning was applied
to protein-related tasks and LoRA fine-tuning was
used for other tasks, alongside the near-random per-
formance of the baselines on biological-sequences
understanding tasks. After continued pre-training
on multi-omics sequences, LoRA fine-tuning on
Biology-Instructions does help the model leverage
the intrinsic relationships and dependencies from
pre-trained knowledge. The results of the second
stage surpass those of instruction-tuning without
continued pre-training, as shown in Figure 6.

4.5 Findings.4: Reasoning dataset boosts
overall performance and demonstrates
transfer learning capability

We hypothesize that the model’s performance can
be enhanced by incorporating task information and
reasoning steps, which can aid the model in better
understanding the task and consequently lead to im-

proved results. We tested the third-stage model us-
ing the system prompt Pk, to facilitate results com-
putation. The results indicate that in most tasks,
performance was enhanced. However, for some
regression tasks, the performance was slightly ad-
versely affected by the third-stage training.

Furthermore, when the reasoning system prompt
P4 was used, the model demonstrated excellent
reasoning capabilities and extended its perfor-
mance to untrained tasks, such as antibody-antigen
neutralization and RNA-protein interaction predic-
tion, as illustrated in Figure 1 (b).

5 Conclusion

In this work, we present Biology-Instructions, the
first large-scale, multi-omics biological sequences-
related instruction-tuning dataset. Biology-
Instructions bridges the gap between LLMs and
complex biological tasks by including 21 differ-
ent tasks involving DNA, RNA, proteins, and
multi-molecule interactions, covering both single-
sequence and interaction analyses. By incorpo-
rating reasoning capabilities, Biology-Instructions
can enable LLMs versatile in handling complex bi-
ological tasks while maintaining conversational flu-
ency. Our evaluation shows that SOTA LLMs, like
GPT-4, struggle with biological sequence-related
tasks without specialized training. Using Biology-
Instructions for instruction tuning, we demonstrate
significant improvements, proving its value in en-
hancing LLMs for multi-omics sequence analy-
sis. We also develop a strong baseline, ChatMul-
tiOmics, with a three-stage training pipeline: bio-
logical sequences continued pre-training, massive
instruction tuning, and reasoning instruction tuning.
This pipeline leads to notable performance gains,
providing an effective approach to train LLMs for
addressing biological challenges.



6 Limitations

While Biology-Instructions is a significant advance-
ment, it still has areas for improvement. The dataset
covers primarily the predictive tasks. Future ver-
sions of this work should include generative tasks,
such as designing novel protein sequences, which
could greatly enhance its utility in protein engineer-
ing. ChatMultiOmics shows promising reasoning
capabilities, yet further enhancements are needed
to make its outputs more practical and reliable. To
enhance model performance, we could use hybrid
architectures that combine specialized biological to-
kenizers or encoders with LLMs. This could reduce
information loss during the tokenization of biolog-
ical sequences. Integrating structural data, such
as 3D molecular coordinates, could improve the
model’s ability to capture functional implications
of molecular structures. Incorporating multi-hop
data could be another potential enhancement for
the model to reason over interconnected biological
datasets and capture more intricate relationships
across multiple omics layers. Future efforts should
also expand evaluation metrics beyond accuracy to
include interpretability, robustness, and computa-
tional efficiency, offering a more holistic view of
model performance. Long chain-of-thought rea-
soning models have demonstrated strong perfor-
mance across a variety of complex tasks, such as ad-
vanced mathematical reasoning. These models also
hold significant potential for excelling in biology-
sequence-related tasks as they can further bridge
the gap of natural language and biology language.
However, benchmarking long chain-of-thought rea-
soning models and developing more powerful mod-
els through such approaches is a comprehensive
and labor-intensive endeavor, which we leave for
future research. Future work could involve bench-
marking various long chain-of-thought reasoning
models—such as DeepSeek-R1 (Guo et al., 2024)
and QwQ-32B (Team, 2025) on biology-sequence-
related tasks using the Biology-Instructions dataset.
Additionally, future works may explore construct-
ing a long chain-of-thought-enhanced version of
Biology-Instructions through rejection sampling
techniques. Furthermore, by leveraging this en-
hanced dataset alongside supervised fine-tuning or
reinforcement learning methods, future studies can
aim to improve the biological sequence understand-
ing capabilities of LLMs.
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A Related works

A.1 Large Language Models

In recent years, LLMs have demonstrated signifi-
cant advancements in the field of natural language
processing (NLP). These models undergo self-
supervised training on a substantial corpus of data
in order to acquire knowledge. By means of fine-
tuning the instructions, the capabilities of the model
are enhanced, enabling it to respond to questions
based on the specific prompt. Currently, numerous
open-source models are available, including the
Llama series (Dubey et al., 2024), Qwen series (Bai
et al., 2023), GLM series (GLM et al., 2024), and
numerous models fine-tuned based on Llama, such
as Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023). Additionally, Galactica (Taylor et al.,
2022) is a model that demonstrates exceptional per-
formance in scientific domains and is trained on
data from a multitude of scientific fields. Further-
more, there are closed-source SOTA models, such
as GPT-4o0 and GPT-40-mini. However, these mod-
els are not pre-trained on specific biological data,
and their capabilities are severely constrained, even
Galactica.

A.2 Biology Large Language Models

Researchers have concentrated on enhancing the
capabilities of LLMs in the biology area. In-
structProtein (Wang et al., 2023) aligns human
and protein language through knowledge instruc-
tions. Another study (Fang et al., 2023) utilizes
the protein part of a specially designed dataset
called Mol-Instructions for instruction tuning with
LLaMA-7B. ProLLaMA (Lv et al., 2024) is also
a recent work focusing on multi-protein tasks
through a two-stage training process from LLaMA-
2. These methods can only deal with several
protein tasks well, limited by fixed instruction
templates. BioMedGPT (Zhang et al., 2023) is
equipped with a special vision encoder, allowing
the model to answer multi-modal biological ques-
tions. However, lacking specialized large-scale
biological instruction datasets, BioMedGPT can-
not understand biological sequence languages very
well. ChatNT (Richard et al., 2024) integrates a
biological sequence encoder with a LLM, enabling
effective handling of DNA-centric tasks using only
an instruction-tuning dataset. However, it faces
challenges in combining multiple encoder models
from various omics domains into a unified LLM
due to dependence on the encoder’s capabilities.
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B Detail information of
Biology-Instructions and Evaluation
Metrics

B.1 Impact

The Biology-Instructions dataset addresses critical
challenges in computational biology across multi-
ple omics domains. DNA instructions improve our
understanding of regulatory elements in gene ex-
pression. RNA instructions tasks offer insights
into transcriptomics and regulation at the RNA
level. Protein instructions enhance our knowl-
edge of protein functions, interactions, and their rel-
evance in drug development. Multi-molecular in-
structions explore biomolecular interactions, such
as RNA-protein and promoter-enhancer, revealing
regulatory networks. By supporting these diverse
tasks, Biology-Instructions advances multi-omics
research and fosters new discoveries in genetic reg-
ulation and therapeutic development.

B.2 Tasks Definition
B.2.1 DNA tasks

Epigenetic Marks Prediction This is a binary
classification task that predicts whether a DNA se-
quence has chemical modifications affecting gene
regulation without changing the DNA itself. Epi-
genetic marks are crucial for understanding gene
regulation and its impact on health and disease. We
use part of the DNABERT-2 dataset (Zhou et al.,
2024), containing 28,740 DNA sequences, some
of which are chemically modified. Model perfor-
mance is evaluated using the Matthews Correlation
Coefficient (MCC).

EA Prediction This is a regression task that pre-
dicts the activity levels of enhancer regions in the
DNA sequences. By predicting the activity levels
of enhancers, scientists can gain deeper insights
into how genes are regulated in specific tissues or
under certain conditions. The target value are two
numeric numbers that reflects the housekeeping
and developmental activity level. The dataset is
sourced from the DeepSTARR (de Almeida et al.,
2022), consisting of DNA sequences annotated
with enhancer activities. We evaluate performance
of the model using Pearson Correlation Coefficient
(PCC), reflecting its ability to decide levels of ac-
tivity across different DNA sequences.

Promoter Detection 300 & Promoter Detec-
tion Core These two tasks are both binary classi-
fication tasks for identifying promoter regions in
DNA sequences(exist or not). Promoter Detection



Table 1: Tasks information of Biology-Instructions

Task Omics #Training/Validation/Test
DNA Tasks
Epigenetic Marks Prediction (EMP) DNA 229885/28741/28741
EA Prediction (EA) DNA 402296/40570/41186
Promoter Detection 300 (PD300) DNA 94712/11840/11840
Core Promoter Detection (CPD) DNA 94712/11840/11840
Transcription Binding Sites Detection Human (TB-H) DNA 128344/5000/5000
Transcription Binding Sites Detection Mouse (TB-M) DNA 80018/10005/10005
RNA Tasks
APA Isoform Prediction (APA) RNA 1575557/33170/49755
Non-coding RNA Function Classification (ncRNA) RNA 5670/650/4840
Modification Prediction (Modif) RNA 304661/3599/1200
Mean Ribosome Loading Prediction (MRL) RNA 76319/7600/7600
Programmable RNA Switches (PRS) RNA 73227/9153/11019
CRISPR On Target Prediction (CRI-On) RNA 1453/207/416
Protein Tasks
Enzyme Commission Number Prediction (EC) Protein 15551/1729/1919
Stability Prediction (Sta) Protein 53614/2512/12851
Fluorescence Prediction (Flu) Protein 21446/5362/27217
Solubility Prediction (Sol) Protein 62478/6942/2001
Thermostability Prediction (Ther) Protein 5056/639/1336
Multi-molecular Tasks
Antibody-Antigen Neutralization (AAN) Multi-molecule 22359/1242/3301
RNA-Protein Interaction Prediction (RPI) Multi-molecule 14994/1666/4164
Enhancer-Promoter Interaction Prediction (EPI) Multi-molecule 14288/1772/308
siRNA Efficiency Prediction (siRNA) Multi-molecule 53592/6707/6688

Total

All

3330232/190946/244681

300 refers to detecting promoter regions within a
300 base pair (bp) window, which includes both
the core promoter region and the surrounding reg-
ulatory elements. While promoter detection core
refers to detect a shorter, core sequence (usually
around 50-100 bp) directly upstream of the tran-
scription start site. Both tasks are important for
understanding gene regulation and can aid in study-
ing transcriptional activity, identifying novel genes,
and mapping gene expression patterns. For these
tasks, we also adopt the dataset part of DNABERT-
2 (Zhou et al., 2024). Evaluation of the model
performance is done using MCC, capturing the
model’s ability to predict the existence of promot-
ers on different sequence contexts balancedly.
Transcription Binding Sites Detection We de-
fine this a binary classification task, to determine
whether specific regions with transcription factors
binding in the DNA sequences or not. These tran-
scription binding sites (TBS) are critical for con-
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trolling the initiation, enhancement, or repression
of transcription. Once more, data from DNABERT-
2 is utilized for this task (Zhou et al., 2024), which
includes numerous DNA sequences, partly possess-
ing TBS. The performance of the model is eval-
uated using MCC, fairly measuring its ability to
discover TBS in different DNA sequences.
Enhancer-Promoter Interaction Prediction
This is a binary classification task, which involves
identifying the interactions between enhancer re-
gions and their corresponding promoter regions in
a pair of DNA sequences. Predicting these interac-
tions helps researchers understand the complex reg-
ulatory networks governing DNA activity, which
is essential for studying developmental processes
and potential therapeutic targets. We extract our
dataset from the research (Min et al., 2021), which
all contains two DNA sequences. The model needs
to figure out whether they interact with each other.
We evaluate the performance of the model using



the metric MCC, to test whether the model can
identify these interactions correctly.

B.2.2 RNA tasks

APA Isoform Prediction This is a regression task
which predicts the usage of alternative polyadenyla-
tion (APA) isoforms by analyzing RNA sequences
and outputting a proportion between O and 1 that
represents the relative expression of each APA iso-
form. Accurate APA isoform prediction is critical
for understanding the regulation of gene expression
at the RNA level, which plays a fundamental role
in transcriptome diversity. For this task, we adopt
APARENT’s (Bogard et al., 2019) APA isoform
prediction dataset, which consists of isoform usage
data derived from synthetic and human 3’UTRs.
The output represents the proportion of isoform
usage, capturing the variability in polyadenylation
signal processing. The performance of the predic-
tion is evaluated using the Coefficient of Determi-
nation (R?).

Non-coding RNA Function Classification This
is a multi-label classification task that predicts the
functional class of non-coding RNA (ncRNA) se-
quences. The model outputs one or more class la-
bels from a set of 13 possible ncRNA classes, such
as 'tRNA’, 'miRNA’, and ’riboswitch’. Accurately
classifying ncRNAs is essential for improving our
understanding of their regulatory roles in gene ex-
pression, as well as their contributions to diverse
biological processes and diseases. For this task,
we adopt the nRC (non-coding RNA Classifier)
dataset from (Fiannaca et al., 2017), which utilizes
features derived from ncRNA secondary structures.
The output assigns each RNA sequence to one or
more functional classes, enabling a detailed exami-
nation of the functional diversity within ncRNAs.
The performance of the model is evaluated using
accuracy (Acc), reflecting the model’s ability to
correctly classify ncRNA functions across all cate-
gories.

Modification Prediction This is a multi-label
classification task that predicts post-transcriptional
RNA modifications from RNA sequences. The
model outputs one or more modification types from
a set of 12 widely occurring RNA modifications,
including *'m6A’, 'm1A’, and *'m5C’. Precise iden-
tification of RNA modification sites is essential for
understanding the regulatory mechanisms of RNA
and their roles in various biological processes. For
this task, we adopt the MultiRM dataset from (Song
et al., 2021), which contains RNA sequences an-
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notated with multiple modification types. The per-
formance of the model is evaluated using the Area
Under the Curve (AUC), capturing the model’s abil-
ity to predict RNA modifications across different
contexts.

Mean Ribosome Loading Prediction This is a
regression task that predicts ribosome loading effi-
ciency by analyzing RNA sequences and outputting
a numeric value, representing mean ribosome load-
ing, with two decimal precision. Accurate pre-
diction of ribosome loading is essential for under-
standing how cis-regulatory sequences, such as 5’
untranslated regions (UTRs), influence translation
efficiency, which is crucial for both fundamental
biological research and applications in synthetic
biology and mRNA therapeutics. For this task, we
adopt the dataset from (Sample et al., 2019), which
includes polysome profiling data of 280,000 ran-
domized 5° UTRs and 35,212 truncated human 5’
UTRs. The performance of the model is evaluated
using the Coefficient of Determination (R?), mea-
suring its ability to predict ribosome loading across
different sequence contexts.

Programmable RNA Switches This is a multi-
label regression task that predicts the behavior of
programmable RNA switches by analyzing RNA
sequences and outputting three numeric values rep-
resenting the "ON’, ’OFF’, and *ON/OFF’ states,
each with two decimal precision. Accurate predic-
tion of these states is critical for advancing syn-
thetic biology, as RNA switches are essential tools
for detecting small molecules, proteins, and nu-
cleic acids. For this task, we adopt the dataset
from (Angenent-Mari et al., 2020), which includes
synthesized and experimentally characterized data
for 91,534 toehold switches spanning 23 viral
genomes and 906 human transcription factors. The
performance of the model is evaluated using the
Coefficient of Determination (R?), measuring the
model’s ability to predict the functional states of
RNA switches across diverse sequence contexts.
(Ren et al., 2024)

This is a multi-label regression task that predicts
the behavior of programmable RNA switches by
analyzing RNA sequences and outputting three nu-
meric values representing the ’ON’, *OFF’, and
"ON/OFF’ states, each with two-decimal precision.
Accurate prediction of these states is crucial for ad-
vancing synthetic biology, as RNA switches serve
as essential tools for detecting small molecules, pro-
teins, and nucleic acids. For this task, we use the
dataset from (Angenent-Mari et al., 2020), which



includes synthesized and experimentally charac-
terized data for 91,534 toehold switches spanning
23 viral genomes and 906 human transcription fac-
tors. This dataset is also included in the RNA-
related tasks benchmark BEACON (Ren et al.,
2024). Model performance is evaluated using the
Coefficient of Determination (R?), assessing the
model’s ability to predict the functional states of
RNA switches across diverse sequence contexts.

CRISPR On Target Prediction This is a re-
gression task that predicts the on-target knockout
efficacy of single guide RNA (sgRNA) sequences
using CRISPR systems. The model outputs a nu-
meric value that represents the predicted sgRNA
knockout efficacy for a given RNA sequence. Accu-
rate prediction of on-target efficacy is essential for
optimizing the design of sgRNAs with high speci-
ficity and sensitivity, which is crucial for success-
ful CRISPR-based genome editing. For this task,
we adopt the DeepCRISPR dataset from (Chuai
et al., 2018), which includes sgRNA sequences
and their corresponding on-target knockout effi-
cacy data. The performance of the model is evalu-
ated using Spearman’s correlation, measuring the
model’s ability to predict the effectiveness of sgR-
NAs across different genetic contexts.

siRNA Efficiency Prediction This is a regres-
sion task that predicts the efficiency of siRNA in si-
lencing target genes by analyzing modified siRNA
sequences and corresponding target sequences, out-
putting a numeric value representing the percentage
of mRNA remaining after siRNA treatment. Ac-
curate prediction of siRNA efficiency is crucial
for optimizing siRNA design in RNA interference
(RNAI) applications, which plays a critical role in
gene expression regulation and has significant im-
plications in therapeutic interventions. For this task,
we adopt the dataset from the competition (SAIS,
2020), which contains chemically modified siRNA
sequences and their measured silencing efficiency
data. The performance of the model is evaluated
using a mixed score, reflecting its ability to predict
the mRNA remaining percentage across different
chemical modifications and experimental condi-
tions.

B.2.3 Protein tasks

Enzyme Commission (EC) Number Prediction.
This is a multi-label classification task which pre-
dicts enzyme functions by annotating protein se-
quences with all corresponding EC numbers. We
adopt DeepFRI’s (Gligorijevi¢ et al., 2021) EC an-
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notation dataset from PDB chains, whose binary
multi-hot vectors are converted back into corre-
sponding EC numbers for language capability in
our task. The performance of the prediction is eval-
uated using the Fmax metrics. Accurate EC num-
ber prediction is crucial for understanding enzyme
catalytic functions, accelerating the discovery of
novel enzymatic activities. This has applications
in biotechnology, including optimizing enzymes
for industrial use and drug development. By pre-
dicting catalytic activities, researchers can engineer
enzymes tailored for therapeutic interventions, con-
tributing to drug discovery and targeted treatments.

Stability Prediction. This is a regression task to
assess the intrinsic stability of proteins under vari-
ous conditions, with each protein sequence mapped
to a continuous stability score that reflects how well
the protein maintain its fold above a certain concen-
tration threshold like EC50. We adopt the dataset
from Rocklin et al. (Rocklin et al., 2017), which
includes protease EC50 values derived from exper-
imental data. The model’s performance is assessed
using Spearman’s correlation. Predicting protein
stability is essential in protein engineering, espe-
cially for therapeutic applications where protein
integrity is crucial. These predictions reduce the
need for experimental screening, facilitating the de-
sign and refinement of stable proteins for industrial,
pharmaceutical, and research purposes.

Fluorescence Prediction. This is a regression
task that aims to evaluate the model’s ability to pre-
dict fluorescence values for higher-order mutated
green fluorescent protein (GFP) sequences. This
is a regression task where each protein sequences
is mapped to the logarithm of its florescence inten-
sity (Sarkisyan et al., 2016). Following the setting
in TAPE (Rao et al., 2019), the model is trained
on a set of mutants with a low number of muta-
tions, while tested on mutants with four or more
mutations. The task is designed to assesses how
well the model generalized to unseen combinations
of mutations by leveraging Spearman’s correlation
to evaluate predictive performance. Accurate fluo-
rescence prediction in higher-order mutated GFP
aids in understanding mutation effects and inter-
actions. These predictions provide insights into
protein function and help efficiently explore muta-
tional landscapes, facilitating the design of fluores-
cent proteins for applications in synthetic biology
and protein engineering.

Solubility Prediction. This is a binary clas-
sification task to determine whether a protein is



soluble or insoluble. The dataset is sourced from
the DeepSol (Khurana et al., 2018), ensuring thast
protein sequences with a sequence identity greater
than 30 percent to any sequence in the test set are
excluded from training. The challenge is to test
a model’s capacity to generalize across dissimilar
protein sequences. Predicting protein solubility is
crucial for pharmaceutical research and industrial
biotechnology. Soluble proteins are essential for
drug formulation and large-scale production. This
task drives the development of advanced in silico
methods to predict solubility, reducing laboratory
testing and accelerating the discovery of therapeu-
tically relevant proteins.

Thermostability Prediction. This is a regres-
sion task to predict the stability of proteins at el-
evated temperatures. The target value reflects the
thermostability of a given protein sequence. We
focus on the Human-cell split from the FLIP (Dal-
lago et al., 2021), sequences are clustered by iden-
tity and divided into training and test sets. Model
prediction performance is evaluated by the met-
ric Spearman correlation. Accurate prediction of
protein thermostablity enhances understanding of
protein function and stability, which is critical for
protein engineering. These predictions support pro-
tein optimization in biotechnological applications,
including drug and vaccine development (Chen and
Gong, 2022), and provide a framework for select-
ing thermostable proteins.

B.24

RNA-Protein This is a binary classification task,
the objective of which is to identify interactions
between non-coding RNAs (ncRNAs) and proteins,
based on the sequences of the aforementioned ncR-
NAs and proteins. The majority of ncRNAs interact
with proteins to perform their biological functions.
Consequently, inferring the interactions between
ncRNAs and proteins can facilitate the compre-
hension of the potential mechanisms underlying
biological activities involving ncRNAs (Li et al.,
2016). The dataset employed in this study was
derived from (Han and Zhang, 2023), comprising
14,994 samples. The evaluation metric employed
was MCC.

Antibody-Antigen This is a binary classifica-
tion task, which seeks to ascertain whether a cor-
responding interaction relationship exists based on
the sequences of antibodies and antigens. The ob-
jective of this task is to ascertain the correspon-
dence between antigens and antibodies and to pre-

Multi-molecule tasks
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dict more effective antibody characteristics for
new variants of viruses. The dataset was sourced
from (Zhang et al., 2022), which contains 22,359
antibody-antigen pairs. MCC is employed for the
assessment of the model’s performance.

B.3 Evaluation Metrics

Single-label Regression: This type of task in-
volves predicting one continuous numerical value.
The evaluation process extracts the numeric val-
ues from model outputs using regular expressions,
avoiding over- and underflow by limiting values to
six significant digits. Metrics computed for regres-
sion tasks include:

* Spearman’s Rank Correlation Coefficient:
Measures the monotonic relationship between
predicted and true values according to their
ranks. The metric value ranges from -1 to
1, where -1 indicates perfect negative correla-
tion, 0 indicates no correlation (random pre-
dictions) and 1 indicates perfect positive cor-
relation.

« Coefficient of Determination (R?): Obtained
by squaring the Pearson correlation coefficient
to reflect the proportion of variance in the de-
pendent variable explained by the independent
variable. The metric value ranges from O to 1,
where 1 indicates perfect prediction and 0 in-
dicates predictions as good as the mean value
(randomness).

e Mixed Score: A custom metric (SAIS, 2020)
balances regression error and classification
accuracy by integrating F1 score (harmonic
mean of precision and recall), Mean Absolute
Error (MAE), and range-based MAE (MAE
computed within a range threshold). Calcula-
tion details will be further explained in B.3.1.

Multi-label Regression: This type of task in-
volves predicting multiple continuous output for
each input. In the EA prediction task, two numeric
values are required for the regression values of
’Housekeeping EA’ and ’Developmental EA’. In
the programmable RNA switches prediction task,
three numeric values are required for predicting the
regression values of ’"ON’, ’OFF’, and ’ON/OFF’.

e Pearson Correlation Coefficient (PCC): As-
sesses the linear correlation between two sets
of data. The metric value ranges from -1 to
1, where -1 indicates perfect negative linear



correlation, O indicates no linear correlation
(random predictions), and 1 indicates perfect
positive linear correlation.

+ Average R?: Computes individual R? for
each label and take the mean across labels
to obtain an average R? as the overall perfor-
mance metric. The metrics values shares the
same range and interpretations similar to the
single-label R?.

Binary Classification: This type of task asks
the model to predict one of two possible classes. In
our case, either positive or negative. The evalua-
tion pipeline involves first classifying via keywords
based on the presence of predefined positive or neg-
ative keywords. If keywords classification fails,
the pre-trained sentiment analysis model Twitter-
roBERTa-base jcite source?; will be utilized as
fallback to determine the class based on the sen-
timent polarity assigned with a higher probability
score.

¢ Matthews Correlation Coefficient (MCC):
Provides a balanced measure for binary clas-
sifications, even when classes are imbalanced.
The metric ranges from -1 to 1, where -1 in-
dicates perfect inverse correlation, 0 indicates
random predictions or no correlation, and 1
indicates perfect postive correlation.

* Accuracy Score: Calculates the proportion
of correct predictions out of all predictions
made. It ranges from O to 1, where O indicates
no correct predictions, 1 indicates all correct
predictions and 0.5 as random predictions.

Multi-class Classification: This type of task
asks the model to assign each input to one of several
classes. In the non-coding RNA family prediction
task, the model is required to predict one from 13
classes.

* Accuracy Score: Calculates the proportion
of correct predictions out of all predictions
made. It ranges from O to 1, where O indicates
no correct predictions, 1 indicates all correct
predictions and 0.5 as random predictions.

Multi-label Classification: This type of task in-
volves inputs that may belongs to multiple classes
and asks the model to predict all of them. The
evaluation process includes first extracting all rele-
vant labels from the model outputs and converting
them into binary multi-hot vectors representing the
presence or absence of each class.
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* Area Under the ROC Curve (AUC): Mea-
sures the model’s ability to distinguish be-
tween classes across all shredsholds. The met-
rics ranges from O to 1, where 1 indicates
perfect ability to distinguish classes and 0.5
as random performance.

* Fmax Score: Represents the maximum F1
score over all possible thresholds, providing
a balanced measure of precision and recall in
multi-label settings. The metric ranges from
0 to 1, where O indicates worst balance of
no correct predictions and 1 indicates perfect
balance between precision and recall.

B.3.1 Mixed Score Calculation

The Mixed Score is a custom metric adopted
from (SAIS, 2020) which is designed to balance
regression error and classification accuracy by inte-
grating three components: the F1 score, the Mean
Absolute Error (MAE), and the Range-based MAE
(Range-MAE). This metric provides a comprehen-
sive evaluation by considering overall prediction
accuracy, precision, and recall, as well as specific
performance in a designated value range. The cal-
culation is detailed below:

e Mean Absolute Error (MAE): This mea-
sures the average magnitude of prediction er-
rors across all samples, providing an indica-
tion of the model’s overall regression accuracy.
The MAE is defined as:

1 & .
MAE = 5Z|yz‘ — il
i—1

where n is the total number of samples, y; is
the ground truth value, and ¢; is the predicted
value. The range of MAE is [0, 100].

* Range-based MAE (Range-MAE): This
metric evaluates the Mean Absolute Error
within a specific range of interest, emphasiz-
ing regions where high predictive accuracy
is particularly crucial. For the siRNA task,
the ’low remaining” range is of significant im-
portance in practical applications. Following
(SAIS, 2020), we define this range as [0, 30].
The Range-MAE is computed as:

1 & .
Range — MAE = EZ ly;j — U5,
j=1

where m is the number of samples within
the specified range, and y;, §j; represent the



ground truth and predicted values within this
range. The Range-MAE is also bounded
within [0, 100].

F1 Score: This classification metric combines
precision and recall into a harmonic mean to
evaluate the quality of predictions within the
designated range. For the range [0, 30], preci-
sion and recall are calculated for predictions
falling within this interval, and the F1 score is
derived as:

Precision -
Fl—9 recision - Recall

" Precision + Recall’

final Mixed Score integrates these three compo-
nents to provide a balanced assessment of regres-
sion and classification performance. The formula
for the Mixed Score is:

Mixed Score = 50% -(1 — M AE/100)
+50% - F1- (1 — Range — M AE/100).

where the first term emphasizes overall regres-
sion performance, and the second term focuses
on classification accuracy and precision within the
specified range.

This scoring mechanism is designed to reward
models that perform well both globally (via MAE)
and within critical regions (via Range-MAE and
F1), ensuring a comprehensive evaluation of model
capabilities.

C Model Training Details

As shown in TABLE 2, we adopt different training
methods for each stage due to limitations in com-
putational resources while attempting to improve
model performance as much as possible.

In Stage 1, we train the model using 523933
RNA sequences, 1561639 DNA sequences, and
2000000 protein sequences, each with a maximum
length of 2000 characters. The dataset weights
for RNA, DNA, and protein are [2, 1, 1], indi-
cating that RNA sequences are trained twice per
epoch. This stage consumes the majority of com-
putational resources. To reduce training time, we
apply LoRA to every linear layer in the model and
additionally train each RMS normalization (Zhang
and Sennrich, 2019) layer. To optimize process-
ing efficiency and balance model performance and
training efficiency, we impose a maximum input
length of 2000 characters for biological sequences,
which translates to a maximum of 1200 input to-
kens. To address the potential inefficiency arising
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from varying input sequence lengths, we imple-
ment a packing strategy'. This approach allows us
to combine multiple samples of different lengths
into a single sample, effectively eliminating the
need for padding tokens in our training data. The
training process encompassed approximately a to-
tal of 140,000 parameter update steps, each step
composed of 48 global samples, ensuring thorough
optimization of the model’s performance on bio-
logical sequence data.

In Stage 2, we train the model with 3330232 sam-
ples. As noted by (Ghosh et al.), we discover that
using LoRA and it’s variants (Hayou et al., 2024;
yang Liu et al., 2024; Kalajdzievski, 2023) for the
entire model during supervised fine-tuning leads to
sub-optimal performance. Therefore, we fully fine-
tune the query and key layers in each self-attention
module, along with the RMS normalization layers,
while applying LoRA+ to the other linear layers
in the model. This approach ensure the update for
the whole model and improves model performance
while maintaining relatively low training times by
reduce the communication quantity of optimizer
states.The base learning rate was set to 1e-4, with
the learning rate for the weight B parameters group
at 1.6e-3. We configured the gradient accumulation
steps to 10 and set the micro-batch size on the GPU
to 2, given the maximum input length was limited
to 1024. This configuration result in a global batch
size of 400. In Stage 3, minimal computational
resources is required. Thus, we employ full fine-
tuning for the entire model except embedding layer
and output layer.

We use DeepSpeedCPUAdam and
adamw_mode=True for Stage 1 and Stage 2
as LoRA efficiently reduces the communication
time between CPU and GPU for offloaded
optimizers. For Stage 3, we use FusedAdam
and adam_w_mode=True to reduce training time.
A warmup learning rate scheduler with cosine
learning rate decay is used for all three stages.
All stages employ a mixed precision training
strategy where model parameters, gradients, and
activations are stored in torch.bfloat16. To
improve training efficiency, we use DeepSpeed
ZeRO stage 2 (Rajbhandari et al., 2020) and
FlashAttention-2 (Dao et al., 2022; Dao, 2023) for
all training processes. We adopt PyTorch2.2.1’s
scaled dot product attention for FlashAttention-2

"https://github.com/meta-Llama/Llama-
recipes/tree/main/recipes/quickstart/finetuning/datasets



implementation which is more convenient than
FlashAttention official library with a Python
environment. In summary, Stage 1 training is
conducted on 24 A100-40G PCle GPUs over a
period of 1.5 days; Stage 2 training is conducted
on 20 A100-40G PCIe GPUs for approximately
16 hours; and Stage 3 training is conducted on 12
A100-40G PCIe GPUs over 2 hours.

D Additional Results

Due to space constraints, we present only the radar
chart and key findings in the main text. Compre-
hensive results across 21 tasks, detailed in Tables
3, 4, 5, and 6, further demonstrate the effectiveness
of our dataset and three-stage training pipeline.

In the baseline experiments, we employ specific
prompts with format requirements to obtain well-
structured results, facilitating more accurate quan-
titative analysis. For closed-source LLMs, such as
GPT-40 and GPT-40-mini, we require outputs to
be returned in JSON format, given their superior
ability to follow instructions and adhere to JSON
formatting. For open-source LLMs, we opt for rela-
tively brief format requirements to encourage more
diverse outputs, acknowledging their comparatively
weaker instruction-following capabilities.

As shown in Table 7, we also provide task-
relevant information as a hint to the baselines to
ensure a fair comparison and clarify the expected
output content. Specifically, we anticipate the fol-
lowing content: (1) for binary classification tasks, a
’yes” or ’no” response; (2) for multi-label classifi-
cation tasks, one of the specified labels; and (3) for
regression tasks, a value within the required range
or format. The final prompt formats are detailed in
Table 8.

We further explore the impact of balanced versus
imbalanced Stage 2 datasets on performance. Our
results indicate that balancing the dataset leads to a
general performance decline, with particularly sig-
nificant drops observed in tasks such as APA and
Enhancer Activity Prediction. We believe that bal-
anced datasets may distort the natural distribution
of real-world biological data and reduced overall
data size to match the smallest task, which contains
only a few thousand samples, limiting the model’s
ability to fully utilize available data.

Figure 8 illustrates two comparison examples
between ChatMultiOmics and baseline models. In
both cases, the baseline models failed to provide
correct answers due to various reasons, while Chat-
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MultiOmics produced accurate responses, with or
without reasoning. In one example, ChatMulti-
Omics successfully reason through an antibody-
antigen neutralization task, despite this reasoning
not being part of the Biology-Instructions subset.
However, while ChatMultiOmics arrive at the cor-
rect final answer, it followed an incorrect reasoning
path. We suspect this may be due to the absence of
relevant textual knowledge, as we did not further
pre-train the model on biology-specific text data.



<|start_header id|>system<|end header id|>

You are a knowledgeable and helpful biology assistant. Please answer
my biology sequence-related questions in a clear and concise manner.
For regression task, please return a number.<|eot id|>

<|start_header id|>user<|end_header id|>

I need to understand if there's any functional relationship between
<rna>.....<rna> and <protein>....... <protein>.<|eot id|>

<|start_header id|>assistant<|end header id|>

The sequences do not exhibit co-evolutionary patterns, which does
not support the prediction of RNA-protein interaction.<|eot id|>

Figure 7: Example of a training sample in stage 2.

Table 2: Hyper parameters at each stage. Wy, Wy, W,,, W,,: Four linear parameters in the self-attention modules
corresponding to query, key, value, and output. Wy, W, W3: Three linear parameters in the feed-forward modules
corresponding to up projection, gate projection, and down projection. RMSnorm: parameters in RMS normalization
layers. All: Parameters in RMS normalization layers. All: All parameters in the model.

Hyper Parameters stage 1 stage 2 stage 3

Fine-tune method Mixed Mixed Full
LoRA target modules All linear Wy, W, W1, Wo, W3 -

Trainable parameters LoRA, RMSNorm LoRA, RMSNorm, wg, w, All

Base learning rate le-4 le-4 le-5
LoRA+ scaler 4 16 -
LoRA rank 128 64 -
LoRA « 32 32 -

Max input length 1200 1024 1024
Batch size per gpu 2 2 2
Gradient accumulation steps 1 10 1
Global batch size 48 400 24

Global steps 140000 80000 2750
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Modification Prediction (trained in stage 3)

Question: <rna>CTTCCTTTTTTATAACATCCTTGACTATAGAATGAGAACACTGCAATGAAACCCAAAACTTTGGAAGTAA
TGTGTTCTGTAATGATCTGTCCCCTAACAGC <rna> How does the sequence correlate with predicted RNA
modifications?

Output(Ground Truth): The RNA modifications inferred for the sequence includem6A.
Output(Llama-3.1-8B-Instruct): The prediction is based on a model trained on a large dataset of RNA
modifications......The “predict’ function should take the sequence as input and return a dictionary where the
keys are the possible modifications and the values are their corresponding probabilities.......

Output (GPT-40): {"answer": "none"}

Output(Galactica-1.3B): 'None' is not a valid answer\n\n# 2.2.2.2.2.2.2.2.2.2.2.2.22.2.2.2.2.2.22222222.2......

Output(ChatMultiOmics without reasoning): The RNA sequence likely includes the following modifications:
m6A.(Correct)

Output(ChatMultiOmcis with reasoning): The provided RNA sequence,
"CTTCCTTTTTTATAACATCCTTGACTATAGAATGAGAACACTGCAATGAAACCCAAAACTTTGGAAGTAATGTGTTCTGTAAT
GATCTGTCCCCTAACAGC," can be analyzed for potential RNA modifications based on known modifications. RNA
modifications are chemical alterations that can affect RNA stability, localization, and translation efficiency.\n\nln
the context of RNA modifications, several common types can be identified. For instance, the presence of
adenosine (A) and cytidine (C) residues is often linked to specific modifications such as m6A (N6-
methyladenosine) and m5C (5-methylcytidine). The sequence provided does not explicitly indicate any known
modifications, but it does contain regions that could be associated with these modifications.

Given the sequence\'s composition and potential modifications, it is reasonable to hypothesize that the
presence of adenosine residues could suggest the presence of m6A modifications. m6A is known to be
prevalent in mRNA and is involved in the regulation of gene expression. The sequence\'s length and
composition suggest that it may be associated withm6Amodifications, particularly in regions that are rich in
adenosine.

In summary, the sequence does not explicitly show any known modifications, but it is likely that m6A
modifications could be present due to its composition and structural features. Therefore, the predicted RNA
modification for this sequence is m6A.(Correct)

Antibody-Antigen Neutralization (Not trained in stage 3)
Question:Can you determine if the antibody <protein>EVQLVE.....EIK<protein>> recognizes the antigen
<protein>MRVMG......ALQ<protein>>?

Output(Ground Truth):I'venot detectedmotifs in the sequences that are indicative of Ab-Ag interaction.
Output(Llama-3.1-8B-Instruct): | can't do that. | can't help you with tasks that involve predicting or analyzing
specific protein sequences or their interactions. Is there anything else | can help you with?

Output(GPT-40): {"answer": "Yes"}

Output(Galactica-1.3B): is the number ofpositivesamples. is the number of negative samples. is the number
of samples. is the number of features......

Output(Llama-molinst-protein-7B): Synthesize the protein with the following amino acid sequence:\n\n###
Response: Design the protein with the following amino acid sequence:\nCreate the protein with the following
protein sequence: ......

Output(ChatMultiOmics without reasoning):l've not detected motifs in the sequences that are indicative of
Ab-Ag interaction. (Correct)

Output(ChatMultiOmics with reasoning): The analysis of the provided antibody sequence indicates that it
appears to be a polypeptide that could potentially bind to a variety of antigenic residues. The sequence is rich in

Given these observations, it is reasonable to conclude that the antibody appears to recognize and bind to a
variety of antigenic residues, leading to the conclusion that the answer is "no." This aligns with the
understanding that the sequence does not exhibit characteristics typically associated with a high affinity for a
given antigen.

In summary, the analysis of the provided antibody sequence reveals a lack of specific motifs or structural features
that would suggest its affinity for a variety of antigenic residues.(Correct but reasoning wrong)

Figure 8: Comparison of ChatMultiOmics with baseline models in two examples.
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Table 3: Evaluation results on DNA tasks

Model/Task EA (hk) EA (dev) EMP TF-H TF-M PD300 CPD
Metrics % PCC PCC MCC MCC MCC MCC MCC
Literature SOTA
Literature DeepSTARR DeepSTARR DNABERT2 DNABERT2 DNABERT2 DNABERT2 DNABERT2
SOTA 68.00 74.00 58.83 66.84 71.21 83.81 71.07
Open source LLM
LLaMA3.1-8B-Instruct 0.61 0.27 -0.37 0.00 -1.42 0.01 0.00
Qwen2-7B 0.40 0.35 -0.66 -0.21 -1.59 -4.83 1.35
Llama2-7B-Chat 0.55 0.13 0.94 1.84 0.97 -0.29 -0.55
Alpaca-7B -0.11 0.31 -0.36 2.00 0.00 -0.15 -1.30
GLM-4-9B-Chat 0.87 0.17 -0.22 0.00 0.00 -0.25 -2.53
Vicuna-v1.5-7B 0.18 0.69 0.00 0.00 0.00 0.00 0.00
Galactica-1.3B 0.13 0.09 0.07 3.00 -2.81 0.41 -1.01
Closed source LLM
GPT-40-mini -0.76 0.09 -0.91 0.14 -0.31 -4.44 -2.95
GPT-40 -1.17 -1.49 -0.49 -1.70 -1.38 8.67 -0.84
Biology-specialize LLM
InstructProtein-1.3B 0.00 0.39 0.22 -1.29 1.19 2.75 -0.33
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.10 -0.29 2.40 0.33 -5.76 1.98
Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.92 0.06 1.40 2.46 0.88 5.19 5.57
Our Model on Our Dataset
ours (stage 2 only) -0.16 0.08 0.31 0.86 0.13 0.87 1.8
ours (stage 1 + stage 2) 59.74 46.82 8.1 19.07 27.94 49.01 41.18
ours (stage 1 + stage 2 + stage 3) 57.24 45.92 3.64 24.45 39.91 58.18 44.54
Table 4: Evaluation results on RNA tasks
Model/Task APA ncRNA Modif MRL PRS CRI-On
Metrics % R? Acc Auc R? R? Spearman’s p
Literature SOTA
Literature APARENT GCN MultiRM Optimus MLP-O SCC
SOTA 50.82 85.73 84.00 78.00 55.67 44.10
Open-Source LLM
LLaMA3.1-8B-Instruct 0.01 6.32 50.52 0.01 0.02 -0.09
Qwen2-7B 0.00 7.08 50.34 0.00 0.01 -6.21
Llama2-7B-Chat 0.00 4.88 50.40 0.00 0.01 0.92
Alpaca-7B 0.00 7.42 50.00 0.03 0.01 -3.55
GLM-4-9B-Chat 0.00 8.23 50.05 0.00 0.01 -0.02
Vicuna-v1.5-7B 0.01 3.81 50.27 0.01 0.00 1.88
Galactica-1.3B 0.00 6.73 53.78 0.00 0.02 -5.56
Closed-Source LLM
GPT-40-mini 0.05 3.00 50.49 0.01 0.03 3.77
GPT-40 0.00 5.60 50.47 0.01 0.00 -3.31
Specific Biology LLM
InstructProtein-1.3B 0.00 0.00 51.08 0.02 0.00 0.00
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.00 52.51 0.00 0.02 -0.10
BioMedGPT-LM-7B 0.00 1.62 51.65 0.01 0.03 0.12
Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.01 35.68 53.76 0.00 0.01 -0.31
Our Model on Our Dataset
ours (stage 2 only) 0.00 0.00 51.21 0.00 0.00 2.87
ours (stage 1 + stage 2) 50.68 62.77 57.45 29.12 26.65 -2.99
ours (stage 1 + stage 2 + stage 3) 59.01 63.09 59.06 47.64 26.57 -0.02
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Table 5: Evaluation results on protein tasks

Model/Task EC Sta Flu Sol Ther
Metrics % Fmax Spearman’s p  Spearman’s p Acc Spearman’s p
Literature SOTA
Literature SaProt-GearNet ~ Evoformer  Shallow CNN DeepSol ESM-1v
SOTA 88.9 79.00 69.00 77.00 78.00
Open-Source LLM
LLaMA3.1-8B-Instruct 1.42 -0.61 0.91 50.27 4.67
Qwen2-7B 0.90 -5.86 0.81 52.52 -0.93
Llama2-7B-Chat 0.97 -0.51 0.28 49.48 0.40
Alpaca-7B 0.88 2.05 -0.20 50.12 2.27
GLM-4-9B-Chat 0.91 -2.72 0.63 50.72 1.40
Vicuna-v1.5-7B 0.88 5.65 -0.51 51.57 0.90
Galactica-1.3B 0.91 -0.52 -0.73 46.78 -0.58
Closed-Source LLM
GPT-40-mini 1.73 -1.52 -0.47 50.02 0.32
GPT-40 5.89 0.09 0.69 51.67 3.50
Specific Biology LLM
InstructProtein-1.3B 1.85 0.35 -0.03 47.88 -0.50
Llama-molinst-protein-7B (Mol-Ins) 1.85 0.05 0.27 48.33 1.07
BioMedGPT-LM-7B 1.07 -0.92 0.43 49.78 -0.72
Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 10.76 0.48 0.55 52.37 39.97
Our Model on Our Dataset
ours (stage 2 only) 1.85 0.23 0.37 49.28 -0.51
ours (stage 1 + stage 2) 19.35 56.76 1.49 62.07 44.59
ours (stage 1 + stage 2 + stage 3) 19.79 60.25 2.57 63.02 45.07
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Table 6: Evaluation results on multi-molecule tasks

Model/Task EPI siRNA AAN RPI
Metrics % MCC Mixed Score MCC MCC
Literature SOTA
Literature EPI-DLMH - DeepAAI ncRPI-LGAT
SOTA 53.59 - 54.9 93.2
Open-Source LLM
LLaMA3.1-8B-Instruct 0.00 32.76 -1.05 3.82
Qwen2-7B 0.00 33.39 2.98 -2.15
Llama2-7B-Chat 0.00 17.43 -0.63 5.87
Alpaca-7B 0.00 19.12 -0.81 4.38
GLM-4-9B-Chat 0.00 23.33 1.32 0.13
Vicuna-v1.5-7B 0.00 14.28 2.00 0.00
Galactica-1.3B 0.00 33.55 0.01 0.24
Closed-Source LLM
GPT-40-mini -0.39 30.37 1.59 1.22
GPT-40 0.00 0.00 -3.29 1.17
Specific Biology LLM
InstructProtein-1.3B 0.00 5.58 1.53 -1.55
Llama-molinst-protein-7B (Mol-Ins) 0.00 13.85 -1.38 3.71
BioMedGPT-LM-7B 0.00 19.71 0.92 -2.39
Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 4.13 42.92 -1.48 8.29
Our Model on Our Dataset

ours (stage 2 only) 4.77 4.25 0.72 1.61
ours (stage 1 + stage 2) 1.68 56.31 10.26 70.80
ours (stage 1 + stage 2 + stage 3) 3.37 56.25 1.06 74.26
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Table 7: Hints for each task

Task

Hint

Epigenetic Marks Prediction

Promoter Detection

Core Promoter Detection
Enhancer-Promoter Interaction Prediction
RNA-Protein Interaction Prediction
Antibody-Antigen Neutralization
Transcription Binding Sites Detection Hu-
man

Transcription Binding Sites Detection
Mouse

EA Prediction

Fluorescence Prediction

Enzyme Commission Number Prediction
Solubility Prediction

Stability Prediction

Thermostability Prediction

APA Tsoform Prediction

Non-coding RNA Function Classification

Modification

Mean Ribosome Loading Prediction
Programmable RNA Switches

CRISPR On Target Prediction
siRNA Efficiency Prediction

Return yes or no.
Return yes or no.
Return yes or no.
Return yes or no.
Return yes or no.
Return yes or no.
Return yes or no.

Return yes or no.

Return two numeric values with two decimal places for ’House-
keeping EA’ and ’Developmental EA’.

Return one numeric value with two decimal places.

Return Enzyme Commission number(s), e.g., 2.7.11.12
Return yes or no.

Return one numeric value with two decimal places.

Return one numeric value with two decimal places.

Return one numeric value with two decimal places.

Return one RNA class: 5S_rRNA, 5_8S_rRNA, tRNA, ri-
bozyme, CD-box, miRNA, Intron_gpl, Intron_gpll, HACA-box,
riboswitch, IRES, leader, or scaRNA.

Return RNA modification(s): Am, Cm, Gm, Um, m1A, m5C,
m5U, m6A, m6Am, m7G, Psi, Atol, or none.

Return a numeric value with two decimal places.

Return three numeric values with two decimal places for ’"ON’,
’OFF’, and ’ON/OFF’.

Return a numeric value with two decimal places.

Return a numeric value with two decimal places.

Table 8: Prompt format for baselines

Prompt format for open-source LLMs:
My question is {input} This is a {task type} task. {hint} Do not explain or repeat.

Prompt format for closed-source LLMs:

You are an expert biology Al assistant specializing in sequence-related topics. Focus on: DNA,
RNA, and protein sequences When answering questions, please follow this format:

First give a direct answer in JSON dict such as: {”answer”: ”Yes”}:

Remember to follow the provided rules:
- For binary classification questions: Answer ’Yes” or ”No”.
- For multi-label classification questions: State the specific label(s).
- For regression questions: Provide the numerical value or range.

Answer the question: ”{input}”.
Task type: {task_type}.

For better understanding the task, hint: {hint}.
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E Data quality control for Stage 3
Reasoning Data

To ensure the quality and reliability of Stage 3
reasoning data, we have established a robust multi-
step validation process:

E.1 Self-validation by the model

Once the data is generated, the large language
model conducts a self-check to ensure compliance
with four core criteria outlined in the data genera-
tion prompt, as illustrated in Figure 9:

* Providing a detailed and accurate analysis of
the sequence

» Accurately recalling task-related knowledge
from studies, databases, or academic sources;

* Engaging in comprehensive reasoning to draw
logical conclusions for the question

* Citing relevant references where applicable.
The model is required to output the results of
its self-check and provide recommendations
for improvement in cases that do not meet the
standards

For outputs that fail to meet these criteria, spe-
cific issues are identified, and the model is in-
structed to regenerate outputs that adhere to the
required standards based on the evaluation results.
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E.2 Secondary review by an independent
model

Following the initial validation, a second large lan-
guage model, Gemini-1.5-pro, is employed to in-
dependently review and verify the accuracy and
consistency of the reasoning paths. Additionally,
GPT4o0-mini is tasked with reconstructing any un-
qualified cases based on feedback from Gemini-
1.5-pro.

This rigorous quality assurance process not only
ensures the integrity of the data but also lays a
strong foundation of high-quality training data, en-
hancing interpretability in downstream tasks.

E.3 Final review by MEME tool and human

To further corroborate our findings, we utilized the
MEME tool (Multiple Expectation Maximizations
for Motif Elicitation) to identify motifs in DNA se-
quences. The motifs discovered by MEME showed
strong consistency with the reasoning data, provid-
ing additional validation. We also invited biology
PhD students and professors to conduct human
evaluations of the reasoning data. Their feedback
confirmed the high quality and reliability of the
generated data. An example of our data quality
control process is shown in Table 13.



[ System Prompt ]

<role=You are an expert biology Al assistant specializing in sequence-related topics. Your task is to provide
clear, accurate, and comprehensive answers to biology questions, with a focus on

« DNA, RNA and protein sequences

= Bioinformatics and computational biology
« Molecular biology techniques

« Evolutionary analysis

« Genomics and proteomics</role>

<task=Carefully read and analyze a given biology sequence-related question and its corresponding
standard answer. After thoroughly understanding both, rewrite and enhance the answer </task=

<requirements=

1. Question Analysis:
« |dentify the question type (e g, yes/no, multiple choice, open-ended)
» Determine the specific biological topic and concepts involved
2. Sequence Examination
« Analyze the provided biological sequence
« |dentify its omics classification (genomics, franscriptomics, proteomics, etc )
= Investigate potential functions and features in nuclectide or amino acid level
3. Contextual Research
+ Explore relevant biological information connected to the question and sequence
« Consider all related studies, databases, or academic sources that you can remember
4. Answer Synthesis:
» Integrate the standard answer with insights from your analysis
+ Organize information in a logical, coherent manner
5. Enhanced Explanation
« Prepare a clear, detailed explanation of the biological concepts involved
« Include a step-by-step chain of thought reasoning process if possible
+ Use precise scientific terminology appropriately
6. Quality Check
+ Ensure scientific accuracy and depth
« Verify that the response is clear, engaging, and tailored to the question
« Confirm that all key poinis from the original answer are addressed and expanded upon

Provide ONLY the enhanced answer to the biology sequence-related question. Your response should:

Begin with a rich analysis of the biological sequence, highlighting key functions and features and
specific nucleotide or amino acid
Present the answer in a natural, readable style

Provide any relevant knowledges and information from studies, databases, or academic sources
Support your response with a comprehensive explanation

Outline your thought process clearly even if it might be wrong

Cite relevant studies, databases, or academic sources when applicable

Do not include any of the analysis steps or thought processes in your output. The response should be

the final, polished answer ready for the end-user to read and understand
Especially do not include any information about the standard answer, assume you are providing a
answer directly from your own analysises!

</requirements>

[ Example Prompt ]

Please follow the system prompt and given the question
CCTTCACCGCCACACGGTCCCACTGGACGCATCACTTTTTCGGTAGCAAAAACTTGTAGAAAATTGTCA
ATTCAATTCGCTGGTAGTTGTATATCCATGTGAAGCAGAGATAAGCTCCGCCAACTCTACCCGTCGCCC
ACGCCACGTCGCACAGTTGCGCCCCGCCACAAATATCGAAACCAGGCCTCACAGACCGCAAGCATAC
CCCAAAATGAGCTCCTCGAATGCGGGACAGCGCACGAAGCTAAT Could you run an enhancer activity
simulation for this sequence?

Answer to be refined: {"hk™"4 66" "dev"""2 1"}

Your refinement

\ J

Figure 9: An example of a prompt used to generate reasoning data. The system prompt outlines the requirements
for the data construction task for GPT-40-mini. Answers are refined, and corresponding questions are placed within
specific prompts.
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Core
Promoter
Detection |

l\ <dna>GCGTGAAGG...<dna
> Is this a core promoter
region?

<dna>AAAATAATG...<dna>
Please investigate the
possibility of epigenetic
marks in this DNA.

Epigenetic '
Marks
Prediction ,

Modification

<rna>GCTACCTCT...<rna>
Which RNA modifications
can be inferred from the

el
Prediction Prediction )
A sequence? i

CUREERIEY  <rna>TTGGACTCA... <rna>
RNA How would you categorize
Function this RNA sequence in

lassificatiol terms of RNA families?

Prediction

Solubility )

|| <protein>SKGEELFTG...<pr

otein> Please estimate the
fluorescence intensity of

this GFP.

<protein>PIFTLNTNI...<prot
ein> Solubility prediction
evaluates if a protein will
be soluble in specific
| conditions. Will this protein
be soluble?

( Multi )

) <rna>a AfugaAfa..<rna>
<rna>CCTCCAGGC...<rna>
What percentage of mRNA
is predicted to remain after
siRNA treatment?

SiRNA
Efficiency
Prediction

{ <protein>RAHLVQSGT...<pro
Antibody—> tein><protein>MRVREILKS...

Antigen <protein> Please identify if
e\ [PETil)y/any interaction between the
antibody sequence and
antigen sequence.

Figure 10: Examples of instruction prompts constructed for each omics type.

Table 9: Examples of question and answer template pairs in stage 2 training data.

Task

Question template

Answer template

Epigenetic Marks
Prediction

Core Promoter Detection
Enhancer Activity
Prediction

CRISPR On Target
Prediction

Programmable RNA
Switches

Modification Prediction

Fluorescence Prediction

Enzyme Commission

Number Prediction

Solubility Prediction

Enhancer-Promoter
Interaction Prediction

Antibody-Antigen

Neutralization

siRNA Efficiency
Prediction

<dna>{DNA}</dna> Are there any charac-
teristic epigenetic marks in this DNA?

<dna>{DNA}</dna>: Evaluate this se-
quence for potential promoter regions.

<dna>{DNA}</dna> Enhancer activity in
this sequence - what’s the deal?

<rna>{RNA}<rna> What is the predicted
on-target activity of the sequence?
<rna>{RNA}<rna> What ON/OFF ratio
can be expected from the sequence?

<rna>{RNA}<rna> [RNA modification
classification] Which RNA modifications
are inferred from the sequence?
<protein>{protein}<protein> How
effective is the predicted fluorescence for
this GFP sequence?
<protein>{protein}<protein> What
is the specific activity of this protein as an
enzyme?
<protein>{protein}<protein> Can
solubility be confirmed for this protein?

<dna>{DNA1}<dna> promoter +
<dna>{DNA2}<dna> enhancer: con-
nected?

Is there any molecular recogni-
tion Dbetween this Ab-Ag pair:
<protein>{AB}<protein>>-
<protein>{AG}<protein>>?
<rna>{SiRNA}<rna>
<dna>{targetDNA}<dna> How does

the target RNA perform in terms of
siRNA-induced mRNA reduction?

After careful EMP analysis, there
is conclusive evidence of epigenetic
marks in the given DNA sequence.
(Positive case)

No, a promoter region is not present
in the given genomic fragment. (Neg-
ative case)

The enhancer activity prediction
yields: HK - {hk_enrichment}, Dev -
{dev_enrichment}

The sequence has an on-target effi-
ciency score of {label}.

The ON state for this sequence
is {label ON}, the OFF state is
{label OFF}, and the ON/OFF ratio
is {label_ON_OFF}.

The RNA modifications for the se-
quence are predicted as {label}.

The GFP’s fluorescence is calculated
to be {label}.

Specific enzyme activities are de-
fined by EC number {label }.

This protein shows positive solubility.
(Positive case)

We find no support for promoter-
enhancer communication in this ge-
netic material. (Negative case)

The computational predictions do not
support any significant Ab-Ag inter-
action. (Negative case)

The siRNA treatment results in

an mRNA remaining percentage of
{label}.
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Table 10: An example of question and answer pairs in stage 3 training data for siRNA Efficiency Prediction task.

Task: siRNA Efficiency Prediction
Question <rna>{SiRNA}<rna> <dna>{targetDNA}<dna> How much mRNA remains
after siRNA treatment of the target RNA?

Answer To assess the amount of mRNA remaining after siRNA treatment, we first need
to understand the mechanisms involved in RNA interference (RNAi) and its
impact on mRNA levels.

siRNA (small interfering RNA) is a class of double-stranded RNA that
can lead to the degradation of complementary mRNA molecules, effectively
silencing their expression. When siRNA binds to target mRNA, it recruits
the RNA-induced silencing complex (RISC), which then cleaves the mRNA,
reducing its stability and leading to its degradation.

To determine how much mRNA remains after treatment, one typically
considers:

1. The initial concentration of mRNA.

2. The efficacy of siRNA in degrading the target mRNA.

3. The kinetic parameters related to both the mRNA decay rate and the siRNA
efficacy.

For instance, if initial studies or assays show that treatment with spe-
cific siRNA reduces target mRNA levels by approximately 80% under standard
experimental conditions, then we can assume that 20% of the original mRNA
remains. However, the problem states that the final calculated remaining
mRNA is estimated to be 80.6% of the original mRNA.

This indicates that the siRNA treatment was not completely effective,
or there might be factors such as incomplete targeting or secondary structures
in the mRNA that protected it from degradation.

In summary, after siRNA treatment of the target RNA, the remaining
amount of mRNA is therefore 80.6%, indicating a less than complete silencing
effect. This percentage reflects the balance of mRNA decay, the effectiveness
of the siRNA treatment, and the biological context in which the treatment was
performed.
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Table 11: An example of question and answer pairs in stage 3 training data for Noncoding RNA Family Prediction
task.

Task: Noncoding RNA Family Prediction

Question <rna>{RNA}<rna> How does this RNA sequence contribute to gene regula-
tion?
Answer This RNA sequence represents a component that likely plays a crucial role in

gene regulation, particularly through its classification as a "leader” RNA. In the
context of molecular biology, leader RNAs are typically found at the 5° end of
mRNA sequences and can influence gene expression by engaging in regulatory
interactions with ribosomes or other molecular partners.

Leader sequences can have multiple functions, including:

1. **Regulatory Functions:** They may harbor sequences that can bind
small regulatory molecules or proteins, thus modulating the transcription or
translation of the downstream coding region.

2. **Secondary Structures:** The folding patterns in leader sequences can
form intricate secondary structures that contribute to transcriptional attenuation
or the formation of a riboswitch. These structures can determine whether the
RNA remains in a transcriptionally active state or folds into a configuration that
halts transcription or translation.

3. **Interaction with Ribosomes:** The leader region often acts as a signal for
ribosomes to initiate translation. For mRNAs, the presence of specific motifs
within this region can influence how efficiently translation occurs, impacting
overall protein synthesis levels and thus the expression of the associated gene.

In summary, the RNA sequence presented can be classified as a leader,
contributing to gene regulation through its interactions and structural charac-
teristics. This underscores the importance of untranslated regions (UTRs) in
controlling gene expression. Understanding such RNA sequences and their
functions provides valuable insights into the mechanisms of gene regulation,
highlighting how sequences beyond coding regions play vital roles in cellular
processes.
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Table 12: An example of question and answer pairs in stage 3 training data for Core Promoter Detection.

Task: Core Promoter Detection

Question

Answer

<dna>{DNA }<dna> Identify potential core promoter region in this sequence.

The provided DNA sequence shows characteristics that warrant careful
examination for core promoter elements. Core promoters are essential in
initiating transcription and are typically located upstream of the transcription
start site. They often contain specific motifs, such as the TATA box, initiator
sequences (Inr), and other regulatory elements that facilitate binding of
transcription factors and RNA polymerase 11.

In the sequence provided, critical components of core promoters might
include:

1. **Initiator sequences (Inr):** These sequences often span the transcription
start site and can exhibit variability but typically include consensus elements
that help delineate the start of transcription.

2. **TATA box:** A common feature among many eukaryotic promoters,
which is usually located about 25-30 bases upstream from the transcription
start point.

3. #*GC-rich regions:** These regions can also play a role in promoter activity
by providing binding sites for transcription factors.

Upon examining the sequence:

- There are no clear TATA boxes or Inr motifs that align with typical core
promoter signatures.

- The sequence appears GC-rich, notably towards the middle, but does not show
significant promoter elements consistent with those typically required for core
promoter identification.

Given these observations, we can conclude that this sequence does not
contain recognizable features indicative of a core promoter region. Therefore,
the response to whether a potential core promoter region is present in this
sequence is negative.
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Table 13: An example of quality control process.

Task: Transcription Binding Sites Detection

Question

Answer

Al Evaluation

Human Evaluation

<dna>AGTTGC......AGGCCC<dna>: Can you check if this DNA fragment contains
sequences associated with transcription initiation?

The provided DNA fragment showcases a sequence that can be analyzed to determine
if it contains motifs associated with transcription initiation. Transcription initiation in
eukaryotic organisms often involves the presence of specific cis-regulatory elements,
such as promoter regions, which may include TATA boxes, GC-rich regions, or other
binding sites for transcription factors.

In the analysis of the given sequence, we should look for characteristic motifs
common in eukaryotic promoters:

TATA Box: Usually located 25-30 base pairs upstream of the transcription start site,
this sequence often resembles the consensus sequence TATAAA.

GC Box: These sequences are rich in GC content and provide binding sites for
transcription factors (e.g., Spl). They typically appear around -100 to -200 base
pairs upstream.

CCAAT Box: Another common element involved in the binding of transcription
factors, found further upstream, approximately -75 bases from the start site.

Upon examining the sequence you provided, several regions exhibit characteristics
of transcriptional regulation:

The sequence includes stretches of CG-rich content that might suggest the presence
of a GC box. Additionally, there is a notable absence of any clear TATA box or
canonical elements, which indicates that while the segment may hold potential as
a regulatory region, it may not conform to traditional promoter motifs rigorously.
In summary, based on the detection of indirect evidence of transcription initiation
sites, particularly the presence of GC-rich sequences, we can conclude that this DNA
fragment likely contains sequences associated with transcription initiation. Therefore,
the answer to your question is affirmative; it is positive that this DNA fragment likely
includes sequences relevant to the initiation of transcription. Further studies, such as
promoter assays or bioinformatics tools, could further validate this observation.

GPT4o-mini analysis: The answer provides a detailed analysis of the DNA sequence
with specific references to hallmark motifs and features associated with promoters. It
incorporates relevant biological knowledge and presents a clear conclusion regarding
the presence of promoter-like characteristics.

Gemini-1.5-pro evaluation: The answer provides a comprehensive analysis
of the DNA sequence for promoter-like features. It correctly identifies key
characteristics such as GC-rich regions and potential transcription factor binding
sites. The reasoning is clearly explained, starting with a general description of
promoters and then moving to specific features found within the provided sequence.
The conclusion is clearly stated and supported by the analysis. While it doesn’t
provide specific locations of potential promoter elements or quantify the GC
content, the overall analysis is sufficient for a general assessment of promoter-like
characteristics.

For promoters, our human evaluation involved examining the DNA sequences, where
we observed a typical TATA box motif at positions -31 to -35, aligning well with
the reasoning for TATA-type promoters. Additionally, we utilized the MEME tool
(Multiple Expectation Maximizations for Motif Elicitation), which identifies motifs
in related DNA sequences. The motifs discovered by MEME also showed strong
consistency with the reasoning, further validating our findings.
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