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Abstract
Large language models (LLMs) have shown001
remarkable capabilities in general domains,002
but their application to multi-omics biology003
remains underexplored. To address this gap,004
we introduce Biology-Instructions, the first005
large-scale instruction-tuning dataset for multi-006
omics biological sequences, including DNA,007
RNA, proteins, and multi-molecules. This008
dataset bridges LLMs and complex biological009
sequence-related tasks, enhancing their versatil-010
ity and reasoning while maintaining conversa-011
tional fluency. We also highlight significant012
limitations of current state-of-the-art LLMs013
on multi-omics tasks without specialized train-014
ing. To overcome this, we propose ChatMulti-015
Omics, a strong baseline with a novel three-016
stage training pipeline, demonstrating supe-017
rior biological understanding through Biology-018
Instructions. Both resources are publicly avail-019
able, paving the way for better integration of020
LLMs in multi-omics analysis. The Biology-021
Instructions is publicly available at link.022

1 Introduction023

Understanding the complex activities across var-024

ious omics in living organisms is of paramount025

importance. This includes studying DNA regula-026

tory elements that control gene expression (Emils-027

son et al., 2008), RNA regulation (Mattick, 2004)028

that influences protein synthesis, and the functional029

properties of proteins themselves (Marcotte et al.,030

1999). These molecular processes critically af-031

fect the development of diseases and the synthe-032

sis of drugs within organisms. Recent BERT-like033

encoder-only models (Devlin, 2018) have achieved034

significant advances in natural language under-035

standing tasks.036

When applied to genome or protein understand-037

ing tasks, these models (Zhou et al., 2023; Rives038

et al., 2021) are capable of capturing complex in-039

trinsic relationships within biological sequences,040

achieving high accuracy in tasks such as promoter041

prediction. However, their reliance on specific clas- 042

sification or regression heads to predict a single task 043

at a time limits their versatility, and their repeated 044

fine-tuning sessions with different prediction heads 045

to address multiple tasks further complicate the 046

training, inference, and deployment processes. 047

In contrast, powerful general-purpose large lan- 048

guage models (LLMs) such as GPT-4 (Achiam 049

et al., 2023) and Gemini (Achiam et al., 2023; Team 050

et al., 2023) based on vast amounts of natural lan- 051

guage tasks and data that encompass the general 052

knowledge system of humanity, have shown sub- 053

stantial potential in domain-specific tasks. These 054

decoder-only models approach every task as a com- 055

pletion task through next-token prediction objec- 056

tive, and offer an alternative by integrating vari- 057

ous biological sequence-related tasks using natural 058

language as an intermediary while retaining con- 059

versational capabilities. Therefore, utilizing LLMs 060

combined with unified training and dataset con- 061

struction techniques can make it possible to replace 062

BERT-like models with the complicated fine-tuning 063

pipeline. 064

Recently, some studies have explored lever- 065

aging LLMs for tasks related to biological se- 066

quences through instruction tuning, such as 067

ChatNT (Richard et al., 2024) and ProLlama (Lv 068

et al., 2024). Although showing promising re- 069

sults, these models are trained on instruction-tuning 070

datasets containing only basic language patterns, 071

underutilizing the full linguistic capabilities of the 072

original LLMs. Moreover, these models mainly 073

focus on single-omics data for either protein or 074

DNA, limiting their potential to provide important 075

multi-omics understanding ability as a unified foun- 076

dational language model. Inspired by multimodal 077

LLMs like MiniGPT-4 (Zhu et al., 2023), we see 078

an opportunity to extend this approach to biology. 079

In biology, where molecular interactions are fun- 080

damentally grounded in the central dogma (Crick, 081

1970), integrating multi-omics data holds immense 082
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Figure 1: Comparative examples showcasing ChatMultiOmics performance against baseline models on multi-
molecular tasks. (a) Enhancer-Promoter Interaction Prediction (Min et al., 2021) after stage2 training. (b)
Antibody-Antigen Neutralization (AAN) (Zhang et al., 2022) after stage3 training. Note that AAN is not included
in stage3 training, which showcases our model’s task generalization capability.

potential for generating mutually reinforcing in-083

sights.084

Our study attempts to answer a key question:085

can instruction-tuned language models, proficient086

in understanding human language, also excel in087

understanding biological sequences to address bio-088

logically critical tasks? The motivation behind this089

inquiry lies in the intrinsic parallels between biolog-090

ical sequence data and human language—both are091

discrete, sequential, abundant, and rich in encoded092

information. These shared characteristics suggest093

that, with appropriate adaptation, instruction-tuned094

LLMs could unlock transformative capabilities in095

biology.096

To properly investigate the gap between hu-097

man language and biological sequences understand-098

ing, we introduce Biology-Instructions, the first099

large-scale, multi-omics biology sequence-related100

instruction-tuning benchmark supporting 21 dis-101

tinct tasks. This benchmark covers DNA, RNA,102

proteins and multi-molecular prediction tasks for103

a comprehensive understanding of biology. With104

Biology-Instructions, we conduct a comprehen-105

sive evaluation of kinds of open-source and closed-106

source LLMs, and reveal that most models includ-107

ing the state-of-the-art GPT-4o, perform at near-108

random levels on biological sequence-related un-109

derstanding tasks without prior specialized train-110

ing. This suggests the lack of inherent biological111

sequence knowledge in LLMs and highlights the 112

need for methods to effectively integrate these tasks 113

with LLMs. 114

Furthermore, we attempt to activate the biologi- 115

cal multi-omics sequence understanding ability of 116

LLMs with the constructed instruction data. We 117

discover that solely performing instruction tuning 118

on Biology-Instructions cannot yield satisfactory 119

results. To address this gap, we propose a three- 120

stage training pipeline: (1) train the model on un- 121

supervised DNA, RNA, and protein sequences; (2) 122

train the model on the question-answer pairs of 123

Biology-Instructions; (3) train the model on rea- 124

soning data. The first stage serves as a warm-up 125

to enhance the model’s ability to understand bio- 126

logical sequences. In the second stage, the model 127

follows natural language instructions to interpret 128

biological sequences. In the third stage, the model 129

leverages the implicitly learned knowledge base 130

to perform reasoning and deepen its understand- 131

ing of biological sequences. We include reasoning 132

data that starts with biological sequence analysis 133

and concludes with results based on prior analyses 134

and reasoning. This approach ensures that mod- 135

els maintain comprehensive conversational abili- 136

ties while gaining deeper insights into biological 137

sequences and tasks. We have implemented this 138

training pipeline on Llama3.1-8b-Instruct (Dubey 139

et al., 2024) using Biology-Instructions, resulting 140
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in significant performance improvements shown in141

Figure 1. Our findings and experiences are thor-142

oughly documented. The contributions of this study143

can be summarized as:144

• Multi-omics Instruction-Following Data.145

We present the first dataset specifically de-146

signed for multi-omics instruction-following,147

which includes reasoning instruction data and148

multi-sequence, multi-molecule instruction149

data. This dataset aims to improve the abil-150

ity of LLMs to comprehend and analyze bi-151

ological sequences. To ensure the quality of152

biology-instructions, we conduct a compre-153

hensive multi-stage quality control process,154

as detailed in Appendix E.155

• Multi-omics Instruction-Following Bench-156

mark. We benchmark Biology-Instructions157

on open-source and closed-source LLMs.158

Our results reveal that even current LLMs can159

not solve biological sequences-related tasks.160

• Biology-Specific LLMs and Three-Stage161

Training Pipeline. We develop a biology-162

focused LLM capable of handling tasks re-163

lated to multi-omics sequences by training164

an open-source LLM on biology-specific in-165

structions. We propose an efficient and novel166

three-stage pipeline to enhance the biology167

learning ability of LLM based on some impor-168

tant findings.169

2 Biology-Instructions170

2.1 Overview of Biology-Instructions171

To build a large-scale biology instruction-following172

dataset, we have gathered biology sequence data173

from a substantial aggregation of sources. This174

effort has resulted in a dataset encompassing 21175

subtasks related to multi-omics fields. The Biology-176

Instructions exhibits the following characteristics:177

Multi-omics Biology-Instructions comprises 21178

subtasks across three types of omics, including179

single-omics tasks and multi-omics interaction180

tasks. As shown in Section 4, joint training of181

different omics not only enhances efficiency by182

accomplishing multiple omics tasks with a single183

model but also improves the model’s capability in184

a specific omics domain.185

Large Scale With over 3 million training sam-186

ples, the Biology-Instructions dataset provides187

an extensive foundation for biological sequences- 188

related instruction data. This large-scale dataset 189

enables models to better understand the traits and 190

functions of biological sequences, leading to more 191

accurate and comprehensive responses to given 192

questions. 193

High Quality To ensure the quality of the 194

dataset, we manually draft question and answer 195

templates for each task type and expand the tem- 196

plate pool using Cluade-3.5-sunnet and GPT-4o. 197

The resulting number of question-answer template 198

pairs for each task ranges from 10,000 to 100,000, 199

depending on the data magnitude of each task type. 200

Throughout this process, we emphasize the impor- 201

tance of diversity in grammar and language style, 202

ensuring that samples in the Biology-Instructions 203

dataset have different question-answer styles. For 204

examples of question-answer template pairs, please 205

refer to Table 9. 206

Reasoning data Although previous stud- 207

ies (Richard et al., 2024; Liu et al., 2024b; Lv 208

et al., 2024) have demonstrated large-scale primary 209

instruction-following datasets can teach LLMs 210

to answer biological sequences-related questions, 211

they often fail to fully harness the powerful lan- 212

guage abilities of LLMs, as they focus primarily 213

on basic language patterns. In other words, they 214

fail to leverage the powerful conversational abil- 215

ities of these models to form natural and fluent 216

dialogues or to utilize reasoning to improve the 217

validity of the output results. To address this limi- 218

tation, we design a prompt that requires powerful 219

closed-source LLMs to reformulate answers for a 220

subset of the validation set of Biology-Instructions 221

and provide polished answers ready for end users 222

to read and understand, based on given questions 223

and original answers. We encourage the model to 224

deeply analyze the sequence and question first and 225

then generate a final polished answer grounded in 226

previous analysis and reasoning. 227

2.2 Biology-Instructions Construction 228

2.2.1 Tasks 229

As presented in Figure 2, the Biology-Instructions 230

dataset comprises 21 tasks: 6 DNA tasks, 6 RNA 231

tasks, 5 protein tasks, and 4 multi-molecule tasks. 232

When considering the number of input sequences, 233

there are 4 multi-molecule interaction tasks and 17 234

single-molecule tasks. Tasks were sourced from 235

high-impact literature, journals, and competitions, 236

ensuring coverage of biologically critical aspects 237
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Figure 2: Distribution of tasks across four omics types in our dataset.

in structure, function, and engineering across DNA,238

RNA, proteins, and their interactions. We focus on239

predictive sequence-understanding tasks, leaving240

generative applications, such as sequence design,241

for future research. To the best of our knowledge,242

Biology-Instructions is the first instruction dataset243

to include multi-omics tasks and multi-molecule244

interaction tasks. For detailed task definitions and245

distribution, please refer to Appendix B.2.246

2.2.2 Templates247

To convert the original classification and regres-248

sion task dataset into an instruction tuning dataset,249

we employ question-answer templates to integrate250

the data. The primary objective of creating these251

templates is to teach the model how to follow bi-252

ological instructions and complete tasks without253

overfitting to specific language patterns. To achieve254

this, we prioritize diversity in language styles, ex-255

pressive tones and lengths during the template con-256

struction process. We manually constructed 10257

question templates and 10 answer templates for258

each task, covering various styles including, but259

not limited to, request, concise, informal, and aca-260

demic styles. Then, we used GPT-4o and Claude-261

3.5-sunnet to expand the templates. Depending on262

the data volume for each task, we included 100263

to 300 question templates and 100 to 300 answer264

templates. Ultimately, each task resulted in 10,000265

to 100,000 question-answer template pairs. Since266

biological sequences are generally much lengthier 267

than natural language prompts, we place the bio- 268

logical sequence at the very beginning of question 269

templates for single biology sequence tasks for non- 270

interaction tasks. This approach helps prevent the 271

prompts from being overwhelmed by the lengthy bi- 272

ological sequences, ensuring that the model can ac- 273

curately understand the question and complete the 274

task. Figure 10 provides examples of the instruc- 275

tion prompts constructed for each type of omics, 276

illustrating the diversity and structure of the tem- 277

plates used in the dataset. 278

2.2.3 Reasoning data construction 279

Similar to the data construction method used by 280

LlaVA (Liu et al., 2024a). For a biology sequence 281

Xs and its related question Xq, simple answer Ys, 282

we prompt GPT-4o-Mini to construct an optimized 283

answer Yo based on the given information. Gener- 284

ally, the instruction data were transformed to the 285

format USER:Xs, Xq ASSISTANT:Yo. 286

In the system prompt used for GPT-4o-Mini, as 287

shown in Figure 9, we emphasized the following 288

key points to ensure the production of high-quality 289

data: (1) first understand the provided biological 290

sequence and the question; (2) analyze the bio- 291

logical sequence at the nucleotide or amino acid 292

level, aiming to extract question-related informa- 293

tion from the sequence; (3) refine the answer based 294

on the previous analysis, including a rational ex- 295
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Figure 3: Overview of our data construction pipeline: Step1: Collect data from primary databases and categorize
downstream tasks; Step2: Create diverse instruction prompts based on tasks; Step3: Use LLMs to enhance dataset
quality; Step4: Follow key principles for reasoning data construction.

planation and a chain of thought approach, espe-296

cially for complex questions; (4) list any relevant297

knowledge and information from reliable sources,298

and cite these sources appropriately; (5) return the299

polished answer in an end-to-end style, exclud-300

ing any information from the standard answer and301

task hint. By following this approach, we gathered302

8000 final AI-polished training data points without303

two multi-molecule tasks: antibody-antigen neu-304

tralization and RNA-protein interaction prediction305

to study transfer learning for reasoning capabil-306

ity. Figure 3 provides an overview of the complete307

construction process for Biology-Instructions, in-308

cluding the data collection, template construction,309

and reasoning data construction stages.310

2.3 Evaluation Pipeline and Metrics311

Our evaluation framework is designed to assess the312

performance of each model’s output on Biology-313

Instructions in a robust approach. The task types,314

regardless of their respective omics, can be orga-315

nized into single-label regression, multi-label re-316

gression, binary classification, multi-class classifi-317

cation, and multi-label classification, each requir-318

ing specialized evaluation metrics to capture model319

performance nuances. The evaluation pipeline in-320

volves pre-processing data from models’ output,321

grouping entries by task, and then computing task-322

specific metrics. The metrics outcomes for report-323

ing are all scaled by 100 and rounded to 2 decimals.324

Detailed information is provided in Appendix B.3.325

3 Model 326

As shown in Figure 4, we train a model based on 327

Llama3.1-8B-Instruct (Dubey et al., 2024) named 328

ChatMultiOmics using multi-omics pre-training 329

data and Biology-Instructions. In general, we per- 330

form a three-stage training paradigm to enhance 331

the interactive biological sequence-related chat per- 332

formance of the final biology assistant. For specific 333

training details such as training strategy, please 334

refer to Appendix C. 335

3.1 Stage 1: biological sequences continued 336

pre-training 337

Although the memory savings facilitated by 338

LoRA (Devalal and Karthikeyan, 2018) are not 339

that obvious when optimizer states are distributed 340

across GPUs compared with training on a single 341

GPU, LoRA can still significantly reduce training 342

time by minimizing communication between data 343

parallel ranks. However, directly applying LoRA to 344

train a chat model on Biology-Instructions results 345

in suboptimal performance on specific downstream 346

tasks. Specifically, the model shows near-random 347

performance in classification and regression tasks. 348

As noted by (Ghosh et al.), LoRA supervised fine- 349

tuning (SFT) primarily leverages pre-trained knowl- 350

edge to generate well-formed answers based on the 351

output format learned from SFT data. We suspect 352

that large-scale LoRA instruction tuning on biolog- 353

ical sequence-related data suffers due to the lack 354

of pre-training on biological sequence data, which 355

is evident from the baseline results. Therefore, 356
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Figure 4: Overview of our three-stage training pipeline.

continued pre-training of the model is essential357

for better performance. This involves teaching the358

model with biological sequences to enable it to359

understand the nature and functions of biological360

sequences. For this process, we utilized unlabeled361

human DNA data from the Genome Reference Con-362

sortium Human Genome (GRCh) (Harrow et al.,363

2012), human non-coding RNA data from RNA-364

Central (rna, 2019), and protein sequences from365

UniRef50 (Suzek et al., 2007) during the first phase366

of pre-training. This initial pre-training served as367

a foundational warm-up to improve the model’s368

comprehension across multi-omics biological se-369

quences.370

We employed LoRA+ (Hayou et al., 2024) for371

all linear layers of our model, training on a con-372

tinued pre-training dataset. LoRA+ demonstrates373

superior convergence compared to vanilla LoRA by374

increasing the learning rate of the zero-initialized375

weight B relative to the base learning rate for376

normal-initialized weight A and other trainable pa-377

rameters. Hayou et al. (2024) observed that setting378

the learning rate of weight B to 16 times that of379

weight A results in more effective model conver-380

gence. However, our experiments revealed that381

while LoRA+ indeed improves convergence rates,382

applying a large learning rate multiplier can lead383

to instability during the continued pre-training pro-384

cess for biological sequences. Based on this obser-385

vation, we opted for a more conservative learning386

rate multiplier of 4. We trained the normalization387

layers of the model alongside LoRA parameters.388

3.2 Stage 2: massive instruction tuning389

In Stage 2, we employ the Biology-Instructions390

dataset, excluding the reasoning sub-dataset. In391

the initial attempts of the training process, we392

find that the imbalance among tasks within the393

dataset can pose challenges for the model in dis-394

tinguishing between different tasks. To mitigate395

this, we randomly select 30 percent of the train- 396

ing data and prepend a task label in the format 397

”[Classification/Regression:task name]” at 398

the beginning of each question. This method effec- 399

tively aids the model in identifying different tasks 400

and output objectives. 401

We use a system prompt Psc: ”You are a knowl- 402

edgeable and helpful biology assistant. Please an- 403

swer my biology sequence-related questions in a 404

clear and concise manner. For regression tasks, 405

please return a number.” This prompt helps the 406

model to differentiate biology sequence-related 407

tasks from other tasks. As illustrated in Figure 408

7, we maintain the data format: SYSTEM:Psc 409

USER:Xs, Xq ASSISTANT:Yo consistent with the 410

Llama3.1 instruct-tuned model chat completion for- 411

mat, which is crucial for optimal model perfor- 412

mance. 413

3.3 Stage 3: Reasoning instruction tuning 414

In stage 3, we use the reasoning sub-dataset from 415

Biology-Instructions to fine-tune the model. To 416

keep the classification and regression performance 417

of the model, we additionally select 3000 samples 418

from the validation set composed of non-reasoning 419

data to be trained simultaneously. 420

To better control the behavior of the model, a 421

more detailed system prompt Psd was used for 422

reasoning data: ”You are a highly knowledgeable 423

AI assistant specializing in biology, particularly 424

in sequence-related topics. Your primary task is 425

to provide clear, accurate, and comprehensive an- 426

swers to biology questions. When analyzing and 427

interpreting sequences, ensure to provide step-by- 428

step explanations to make your responses natural 429

and easy to understand. Engage with the user 430

by asking clarifying questions if needed and of- 431

fer detailed insights into the biological sequences.” 432

In this case, the format of training samples of 433

reasoning data is transformed to SYSTEM:Psd 434
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Figure 5: Radar plot comparing the performance of ChatMultiOmics with SOTA baselines on all 21 downstream
tasks grouped by omics including DNA, RNA, Protein, and Multi-molecule tasks.

USER:Xs, Xq ASSISTANT:Yo.435

4 Results436

4.1 Experimental Setups437

To evaluate the biological sequence understand-438

ing capabilities of current LLMs and deter-439

mine if our method can enhance LLMs’ perfor-440

mance, we compare ChatMultiOmics with vari-441

ous open-source general-purpose LLMs: Llama3.1-442

8B-Instruct (Dubey et al., 2024), Llama2-7B-443

Chat (Touvron et al., 2023), Alpaca-7B (Taori444

et al., 2023), Vicuna-v1.5-7B (Chiang et al.,445

2023), Qwen2-7B (Bai et al., 2023), GLM4-9B-446

Chat (GLM et al., 2024), and Galactica-1.3b (Tay-447

lor et al., 2022). Additionally, we include com-448

parisons with SOTA closed-source LLMs: GPT-449

4o and GPT-4o-Mini. We also evaluate biology-450

specialized LLMs: InstructProtein-1.3B (Wang451

et al., 2023), Llama-molinst-protein-7B (Fang et al.,452

2023), and BioMedGPT-LM-7B (Zhang et al.,453

2023). To ensure well-formed and quantifiable an-454

swers, we restrict the output format for all baselines455

and provide them with task information, enabling456

them to understand both what to output and how457

to format their output. The experimental results458

are visualized in Figure 5, showcasing the com-459

parative performance of various LLMs across four460

types of datasets: DNA, RNA, protein, and multi-461

molecule interactions.For the full experimental462

results, please refer to Appendix D.463

4.2 Findings.1: Generic LLMs are not464

capable of biological understanding465

To assess whether LLMs can effectively tackle466

tasks related to biological sequences, we con-467

ducted comprehensive experiments using both468

open-source and closed-source general-purpose469

LLMs. For open-source LLMs, we selected mod- 470

els of comparable size to our model, ChatMulti- 471

Omics. For closed-source LLMs, we evaluated 472

SOTA models such as GPT-4o and its streamlined 473

version, GPT-4o-mini.The results unequivocally 474

demonstrate that all open-source LLMs of simi- 475

lar size to ChatMultiOmics fail to surpass average 476

performance levels. Similarly, the closed-source 477

LLMs, GPT-4o and GPT-4o-mini, exhibit perfor- 478

mance on par with the open-source models. 479

Notably, models within the same series but with 480

different versions, such as Llama2-7B-Chat and 481

Llama3.1-8B-Instruct, as well as models within the 482

same series but of different sizes, like GPT-4o and 483

GPT-4o-mini, show comparable performance on 484

tasks involving biological sequences.These find- 485

ings suggest that the language capabilities of these 486

models do not directly correlate with their perfor- 487

mance in understanding biological sequences. This 488

implies that natural language performance does not 489

determine the effectiveness of these models in bio- 490

logical sequence understanding tasks, indicating a 491

significant lack of pre-trained biological sequence 492

knowledge. Despite LLMs possessing extensive 493

text-based biological knowledge, they struggle to 494

establish a connection between this knowledge and 495

biological sequences, and they are unable to delve 496

into the molecular level to analyze biological se- 497

quences effectively. 498

4.3 Findings.2: Current biology-specified 499

LLMs can not handle multi-omics tasks 500

Biology-specified LLMs have demonstrated re- 501

markable performance on a variety of tasks. For 502

instance, the Llama-molinst-protein-7B model ex- 503

cels in five key areas of protein understanding, in- 504

cluding the prediction of catalytic activity, protein 505

design, protein function prediction, and more. De- 506
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Figure 6: Ablation studies showing the performance across different training stages. One downstream task from
each omics type is selected for display. Each bar color corresponds to a specific training approach. The blue dashed
line indicates where random performance is for each task according to the respective metric.

spite these impressive achievements, these meth-507

ods exhibit limitations. Notably, they lack transfer508

learning capabilities across multi-omics tasks and509

fail to outperform general-purpose baselines even510

in single-omics tasks, and in some cases, these511

models even cannot follow the instructions. This512

indicates that while specialized LLMs are highly513

effective within their specific domains, their appli-514

cability and efficiency in broader, more integrative515

biological studies remain constrained.516

4.4 Findings.3: Continued Pre-trained on517

biological sequences helps instruction518

tuning519

Previous studies have utilized LoRA (Fang et al.,520

2023; Lv et al., 2024) for model training. However,521

our experimental findings suggest that employing522

LoRA to fine-tune models on Biology-Instructions523

does not result in performance enhancements. For524

LoRA fine-tuning, the quality and quantity of the525

pre-training on related knowledge appear to be a526

critical factor for achieving good results, as indi-527

rectly proved by the experimental setup in (Fang528

et al., 2023), where full fine-tuning was applied529

to protein-related tasks and LoRA fine-tuning was530

used for other tasks, alongside the near-random per-531

formance of the baselines on biological-sequences532

understanding tasks. After continued pre-training533

on multi-omics sequences, LoRA fine-tuning on534

Biology-Instructions does help the model leverage535

the intrinsic relationships and dependencies from536

pre-trained knowledge. The results of the second537

stage surpass those of instruction-tuning without538

continued pre-training, as shown in Figure 6.539

4.5 Findings.4: Reasoning dataset boosts540

overall performance and demonstrates541

transfer learning capability542

We hypothesize that the model’s performance can543

be enhanced by incorporating task information and544

reasoning steps, which can aid the model in better545

understanding the task and consequently lead to im-546

proved results. We tested the third-stage model us- 547

ing the system prompt Psc to facilitate results com- 548

putation. The results indicate that in most tasks, 549

performance was enhanced. However, for some 550

regression tasks, the performance was slightly ad- 551

versely affected by the third-stage training. 552

Furthermore, when the reasoning system prompt 553

Psd was used, the model demonstrated excellent 554

reasoning capabilities and extended its perfor- 555

mance to untrained tasks, such as antibody-antigen 556

neutralization and RNA-protein interaction predic- 557

tion, as illustrated in Figure 1 (b). 558

5 Conclusion 559

In this work, we present Biology-Instructions, the 560

first large-scale, multi-omics biological sequences- 561

related instruction-tuning dataset. Biology- 562

Instructions bridges the gap between LLMs and 563

complex biological tasks by including 21 differ- 564

ent tasks involving DNA, RNA, proteins, and 565

multi-molecule interactions, covering both single- 566

sequence and interaction analyses. By incorpo- 567

rating reasoning capabilities, Biology-Instructions 568

can enable LLMs versatile in handling complex bi- 569

ological tasks while maintaining conversational flu- 570

ency. Our evaluation shows that SOTA LLMs, like 571

GPT-4, struggle with biological sequence-related 572

tasks without specialized training. Using Biology- 573

Instructions for instruction tuning, we demonstrate 574

significant improvements, proving its value in en- 575

hancing LLMs for multi-omics sequence analy- 576

sis. We also develop a strong baseline, ChatMul- 577

tiOmics, with a three-stage training pipeline: bio- 578

logical sequences continued pre-training, massive 579

instruction tuning, and reasoning instruction tuning. 580

This pipeline leads to notable performance gains, 581

providing an effective approach to train LLMs for 582

addressing biological challenges. 583
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6 Limitations584

While Biology-Instructions is a significant advance-585

ment, it still has areas for improvement. The dataset586

covers primarily the predictive tasks. Future ver-587

sions of this work should include generative tasks,588

such as designing novel protein sequences, which589

could greatly enhance its utility in protein engineer-590

ing. ChatMultiOmics shows promising reasoning591

capabilities, yet further enhancements are needed592

to make its outputs more practical and reliable. To593

enhance model performance, we could use hybrid594

architectures that combine specialized biological to-595

kenizers or encoders with LLMs. This could reduce596

information loss during the tokenization of biolog-597

ical sequences. Integrating structural data, such598

as 3D molecular coordinates, could improve the599

model’s ability to capture functional implications600

of molecular structures. Incorporating multi-hop601

data could be another potential enhancement for602

the model to reason over interconnected biological603

datasets and capture more intricate relationships604

across multiple omics layers. Future efforts should605

also expand evaluation metrics beyond accuracy to606

include interpretability, robustness, and computa-607

tional efficiency, offering a more holistic view of608

model performance. Long chain-of-thought rea-609

soning models have demonstrated strong perfor-610

mance across a variety of complex tasks, such as ad-611

vanced mathematical reasoning. These models also612

hold significant potential for excelling in biology-613

sequence-related tasks as they can further bridge614

the gap of natural language and biology language.615

However, benchmarking long chain-of-thought rea-616

soning models and developing more powerful mod-617

els through such approaches is a comprehensive618

and labor-intensive endeavor, which we leave for619

future research. Future work could involve bench-620

marking various long chain-of-thought reasoning621

models—such as DeepSeek-R1 (Guo et al., 2024)622

and QwQ-32B (Team, 2025) on biology-sequence-623

related tasks using the Biology-Instructions dataset.624

Additionally, future works may explore construct-625

ing a long chain-of-thought-enhanced version of626

Biology-Instructions through rejection sampling627

techniques. Furthermore, by leveraging this en-628

hanced dataset alongside supervised fine-tuning or629

reinforcement learning methods, future studies can630

aim to improve the biological sequence understand-631

ing capabilities of LLMs.632
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A Related works921

A.1 Large Language Models922

In recent years, LLMs have demonstrated signifi-923

cant advancements in the field of natural language924

processing (NLP). These models undergo self-925

supervised training on a substantial corpus of data926

in order to acquire knowledge. By means of fine-927

tuning the instructions, the capabilities of the model928

are enhanced, enabling it to respond to questions929

based on the specific prompt. Currently, numerous930

open-source models are available, including the931

Llama series (Dubey et al., 2024), Qwen series (Bai932

et al., 2023), GLM series (GLM et al., 2024), and933

numerous models fine-tuned based on Llama, such934

as Alpaca (Taori et al., 2023) and Vicuna (Chiang935

et al., 2023). Additionally, Galactica (Taylor et al.,936

2022) is a model that demonstrates exceptional per-937

formance in scientific domains and is trained on938

data from a multitude of scientific fields. Further-939

more, there are closed-source SOTA models, such940

as GPT-4o and GPT-4o-mini. However, these mod-941

els are not pre-trained on specific biological data,942

and their capabilities are severely constrained, even943

Galactica.944

A.2 Biology Large Language Models945

Researchers have concentrated on enhancing the946

capabilities of LLMs in the biology area. In-947

structProtein (Wang et al., 2023) aligns human948

and protein language through knowledge instruc-949

tions. Another study (Fang et al., 2023) utilizes950

the protein part of a specially designed dataset951

called Mol-Instructions for instruction tuning with952

LLaMA-7B. ProLLaMA (Lv et al., 2024) is also953

a recent work focusing on multi-protein tasks954

through a two-stage training process from LLaMA-955

2. These methods can only deal with several956

protein tasks well, limited by fixed instruction957

templates. BioMedGPT (Zhang et al., 2023) is958

equipped with a special vision encoder, allowing959

the model to answer multi-modal biological ques-960

tions. However, lacking specialized large-scale961

biological instruction datasets, BioMedGPT can-962

not understand biological sequence languages very963

well. ChatNT (Richard et al., 2024) integrates a964

biological sequence encoder with a LLM, enabling965

effective handling of DNA-centric tasks using only966

an instruction-tuning dataset. However, it faces967

challenges in combining multiple encoder models968

from various omics domains into a unified LLM969

due to dependence on the encoder’s capabilities.970

B Detail information of 971

Biology-Instructions and Evaluation 972

Metrics 973

B.1 Impact 974

The Biology-Instructions dataset addresses critical 975

challenges in computational biology across multi- 976

ple omics domains. DNA instructions improve our 977

understanding of regulatory elements in gene ex- 978

pression. RNA instructions tasks offer insights 979

into transcriptomics and regulation at the RNA 980

level. Protein instructions enhance our knowl- 981

edge of protein functions, interactions, and their rel- 982

evance in drug development. Multi-molecular in- 983

structions explore biomolecular interactions, such 984

as RNA-protein and promoter-enhancer, revealing 985

regulatory networks. By supporting these diverse 986

tasks, Biology-Instructions advances multi-omics 987

research and fosters new discoveries in genetic reg- 988

ulation and therapeutic development. 989

B.2 Tasks Definition 990

B.2.1 DNA tasks 991

Epigenetic Marks Prediction This is a binary 992

classification task that predicts whether a DNA se- 993

quence has chemical modifications affecting gene 994

regulation without changing the DNA itself. Epi- 995

genetic marks are crucial for understanding gene 996

regulation and its impact on health and disease. We 997

use part of the DNABERT-2 dataset (Zhou et al., 998

2024), containing 28,740 DNA sequences, some 999

of which are chemically modified. Model perfor- 1000

mance is evaluated using the Matthews Correlation 1001

Coefficient (MCC). 1002

EA Prediction This is a regression task that pre- 1003

dicts the activity levels of enhancer regions in the 1004

DNA sequences. By predicting the activity levels 1005

of enhancers, scientists can gain deeper insights 1006

into how genes are regulated in specific tissues or 1007

under certain conditions. The target value are two 1008

numeric numbers that reflects the housekeeping 1009

and developmental activity level. The dataset is 1010

sourced from the DeepSTARR (de Almeida et al., 1011

2022), consisting of DNA sequences annotated 1012

with enhancer activities. We evaluate performance 1013

of the model using Pearson Correlation Coefficient 1014

(PCC), reflecting its ability to decide levels of ac- 1015

tivity across different DNA sequences. 1016

Promoter Detection 300 & Promoter Detec- 1017

tion Core These two tasks are both binary classi- 1018

fication tasks for identifying promoter regions in 1019

DNA sequences(exist or not). Promoter Detection 1020
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Table 1: Tasks information of Biology-Instructions

Task Omics #Training/Validation/Test

DNA Tasks
Epigenetic Marks Prediction (EMP) DNA 229885/28741/28741

EA Prediction (EA) DNA 402296/40570/41186
Promoter Detection 300 (PD300) DNA 94712/11840/11840
Core Promoter Detection (CPD) DNA 94712/11840/11840

Transcription Binding Sites Detection Human (TB-H) DNA 128344/5000/5000
Transcription Binding Sites Detection Mouse (TB-M) DNA 80018/10005/10005

RNA Tasks
APA Isoform Prediction (APA) RNA 1575557/33170/49755

Non-coding RNA Function Classification (ncRNA) RNA 5670/650/4840
Modification Prediction (Modif) RNA 304661/3599/1200

Mean Ribosome Loading Prediction (MRL) RNA 76319/7600/7600
Programmable RNA Switches (PRS) RNA 73227/9153/11019

CRISPR On Target Prediction (CRI-On) RNA 1453/207/416
Protein Tasks

Enzyme Commission Number Prediction (EC) Protein 15551/1729/1919
Stability Prediction (Sta) Protein 53614/2512/12851

Fluorescence Prediction (Flu) Protein 21446/5362/27217
Solubility Prediction (Sol) Protein 62478/6942/2001

Thermostability Prediction (Ther) Protein 5056/639/1336
Multi-molecular Tasks

Antibody-Antigen Neutralization (AAN) Multi-molecule 22359/1242/3301
RNA-Protein Interaction Prediction (RPI) Multi-molecule 14994/1666/4164

Enhancer-Promoter Interaction Prediction (EPI) Multi-molecule 14288/1772/308
siRNA Efficiency Prediction (siRNA) Multi-molecule 53592/6707/6688

Total
All 3330232/190946/244681

300 refers to detecting promoter regions within a1021

300 base pair (bp) window, which includes both1022

the core promoter region and the surrounding reg-1023

ulatory elements. While promoter detection core1024

refers to detect a shorter, core sequence (usually1025

around 50-100 bp) directly upstream of the tran-1026

scription start site. Both tasks are important for1027

understanding gene regulation and can aid in study-1028

ing transcriptional activity, identifying novel genes,1029

and mapping gene expression patterns. For these1030

tasks, we also adopt the dataset part of DNABERT-1031

2 (Zhou et al., 2024). Evaluation of the model1032

performance is done using MCC, capturing the1033

model’s ability to predict the existence of promot-1034

ers on different sequence contexts balancedly.1035

Transcription Binding Sites Detection We de-1036

fine this a binary classification task, to determine1037

whether specific regions with transcription factors1038

binding in the DNA sequences or not. These tran-1039

scription binding sites (TBS) are critical for con-1040

trolling the initiation, enhancement, or repression 1041

of transcription. Once more, data from DNABERT- 1042

2 is utilized for this task (Zhou et al., 2024), which 1043

includes numerous DNA sequences, partly possess- 1044

ing TBS. The performance of the model is eval- 1045

uated using MCC, fairly measuring its ability to 1046

discover TBS in different DNA sequences. 1047

Enhancer-Promoter Interaction Prediction 1048

This is a binary classification task, which involves 1049

identifying the interactions between enhancer re- 1050

gions and their corresponding promoter regions in 1051

a pair of DNA sequences. Predicting these interac- 1052

tions helps researchers understand the complex reg- 1053

ulatory networks governing DNA activity, which 1054

is essential for studying developmental processes 1055

and potential therapeutic targets. We extract our 1056

dataset from the research (Min et al., 2021), which 1057

all contains two DNA sequences. The model needs 1058

to figure out whether they interact with each other. 1059

We evaluate the performance of the model using 1060
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the metric MCC, to test whether the model can1061

identify these interactions correctly.1062

B.2.2 RNA tasks1063

APA Isoform Prediction This is a regression task1064

which predicts the usage of alternative polyadenyla-1065

tion (APA) isoforms by analyzing RNA sequences1066

and outputting a proportion between 0 and 1 that1067

represents the relative expression of each APA iso-1068

form. Accurate APA isoform prediction is critical1069

for understanding the regulation of gene expression1070

at the RNA level, which plays a fundamental role1071

in transcriptome diversity. For this task, we adopt1072

APARENT’s (Bogard et al., 2019) APA isoform1073

prediction dataset, which consists of isoform usage1074

data derived from synthetic and human 3’UTRs.1075

The output represents the proportion of isoform1076

usage, capturing the variability in polyadenylation1077

signal processing. The performance of the predic-1078

tion is evaluated using the Coefficient of Determi-1079

nation (R2).1080

Non-coding RNA Function Classification This1081

is a multi-label classification task that predicts the1082

functional class of non-coding RNA (ncRNA) se-1083

quences. The model outputs one or more class la-1084

bels from a set of 13 possible ncRNA classes, such1085

as ’tRNA’, ’miRNA’, and ’riboswitch’. Accurately1086

classifying ncRNAs is essential for improving our1087

understanding of their regulatory roles in gene ex-1088

pression, as well as their contributions to diverse1089

biological processes and diseases. For this task,1090

we adopt the nRC (non-coding RNA Classifier)1091

dataset from (Fiannaca et al., 2017), which utilizes1092

features derived from ncRNA secondary structures.1093

The output assigns each RNA sequence to one or1094

more functional classes, enabling a detailed exami-1095

nation of the functional diversity within ncRNAs.1096

The performance of the model is evaluated using1097

accuracy (Acc), reflecting the model’s ability to1098

correctly classify ncRNA functions across all cate-1099

gories.1100

Modification Prediction This is a multi-label1101

classification task that predicts post-transcriptional1102

RNA modifications from RNA sequences. The1103

model outputs one or more modification types from1104

a set of 12 widely occurring RNA modifications,1105

including ’m6A’, ’m1A’, and ’m5C’. Precise iden-1106

tification of RNA modification sites is essential for1107

understanding the regulatory mechanisms of RNA1108

and their roles in various biological processes. For1109

this task, we adopt the MultiRM dataset from (Song1110

et al., 2021), which contains RNA sequences an-1111

notated with multiple modification types. The per- 1112

formance of the model is evaluated using the Area 1113

Under the Curve (AUC), capturing the model’s abil- 1114

ity to predict RNA modifications across different 1115

contexts. 1116

Mean Ribosome Loading Prediction This is a 1117

regression task that predicts ribosome loading effi- 1118

ciency by analyzing RNA sequences and outputting 1119

a numeric value, representing mean ribosome load- 1120

ing, with two decimal precision. Accurate pre- 1121

diction of ribosome loading is essential for under- 1122

standing how cis-regulatory sequences, such as 5’ 1123

untranslated regions (UTRs), influence translation 1124

efficiency, which is crucial for both fundamental 1125

biological research and applications in synthetic 1126

biology and mRNA therapeutics. For this task, we 1127

adopt the dataset from (Sample et al., 2019), which 1128

includes polysome profiling data of 280,000 ran- 1129

domized 5’ UTRs and 35,212 truncated human 5’ 1130

UTRs. The performance of the model is evaluated 1131

using the Coefficient of Determination (R2), mea- 1132

suring its ability to predict ribosome loading across 1133

different sequence contexts. 1134

Programmable RNA Switches This is a multi- 1135

label regression task that predicts the behavior of 1136

programmable RNA switches by analyzing RNA 1137

sequences and outputting three numeric values rep- 1138

resenting the ’ON’, ’OFF’, and ’ON/OFF’ states, 1139

each with two decimal precision. Accurate predic- 1140

tion of these states is critical for advancing syn- 1141

thetic biology, as RNA switches are essential tools 1142

for detecting small molecules, proteins, and nu- 1143

cleic acids. For this task, we adopt the dataset 1144

from (Angenent-Mari et al., 2020), which includes 1145

synthesized and experimentally characterized data 1146

for 91,534 toehold switches spanning 23 viral 1147

genomes and 906 human transcription factors. The 1148

performance of the model is evaluated using the 1149

Coefficient of Determination (R2), measuring the 1150

model’s ability to predict the functional states of 1151

RNA switches across diverse sequence contexts. 1152

(Ren et al., 2024) 1153

This is a multi-label regression task that predicts 1154

the behavior of programmable RNA switches by 1155

analyzing RNA sequences and outputting three nu- 1156

meric values representing the ’ON’, ’OFF’, and 1157

’ON/OFF’ states, each with two-decimal precision. 1158

Accurate prediction of these states is crucial for ad- 1159

vancing synthetic biology, as RNA switches serve 1160

as essential tools for detecting small molecules, pro- 1161

teins, and nucleic acids. For this task, we use the 1162

dataset from (Angenent-Mari et al., 2020), which 1163
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includes synthesized and experimentally charac-1164

terized data for 91,534 toehold switches spanning1165

23 viral genomes and 906 human transcription fac-1166

tors. This dataset is also included in the RNA-1167

related tasks benchmark BEACON (Ren et al.,1168

2024). Model performance is evaluated using the1169

Coefficient of Determination (R2), assessing the1170

model’s ability to predict the functional states of1171

RNA switches across diverse sequence contexts.1172

CRISPR On Target Prediction This is a re-1173

gression task that predicts the on-target knockout1174

efficacy of single guide RNA (sgRNA) sequences1175

using CRISPR systems. The model outputs a nu-1176

meric value that represents the predicted sgRNA1177

knockout efficacy for a given RNA sequence. Accu-1178

rate prediction of on-target efficacy is essential for1179

optimizing the design of sgRNAs with high speci-1180

ficity and sensitivity, which is crucial for success-1181

ful CRISPR-based genome editing. For this task,1182

we adopt the DeepCRISPR dataset from (Chuai1183

et al., 2018), which includes sgRNA sequences1184

and their corresponding on-target knockout effi-1185

cacy data. The performance of the model is evalu-1186

ated using Spearman’s correlation, measuring the1187

model’s ability to predict the effectiveness of sgR-1188

NAs across different genetic contexts.1189

siRNA Efficiency Prediction This is a regres-1190

sion task that predicts the efficiency of siRNA in si-1191

lencing target genes by analyzing modified siRNA1192

sequences and corresponding target sequences, out-1193

putting a numeric value representing the percentage1194

of mRNA remaining after siRNA treatment. Ac-1195

curate prediction of siRNA efficiency is crucial1196

for optimizing siRNA design in RNA interference1197

(RNAi) applications, which plays a critical role in1198

gene expression regulation and has significant im-1199

plications in therapeutic interventions. For this task,1200

we adopt the dataset from the competition (SAIS,1201

2020), which contains chemically modified siRNA1202

sequences and their measured silencing efficiency1203

data. The performance of the model is evaluated1204

using a mixed score, reflecting its ability to predict1205

the mRNA remaining percentage across different1206

chemical modifications and experimental condi-1207

tions.1208

B.2.3 Protein tasks1209

Enzyme Commission (EC) Number Prediction.1210

This is a multi-label classification task which pre-1211

dicts enzyme functions by annotating protein se-1212

quences with all corresponding EC numbers. We1213

adopt DeepFRI’s (Gligorijević et al., 2021) EC an-1214

notation dataset from PDB chains, whose binary 1215

multi-hot vectors are converted back into corre- 1216

sponding EC numbers for language capability in 1217

our task. The performance of the prediction is eval- 1218

uated using the Fmax metrics. Accurate EC num- 1219

ber prediction is crucial for understanding enzyme 1220

catalytic functions, accelerating the discovery of 1221

novel enzymatic activities. This has applications 1222

in biotechnology, including optimizing enzymes 1223

for industrial use and drug development. By pre- 1224

dicting catalytic activities, researchers can engineer 1225

enzymes tailored for therapeutic interventions, con- 1226

tributing to drug discovery and targeted treatments. 1227

Stability Prediction. This is a regression task to 1228

assess the intrinsic stability of proteins under vari- 1229

ous conditions, with each protein sequence mapped 1230

to a continuous stability score that reflects how well 1231

the protein maintain its fold above a certain concen- 1232

tration threshold like EC50. We adopt the dataset 1233

from Rocklin et al. (Rocklin et al., 2017), which 1234

includes protease EC50 values derived from exper- 1235

imental data. The model’s performance is assessed 1236

using Spearman’s correlation. Predicting protein 1237

stability is essential in protein engineering, espe- 1238

cially for therapeutic applications where protein 1239

integrity is crucial. These predictions reduce the 1240

need for experimental screening, facilitating the de- 1241

sign and refinement of stable proteins for industrial, 1242

pharmaceutical, and research purposes. 1243

Fluorescence Prediction. This is a regression 1244

task that aims to evaluate the model’s ability to pre- 1245

dict fluorescence values for higher-order mutated 1246

green fluorescent protein (GFP) sequences. This 1247

is a regression task where each protein sequences 1248

is mapped to the logarithm of its florescence inten- 1249

sity (Sarkisyan et al., 2016). Following the setting 1250

in TAPE (Rao et al., 2019), the model is trained 1251

on a set of mutants with a low number of muta- 1252

tions, while tested on mutants with four or more 1253

mutations. The task is designed to assesses how 1254

well the model generalized to unseen combinations 1255

of mutations by leveraging Spearman’s correlation 1256

to evaluate predictive performance. Accurate fluo- 1257

rescence prediction in higher-order mutated GFP 1258

aids in understanding mutation effects and inter- 1259

actions. These predictions provide insights into 1260

protein function and help efficiently explore muta- 1261

tional landscapes, facilitating the design of fluores- 1262

cent proteins for applications in synthetic biology 1263

and protein engineering. 1264

Solubility Prediction. This is a binary clas- 1265

sification task to determine whether a protein is 1266
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soluble or insoluble. The dataset is sourced from1267

the DeepSol (Khurana et al., 2018), ensuring thast1268

protein sequences with a sequence identity greater1269

than 30 percent to any sequence in the test set are1270

excluded from training. The challenge is to test1271

a model’s capacity to generalize across dissimilar1272

protein sequences. Predicting protein solubility is1273

crucial for pharmaceutical research and industrial1274

biotechnology. Soluble proteins are essential for1275

drug formulation and large-scale production. This1276

task drives the development of advanced in silico1277

methods to predict solubility, reducing laboratory1278

testing and accelerating the discovery of therapeu-1279

tically relevant proteins.1280

Thermostability Prediction. This is a regres-1281

sion task to predict the stability of proteins at el-1282

evated temperatures. The target value reflects the1283

thermostability of a given protein sequence. We1284

focus on the Human-cell split from the FLIP (Dal-1285

lago et al., 2021), sequences are clustered by iden-1286

tity and divided into training and test sets. Model1287

prediction performance is evaluated by the met-1288

ric Spearman correlation. Accurate prediction of1289

protein thermostablity enhances understanding of1290

protein function and stability, which is critical for1291

protein engineering. These predictions support pro-1292

tein optimization in biotechnological applications,1293

including drug and vaccine development (Chen and1294

Gong, 2022), and provide a framework for select-1295

ing thermostable proteins.1296

B.2.4 Multi-molecule tasks1297

RNA-Protein This is a binary classification task,1298

the objective of which is to identify interactions1299

between non-coding RNAs (ncRNAs) and proteins,1300

based on the sequences of the aforementioned ncR-1301

NAs and proteins. The majority of ncRNAs interact1302

with proteins to perform their biological functions.1303

Consequently, inferring the interactions between1304

ncRNAs and proteins can facilitate the compre-1305

hension of the potential mechanisms underlying1306

biological activities involving ncRNAs (Li et al.,1307

2016). The dataset employed in this study was1308

derived from (Han and Zhang, 2023), comprising1309

14,994 samples. The evaluation metric employed1310

was MCC.1311

Antibody-Antigen This is a binary classifica-1312

tion task, which seeks to ascertain whether a cor-1313

responding interaction relationship exists based on1314

the sequences of antibodies and antigens. The ob-1315

jective of this task is to ascertain the correspon-1316

dence between antigens and antibodies and to pre-1317

dict more effective antibody characteristics for 1318

new variants of viruses. The dataset was sourced 1319

from (Zhang et al., 2022), which contains 22,359 1320

antibody-antigen pairs. MCC is employed for the 1321

assessment of the model’s performance. 1322

B.3 Evaluation Metrics 1323

Single-label Regression: This type of task in- 1324

volves predicting one continuous numerical value. 1325

The evaluation process extracts the numeric val- 1326

ues from model outputs using regular expressions, 1327

avoiding over- and underflow by limiting values to 1328

six significant digits. Metrics computed for regres- 1329

sion tasks include: 1330

• Spearman’s Rank Correlation Coefficient: 1331

Measures the monotonic relationship between 1332

predicted and true values according to their 1333

ranks. The metric value ranges from -1 to 1334

1, where -1 indicates perfect negative correla- 1335

tion, 0 indicates no correlation (random pre- 1336

dictions) and 1 indicates perfect positive cor- 1337

relation. 1338

• Coefficient of Determination (R2): Obtained 1339

by squaring the Pearson correlation coefficient 1340

to reflect the proportion of variance in the de- 1341

pendent variable explained by the independent 1342

variable. The metric value ranges from 0 to 1, 1343

where 1 indicates perfect prediction and 0 in- 1344

dicates predictions as good as the mean value 1345

(randomness). 1346

• Mixed Score: A custom metric (SAIS, 2020) 1347

balances regression error and classification 1348

accuracy by integrating F1 score (harmonic 1349

mean of precision and recall), Mean Absolute 1350

Error (MAE), and range-based MAE (MAE 1351

computed within a range threshold). Calcula- 1352

tion details will be further explained in B.3.1. 1353

Multi-label Regression: This type of task in- 1354

volves predicting multiple continuous output for 1355

each input. In the EA prediction task, two numeric 1356

values are required for the regression values of 1357

’Housekeeping EA’ and ’Developmental EA’. In 1358

the programmable RNA switches prediction task, 1359

three numeric values are required for predicting the 1360

regression values of ’ON’, ’OFF’, and ’ON/OFF’. 1361

• Pearson Correlation Coefficient (PCC): As- 1362

sesses the linear correlation between two sets 1363

of data. The metric value ranges from -1 to 1364

1, where -1 indicates perfect negative linear 1365
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correlation, 0 indicates no linear correlation1366

(random predictions), and 1 indicates perfect1367

positive linear correlation.1368

• Average R2: Computes individual R2 for1369

each label and take the mean across labels1370

to obtain an average R2 as the overall perfor-1371

mance metric. The metrics values shares the1372

same range and interpretations similar to the1373

single-label R2.1374

Binary Classification: This type of task asks1375

the model to predict one of two possible classes. In1376

our case, either positive or negative. The evalua-1377

tion pipeline involves first classifying via keywords1378

based on the presence of predefined positive or neg-1379

ative keywords. If keywords classification fails,1380

the pre-trained sentiment analysis model Twitter-1381

roBERTa-base ¡cite source?¿ will be utilized as1382

fallback to determine the class based on the sen-1383

timent polarity assigned with a higher probability1384

score.1385

• Matthews Correlation Coefficient (MCC):1386

Provides a balanced measure for binary clas-1387

sifications, even when classes are imbalanced.1388

The metric ranges from -1 to 1, where -1 in-1389

dicates perfect inverse correlation, 0 indicates1390

random predictions or no correlation, and 11391

indicates perfect postive correlation.1392

• Accuracy Score: Calculates the proportion1393

of correct predictions out of all predictions1394

made. It ranges from 0 to 1, where 0 indicates1395

no correct predictions, 1 indicates all correct1396

predictions and 0.5 as random predictions.1397

Multi-class Classification: This type of task1398

asks the model to assign each input to one of several1399

classes. In the non-coding RNA family prediction1400

task, the model is required to predict one from 131401

classes.1402

• Accuracy Score: Calculates the proportion1403

of correct predictions out of all predictions1404

made. It ranges from 0 to 1, where 0 indicates1405

no correct predictions, 1 indicates all correct1406

predictions and 0.5 as random predictions.1407

Multi-label Classification: This type of task in-1408

volves inputs that may belongs to multiple classes1409

and asks the model to predict all of them. The1410

evaluation process includes first extracting all rele-1411

vant labels from the model outputs and converting1412

them into binary multi-hot vectors representing the1413

presence or absence of each class.1414

• Area Under the ROC Curve (AUC): Mea- 1415

sures the model’s ability to distinguish be- 1416

tween classes across all shredsholds. The met- 1417

rics ranges from 0 to 1, where 1 indicates 1418

perfect ability to distinguish classes and 0.5 1419

as random performance. 1420

• Fmax Score: Represents the maximum F1 1421

score over all possible thresholds, providing 1422

a balanced measure of precision and recall in 1423

multi-label settings. The metric ranges from 1424

0 to 1, where 0 indicates worst balance of 1425

no correct predictions and 1 indicates perfect 1426

balance between precision and recall. 1427

B.3.1 Mixed Score Calculation 1428

The Mixed Score is a custom metric adopted 1429

from (SAIS, 2020) which is designed to balance 1430

regression error and classification accuracy by inte- 1431

grating three components: the F1 score, the Mean 1432

Absolute Error (MAE), and the Range-based MAE 1433

(Range-MAE). This metric provides a comprehen- 1434

sive evaluation by considering overall prediction 1435

accuracy, precision, and recall, as well as specific 1436

performance in a designated value range. The cal- 1437

culation is detailed below: 1438

• Mean Absolute Error (MAE): This mea- 1439

sures the average magnitude of prediction er- 1440

rors across all samples, providing an indica- 1441

tion of the model’s overall regression accuracy. 1442

The MAE is defined as: 1443

MAE =
1

n

n∑
i=1

|yi − ŷi|, 1444

where n is the total number of samples, yi is 1445

the ground truth value, and ŷi is the predicted 1446

value. The range of MAE is [0, 100]. 1447

• Range-based MAE (Range-MAE): This 1448

metric evaluates the Mean Absolute Error 1449

within a specific range of interest, emphasiz- 1450

ing regions where high predictive accuracy 1451

is particularly crucial. For the siRNA task, 1452

the ”low remaining” range is of significant im- 1453

portance in practical applications. Following 1454

(SAIS, 2020), we define this range as [0, 30]. 1455

The Range-MAE is computed as: 1456

Range−MAE =
1

m

m∑
j=1

|yj − ŷj |, 1457

where m is the number of samples within 1458

the specified range, and yj , ŷj represent the 1459
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ground truth and predicted values within this1460

range. The Range-MAE is also bounded1461

within [0, 100].1462

• F1 Score: This classification metric combines1463

precision and recall into a harmonic mean to1464

evaluate the quality of predictions within the1465

designated range. For the range [0, 30], preci-1466

sion and recall are calculated for predictions1467

falling within this interval, and the F1 score is1468

derived as:1469

F1 = 2 · Precision ·Recall

Precision+Recall
.1470

final Mixed Score integrates these three compo-1471

nents to provide a balanced assessment of regres-1472

sion and classification performance. The formula1473

for the Mixed Score is:1474

Mixed Score = 50% ·(1−MAE/100)1475

+ 50% · F1 · (1−Range−MAE/100).1476

where the first term emphasizes overall regres-1477

sion performance, and the second term focuses1478

on classification accuracy and precision within the1479

specified range.1480

This scoring mechanism is designed to reward1481

models that perform well both globally (via MAE)1482

and within critical regions (via Range-MAE and1483

F1), ensuring a comprehensive evaluation of model1484

capabilities.1485

C Model Training Details1486

As shown in TABLE 2, we adopt different training1487

methods for each stage due to limitations in com-1488

putational resources while attempting to improve1489

model performance as much as possible.1490

In Stage 1, we train the model using 5239331491

RNA sequences, 1561639 DNA sequences, and1492

2000000 protein sequences, each with a maximum1493

length of 2000 characters. The dataset weights1494

for RNA, DNA, and protein are [2, 1, 1], indi-1495

cating that RNA sequences are trained twice per1496

epoch. This stage consumes the majority of com-1497

putational resources. To reduce training time, we1498

apply LoRA to every linear layer in the model and1499

additionally train each RMS normalization (Zhang1500

and Sennrich, 2019) layer. To optimize process-1501

ing efficiency and balance model performance and1502

training efficiency, we impose a maximum input1503

length of 2000 characters for biological sequences,1504

which translates to a maximum of 1200 input to-1505

kens. To address the potential inefficiency arising1506

from varying input sequence lengths, we imple- 1507

ment a packing strategy1. This approach allows us 1508

to combine multiple samples of different lengths 1509

into a single sample, effectively eliminating the 1510

need for padding tokens in our training data. The 1511

training process encompassed approximately a to- 1512

tal of 140,000 parameter update steps, each step 1513

composed of 48 global samples, ensuring thorough 1514

optimization of the model’s performance on bio- 1515

logical sequence data. 1516

In Stage 2, we train the model with 3330232 sam- 1517

ples. As noted by (Ghosh et al.), we discover that 1518

using LoRA and it’s variants (Hayou et al., 2024; 1519

yang Liu et al., 2024; Kalajdzievski, 2023) for the 1520

entire model during supervised fine-tuning leads to 1521

sub-optimal performance. Therefore, we fully fine- 1522

tune the query and key layers in each self-attention 1523

module, along with the RMS normalization layers, 1524

while applying LoRA+ to the other linear layers 1525

in the model. This approach ensure the update for 1526

the whole model and improves model performance 1527

while maintaining relatively low training times by 1528

reduce the communication quantity of optimizer 1529

states.The base learning rate was set to 1e-4, with 1530

the learning rate for the weight B parameters group 1531

at 1.6e-3. We configured the gradient accumulation 1532

steps to 10 and set the micro-batch size on the GPU 1533

to 2, given the maximum input length was limited 1534

to 1024. This configuration result in a global batch 1535

size of 400. In Stage 3, minimal computational 1536

resources is required. Thus, we employ full fine- 1537

tuning for the entire model except embedding layer 1538

and output layer. 1539

We use DeepSpeedCPUAdam and 1540

adamw_mode=True for Stage 1 and Stage 2 1541

as LoRA efficiently reduces the communication 1542

time between CPU and GPU for offloaded 1543

optimizers. For Stage 3, we use FusedAdam 1544

and adam_w_mode=True to reduce training time. 1545

A warmup learning rate scheduler with cosine 1546

learning rate decay is used for all three stages. 1547

All stages employ a mixed precision training 1548

strategy where model parameters, gradients, and 1549

activations are stored in torch.bfloat16. To 1550

improve training efficiency, we use DeepSpeed 1551

ZeRO stage 2 (Rajbhandari et al., 2020) and 1552

FlashAttention-2 (Dao et al., 2022; Dao, 2023) for 1553

all training processes. We adopt PyTorch2.2.1’s 1554

scaled dot product attention for FlashAttention-2 1555

1https://github.com/meta-Llama/Llama-
recipes/tree/main/recipes/quickstart/finetuning/datasets
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implementation which is more convenient than1556

FlashAttention official library with a Python1557

environment. In summary, Stage 1 training is1558

conducted on 24 A100-40G PCIe GPUs over a1559

period of 1.5 days; Stage 2 training is conducted1560

on 20 A100-40G PCIe GPUs for approximately1561

16 hours; and Stage 3 training is conducted on 121562

A100-40G PCIe GPUs over 2 hours.1563

D Additional Results1564

Due to space constraints, we present only the radar1565

chart and key findings in the main text. Compre-1566

hensive results across 21 tasks, detailed in Tables1567

3, 4, 5, and 6, further demonstrate the effectiveness1568

of our dataset and three-stage training pipeline.1569

In the baseline experiments, we employ specific1570

prompts with format requirements to obtain well-1571

structured results, facilitating more accurate quan-1572

titative analysis. For closed-source LLMs, such as1573

GPT-4o and GPT-4o-mini, we require outputs to1574

be returned in JSON format, given their superior1575

ability to follow instructions and adhere to JSON1576

formatting. For open-source LLMs, we opt for rela-1577

tively brief format requirements to encourage more1578

diverse outputs, acknowledging their comparatively1579

weaker instruction-following capabilities.1580

As shown in Table 7, we also provide task-1581

relevant information as a hint to the baselines to1582

ensure a fair comparison and clarify the expected1583

output content. Specifically, we anticipate the fol-1584

lowing content: (1) for binary classification tasks, a1585

”yes” or ”no” response; (2) for multi-label classifi-1586

cation tasks, one of the specified labels; and (3) for1587

regression tasks, a value within the required range1588

or format. The final prompt formats are detailed in1589

Table 8.1590

We further explore the impact of balanced versus1591

imbalanced Stage 2 datasets on performance. Our1592

results indicate that balancing the dataset leads to a1593

general performance decline, with particularly sig-1594

nificant drops observed in tasks such as APA and1595

Enhancer Activity Prediction. We believe that bal-1596

anced datasets may distort the natural distribution1597

of real-world biological data and reduced overall1598

data size to match the smallest task, which contains1599

only a few thousand samples, limiting the model’s1600

ability to fully utilize available data.1601

Figure 8 illustrates two comparison examples1602

between ChatMultiOmics and baseline models. In1603

both cases, the baseline models failed to provide1604

correct answers due to various reasons, while Chat-1605

MultiOmics produced accurate responses, with or 1606

without reasoning. In one example, ChatMulti- 1607

Omics successfully reason through an antibody- 1608

antigen neutralization task, despite this reasoning 1609

not being part of the Biology-Instructions subset. 1610

However, while ChatMultiOmics arrive at the cor- 1611

rect final answer, it followed an incorrect reasoning 1612

path. We suspect this may be due to the absence of 1613

relevant textual knowledge, as we did not further 1614

pre-train the model on biology-specific text data. 1615
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Figure 7: Example of a training sample in stage 2.

Table 2: Hyper parameters at each stage. Wq,Wk,Wv,Wo: Four linear parameters in the self-attention modules
corresponding to query, key, value, and output. W1,W2,W3: Three linear parameters in the feed-forward modules
corresponding to up projection, gate projection, and down projection. RMSnorm: parameters in RMS normalization
layers. All: Parameters in RMS normalization layers. All: All parameters in the model.

Hyper Parameters stage 1 stage 2 stage 3
Fine-tune method Mixed Mixed Full

LoRA target modules All linear Wv,Wo,W1,W2,W3 -
Trainable parameters LoRA, RMSNorm LoRA, RMSNorm, wq, wv All

Base learning rate 1e-4 1e-4 1e-5
LoRA+ scaler 4 16 -

LoRA rank 128 64 -
LoRA α 32 32 -

Max input length 1200 1024 1024
Batch size per gpu 2 2 2

Gradient accumulation steps 1 10 1
Global batch size 48 400 24

Global steps 140000 80000 2750
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Figure 8: Comparison of ChatMultiOmics with baseline models in two examples.
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Table 3: Evaluation results on DNA tasks

Model/Task EA (hk) EA (dev) EMP TF-H TF-M PD300 CPD
Metrics % PCC PCC MCC MCC MCC MCC MCC

Literature SOTA
Literature DeepSTARR DeepSTARR DNABERT2 DNABERT2 DNABERT2 DNABERT2 DNABERT2
SOTA 68.00 74.00 58.83 66.84 71.21 83.81 71.07

Open source LLM
LLaMA3.1-8B-Instruct 0.61 0.27 -0.37 0.00 -1.42 0.01 0.00
Qwen2-7B 0.40 0.35 -0.66 -0.21 -1.59 -4.83 1.35
Llama2-7B-Chat 0.55 0.13 0.94 1.84 0.97 -0.29 -0.55
Alpaca-7B -0.11 0.31 -0.36 2.00 0.00 -0.15 -1.30
GLM-4-9B-Chat 0.87 0.17 -0.22 0.00 0.00 -0.25 -2.53
Vicuna-v1.5-7B 0.18 0.69 0.00 0.00 0.00 0.00 0.00
Galactica-1.3B 0.13 0.09 0.07 3.00 -2.81 0.41 -1.01

Closed source LLM
GPT-4o-mini -0.76 0.09 -0.91 0.14 -0.31 -4.44 -2.95
GPT-4o -1.17 -1.49 -0.49 -1.70 -1.38 8.67 -0.84

Biology-specialize LLM
InstructProtein-1.3B 0.00 0.39 0.22 -1.29 1.19 2.75 -0.33
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.10 -0.29 2.40 0.33 -5.76 1.98

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.92 0.06 1.40 2.46 0.88 5.19 5.57

Our Model on Our Dataset
ours (stage 2 only) -0.16 0.08 0.31 0.86 0.13 0.87 1.8
ours (stage 1 + stage 2) 59.74 46.82 8.1 19.07 27.94 49.01 41.18
ours (stage 1 + stage 2 + stage 3) 57.24 45.92 3.64 24.45 39.91 58.18 44.54

Table 4: Evaluation results on RNA tasks

Model/Task APA ncRNA Modif MRL PRS CRI-On

Metrics % R2 Acc Auc R2 R2 Spearman’s ρ

Literature SOTA

Literature APARENT GCN MultiRM Optimus MLP-O SCC
SOTA 50.82 85.73 84.00 78.00 55.67 44.10

Open-Source LLM

LLaMA3.1-8B-Instruct 0.01 6.32 50.52 0.01 0.02 -0.09
Qwen2-7B 0.00 7.08 50.34 0.00 0.01 -6.21
Llama2-7B-Chat 0.00 4.88 50.40 0.00 0.01 0.92
Alpaca-7B 0.00 7.42 50.00 0.03 0.01 -3.55
GLM-4-9B-Chat 0.00 8.23 50.05 0.00 0.01 -0.02
Vicuna-v1.5-7B 0.01 3.81 50.27 0.01 0.00 1.88
Galactica-1.3B 0.00 6.73 53.78 0.00 0.02 -5.56

Closed-Source LLM

GPT-4o-mini 0.05 3.00 50.49 0.01 0.03 3.77
GPT-4o 0.00 5.60 50.47 0.01 0.00 -3.31

Specific Biology LLM

InstructProtein-1.3B 0.00 0.00 51.08 0.02 0.00 0.00
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.00 52.51 0.00 0.02 -0.10
BioMedGPT-LM-7B 0.00 1.62 51.65 0.01 0.03 0.12

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 0.01 35.68 53.76 0.00 0.01 -0.31
Our Model on Our Dataset

ours (stage 2 only) 0.00 0.00 51.21 0.00 0.00 2.87
ours (stage 1 + stage 2) 50.68 62.77 57.45 29.12 26.65 -2.99
ours (stage 1 + stage 2 + stage 3) 59.01 63.09 59.06 47.64 26.57 -0.02
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Table 5: Evaluation results on protein tasks

Model/Task EC Sta Flu Sol Ther

Metrics % Fmax Spearman’s ρ Spearman’s ρ Acc Spearman’s ρ

Literature SOTA

Literature SaProt-GearNet Evoformer Shallow CNN DeepSol ESM-1v
SOTA 88.9 79.00 69.00 77.00 78.00

Open-Source LLM

LLaMA3.1-8B-Instruct 1.42 -0.61 0.91 50.27 4.67
Qwen2-7B 0.90 -5.86 0.81 52.52 -0.93
Llama2-7B-Chat 0.97 -0.51 0.28 49.48 0.40
Alpaca-7B 0.88 2.05 -0.20 50.12 2.27
GLM-4-9B-Chat 0.91 -2.72 0.63 50.72 1.40
Vicuna-v1.5-7B 0.88 5.65 -0.51 51.57 0.90
Galactica-1.3B 0.91 -0.52 -0.73 46.78 -0.58

Closed-Source LLM

GPT-4o-mini 1.73 -1.52 -0.47 50.02 0.32
GPT-4o 5.89 0.09 0.69 51.67 3.50

Specific Biology LLM

InstructProtein-1.3B 1.85 0.35 -0.03 47.88 -0.50
Llama-molinst-protein-7B (Mol-Ins) 1.85 0.05 0.27 48.33 1.07
BioMedGPT-LM-7B 1.07 -0.92 0.43 49.78 -0.72

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 10.76 0.48 0.55 52.37 39.97
Our Model on Our Dataset

ours (stage 2 only) 1.85 0.23 0.37 49.28 -0.51
ours (stage 1 + stage 2) 19.35 56.76 1.49 62.07 44.59
ours (stage 1 + stage 2 + stage 3) 19.79 60.25 2.57 63.02 45.07
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Table 6: Evaluation results on multi-molecule tasks

Model/Task EPI siRNA AAN RPI

Metrics % MCC Mixed Score MCC MCC
Literature SOTA

Literature EPI-DLMH – DeepAAI ncRPI-LGAT
SOTA 53.59 – 54.9 93.2

Open-Source LLM

LLaMA3.1-8B-Instruct 0.00 32.76 -1.05 3.82
Qwen2-7B 0.00 33.39 2.98 -2.15
Llama2-7B-Chat 0.00 17.43 -0.63 5.87
Alpaca-7B 0.00 19.12 -0.81 4.38
GLM-4-9B-Chat 0.00 23.33 1.32 0.13
Vicuna-v1.5-7B 0.00 14.28 2.00 0.00
Galactica-1.3B 0.00 33.55 0.01 0.24

Closed-Source LLM

GPT-4o-mini -0.39 30.37 1.59 1.22
GPT-4o 0.00 0.00 -3.29 1.17

Specific Biology LLM

InstructProtein-1.3B 0.00 5.58 1.53 -1.55
Llama-molinst-protein-7B (Mol-Ins) 0.00 13.85 -1.38 3.71
BioMedGPT-LM-7B 0.00 19.71 0.92 -2.39

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 4.13 42.92 -1.48 8.29
Our Model on Our Dataset

ours (stage 2 only) 4.77 4.25 0.72 1.61
ours (stage 1 + stage 2) 1.68 56.31 10.26 70.80
ours (stage 1 + stage 2 + stage 3) 3.37 56.25 1.06 74.26
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Table 7: Hints for each task

Task Hint

Epigenetic Marks Prediction Return yes or no.
Promoter Detection Return yes or no.
Core Promoter Detection Return yes or no.
Enhancer-Promoter Interaction Prediction Return yes or no.
RNA-Protein Interaction Prediction Return yes or no.
Antibody-Antigen Neutralization Return yes or no.
Transcription Binding Sites Detection Hu-
man

Return yes or no.

Transcription Binding Sites Detection
Mouse

Return yes or no.

EA Prediction Return two numeric values with two decimal places for ’House-
keeping EA’ and ’Developmental EA’.

Fluorescence Prediction Return one numeric value with two decimal places.
Enzyme Commission Number Prediction Return Enzyme Commission number(s), e.g., 2.7.11.12
Solubility Prediction Return yes or no.
Stability Prediction Return one numeric value with two decimal places.
Thermostability Prediction Return one numeric value with two decimal places.
APA Isoform Prediction Return one numeric value with two decimal places.
Non-coding RNA Function Classification Return one RNA class: 5S rRNA, 5 8S rRNA, tRNA, ri-

bozyme, CD-box, miRNA, Intron gpI, Intron gpII, HACA-box,
riboswitch, IRES, leader, or scaRNA.

Modification Return RNA modification(s): Am, Cm, Gm, Um, m1A, m5C,
m5U, m6A, m6Am, m7G, Psi, AtoI, or none.

Mean Ribosome Loading Prediction Return a numeric value with two decimal places.
Programmable RNA Switches Return three numeric values with two decimal places for ’ON’,

’OFF’, and ’ON/OFF’.
CRISPR On Target Prediction Return a numeric value with two decimal places.
siRNA Efficiency Prediction Return a numeric value with two decimal places.

Table 8: Prompt format for baselines

Prompt format for open-source LLMs:
My question is {input} This is a {task type} task. {hint} Do not explain or repeat.
Prompt format for closed-source LLMs:
You are an expert biology AI assistant specializing in sequence-related topics. Focus on: DNA,
RNA, and protein sequences When answering questions, please follow this format:
First give a direct answer in JSON dict such as: {”answer”: ”Yes”}:

Remember to follow the provided rules:
- For binary classification questions: Answer ”Yes” or ”No”.
- For multi-label classification questions: State the specific label(s).
- For regression questions: Provide the numerical value or range.

Answer the question: ”{input}”.
Task type: {task type}.
For better understanding the task, hint: {hint}.
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E Data quality control for Stage 31616

Reasoning Data1617

To ensure the quality and reliability of Stage 31618

reasoning data, we have established a robust multi-1619

step validation process:1620

E.1 Self-validation by the model1621

Once the data is generated, the large language1622

model conducts a self-check to ensure compliance1623

with four core criteria outlined in the data genera-1624

tion prompt, as illustrated in Figure 9:1625

• Providing a detailed and accurate analysis of1626

the sequence1627

• Accurately recalling task-related knowledge1628

from studies, databases, or academic sources;1629

• Engaging in comprehensive reasoning to draw1630

logical conclusions for the question1631

• Citing relevant references where applicable.1632

The model is required to output the results of1633

its self-check and provide recommendations1634

for improvement in cases that do not meet the1635

standards1636

For outputs that fail to meet these criteria, spe-1637

cific issues are identified, and the model is in-1638

structed to regenerate outputs that adhere to the1639

required standards based on the evaluation results.1640

E.2 Secondary review by an independent 1641

model 1642

Following the initial validation, a second large lan- 1643

guage model, Gemini-1.5-pro, is employed to in- 1644

dependently review and verify the accuracy and 1645

consistency of the reasoning paths. Additionally, 1646

GPT4o-mini is tasked with reconstructing any un- 1647

qualified cases based on feedback from Gemini- 1648

1.5-pro. 1649

This rigorous quality assurance process not only 1650

ensures the integrity of the data but also lays a 1651

strong foundation of high-quality training data, en- 1652

hancing interpretability in downstream tasks. 1653

E.3 Final review by MEME tool and human 1654

To further corroborate our findings, we utilized the 1655

MEME tool (Multiple Expectation Maximizations 1656

for Motif Elicitation) to identify motifs in DNA se- 1657

quences. The motifs discovered by MEME showed 1658

strong consistency with the reasoning data, provid- 1659

ing additional validation. We also invited biology 1660

PhD students and professors to conduct human 1661

evaluations of the reasoning data. Their feedback 1662

confirmed the high quality and reliability of the 1663

generated data. An example of our data quality 1664

control process is shown in Table 13. 1665
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Figure 9: An example of a prompt used to generate reasoning data. The system prompt outlines the requirements
for the data construction task for GPT-4o-mini. Answers are refined, and corresponding questions are placed within
specific prompts.
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Figure 10: Examples of instruction prompts constructed for each omics type.

Table 9: Examples of question and answer template pairs in stage 2 training data.

Task Question template Answer template

Epigenetic Marks
Prediction

<dna>{DNA}</dna> Are there any charac-
teristic epigenetic marks in this DNA?

After careful EMP analysis, there
is conclusive evidence of epigenetic
marks in the given DNA sequence.
(Positive case)

Core Promoter Detection <dna>{DNA}</dna>: Evaluate this se-
quence for potential promoter regions.

No, a promoter region is not present
in the given genomic fragment. (Neg-
ative case)

Enhancer Activity
Prediction

<dna>{DNA}</dna> Enhancer activity in
this sequence - what’s the deal?

The enhancer activity prediction
yields: HK - {hk enrichment}, Dev -
{dev enrichment}

CRISPR On Target
Prediction

<rna>{RNA}<rna> What is the predicted
on-target activity of the sequence?

The sequence has an on-target effi-
ciency score of {label}.

Programmable RNA
Switches

<rna>{RNA}<rna> What ON/OFF ratio
can be expected from the sequence?

The ON state for this sequence
is {label ON}, the OFF state is
{label OFF}, and the ON/OFF ratio
is {label ON OFF}.

Modification Prediction <rna>{RNA}<rna> [RNA modification
classification] Which RNA modifications
are inferred from the sequence?

The RNA modifications for the se-
quence are predicted as {label}.

Fluorescence Prediction <protein>{protein}<protein> How
effective is the predicted fluorescence for
this GFP sequence?

The GFP’s fluorescence is calculated
to be {label}.

Enzyme Commission
Number Prediction

<protein>{protein}<protein> What
is the specific activity of this protein as an
enzyme?

Specific enzyme activities are de-
fined by EC number {label}.

Solubility Prediction <protein>{protein}<protein> Can
solubility be confirmed for this protein?

This protein shows positive solubility.
(Positive case)

Enhancer-Promoter
Interaction Prediction

<dna>{DNA1}<dna> promoter +
<dna>{DNA2}<dna> enhancer: con-
nected?

We find no support for promoter-
enhancer communication in this ge-
netic material. (Negative case)

Antibody-Antigen
Neutralization

Is there any molecular recogni-
tion between this Ab-Ag pair:
<protein>{AB}<protein>>-
<protein>{AG}<protein>>?

The computational predictions do not
support any significant Ab-Ag inter-
action. (Negative case)

siRNA Efficiency
Prediction

<rna>{SiRNA}<rna>
<dna>{targetDNA}<dna> How does
the target RNA perform in terms of
siRNA-induced mRNA reduction?

The siRNA treatment results in
an mRNA remaining percentage of
{label}.
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Table 10: An example of question and answer pairs in stage 3 training data for siRNA Efficiency Prediction task.

Task: siRNA Efficiency Prediction
Question <rna>{SiRNA}<rna> <dna>{targetDNA}<dna> How much mRNA remains

after siRNA treatment of the target RNA?

Answer To assess the amount of mRNA remaining after siRNA treatment, we first need
to understand the mechanisms involved in RNA interference (RNAi) and its
impact on mRNA levels.

siRNA (small interfering RNA) is a class of double-stranded RNA that
can lead to the degradation of complementary mRNA molecules, effectively
silencing their expression. When siRNA binds to target mRNA, it recruits
the RNA-induced silencing complex (RISC), which then cleaves the mRNA,
reducing its stability and leading to its degradation.

To determine how much mRNA remains after treatment, one typically
considers:
1. The initial concentration of mRNA.
2. The efficacy of siRNA in degrading the target mRNA.
3. The kinetic parameters related to both the mRNA decay rate and the siRNA
efficacy.

For instance, if initial studies or assays show that treatment with spe-
cific siRNA reduces target mRNA levels by approximately 80% under standard
experimental conditions, then we can assume that 20% of the original mRNA
remains. However, the problem states that the final calculated remaining
mRNA is estimated to be 80.6% of the original mRNA.

This indicates that the siRNA treatment was not completely effective,
or there might be factors such as incomplete targeting or secondary structures
in the mRNA that protected it from degradation.

In summary, after siRNA treatment of the target RNA, the remaining
amount of mRNA is therefore 80.6%, indicating a less than complete silencing
effect. This percentage reflects the balance of mRNA decay, the effectiveness
of the siRNA treatment, and the biological context in which the treatment was
performed.
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Table 11: An example of question and answer pairs in stage 3 training data for Noncoding RNA Family Prediction
task.

Task: Noncoding RNA Family Prediction
Question <rna>{RNA}<rna> How does this RNA sequence contribute to gene regula-

tion?

Answer This RNA sequence represents a component that likely plays a crucial role in
gene regulation, particularly through its classification as a ”leader” RNA. In the
context of molecular biology, leader RNAs are typically found at the 5’ end of
mRNA sequences and can influence gene expression by engaging in regulatory
interactions with ribosomes or other molecular partners.

Leader sequences can have multiple functions, including:
1. **Regulatory Functions:** They may harbor sequences that can bind
small regulatory molecules or proteins, thus modulating the transcription or
translation of the downstream coding region.
2. **Secondary Structures:** The folding patterns in leader sequences can
form intricate secondary structures that contribute to transcriptional attenuation
or the formation of a riboswitch. These structures can determine whether the
RNA remains in a transcriptionally active state or folds into a configuration that
halts transcription or translation.
3. **Interaction with Ribosomes:** The leader region often acts as a signal for
ribosomes to initiate translation. For mRNAs, the presence of specific motifs
within this region can influence how efficiently translation occurs, impacting
overall protein synthesis levels and thus the expression of the associated gene.

In summary, the RNA sequence presented can be classified as a leader,
contributing to gene regulation through its interactions and structural charac-
teristics. This underscores the importance of untranslated regions (UTRs) in
controlling gene expression. Understanding such RNA sequences and their
functions provides valuable insights into the mechanisms of gene regulation,
highlighting how sequences beyond coding regions play vital roles in cellular
processes.
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Table 12: An example of question and answer pairs in stage 3 training data for Core Promoter Detection.

Task: Core Promoter Detection
Question <dna>{DNA}<dna> Identify potential core promoter region in this sequence.

Answer The provided DNA sequence shows characteristics that warrant careful
examination for core promoter elements. Core promoters are essential in
initiating transcription and are typically located upstream of the transcription
start site. They often contain specific motifs, such as the TATA box, initiator
sequences (Inr), and other regulatory elements that facilitate binding of
transcription factors and RNA polymerase II.

In the sequence provided, critical components of core promoters might
include:
1. **Initiator sequences (Inr):** These sequences often span the transcription
start site and can exhibit variability but typically include consensus elements
that help delineate the start of transcription.
2. **TATA box:** A common feature among many eukaryotic promoters,
which is usually located about 25-30 bases upstream from the transcription
start point.
3. **GC-rich regions:** These regions can also play a role in promoter activity
by providing binding sites for transcription factors.

Upon examining the sequence:
- There are no clear TATA boxes or Inr motifs that align with typical core
promoter signatures.
- The sequence appears GC-rich, notably towards the middle, but does not show
significant promoter elements consistent with those typically required for core
promoter identification.

Given these observations, we can conclude that this sequence does not
contain recognizable features indicative of a core promoter region. Therefore,
the response to whether a potential core promoter region is present in this
sequence is negative.
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Table 13: An example of quality control process.

Task: Transcription Binding Sites Detection
Question <dna>AGTTGC......AGGCCC<dna>: Can you check if this DNA fragment contains

sequences associated with transcription initiation?

Answer The provided DNA fragment showcases a sequence that can be analyzed to determine
if it contains motifs associated with transcription initiation. Transcription initiation in
eukaryotic organisms often involves the presence of specific cis-regulatory elements,
such as promoter regions, which may include TATA boxes, GC-rich regions, or other
binding sites for transcription factors.
In the analysis of the given sequence, we should look for characteristic motifs
common in eukaryotic promoters:
TATA Box: Usually located 25-30 base pairs upstream of the transcription start site,
this sequence often resembles the consensus sequence TATAAA.
GC Box: These sequences are rich in GC content and provide binding sites for
transcription factors (e.g., Sp1). They typically appear around -100 to -200 base
pairs upstream.
CCAAT Box: Another common element involved in the binding of transcription
factors, found further upstream, approximately -75 bases from the start site.
Upon examining the sequence you provided, several regions exhibit characteristics
of transcriptional regulation:
The sequence includes stretches of CG-rich content that might suggest the presence
of a GC box. Additionally, there is a notable absence of any clear TATA box or
canonical elements, which indicates that while the segment may hold potential as
a regulatory region, it may not conform to traditional promoter motifs rigorously.
In summary, based on the detection of indirect evidence of transcription initiation
sites, particularly the presence of GC-rich sequences, we can conclude that this DNA
fragment likely contains sequences associated with transcription initiation. Therefore,
the answer to your question is affirmative; it is positive that this DNA fragment likely
includes sequences relevant to the initiation of transcription. Further studies, such as
promoter assays or bioinformatics tools, could further validate this observation.

AI Evaluation GPT4o-mini analysis: The answer provides a detailed analysis of the DNA sequence
with specific references to hallmark motifs and features associated with promoters. It
incorporates relevant biological knowledge and presents a clear conclusion regarding
the presence of promoter-like characteristics.

Gemini-1.5-pro evaluation: The answer provides a comprehensive analysis
of the DNA sequence for promoter-like features. It correctly identifies key
characteristics such as GC-rich regions and potential transcription factor binding
sites. The reasoning is clearly explained, starting with a general description of
promoters and then moving to specific features found within the provided sequence.
The conclusion is clearly stated and supported by the analysis. While it doesn’t
provide specific locations of potential promoter elements or quantify the GC
content, the overall analysis is sufficient for a general assessment of promoter-like
characteristics.

Human Evaluation For promoters, our human evaluation involved examining the DNA sequences, where
we observed a typical TATA box motif at positions -31 to -35, aligning well with
the reasoning for TATA-type promoters. Additionally, we utilized the MEME tool
(Multiple Expectation Maximizations for Motif Elicitation), which identifies motifs
in related DNA sequences. The motifs discovered by MEME also showed strong
consistency with the reasoning, further validating our findings.
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