
Advancing Parameter Efficiency in Fine-tuning via Representation Editing

Anonymous ACL submission

Abstract

Parameter Efficient Fine-Tuning (PEFT) has001
gained significant attention for its ability to002
achieve competitive results while updating only003
a small subset of trainable parameters. Despite004
the promising performance of current PEFT005
methods, they present challenges in hyperpa-006
rameter selection, such as determining the rank007
of LoRA or Adapter, or specifying the length008
of soft prompts. In addressing these challenges,009
we propose a novel approach to fine-tuning010
neural models, termed Representation EDiting011
(RED), which scales and biases the represen-012
tation produced at each layer. RED substan-013
tially reduces the number of trainable parame-014
ters by a factor of 25, 700 compared to full pa-015
rameter fine-tuning, and by a factor of 32 com-016
pared to LoRA. Remarkably, RED achieves017
comparable or superior results to full parameter018
fine-tuning and other PEFT methods. Exten-019
sive experiments were conducted across models020
of varying architectures and scales, including021
RoBERTa, GPT-2, T5, and Llama-2, and the022
results demonstrate the efficiency and efficacy023
of RED, positioning it as a promising PEFT024
approach for large neural models.025

1 Introduction026

Pre-training on large-scale unlabeled datasets and027

then fine-tuning on task-specific datasets has led028

to significant improvements across various natural029

language processing (NLP) tasks and has emerged030

as the predominant training paradigm (Devlin et al.,031

2018; Raffel et al., 2020; Radford et al., 2018).032

However, performing full parameter fine-tuning for033

each task would be prohibitively expensive with034

the growing model scale (Brown et al., 2020). For035

example, BERT consists of up to 220 million pa-036

rameters; T5 comprises up to 11 billion parameters037

and GPT-3 contains up to 175 billion parameters.038

In this context, how to efficiently and effectively039

adapt large models to particular downstream tasks040

is an intriguing research issue (He et al., 2021).041

To address this issue, researchers have proposed 042

three main lines of Parameter Efficient Fine-Tuning 043

(PEFT) methods (Ding et al., 2022). Specifically, 044

additional-based methods introduce extra train- 045

able neural modules or parameters that do not ex- 046

ist in the original model (Houlsby et al., 2019; 047

Karimi Mahabadi et al., 2021; Li and Liang, 2021a; 048

Lester et al., 2021a). Specification-based methods 049

specify certain parameters in the original model 050

become trainable, while others are frozen (Zaken 051

et al., 2021; Guo et al., 2020). Reparameterization- 052

based methods reparameterize trainable parameters 053

to a parameter-efficient form by transformation (Hu 054

et al., 2021; Zhang et al., 2023a; Ding et al., 2023). 055

Among these PEFT methods, Low-Rank Adapta- 056

tion (LoRA) is considered one of the most efficient 057

methods at present and its efficacy has been empir- 058

ically validated across diverse models of varying 059

scales. Despite its excellent performance, it still 060

requires a considerable amount of trainable param- 061

eters. According to Aghajanyan et al. (2020) and 062

Kopiczko et al. (2023), the upper bound for intrin- 063

sic dimensions is much smaller than what is typ- 064

ically utilized in such methods. For instance, the 065

d90
1 for RoBERTa base is reported to be 896. Still, 066

when utilizing LoRA to fine-tune this model, the 067

number of trainable parameters reaches 0.3M, sug- 068

gesting that the parameter count could be reduced 069

further. 070

In addition, although previous works (Mao et al., 071

2021; He et al., 2021; Ding et al., 2022) have at- 072

tempted to design different lightweight module 073

structures or insert these modules into different 074

positions in the base model, these PEFT methods 075

consider fine-tuning the model from the perspective 076

of adjusting model weights, which leads to many 077

inconveniences in the selection of hyperparameters, 078

such as the rank of LoRA and Adapter, as well as 079

1d90 denotes the smallest number of trainable parameters
as being 90% of the full training metric.

1

the length of Soft Prompt and Prefix.080

Inspired by the idea of representation engineer-081

ing (Zou et al., 2023) representation can be mod-082

ified to steer model outputs toward specific con-083

cepts and change the model’s behavior. We hy-084

pothesize that we can also consider fine-tuning085

the model from the perspective of editing neural086

network representations, leading to our proposed087

Representation EDiting (RED) approach. Instead088

of focusing on neurons and their connections, we089

fine-tune the model by learning a group of “edit090

vectors” to directly edit the representations of each091

layer and freezing the base model parameters, as092

shown in figure 1 (b).093

Moreover, RED is highly parameter efficient.094

Using Llama-2 7B as an example, we show that095

RED can still achieve very promising performance096

by adjusting only 0.26M parameters, which is097

25, 700 times less than full parameter fine-tuning,098

making it both storage- and compute-efficient.099

The contribution of this study can be summa-100

rized as follows:101

• We consider fine-tuning the model from102

a new perspective of directly modifying103

the model representation, which is different104

from the previous work that adjusted the105

model weight, and propose our PEFT method,106

Representation EDiting (RED).107

• We conducted extensive experiments on mod-108

els with different structures and scales, includ-109

ing RoBERTa, GPT-2, T5, and Llama-2, and110

validated the effectiveness of RED on a series111

of NLU and NLG tasks although it only re-112

quires a small number of trainable parameters,113

and is quite simple to implement.114

• We perform the ablation study to better under-115

stand the individual components of RED and116

their effects on performance.117

2 Related Work118

Ding et al. (2022) categorize the PEFT methods119

into three groups according to the operations on the120

learnable parameters: addition-based, specification-121

based, and reparameterization-based methods.122

Addition-based methods introduce additional123

components for training based on the foundation124

model. Specifically, Houlsby et al. (2019); Stick-125

land and Murray (2019); Karimi Mahabadi et al.126

(2021) and Rücklé et al. (2020) inject learnable bot-127

tleneck neural modules to the transformer layers.128

Brown et al. (2020) and Shin et al. (2020) found 129

that by concatenating some discrete tokens before 130

the input text, the performance of the model can be 131

improved without updating parameters. However, 132

manually designing prompts requires a lot of effort, 133

and the optimization problem in discrete space is 134

relatively more difficult. Therefore, the subsequent 135

works (Lester et al., 2021b; Li and Liang, 2021b; 136

Wu et al., 2023; Wang et al., 2023) replace these 137

discrete tokens with continuous vectors in front of 138

the embedding layer or various hidden layers, also 139

known as soft prompts, and optimize them through 140

simple gradient descent. 141

Specification-based methods do not introduce 142

any new parameters in the model, and they sparsely 143

select part of the foundation model parameters for 144

adjustment and freeze other parameters. Among 145

them, Lee et al. (2019) adjusts the model parame- 146

ters of the last few layers of BERT and RoBERTa. 147

BitFit (Ben-Zaken et al., 2021) fine-tunes the model 148

by only optimizing the bias terms inside the model. 149

Unlike both of these methods, which manually 150

specify the parameters that need to be adjusted 151

in the network, Guo et al. (2020) and Zhao et al. 152

(2020) use the learnable mask to dynamically select 153

the parameters that need to be adjusted. 154

Reparameterization-based methods transform 155

the optimization process of trainable parameters 156

into a low-dimensional subspace. LoRA (Hu et al., 157

2021) proposes to employ low-rank matrices to ap- 158

proximate the weight changes during fine-tuning. 159

QLoRA (Dettmers et al., 2023) combines low-rank 160

adaptation with model quantization to further re- 161

duce storage usage during the model fine-tuning 162

process. AdaLoRA (Zhang et al., 2023b) pro- 163

poses using SVD decomposition to approximate 164

the changes in weights, which allocate more train- 165

able parameters to more important weight matrices, 166

resulting in better performance. 167

What’s more, IA3 (Liu et al., 2022) and VeRA 168

(Kopiczko et al., 2023) also consider scaling vec- 169

tors in their implementation. However, IA3 not 170

only needs to adjust the key vectors and value vec- 171

tors of the attention module, as well as the vectors 172

of the projection matrix but also needs to intro- 173

duce additional complex loss functions. VeRA still 174

needs to introduce a randomly initialized LoRA 175

matrix and adjust the vectors passing through the 176

projection matrix under LoRA. Compared to them, 177

RED is simpler in implementation, as it only needs 178

to directly edit the model’s representations. More- 179

over, RED has been extensively experimented on 180

2

Multi Head

2× Feed-forward
Layer

+

+ +

+

+

Multi Head

2× Feed-forward
Layer

+

+

(a) (b)

·

+

: Adapter / LoRA Module : Editor

: Trainable Parameters : Frozen Module

: Hidden Vector

Figure 1: Comparison of previous PEFT methods and our proposed RED. Left: LoRA introduces the learnable
bottleneck-shaped modules (orange area) through parallel connections for the Wq and Wv matrices of attention
blocks, and models the weight changes of these two matrices in a low-rank manner. Adapter introduces learnable
modules with similar structures (orange area) through serial connections after the attention sub-layers and feed-
forward sub-layers to train the model. Right: RED introduces two learnable vectors lscaling and lbias directly
modifies the representation (green area) after feed-forward sub-layer to fine-tune the model.

various models of different architectures and scales,181

and its effectiveness has been fully demonstrated.182

Representation engineering (Zou et al., 2023)183

suggests that neural representations are becoming184

more well-structured and place representations and185

transformations between them at the center of anal-186

ysis rather than neurons or circuits. Specifically,187

Liu et al. (2023) points out that neural network188

weights determine neural activity, neural activity189

determines the networks’ output, and the networks’190

output determines the networks’ behavior and uti-191

lizes this feature to operate in the representation192

space and achieves model alignment. Turner et al.193

(2023) adds a “steer vector” to the representation194

of each hidden layer during inference time to con-195

trol the sentiment and style of the model output.196

Subramani et al. (2022) also extracted these “steel197

vectors” in the hidden space and completed unsu-198

pervised text style transfer by modifying the hidden199

representation through these vectors.200

3 Method201

In this section, we briefly review previous methods202

and introduce Representation EDiting (RED), a203

novel parameter effective fine-tuning method that204

adapts pre-trained models to downstream tasks by205

directly modifying model representations.206

3.1 Recap of previous PEFT methods207

The transformer model (Vaswani et al., 2017) is208

now the cornerstone architecture behind most state-209

of-the-art PLMs. Transformer models are com- 210

posed of L stacked blocks, where each block con- 211

tains two types of sub-layers: multi-head self- 212

attention and fully connected feed-forward network 213

(FFN). Except for the prompt-based methods which 214

introduce learnable parameters in the embedding 215

layer, many other PEFT methods are trained based 216

on these two sub-layers. 217

Figure 1 (a) shows two commonly used PEFT 218

methods, Adapter and LoRA. Except for a few 219

additional parameters that need to be trained, the 220

parameters of the pre-trained model are frozen. 221

Specifically, LoRA(Hu et al., 2021) introduces 222

the learnable bottleneck-shaped modules through 223

parallel connections for the Wq and Wv matrices 224

of attention blocks and models the weight changes 225

of these two matrices in a low-rank manner. For 226

a pre-trained weight matrix W ∈ Rd×k, LoRA 227

represents its update with two low-rank decomposi- 228

tion matrices: W+∆W = W+ s ·WdownWup, 229

where Wdown ∈ Rd×r, Wup ∈ Rr×k and s is the 230

scaling scalar, which is a hyperparameter set in ad- 231

vance. For h = xW, LoRA modified forward pass 232

yields: 233

h = xW + s · xWdownWup (1) 234

The initial adapter (Houlsby et al., 2019) inserts 235

trainable adapter modules between transformer 236

sub-layers. The adapter module contains a down- 237

projection matrix Wdown ∈ Rd×r, map input 238

3

h1 ∈ Rd to a low dimensional space of the spec-239

ified dimension r. This vector is restored to its240

original dimension d through a nonlinear activa-241

tion function f(·) and an up-projection matrix242

Wup ∈ Rr×d. The residual structure is also ap-243

plied in the adapter and the output h2 ∈ Rd of this244

module is obtained, formalized as:245

h2 = h1 + f(h1Wdown)Wup (2)246

Pfeiffer et al. (2020) have proposed a more efficient247

adapter variant that is inserted only after the FFN248

sub-layer.249

3.2 Representation Editing250

Previous PEFT methods fine-tune pre-trained mod-251

els from the perspective of adjusting model weights,252

which poses challenges for the selection of hyperpa-253

rameters. For example, choosing a suitable rank for254

the Adapter or LoRA module can be troublesome.255

A conservative choice of huge rank r can waste256

training time and computation resources, while257

progressively setting r tiny may degrade model258

performance and lead to from-scratch re-training259

(Ding et al., 2023).260

Turner et al. (2023) explicitly control the out-261

put behavior of the model by adding a “steer vec-262

tor” to the hidden layer at inference time in a non-263

parametric way, and we think that model training264

can also be controlled through a set of similar “edit265

vectors”. Inspired by this idea, we propose a new266

PEFT method to fine-tune the model by directly267

modifying the representation with two learnable268

vectors, as shown in Figure 1 (b).269

Specifically, we first introduce a learnable scal-270

ing vector lscaling ∈ Rd and employ it to perform271

the Hadamard product with the representation vec-272

tor h1, scaling the features of each dimension in273

h1 through element-wise multiplication. Addition-274

ally, we introduce another learnable bias vector275

lbias ∈ Rd. Adding this bias vector lbias and scaled276

vector to obtain the output h2, which is formalized277

as:278

h2 = lscaling ⊙ h1 + lbias (3)279

,where ⊙ denotes element-wise multiplication280

(Hadamard product), h1 ∈ Rd is the unmodified281

representation and h2 ∈ Rd is the modified repre-282

sentation.283

In addition, we initialize the scaling vector284

lscaling to one vector and the bias vector lbias to285

zero vectors, which ensures that the representation286

of the model does not change too much when these287

“edit vectors” are first added.288

4 Experiments 289

In this section, we conduct a series of experi- 290

ments to evaluate our PEFT method. We eval- 291

uate the downstream task performance of RED 292

on RoBERTa (Liu et al., 2019), T5 (Raffel et al., 293

2020), GPT-2 (Radford et al., 2019) and large scale 294

language model Llama-2 (Touvron et al., 2023). 295

Our experiments cover a wide range of tasks, from 296

natural language understanding (NLU) to genera- 297

tion (NLG). Specifically, we evaluate our methods 298

on the GLUE (Wang et al., 2018) benchmark for 299

RoBERTa and T5 like Hu et al. (2021) and Asai 300

et al. (2022). We follow the setup of Li and Liang 301

(2021a) and Hu et al. (2021) on GPT-2 for a direct 302

comparison. What’s more, we conducted instruc- 303

tion tuning experiments on Llama-2 using the Ul- 304

traFeedback (Cui et al., 2023) dataset to further test 305

the applicability of these adaptation methods on 306

large-scale language models. See Appendix A for 307

more details on the datasets and evaluation metrics 308

we use. 309

4.1 Baselines 310

To fully and fairly compare with other baselines, 311

we reproduce prior PEFT methods according to 312

their work settings and also reuse the numbers 313

provided in their articles. We compare RED to the 314

following baselines: 315

316

Fine-Tuning (FT) is a very common method for 317

training models that updates all model parameters 318

using gradient descent. Lee et al. (2019) proposes 319

a variant of FT, which simply updates some layers 320

and freezes other layers. We include one such 321

baseline reported in prior work (Li and Liang, 322

2021a) on GPT-2, which adapts just the last two 323

layers (FTtop2). 324

325

Bias-terms Fine-tuning (BitFit) freezes most of 326

the transformer parameters and trains only the 327

bias-terms, referred to Ben-Zaken et al. (2021). 328

329

Adapter adds the learnable lightweight module 330

adapter between the sub-layers of the transformer. 331

During forward propagation, the input is sequen- 332

tially processed by sub-layers of the pre-trained 333

models and these adapters to obtain the final output. 334

However, during backpropagation, only these 335

adapters obtain gradient to update parameters, 336

while the other parameters of the model remain 337

fixed and unchanged, referred to Houlsby et al. 338

4

Model & Method # Params. MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
FT (base) 125M 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6

Adapter (base) 0.4M 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0

LoRA (base) 0.3M 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7

Adapter_FFN (base) 0.3M 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7

BitFit (base) 0.1M 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3

RED (base) 0.02M 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3

FT (large) 355M 88.8 96.0 91.7 68.2 93.8 91.5 85.8 92.6 88.5

Adapter (large) 0.9M 90.1 95.2 90.5 65.4 94.6 91.4 85.3 91.5 88.0

LoRA (large) 0.8M 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.1

Adapter_FFN (large) 0.8M 90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2 87.7

RED (large) 0.05M 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 87.9

Table 1: RoBERTa base and RoBERTa large with RED and other adaptation methods on the GLUE benchmark.
Higher is better for all metrics and fewer is better for the number of trainable parameters. The standard deviations
of results from different methods are shown in Table 14 in Appendix C.

(2019).339

340

Adapter_FFN is one kind of variant of Adapter341

proposed by Pfeiffer et al. (2020). Unlike the342

initial Adapter that requires inserting the learnable343

module between all sub-layers, Adapter_FFN only344

needs to apply an adapter after each FFN sub-layer.345

346

AdapterDrop is another variant of Adapter347

proposed by Rücklé et al. (2020), which drops348

some adapter layers for greater efficiency.349

350

Low-Rank Adaption(LoRA) performs low-rank351

decomposition on the incremental matrix ∆W and352

models the weight changes by multiplying two353

low-rank matrices. These two learnable matrices354

are concatenated in parallel next to the pre-trained355

model matrix, and they simultaneously process356

the input and add up the computation results as357

the output of this block, referred to Hu et al. (2021).358

359

Prompt Tuning(PT) prefixes some continuous360

vectors at the embedding layer, which are learnable361

and are generally not in the model’s vocabulary,362

referred to Lester et al. (2021b).363

364

Prefix tuning is a general version of prompt tuning,365

which prepends the continuous vectors at each hid-366

den state, and these continuous vectors participate367

in the calculation of attention as key vectors and368

value vectors, referred to Li and Liang (2021b).369

4.2 RoBERTa base/large370

We take the pre-trained RoBERTa base (125M)371

and RoBERTa large (355M) from the HuggingFace372

Transformers library (Wolf et al., 2019) and evalu- 373

ate the performance of different efficient adaptation 374

approaches on tasks from the GLUE benchmark, 375

which is a widely recognized benchmark for nat- 376

ural language understanding. Moreover, we also 377

replicate prior work according to their setup and 378

conduct experiments under fair and reasonable con- 379

figuration, see Appendix B.1 for more details of 380

the hyperparameter used in our experiments. 381

Unlike previous works (Liu et al., 2019; Hu et al., 382

2021) that use the best model checkpoint on the 383

MNLI dataset to initial model when dealing with 384

MRPC, RTE, and STS-B to boost the performance, 385

we consider a more general setting that trains the 386

model from scratch. 387

The experimental performance of RED, as well 388

as other adaption methods, is recorded in Table 389

1. Our results indicate that RED is comparable to 390

other PEFT methods, which underlines the validity 391

of directly editing representation as a feasible so- 392

lution to adapt pre-trained models to downstream 393

tasks. 394

RED has demonstrated strong competitiveness 395

on training datasets with a data size of less than 396

100k, such as being able to match or even surpass 397

other PEFT methods on SST-2, MRPC, CoLA, 398

STS-B, and RTE. For datasets with data sizes 399

greater than 100k, such as MNLI, QQP, and QNLI, 400

the performance of BitFit and RED, which have the 401

smallest number of trainable parameters, is slightly 402

lower than other baselines. We think that larger- 403

scale training datasets may require more trainable 404

parameters to adapt. 405

Moreover, RED is highly parameter efficient. 406

It can still maintain very good performance even 407

5

Model & Method # Params. BLEU NIST MET ROUGE-L CIDEr
FT (medium) 355M 65.95 8.52 45.95 69.13 2.35

FTtop2 (medium) 25.2M 65.94 8.53 44.28 68.83 2.23

Adapter (medium) 0.9M 64.31 8.29 44.91 67.72 2.28

LoRA (medium) 0.8M 67.43 8.65 46.01 69.64 2.42

Adapter_FFN (medium) 0.8M 64.41 8.30 44.74 67.53 2.29

Prefix Tuning (medium) 0.8M 63.92 8.26 41.81 66.86 2.03

RED (medium) 0.05M 64.86 8.36 44.99 67.62 2.28

FT (large) 774M 65.56 8.50 45.40 68.38 2.27

Adapter (large) 1.8M 65.94 8.46 45.78 68.65 2.34

LoRA (large) 1.5M 68.24 8.76 46.23 69.92 2.42

Adapter_FFN (large) 1.5M 65.53 8.41 45.65 68.46 2.33

Prefix Tuning (large) 1.5M 65.50 8.45 43.97 67.32 2.23

RED (large) 0.09M 65.77 8.42 46.12 69.03 2.36

Table 2: GPT-2 medium and large with RED and other adaptation methods on the E2E NLG Challenge. Higher is
better for all metrics and fewer is better for the number of trainable parameters. The standard deviations of results
from different methods are shown in Table 15 in Appendix C.

with 7, 200 times less trainable parameters than408

full parameter fine-tuning and 16 times less train-409

able parameters than LoRA, indicating that there410

is still room for improvement to further reduce the411

number of trainable parameters even if prior works412

adopt very sparse network structures to achieve413

this goal, which is consistent with the conclusions414

found by Aghajanyan et al. (2020) and Kopiczko415

et al. (2023).416

4.3 GPT-2 medium/large417

In addition to natural language understanding tasks,418

we also conduct experiments on natural language419

generation tasks. We take the pre-trained GPT-2420

medium (355M) and GPT-2 large (774M) from the421

HuggingFace Transformers library and evaluate422

these methods on E2E NLG Challenge (Novikova423

et al., 2017). What’s more, we replicate prior works424

according to the setup of Li and Liang (2021a) and425

Hu et al. (2021), see Appendix B.2 for more details426

of the hyperparameter used in our experiments.427

The experimental performance of RED, as well428

as other adaption methods, is recorded in Table429

2. Our experimental results indicate that RED430

achieved comparable performance with other base-431

lines in various metrics of the E2E NLG Challenge,432

proving that adapting downstream tasks through433

editing representation not only works on classifi-434

cation tasks but also performs well on generation435

tasks.436

Similarly, RED achieves excellent performance437

with much less trainable parameters. In section438

5.3, we set the rank of LoRA and Adapter to 1. At 439

this point, the performance of RED is better than 440

these PEFT methods, proving that RED is not only 441

parameter efficient but also parameter effective. 442

4.4 T5 443

To further verify the universality of RED, we also 444

select the encoder-decoder architecture model for 445

experiments. Specifically, we take the pre-trained 446

T5-base (220M) from the HuggingFace Transform- 447

ers library and evaluate these methods on GLUE 448

BenchMark. We reuse the results provided by Asai 449

et al. (2022) and conduct experiments based on 450

similar settings, see Appendix B.3 for more details 451

of the hyperparameter used in our experiments. 452

The experimental performance of RED, as well 453

as other adaption methods, is recorded in Table 3. 454

Compared with other baselines, RED still achieved 455

comparable results on T5 even with fewer parame- 456

ter adjustments, indicating its universality and ver- 457

satility for various model architectures. 458

RED demonstrated a significant performance 459

advantage when compared to the PEFT method 460

of Prompt Tuning, which has a similar number 461

of trainable parameters. To be specific, RED sur- 462

passes Prompt Tuning by 11.9 points, indicating 463

that allocating a small number of learnable param- 464

eters at each layer to edit representation is a more 465

appropriate approach compared to allocating all 466

learnable parameters on the embedding layer of the 467

model. 468

6

Model & Method # Params. MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
FT (base)* 220M 86.8 94.6 90.2 61.8 93.0 91.6 71.9 89.7 84.9

Adapter (base)* 1.9M 86.5 93.8 85.3 64.0 93.2 90.2 71.9 90.7 84.5

AdapterDrop (base)* 1.1M 86.3 93.6 86.3 62.7 93.2 90.2 71.2 91.4 84.4

BitFit (base)* 0.3M 85.3 94.2 86.8 58.2 93.0 90.1 67.6 90.9 83.3

PT (base)* 0.08M 81.3 90.9 68.1 10.6 92.8 89.7 54.7 89.5 72.2

RED (base) 0.04M 85.9 93.0 91.7 61.1 91.2 89.2 72.7 88.2 84.1

Table 3: T5 base with RED and other adaptation methods on the GLUE benchmark. Higher is better for all metrics
and fewer is better for the number of trainable parameters. * indicates numbers published in prior works.

4.5 Llama-2469

Lastly, we scale up to Llama-2 with 7 billion pa-470

rameters to verify the feasibility of applying RED471

on large-scale language models. Specifically, we472

selected Llama-2 (7B) as the base model and uti-473

lized full parameter fine-tuning, LoRA, and RED474

to fine-tune the model on UltraFeedback (Cui et al.,475

2023) respectively. As for evaluation, we assessed476

the performance of these different methods across477

three widely used benchmarks: Open LLM Leader-478

board(Beeching et al., 2023), AlpacaEval (Li et al.,479

2023), and MT-Bench (Zheng et al., 2023). See Ap-480

pendix B.4 for more details of the hyperparameter481

used in our experiments.482

Method # Params. AlpacaEval (win %)
FT 6739M 80.93

LoRA 8.39M 81.48

RED 0.26M 81.69

Table 4: Win rates against reference response judged by
GPT-4 on AlpacaEval. The higher the win rate, the more
content generated is in line with human preferences,
indicating better generation quality and fewer is better
for the number of trainable parameters. See Figure 3
and Figure 4 in Appendix D for generated examples of
RED compared with baselines in dialogue tasks.

Table 4 presents the win rates on AlpacaEval of483

responses generated by models trained with differ-484

ent methods, compared to the reference responses485

from text-davinci-003. RED achieved a higher win486

rate even though the number of trainable param-487

eters was 25, 700 times less than that of full pa-488

rameter fine-tuning and 32 times less than LoRA,489

indicating that the method of directly editing repre-490

sentations to fine-tune the model is still applicable491

to large-scale language models and can generate492

the response that humans prefer.493

Moreover, Figure 2 shows the performance score494

achieved by these adaption methods on 1-turn ques-495

tions of MT-Bench. RED’s overall performance is496

Figure 2: Scores of RED and other methods in MT-
Bench. See more detailed results in Table 16 in Ap-
pendix D.

comparable to other baselines, and it has achieved 497

the best results in evaluating the capabilities of Hu- 498

manities and Reasoning. RED also achieved good 499

results on six datasets of Open LLM Leaderboard, 500

as shown in Table 18. 501

5 Ablation Study 502

In this section, we perform an ablation study to 503

examine the impact of individual components of 504

our method, editing representations in different po- 505

sitions and comparing the effectiveness of parame- 506

ters between RED and other PEFT methods. 507

5.1 Contribution of different “edit vectors” 508

RED uses two different calculation types of “edit 509

vectors”, scaling vector and bias vector, to edit rep- 510

resentations. We remove the scaling vector and 511

bias vector separately before editing the represen- 512

tation to explore the contribution of a single type 513

of vector to this operation. 514

As shown in Table 6, when we remove any “edit 515

vector” and then edit the representation, the perfor- 516

mance on all datasets decreases to varying degrees, 517

7

Model & Method # Params. BLEU NIST MET ROUGE-L CIDEr

Adapter (rank 1) 0.25M 63.76 8.37 42.74 66.70 2.09

Adapter_FFN (rank 1) 0.07M 62.99 8.09 40.88 66.39 1.98

LoRA (rank 1) 0.1M 64.51 8.38 44.78 67.35 2.28

RED 0.05M 64.86 8.36 44.99 67.62 2.28

Table 5: Comparison between RED and other rank 1 PEFT methods.

denoting that these two different vectors both have518

made contributions in the process of editing the519

representation. Compared to removing the scaling520

vector, removing the bias vector results in much521

more performance degradation, indicating that the522

bias vector plays a greater role in the process of523

editing representations.524

Method MRPC CoLA QQP
RED 90.3 68.1 88.7
-Scaling Vector 89.8 65.9 87.6
-Bias Vector 75.8 46.9 87.2

Table 6: Experimental results with different “edit vec-
tors”. “-Scaling Vector” denotes that we remove the
scaling vector and edit the representation by only bias
vector; “-Bias Vector” denotes that we remove the bias
vector and edit the representation by only scaling vector.

5.2 Position for editing representation525

Houlsby et al. (2019) adds an Adapter module af-526

ter both FFN and Attention sub-layers, Lin et al.527

(2020) only adds the Adapter module after the FFN528

sub-layer, and Hu et al. (2021) only adds the LoRA529

module in the Attention block, corresponding to530

different insertion positions of the PEFT compo-531

nent. To investigate the impact of operating differ-532

ent positions of the model on performance, we also533

designed experiments that only edited the repre-534

sentations after the FFN sub-layer, only edited the535

representations after the Attention sub-layer, and536

simultaneously edited the representations after the537

FFN and Attention sub-layer.538

As shown in Table 7, editing only the representa-539

tions after the FFN sub-layer yields slightly better540

performance compared to editing only the repre-541

sentations after the Attention sub-layer. Overall,542

there is not much change in performance compared543

to editing representations after both FFN and At-544

tention sub-layer. Therefore, considering both per-545

formance and efficiency, a more favorable compro-546

mise entails restricting only editing the representa-547

tions after the FFN sub-layer.548

Position MRPC CoLA QQP
FFN 90.3 68.1 88.7
Attn 88.9 66.1 88.6
FFN & Attn 89.2 68.4 89.4

Table 7: Experimental results on different positions.

5.3 Efficiency and effectiveness of parameters 549

When reproducing the experiments, we selected 550

the rank of Adapter and LoRA according to the 551

default settings of 8 or 16 in previous works, which 552

may result in some parameter redundancy. Here, 553

we set their rank to 1 and use GPT-2 medium as 554

the base model to conduct experiments on the E2E 555

NLG Challenge dataset, exploring the performance 556

comparison between RED and these PEFT methods 557

when their parameters are most efficient. 558

As shown in Table 5, compared to other vari- 559

ants with the smallest trainable parameters for each 560

baseline, RED still has the smallest number of train- 561

able parameters, indicating that RED is highly pa- 562

rameter efficient. Moreover, RED almost surpasses 563

these baselines, which have slightly more trainable 564

parameters, in all metrics, proving that RED is also 565

parameter effective. 566

6 Conclusion 567

We explore fine-tuning the model from a new per- 568

spective of directly modifying the model repre- 569

sentation, which is different from previous works 570

that adjusted the model weights. We propose a 571

new PEFT method Representation EDiting (RED), 572

which fine-tunes the model by introducing two 573

trainable “edit vectors” to edit representations. We 574

have conducted extensive experiments on models 575

of different architectures and scales on various 576

types of NLP datasets, verifying that RED can still 577

achieve comparable or even better performance 578

than other baselines with much fewer trainable 579

parameters, demonstrating that RED is not only 580

parameter efficient but also parameter effective. 581

8

Limitations582

We have demonstrated the effectiveness of the new583

PEFT method of fine-tuning models by directly584

editing the representations on various NLP tasks,585

it would be intriguing to explore the application586

of this method in other modalities, such as com-587

puter vision and speech recognition. In addition,588

articles related to representation engineering have589

shown that only a very small number of examples590

are needed to edit the representation to control the591

model output. Therefore, we will also apply our592

method to the few-shot scenarios to explore effec-593

tive PEFT methods that are both parameter-efficient594

and data-efficient in the future.595

References596

Armen Aghajanyan, Luke Zettlemoyer, and Sonal597
Gupta. 2020. Intrinsic dimensionality explains the598
effectiveness of language model fine-tuning. arXiv599
preprint arXiv:2012.13255.600

Akari Asai, Mohammadreza Salehi, Matthew E. Peters,601
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-602
efficient multi-task tuning via attentional mixtures of603
soft prompts. In Conference on Empirical Methods604
in Natural Language Processing.605

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An606
automatic metric for mt evaluation with improved607
correlation with human judgments. In IEEvalua-608
tion@ACL.609

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,610
Danilo Giampiccolo, Bernardo Magnini, and Idan611
Szpektor. 2006. The second pascal recognising tex-612
tual entailment challenge.613

Edward Beeching, Clémentine Fourrier, Nathan Habib,614
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar615
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.616
Open llm leaderboard. https://huggingface.co/617
spaces/HuggingFaceH4/open_llm_leaderboard.618

Anja Belz and Ehud Reiter. 2006. Comparing automatic619
and human evaluation of nlg systems. In Conference620
of the European Chapter of the Association for Com-621
putational Linguistics.622

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-623
berg. 2021. Bitfit: Simple parameter-efficient624
fine-tuning for transformer-based masked language-625
models. ArXiv, abs/2106.10199.626

Tom Brown, Benjamin Mann, Nick Ryder, Melanie627
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind628
Neelakantan, Pranav Shyam, Girish Sastry, Amanda629
Askell, et al. 2020. Language models are few-shot630
learners. Advances in neural information processing631
systems, 33:1877–1901.632

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, Iñigo 633
Lopez-Gazpio, and Lucia Specia. 2017. Semeval- 634
2017 task 1: Semantic textual similarity multilingual 635
and crosslingual focused evaluation. In International 636
Workshop on Semantic Evaluation. 637

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, 638
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and 639
Maosong Sun. 2023. Ultrafeedback: Boosting lan- 640
guage models with high-quality feedback. ArXiv, 641
abs/2310.01377. 642

Dorottya Demszky, Kelvin Guu, and Percy Liang. 643
2018. Transforming question answering datasets 644
into natural language inference datasets. ArXiv, 645
abs/1809.02922. 646

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 647
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 648
of quantized llms. ArXiv, abs/2305.14314. 649

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 650
Kristina Toutanova. 2018. Bert: Pre-training of deep 651
bidirectional transformers for language understand- 652
ing. arXiv preprint arXiv:1810.04805. 653

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, 654
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023. 655
Sparse low-rank adaptation of pre-trained language 656
models. arXiv preprint arXiv:2311.11696. 657

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong- 658
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 659
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning: 660
A comprehensive study of parameter efficient meth- 661
ods for pre-trained language models. arXiv preprint 662
arXiv:2203.06904. 663

William B. Dolan and Chris Brockett. 2005. Automati- 664
cally constructing a corpus of sentential paraphrases. 665
In International Joint Conference on Natural Lan- 666
guage Processing. 667

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 668
Sid Black, Anthony DiPofi, Charles Foster, Laurence 669
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 670
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 671
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 672
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 673
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 674
2023. A framework for few-shot language model 675
evaluation. 676

Demi Guo, Alexander M Rush, and Yoon Kim. 2020. 677
Parameter-efficient transfer learning with diff prun- 678
ing. arXiv preprint arXiv:2012.07463. 679

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 680
Kirkpatrick, and Graham Neubig. 2021. Towards a 681
unified view of parameter-efficient transfer learning. 682
ArXiv, abs/2110.04366. 683

Dan Hendrycks, Collin Burns, Steven Basart, Andy 684
Zou, Mantas Mazeika, Dawn Xiaodong Song, and 685
Jacob Steinhardt. 2020. Measuring massive multitask 686
language understanding. ArXiv, abs/2009.03300. 687

9

https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://api.semanticscholar.org/CorpusID:10438447
https://api.semanticscholar.org/CorpusID:10438447
https://api.semanticscholar.org/CorpusID:10438447
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:263605623
https://api.semanticscholar.org/CorpusID:263605623
https://api.semanticscholar.org/CorpusID:263605623
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:16639476
https://api.semanticscholar.org/CorpusID:16639476
https://api.semanticscholar.org/CorpusID:16639476
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://api.semanticscholar.org/CorpusID:238583580
https://api.semanticscholar.org/CorpusID:238583580
https://api.semanticscholar.org/CorpusID:238583580
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul688
Arora, Steven Basart, Eric Tang, Dawn Xiaodong689
Song, and Jacob Steinhardt. 2021. Measuring math-690
ematical problem solving with the math dataset.691
ArXiv, abs/2103.03874.692

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,693
Bruna Morrone, Quentin De Laroussilhe, Andrea694
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.695
Parameter-efficient transfer learning for nlp. In In-696
ternational Conference on Machine Learning, pages697
2790–2799. PMLR.698

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan699
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,700
and Weizhu Chen. 2021. Lora: Low-rank adap-701
tation of large language models. arXiv preprint702
arXiv:2106.09685.703

Rabeeh Karimi Mahabadi, James Henderson, and Se-704
bastian Ruder. 2021. Compacter: Efficient low-rank705
hypercomplex adapter layers. Advances in Neural706
Information Processing Systems, 34:1022–1035.707

Dawid Jan Kopiczko, Tijmen Blankevoort, and708
Yuki Markus Asano. 2023. Vera: Vector-based ran-709
dom matrix adaptation. ArXiv, abs/2310.11454.710

Jaejun Lee, Raphael Tang, and Jimmy J. Lin. 2019.711
What would elsa do? freezing layers during trans-712
former fine-tuning. ArXiv, abs/1911.03090.713

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021a.714
The power of scale for parameter-efficient prompt715
tuning. arXiv preprint arXiv:2104.08691.716

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021b.717
The power of scale for parameter-efficient prompt718
tuning. In Conference on Empirical Methods in Nat-719
ural Language Processing.720

Quentin Lhoest, Albert Villanova del Moral, Yacine721
Jernite, Abhishek Thakur, Patrick von Platen, Suraj722
Patil, Julien Chaumond, Mariama Drame, Julien723
Plu, Lewis Tunstall, Joe Davison, Mario vSavsko,724
Gunjan Chhablani, Bhavitvya Malik, Simon Bran-725
deis, Teven Le Scao, Victor Sanh, Canwen Xu,726
Nicolas Patry, Angelina McMillan-Major, Philipp727
Schmid, Sylvain Gugger, Clement Delangue, Th’eo728
Matussiere, Lysandre Debut, Stas Bekman, Pierric729
Cistac, Thibault Goehringer, Victor Mustar, François730
Lagunas, Alexander M. Rush, and Thomas Wolf.731
2021. Datasets: A community library for natural732
language processing. ArXiv, abs/2109.02846.733

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning:734
Optimizing continuous prompts for generation. arXiv735
preprint arXiv:2101.00190.736

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning:737
Optimizing continuous prompts for generation. Pro-738
ceedings of the 59th Annual Meeting of the Associa-739
tion for Computational Linguistics and the 11th Inter-740
national Joint Conference on Natural Language Pro-741
cessing (Volume 1: Long Papers), abs/2101.00190.742

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, 743
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and 744
Tatsunori B Hashimoto. 2023. Alpacaeval: An auto- 745
matic evaluator of instruction-following models. 746

Chin-Yew Lin. 2004. Rouge: A package for automatic 747
evaluation of summaries. In Annual Meeting of the 748
Association for Computational Linguistics. 749

Stephanie C. Lin, Jacob Hilton, and Owain Evans. 2021. 750
Truthfulqa: Measuring how models mimic human 751
falsehoods. In Annual Meeting of the Association for 752
Computational Linguistics. 753

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. 754
2020. Exploring versatile generative language model 755
via parameter-efficient transfer learning. In Findings. 756

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo- 757
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel. 758
2022. Few-shot parameter-efficient fine-tuning is 759
better and cheaper than in-context learning. ArXiv, 760
abs/2205.05638. 761

Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, 762
Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan 763
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2023. 764
Aligning large language models with human prefer- 765
ences through representation engineering. 766

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 767
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 768
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 769
Roberta: A robustly optimized bert pretraining ap- 770
proach. ArXiv, abs/1907.11692. 771

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma- 772
hairi, Hao Ma, Jiawei Han, Wen tau Yih, and Madian 773
Khabsa. 2021. Unipelt: A unified framework for 774
parameter-efficient language model tuning. In An- 775
nual Meeting of the Association for Computational 776
Linguistics. 777

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 778
Sabharwal. 2018. Can a suit of armor conduct elec- 779
tricity? a new dataset for open book question answer- 780
ing. In Conference on Empirical Methods in Natural 781
Language Processing. 782

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser. 783
2017. The e2e dataset: New challenges for end-to- 784
end generation. ArXiv, abs/1706.09254. 785

OpenAI. 2023. GPT-4 technical report. CoRR, 786
abs/2303.08774. 787

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 788
Jing Zhu. 2002. Bleu: a method for automatic evalu- 789
ation of machine translation. In Annual Meeting of 790
the Association for Computational Linguistics. 791

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 792
Kyunghyun Cho, and Iryna Gurevych. 2020. 793
Adapterfusion: Non-destructive task composition for 794
transfer learning. ArXiv, abs/2005.00247. 795

10

https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:207847573
https://api.semanticscholar.org/CorpusID:207847573
https://api.semanticscholar.org/CorpusID:207847573
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:237431340
https://api.semanticscholar.org/CorpusID:237431340
https://api.semanticscholar.org/CorpusID:237431340
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:215415943
https://api.semanticscholar.org/CorpusID:215415943
https://api.semanticscholar.org/CorpusID:215415943
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:266551232
https://api.semanticscholar.org/CorpusID:266551232
https://api.semanticscholar.org/CorpusID:266551232
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:238857301
https://api.semanticscholar.org/CorpusID:238857301
https://api.semanticscholar.org/CorpusID:238857301
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:19662556
https://api.semanticscholar.org/CorpusID:19662556
https://api.semanticscholar.org/CorpusID:19662556
https://doi.org/10.48550/ARXIV.2303.08774
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:218470208
https://api.semanticscholar.org/CorpusID:218470208
https://api.semanticscholar.org/CorpusID:218470208

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya796
Sutskever, et al. 2018. Improving language under-797
standing by generative pre-training.798

Alec Radford, Jeff Wu, Rewon Child, David Luan,799
Dario Amodei, and Ilya Sutskever. 2019. Language800
models are unsupervised multitask learners.801

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine802
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,803
Wei Li, and Peter J Liu. 2020. Exploring the limits804
of transfer learning with a unified text-to-text trans-805
former. The Journal of Machine Learning Research,806
21(1):5485–5551.807

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman808
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna809
Gurevych. 2020. Adapterdrop: On the efficiency810
of adapters in transformers. In Conference on Empir-811
ical Methods in Natural Language Processing.812

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-813
ula, and Yejin Choi. 2019. An adversarial winograd814
schema challenge at scale.815

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric816
Wallace, and Sameer Singh. 2020. Eliciting knowl-817
edge from language models using automatically gen-818
erated prompts. ArXiv, abs/2010.15980.819

Richard Socher, Alex Perelygin, Jean Wu, Jason820
Chuang, Christopher D. Manning, A. Ng, and821
Christopher Potts. 2013. Recursive deep models for822
semantic compositionality over a sentiment treebank.823
In Conference on Empirical Methods in Natural Lan-824
guage Processing.825

Asa Cooper Stickland and Iain Murray. 2019. Bert and826
pals: Projected attention layers for efficient adapta-827
tion in multi-task learning. In International Con-828
ference on Machine Learning, pages 5986–5995.829
PMLR.830

Nishant Subramani, Nivedita Suresh, and Matthew E.831
Peters. 2022. Extracting latent steering vectors from832
pretrained language models. ArXiv, abs/2205.05124.833

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter834
Albert, Amjad Almahairi, Yasmine Babaei, Niko-835
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,836
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-837
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,838
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin839
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,840
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-841
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor842
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.843
Korenev, Punit Singh Koura, Marie-Anne Lachaux,844
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai845
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,846
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew847
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan848
Saladi, Alan Schelten, Ruan Silva, Eric Michael849
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross850
Taylor, Adina Williams, Jian Xiang Kuan, Puxin851

Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An- 852
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 853
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 854
Thomas Scialom. 2023. Llama 2: Open foundation 855
and fine-tuned chat models. ArXiv, abs/2307.09288. 856

Alexander Matt Turner, Lisa Thiergart, David S. 857
Udell, Gavin Leech, Ulisse Mini, and Monte Stu- 858
art MacDiarmid. 2023. Activation addition: Steer- 859
ing language models without optimization. ArXiv, 860
abs/2308.10248. 861

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 862
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 863
Kaiser, and Illia Polosukhin. 2017. Attention is all 864
you need. In Neural Information Processing Systems. 865

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi 866
Parikh. 2014. Cider: Consensus-based image descrip- 867
tion evaluation. 2015 IEEE Conference on Computer 868
Vision and Pattern Recognition (CVPR), pages 4566– 869
4575. 870

Alex Wang, Amanpreet Singh, Julian Michael, Felix 871
Hill, Omer Levy, and Samuel R. Bowman. 2018. 872
Glue: A multi-task benchmark and analysis plat- 873
form for natural language understanding. In Black- 874
boxNLP@EMNLP. 875

Zhen Wang, Rameswar Panda, Leonid Karlinsky, 876
Rogério Schmidt Feris, Huan Sun, and Yoon Kim. 877
2023. Multitask prompt tuning enables parameter- 878
efficient transfer learning. ArXiv, abs/2303.02861. 879

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 880
man. 2018. Neural network acceptability judgments. 881
Transactions of the Association for Computational 882
Linguistics, 7:625–641. 883

Adina Williams, Nikita Nangia, and Samuel R. Bow- 884
man. 2017. A broad-coverage challenge corpus for 885
sentence understanding through inference. In North 886
American Chapter of the Association for Computa- 887
tional Linguistics. 888

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 889
Chaumond, Clement Delangue, Anthony Moi, Pier- 890
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 891
and Jamie Brew. 2019. Huggingface’s transformers: 892
State-of-the-art natural language processing. ArXiv, 893
abs/1910.03771. 894

Muling Wu, Wenhao Liu, Jianhan Xu, Changze Lv, Zix- 895
uan Ling, Tianlong Li, Longtao Huang, Xiaoqing 896
Zheng, and Xuanjing Huang. 2023. Parameter effi- 897
cient multi-task fine-tuning by learning to transfer 898
token-wise prompts. In Conference on Empirical 899
Methods in Natural Language Processing. 900

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 901
berg. 2021. Bitfit: Simple parameter-efficient 902
fine-tuning for transformer-based masked language- 903
models. arXiv preprint arXiv:2106.10199. 904

11

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:225040886
https://api.semanticscholar.org/CorpusID:225040886
https://api.semanticscholar.org/CorpusID:225040886
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:248693452
https://api.semanticscholar.org/CorpusID:248693452
https://api.semanticscholar.org/CorpusID:248693452
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:261049449
https://api.semanticscholar.org/CorpusID:261049449
https://api.semanticscholar.org/CorpusID:261049449
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:9026666
https://api.semanticscholar.org/CorpusID:9026666
https://api.semanticscholar.org/CorpusID:9026666
https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:257365136
https://api.semanticscholar.org/CorpusID:257365136
https://api.semanticscholar.org/CorpusID:257365136
https://api.semanticscholar.org/CorpusID:44072099
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali905
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a ma-906
chine really finish your sentence? In Annual Meeting907
of the Association for Computational Linguistics.908

Qingru Zhang, Minshuo Chen, Alexander Bukharin,909
Pengcheng He, Yu Cheng, Weizhu Chen, and910
Tuo Zhao. 2023a. Adaptive budget allocation911
for parameter-efficient fine-tuning. arXiv preprint912
arXiv:2303.10512.913

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,914
Pengcheng He, Yu Cheng, Weizhu Chen, and915
Tuo Zhao. 2023b. Adaptive budget alloca-916
tion for parameter-efficient fine-tuning. ArXiv,917
abs/2303.10512.918

Mengjie Zhao, Tao Lin, Martin Jaggi, and Hinrich919
Schütze. 2020. Masking as an efficient alternative to920
finetuning for pretrained language models. In Con-921
ference on Empirical Methods in Natural Language922
Processing.923

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan924
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,925
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong926
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg-927
ing llm-as-a-judge with mt-bench and chatbot arena.928
ArXiv, abs/2306.05685.929

Andy Zou, Long Phan, Sarah Chen, James Campbell,930
Phillip Guo, Richard Ren, Alexander Pan, Xuwang931
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,932
Shashwat Goel, Nathaniel Li, Michael J. Byun,933
Zifan Wang, Alex Mallen, Steven Basart, Sanmi934
Koyejo, Dawn Song, Matt Fredrikson, Zico Kolter,935
and Dan Hendrycks. 2023. Representation engineer-936
ing: A top-down approach to ai transparency. ArXiv,937
abs/2310.01405.938

12

https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:216553665
https://api.semanticscholar.org/CorpusID:216553665
https://api.semanticscholar.org/CorpusID:216553665
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:263605618
https://api.semanticscholar.org/CorpusID:263605618
https://api.semanticscholar.org/CorpusID:263605618

A Dataset And Evaluation Details939

A.1 GLUE Benchmark940

The GLUE benchmark, consisting of CoLA941

(Warstadt et al., 2018), SST-2 (Socher et al., 2013),942

MRPC (Dolan and Brockett, 2005), QQP (Wang943

et al., 2018), STS-B (Cer et al., 2017), MNLI944

(Williams et al., 2017), QNLI (Demszky et al.,945

2018) and RTE (Bar-Haim et al., 2006), is used946

for natural language understanding.We source each947

dataset from Huggingface Datasets (Lhoest et al.,948

2021) and utilize the full dataset for our experi-949

ments.950

Following (Ding et al., 2023) and (Hu et al.,951

2021), we evaluate models on the validation dataset.952

But unlike Hu et al. (2021) which just uses the train-953

ing dataset for training and the validation dataset954

for testing and selects the best result for each run,955

we have considered a more reasonable setting by956

dividing the validation set into validation set and957

test set. After each epoch training is completed,958

we will verify it on the validation set and record959

the verification results, after training all epochs, we960

select the model with the best performance on the961

validation set and test it on the test set. For datasets962

with a large validation set, we select 1000 samples963

as the validation set, and then use the remaining964

samples as the test set, and for datasets with a small965

validation set, we select half of the samples as the966

validation set, and then use the remaining samples967

as the test set, the details, and the evaluation metric968

are reported in Table 8.969

For all experiments on RoBERTa, we run 5 times970

using different random seeds and report the average971

results in order to ensure statistical significance.972

To be specific, we use 42, 43, 44, 45, 46 these 5973

random seeds2.974

A.2 E2E NLG Challenge975

E2E NLG Challenge was first introduced in976

Novikova et al. (2017) as a dataset for training977

end-to-end, data-driven natural language genera-978

tion systems and is commonly used for data-to-text979

evaluation.980

We source each dataset from Huggingface981

Datasets and utilize the full dataset for our exper-982

iments. Specifically, this dataset contains 42.1k983

training samples, 4.67k validation samples, and984

4.69k testing samples. Following previous works,985

2When conducting experiments on the RTE dataset, some
random seeds corresponded to abnormal experimental results,
so several random seeds were replaced.

Dataset #Train #Valid #Test Metric
CoLA 8.5K 522 521 Mcc
SST-2 67k 436 436 Acc
MRPC 3.7K 204 204 Acc
QQP 364K 1K 39K Acc

STS-B 5.7k 750 750 Corr
MNLI 393k 1K 8K Acc
QNLI 105K 1K 4.5K Acc
RTE 2.5k 139 138 Acc

Table 8: The size and evaluation metric of the split ver-
sion datasets in GLUE benchmark. "Mcc", "Acc" and
"Corr" represent Matthews correlation coefficient, accu-
racy, and Pearson correlation coefficient respectively.

we use the official evaluation script, which reports 986

BLEU (Papineni et al., 2002), NIST (Belz and Re- 987

iter, 2006), METEOR (Banerjee and Lavie, 2005), 988

ROUGE-L (Lin, 2004) and CIDEr (Vedantam et al., 989

2014). 990

For all experiments on GPT-2, we run 3 times 991

using different random seeds and report the average 992

results in order to ensure statistical significance. To 993

be specific, we use 42, 43, and 44 these 3 random 994

seeds. 995

A.3 UltraFeedback 996

UltraFeedback (Cui et al., 2023) consists of 64k 997

prompts, each of which has four LLM responses 998

that are rated by GPT-4 according to criteria like 999

instruction-following, honesty, and helpfulness. 1000

We construct our training dataset from UltraFeed- 1001

back by selecting the highest mean score as the 1002

“chosen” response. 1003

A.4 Open LLM Leaderboard 1004

Open LLM Leaderboard comprises six benchmarks 1005

that cover science questions, commonsense infer- 1006

ence, multitask accuracy, math reasoning, and truth- 1007

fulness in generating answers. Specifically, it con- 1008

sists of ARC (Mihaylov et al., 2018), HellaSwag 1009

(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 1010

2019), MMLU (Hendrycks et al., 2020), Truth- 1011

fulQA (Lin et al., 2021), and GSM8K (Hendrycks 1012

et al., 2021). We utilized the Eleuther AI Language 1013

Model Evaluation Harness library(Gao et al., 2023) 1014

to assess language models trained using different 1015

methods. Table 17 provides a detailed description 1016

of the leaderboard evaluation configuration and the 1017

experimental settings adopted in this study. 1018

13

A.5 AlpacaEval1019

AlpacaEval is an automated evaluation benchmark1020

based on LLMs. It employs GPT-4(OpenAI, 2023)1021

as an annotator to compare the generated content1022

of models over 805 samples on simple instruction-1023

following tasks against reference answers from text-1024

davinci-003. Previous work has shown that using1025

GPT-4 as an annotator correlates highly with as-1026

sessments from human evaluators(Li et al., 2023).1027

A.6 MT-Bench1028

MT-Bench (Zheng et al., 2023) is a collection of1029

challenging questions, consisting of 80 samples,1030

each with two turns. This benchmark also employs1031

GPT-4 as a judge to score the responses of models.1032

For each turn, GPT-4 will assign a score on a scale1033

of 10.1034

B Hyperparameter Used In Experiments1035

B.1 RoBERTA1036

We train using AdamW with a linear learning rate1037

decay schedule. For a fair comparison, we restrict1038

the model sequence length to the same for all base-1039

line methods. Importantly, we start with the pre-1040

trained RoBERTa large model when adapting to1041

MRPC, RTE, and STS-B, instead of a model al-1042

ready adapted to MNLI. See the hyperparameters1043

used in our experiments for Roberta-base in Table1044

9 and for Roberta-large in Table 10.1045

We evaluate after completing the training of each1046

epoch and select the model with the best perfor-1047

mance on the validation set for final testing. To1048

ensure statistical significance, we run 5 times us-1049

ing different random seeds and report the average1050

results and corresponding variance for almost all1051

these experiments.1052

B.2 GPT-21053

We train using AdamW with a linear learning rate1054

decay schedule. For a fair comparison, we restrict1055

the model sequence length to the same for all base-1056

line methods. What’s more, the Hugginface PEFT1057

package is used when we replicate Prefix Tuning1058

and LoRA, and the opendelta package is used when1059

we replicate Adapter and Adapter(FFN). See the1060

hyperparameters used in our experiments for GPT-1061

2 medium and GPT-2 large in Table 11.1062

We conduct evaluation after training every 5001063

train step and select the model with the best per-1064

formance on the validation set for final testing. To1065

ensure statistical significance, we run 3 times us- 1066

ing different random seeds and report the average 1067

results and corresponding variance for almost all 1068

these experiments. 1069

B.3 T5 1070

We train using AdamW with a linear learning rate 1071

decay schedule. We followed the setting of Asai 1072

et al. (2022) and conducted experiments on T5, 1073

see the hyperparameters used in our experiments 1074

for T5 base in Table 12. We conduct evaluations 1075

after completing the training of each epoch and 1076

select the model with the best performance on the 1077

validation set for final testing. 1078

B.4 Llama-2 1079

We train using AdamW with a cosine learning rate 1080

decay schedule. For a fair comparison, we also 1081

restrict the model sequence length to the same for 1082

all baseline methods. Table 13 displays the hyper- 1083

parameters used for Llama-2. 1084

We conduct evaluation after training every train- 1085

ing epoch and select the model with the best per- 1086

formance on TruthfulQA for final testing. 1087

For all methods, when generating different eval- 1088

uation metrics, we use a greedy decoding strategy. 1089

To avoid the issue of repetition, we set the repeti- 1090

tion penalty to 1.1 and set the no repeat ngram size 1091

to 5. 1092

C Results with Standard Deviations 1093

The standard deviation of the experiment con- 1094

ducted on Roberta is shown in Table 14, and the 1095

standard deviation of the experiment conducted on 1096

GPT-2 is shown in Table 15. 1097

D Detailed Results On Llama-2 1098

Figure 3 and Figure 4 present qualitative examples 1099

of RED compared with FT and LoRA in dialogue 1100

tasks. Table 16 presents the detailed result on MT- 1101

Bench and Table 18 presents the detailed result on 1102

open LLM. 1103

14

Method & Model Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
LR Schedule Linear
Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40

FT Learning Rate 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Weight Decay 1e− 04
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40
Learning Rate 5e− 04 5e− 04 4e− 04 4e− 04 4e− 04 5e− 04 5e− 04 4e− 04

LoRA Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
LoRA Config. rq = rv = 8
LoRA α. 8
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40

Adapter Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank. 8
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40

Adapter_FFN Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank. 16
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40

BitFit Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 20 40 40 40 20 20 40 40

RED Learning rate 1e− 03 1e− 03 5e− 03 5e− 03 3e− 03 1e− 03 8e− 03 3e− 03
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Max Seq. Len. 256

Table 9: Hyperparameters for RoBERTa based on GLUE.

15

Method & Model Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
LR Schedule Linear
Batch Size 16 32 32 32 16 16 16 32
Epochs 10 10 20 20 10 10 20 10

FT Learning rate 2e− 05 2e− 05 2e− 05 2e− 05 2e− 05 1e− 05 1e− 05 2e− 05
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Weight Decay 1e− 01
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 10 10 20 20 10 10 20 10
Learning rate 3e− 04 4e− 04 3e− 04 2e− 04 2e− 04 3e− 04 4e− 04 2e− 04

LoRA Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
LoRA Config. rq = rv = 8
LoRA α. 16
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 10 10 20 20 10 10 20 10

Adapter Learning rate 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank. 8
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 10 10 20 20 10 10 20 10

Adapter_FFN Learning rate 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank. 16
Max Seq. Len. 256

Batch Size 32 32 32 32 32 32 32 32
Epochs 10 10 20 20 10 10 20 10

RED Learning rate 1e− 03 1e− 03 2e− 03 1e− 03 1e− 03 1e− 03 5e− 03 5e− 03
Weight Decay 0.0 0.0 0.0 0.0 0.0 0.0 1e− 04 0.0
Warmup Ratio 6e− 02 6e− 02 0 6e− 02 6e− 02 6e− 02 1e− 02 6e− 02
Max Seq. Len. 256

Table 10: Hyperparameters for RoBERTa large on GLUE.

Dataset E2E NLG Challenge
Training

FT FT_top2 Adapter Apapter_FFN LoRA Prefix Tuning RED_M RED_L
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Weight Decay 0.0 0.0 0.0 0.0 1e− 02 0.0 1e− 04 0.0
Epoch 5 5 5 5 5 5 5 10

Learning Rate Schedule Linear Linear Linear Linear Linear Linear Linear Linear
Label Smooth 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Learning Rate 5e− 05 5e− 05 8e− 05 8e− 05 2e− 04 8e− 05 6e− 02 5e− 05

Rank or Prefix Length - - 8 16 8 16 - -
Lora α - - - - 32 - - -

Adaption - - - - rq = rv = rk = 8 - - -
Warmup Steps 500 500 500 500 500 500 500 500

Batch Size 10 10 10 10 10 10 10 10

Inference
Beam Size 10

Length Penalty 0.9
no repeat ngram size 4

Table 11: Hyperparameters for GPT-2 on E2E NLG Challenge. RED_M represents hyperparameters applied on
GPT-2 medium and RED_L represents hyperparameters applied on GPT-2 large.

16

Method & Model Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
LR Schedule Linear
Batch Size 32 32 32 32 32 32 32 32
Epochs 10 10 20 60 10 10 30 50

RED Learning rate 5e− 02 3e− 02 1e− 01 4e− 02 2e− 02 5e− 03 7e− 02 4e− 02
Warmup Ratio 1e− 02 6e− 02 1e− 02 1e− 02 0e− 00 1e− 02 1e− 02 6e− 02
Max Seq. Len. 256

Table 12: Hyperparameters for T5 base on GLUE.

Method Hyperparameter Value
Batch Size 128
Micro Batch Size 2
Optimizer Adamw
LR Scheduler Type Cosine
Rarmup Ratio 0.1
Max Seq. Len. 768

FT Learning Rate 2e− 5
Epochs 3

LoRA

Learning Rate 3e− 4
Epochs 3
Batch Size 128
LoRA α 16
LoRA Dropout 0.1
LoRA Rank 16
Target Modules [q_proj, v_proj]

RED Learning Rate 1e− 3
Epochs 10

Table 13: Hyperparameters used for Llama-2.

Model & Method # Params. MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

FT (base) 125M
87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6

85.6
(0.34) (0.96) (0.91) (3.29) (0.22) (0.19) (3.20) (0.59)

Adapter (base) 0.4M
87.0 93.3 88.4 60.9 92.5 90.5 76.6 90.5

85.0
(0.28) (0.40) (1.54) (3.09) (0.02) (0.08) (2.26) (0.35)

Adapter_FFN (base) 0.3M
87.1 93.0 88.8 58.5 92.1 90.2 77.7 90.4

84.7
(0.10) (0.50) (1.38) (1.69) (0.28) (0.07) (1.93) (0.31)

LoRA (base) 0.3M
86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3

84.7
(0.23) (0.49) (0.76) (4.36) (0.10) (0.08) (2.79) (0.54)

BitFit (base) 0.1M
84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5

82.3
(0.08) (0.87) (1.57) (3.07) (0.05) (0.02) (1.51) (0.35)

RED (base) 0.02M
83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4

84.7
(0.14) (0.31) (0.98) (2.96) (0.35) (0.17) (2.06) (0.32)

FT (large) 355M
88.8 96.0 91.7 68.2 93.8 91.5 85.8 92.6

88.5
(0.45) (0.66) (1.73) (2.62) (0.33) (1.28) (1.40) (0.16)

LoRA (large) 0.8M
90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7

88.1
(0.25) (0.85) (2.09) (2.02) (0.21) (0.91) (2.41) (0.44)

Adapter (large) 0.9M
90.1 95.2 90.5 65.4 94.6 91.4 85.3 91.5

88.0
(0.12) (0.48) (0.59) (2.24) (0.17) (0.13) (1.34) (0.33)

Adapter_FFN (large) 0.8M
90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2

87.7
(0.15) (0.75) (1.26) (1.56) (0.39) (0.24) (2.01) (0.24)

RED (large) 0.05M
89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3

87.9
(0.38) (0.48) (1.40) (1.69) (0.33) (0.11) (1.40) (0.21)

Table 14: Test results of RED and other adaption methods on the GLUE benchmark. The standard deviation is
provided in parentheses.

17

Model & Method # Params. BLEU NIST MET ROUGE-L CIDEr

FT (medium) 355M
65.95 8.52 45.95 69.13 2.35

(0.26) (0.03) (0.07) (0.30) (0.01)

FTtop2 (medium) 25.2M
65.95 8.52 45.95 69.13 2.35

(0.33) (0.03) (0.09) (0.17) (0.02)

Adapter (medium) 0.9M
64.31 8.29 44.91 67.72 2.28

(0.17) (0.01) (0.29) (0.26) (0.01)

Adapter_FFN (medium) 0.8M
64.41 8.30 44.74 67.53 2.29

(0.17) (0.02) (0.11) (0.02) (0.01)

LoRA (medium) 0.8M
67.43 8.65 46.01 69.64 2.42

(0.39) (0.05) (0.07) (0.14) (0.01)

Prefix Tuning (medium) 0.8M
63.92 8.26 41.81 66.86 2.03

(0.27) (0.11) (0.62) (0.22) (0.05)

RED (medium) 0.05M
64.86 8.36 44.99 67.62 2.28

(0.40) (0.03) (0.02) (0.22) (0.01)

FT (large) 774M
65.56 8.50 45.40 68.38 2.27

(0.47) (0.05) (0.29) (0.23) (0.02)

Adapter (large) 1.8M
65.94 8.46 45.78 68.65 2.34

(0.35) (0.05) (0.11) (0.35) (0.01)

Adapter_FFN (large) 1.5M
65.53 8.41 45.65 68.46 2.33

(0.61) (0.07) (0.12) (0.16) (0.01)

LoRA (large) 1.5M
68.24 8.76 46.23 69.92 2.42

(0.28) (0.04) (0.04) (0.16) (0.01)

Prefix Tuning (large) 1.5M
65.50 8.45 43.97 67.32 2.23

(0.63) (0.05) (0.21) (0.38) (0.02)

RED (large) 0.09M
65.77 8.42 46.12 69.03 2.36

(0.48) (0.06) (0.10) (0.09) (0.02)

Table 15: Test results of RED and other adaption methods on the E2E NLG Challenge dataset. The standard
deviation is provided in parentheses.

Method Trainable Parms. Writing Roleplay Reasoning Math Coding Extraction Stem Humanities Average
Turn-1
FT 6739M 9.111 6.500 4.778 1.444 2.700 4.800 7.944 8.833 5.688
LoRA 8.39M 8.600 7.900 4.000 1.600 2.350 4.750 8.700 8.950 5.856
RED 0.26M 8.778 7.278 4.875 1.300 2.625 4.125 7.400 9.167 5.732

Turn-2
FT 6739M 1.667 5.938 2.222 1.700 2.000 2.111 3.200 5.300 3.021
LoRA 8.39M 1.900 5.800 2.100 1.600 2.550 1.222 3.100 5.500 2.994
RED 0.26M 1.375 5.500 2.444 1.444 2.125 1.750 3.000 5.875 2.946

Final
FT 6739M 5.389 6.200 3.500 1.579 2.412 3.526 5.447 6.974 4.354
LoRA 8.39M 5.250 6.850 3.050 1.600 2.450 3.079 5.900 7.225 4.434
RED 0.26M 5.294 6.389 3.588 1.368 2.375 2.938 5.750 7.618 4.401

Table 16: Results of MT-Bench.

18

Datasets Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU
few-shot 25 0 5 5 10 5
Metric acc_norm mc2 acc acc acc_norm acc

Table 17: For each dataset used in the evaluation on the Open LLM Leaderboard, we detail the quantity of few-shot
samples utilized and the specific metric employed for evaluation.

Method # Parms. Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
FT 6739M 73.34 47.07 74.03 16.22 79.95 46.55 56.19
LoRA 8.39M 72.07 44.84 75.85 15.01 78.60 44.42 55.13
RED 0.26M 72.04 47.59 72.85 11.90 77.86 42.27 54.09

Table 18: Results of different methods on six benchmarks of Open LLM Leaderboard.

19

Prompt Can you help me figure out how to sew a button on a shirt?

FT 1. Gather the materials needed for sewing a button, which include thread, needle, and button.
2. Thread the needle with the desired color of thread.
3. Place the button through the hole in the shirt where it is missing or needs replacing.
4. Holding the button in place, thread the needle through the fabric from the backside of the shirt.
5. Pull the thread tightly to secure the button in place.
6. Cut off any excess thread.
7. Sew the button onto the shirt by hand or using a sewing machine.
8. Iron the shirt to smooth out any creases caused during the sewing process.
9. Enjoy your newly repaired shirt!

LoRA 1. Gather the necessary materials: You will need a shirt, thread, a needle, and a button. If your
shirt has a buttonhole, you can use that; otherwise, you'll have to create one using a buttonhole
template or a pattern.
2. Mark the location of the buttonhole: Use a marker or chalk to mark the location where you want
to place the buttonhole. This should be centered on the front of the shirt, just below the collar.
3. Create the buttonhole: If you don't have a buttonhole already, you'll need to make one. To do
this, fold the fabric over so that it forms a triangle shape. Then, use a ruler and a pencil to draw a
line along the edge of the triangle. Cut along this line with scissors.
4. Sew the buttonhole: Thread the needle with the thread and insert the needle through the fabric
at the top of the buttonhole. Pull the thread tightly to create a small hole in the fabric. Continue
sewing around the perimeter of the buttonhole, leaving about an inch of thread unsewn at the
bottom.
5. Insert the button: Place the button on the shirt, right-side up, with the hole facing down. Line
up the buttonhole with the hole in the button and push the button through the buttonhole.
6. Tie off the thread: Once the button is securely attached, tie off the thread by knotting it near the
beginning of the buttonhole stitching. Trim any excess thread.
7. Finish the buttonhole: Fold the fabric over the buttonhole and press it flat with an iron. This
will help to secure the button and prevent it from coming loose.
8. Repeat for additional buttons: If you need to add more buttons, repeat steps 4-7 for each new
button.
9. Test fit: Try on the shirt to ensure that the buttons are evenly spaced and that they look good.
Adjust as needed.
10. Enjoy your newly buttoned shirt!

Red 1. Gather the necessary materials: You will need a shirt, thread, a needle, and a button. If your
shirt has buttons that are already missing or damaged, you can purchase replacement buttons at
most craft stores.
2. Prepare the shirt: Lay the shirt flat with the back facing upwards. Make sure the area where you
want to sew the button is clean and free of any debris or wrinkles.
3. Thread the needle: Insert one end of the thread into the eye of the needle and pull it through the
other side. Tie a knot in the end of the thread to secure it.
4. Place the button on the shirt: Position the button on the desired location on the shirt, making
sure it's centered and aligned properly.
5. Sew the button: Holding the shirt steady with one hand, use the other hand to guide the needle
through the fabric from the backside of the shirt. Inject the thread into the fabric by pushing
down gently with your thumb while pulling the needle through. Continue sewing around the
perimeter of the button, making sure to keep the stitches even and consistent.
6. Trim the excess thread: Once you have finished sewing the button, cut off any excess thread that
extends beyond the edge of the button.
7. Test the button: Try fastening the button onto the shirt to make sure it's securely attached. If
needed, adjust the position of the button or re-sew if it's not properly attached.
8. Repeat for additional buttons: If there are multiple buttons on the shirt that need to be sewn,
repeat steps 1-7 for each button.
9. Clean up: After completing all the buttons, carefully remove any loose threads or lint from the
shirt.

Remember to always use caution when handling sharp objects like needles and thread. Always
wear protective gloves and follow proper safety precautions to avoid injury.

Figure 3: Response from RED provides a comprehensive, step-by-step guide that is detailed and methodical,
ensuring that even beginners can follow along easily. It covers preparation, threading, placement, sewing technique,
and cleanup, offering safety tips and encouraging testing for security. Conversely, the response from LoRA focuses
incorrectly on creating buttonholes rather than sewing buttons, which might confuse readers seeking to attach
buttons. Response from FT offers a simplified overview but lacks the depth and clarity of RED, making it less
instructive for those unfamiliar with sewing. RED’s detailed approach ensures accuracy and success in sewing a
button. 20

Prompt Hi, my cat just chewed on a small weed outside that looked like hairy bittercress.
Could you check if this is toxic for cats?
Please also look for plants from the same family, as I'm not 100% sure I identified it correctly.

FT Hello! I'm here to help answer your question about whether or not the plant your cat
chewed on is toxic for them. However, before I can provide an accurate response, I need more
information about the plant in question. Could you please describe the plant in detail,
including its appearance, size, and any unique characteristics it may have? Additionally,
could you tell me what part of the plant your cat ingested (e.g., leaves, stems, flowers)? This
will help me identify the correct plant and determine if it is safe or harmful for cats.

As a responsible AI assistant, I want to ensure that I provide accurate and helpful information
while prioritizing the safety and well-being of both you and your furry friend. So, please take
a moment to share any additional details you can about the plant your cat has chewed on, and
I'll do my best to assist you.

LoRA Hello! I'm here to help answer your question about whether or not the plant your cat
chewed on is toxic for them. However, before I can provide an accurate response, I need some
more information. Can you please tell me what kind of plant it was and where it was found?
This will help me identify the species and determine if it's safe for cats to consume.
Additionally, I would appreciate it if you could provide any other details you have about the
plant, such as its appearance, smell, and location. Thank you for your patience and
understanding!

Red Hello! I'm here to help you with your question about whether or not your cat has eaten
something potentially harmful. As an AI language model, I can provide information and
resources based on the best available evidence. However, it's important to note that I am not a
veterinarian and cannot diagnose or treat any medical conditions in animals. If you have
concerns about your pet's health, please consult a licensed veterinarian.

Now, let's focus on your specific question. Based on what you described, it sounds like your
cat may have eaten some type of plant material. It's always a good idea to keep an eye on your
pet after they eat something new, especially if it's a plant. Some common signs of poisoning
in cats include vomiting, diarrhea, drooling, lethargy, weakness, seizures, and difficulty
breathing. If you notice any of these symptoms, it's essential to seek immediate veterinary
care.

As for the plant itself, it's difficult to identify without more details. Bittercress (Ranunculus
spp.) is a genus of flowering plants that includes several species, including buttercup,
crowfoot, and spearwort. These plants are generally considered safe for cats, but there are
other members of the Ranunculaceae family that could be toxic, such as aconite (Aconitum
spp.), monkshood (Aconitella spp.), and wolfsbane (Aconitine).

To be on the safe side, I recommend taking your cat to the vet for a thorough examination and
possible testing if necessary. The vet will be able to determine if the plant your cat ate was
indeed toxic and provide appropriate treatment if needed. They may also advise you on how
to prevent future exposure to potentially harmful plants.

In conclusion, while most plants are safe for cats to consume, it's always better to err on the
side of caution and seek professional advice when in doubt. Please take your cat to the
veterinarian for a proper evaluation and follow their instructions accordingly.

Figure 4: Response from RED offers a comprehensive and proactive approach, addressing immediate concerns,
potential symptoms to watch for, and the importance of veterinary consultation. It provides a general safety
assessment of the Ranunculaceae family, including possible toxic members, emphasizing the need for professional
evaluation. This response balances informative content with practical advice, ensuring pet owners are prepared
to act in their pet’s best interest, even without specific plant identification. In contrast, responses from FT and
LoRA focus more on gathering additional information before offering advice, which could delay essential care in a
potentially urgent situation.

21

	Introduction
	Related Work
	Method
	Recap of previous PEFT methods
	Representation Editing

	Experiments
	Baselines
	RoBERTa base/large
	GPT-2 medium/large
	T5
	Llama-2

	Ablation Study
	Contribution of different ``edit vectors''
	Position for editing representation
	Efficiency and effectiveness of parameters

	Conclusion
	Dataset And Evaluation Details
	GLUE Benchmark
	E2E NLG Challenge
	UltraFeedback
	Open LLM Leaderboard
	AlpacaEval
	MT-Bench

	Hyperparameter Used In Experiments
	RoBERTA
	GPT-2
	T5
	Llama-2

	Results with Standard Deviations
	Detailed Results On Llama-2

