
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Investigating the Utility of Mirror Descent in
Off-policy Actor-Critic

Anonymous authors
Paper under double-blind review

Keywords: mirror descent, off-policy, actor-critic, Soft Actor-Critic, Greedy Actor-Critic,
Maximum A-Posteriori Policy Optimization

Summary
Many policy gradient methods prevent drastic changes to policies during learning. This

is commonly achieved through a Kullback-Leibler (KL) divergence term. Recent work has
established a theoretical connection between this heuristic and Mirror Descent (MD), offer-
ing insight into the empirical successes of existing policy gradient and actor-critic algorithms.
This insight has further motivated the development of novel algorithms that better adhere to the
principles of MD, alongside a growing body of theoretical research on policy mirror descent.
In this study, we examine the empirical feasibility of MD-based policy updates in off-policy
actor-critic. Specifically, we introduce principled MD adaptations of three widely used actor-
critic algorithms and systematically evaluate their empirical effectiveness. Our findings indi-
cate that, while MD-style policy updates are not significantly advantageous over conventional
approaches to actor-critic, they can somewhat mitigate sensitivity to step size selection with
widely used deep-learning optimizers.

Contribution(s)
1. We derive novel Mirror Descent variants of Soft Actor-Critic (SAC), Greedy Actor-Critic

(GreedyAC), and Maximum A-Posteriori Policy Optimization (MPO) based on the Func-
tional Mirror Descent (FMD) perspective.
Context: A growing body of work on Policy Mirror Descent (PMD) has theoretically mo-
tivated the benefits of using Mirror Descent (MD) to update policies (Xiao, 2022; Johnson
et al., 2023; Fatkhullin & He, 2024; Vieillard et al., 2020a; Lan, 2023). Much of this the-
ory is for the tabular setting with exact policies. Recent work went one step further and
re-derived several policy gradient algorithms for function approximation by introducing a
functional MD (FMD) perspective (Vaswani et al., 2022). Such a perspective has yet to be
brought to off-policy actor-critic methods that use approximate action-values and alterna-
tive losses for the actor. We are not claiming to have introduced the FMD perspective, nor
that our derivations are complex, but they produce new algorithms.

2. We show these new MD variants exhibit no significant performance advantage over SAC,
GreedyAC, and MPO across a variety of small problems and MuJoCo tasks.
Context: It is possible there could be a difference in different environments.

3. We find that these MD algorithms provide (1) minor improvement in sensitivity to actor
step size, (2) no improvement in sensitivity to entropy regularization parameter, and (3) no
improvement with increasing replay ratio for actor updates; even though all three potential
benefits are suggested by the theory.
Context: Recent work suggests that policy gradient algorithms often encounter cliffs in the
gradient direction, limiting step size magnitudes and explaining sensitivity (Jordan et al.,
2024; Sullivan et al., 2022). Since MD updates account for policy-space distances, they
should be more robust to step sizes. The KL in MD updates may already prevent policy
collapse by regulating policy changes, hence these algorithms should be less sensitive to
entropy regularization. Finally, MD updates prevent the algorithm from changing the policy
too much, in probability space, and thus the amount of replay per step can be increased.
One actor update corresponds to an approximate MD step; increasing the number of actor
updates better approximates an exact MD step, which theoretically should perform better.

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Investigating the Utility of Mirror Descent in
Off-policy Actor-Critic

Anonymous authors
Paper under double-blind review

Abstract

Many policy gradient methods prevent drastic changes to policies during learning.1
This is commonly achieved through a Kullback-Leibler (KL) divergence term. Re-2
cent work has established a theoretical connection between this heuristic and Mirror3
Descent (MD), offering insight into the empirical successes of existing policy gradient4
and actor-critic algorithms. This insight has further motivated the development of novel5
algorithms that better adhere to the principles of MD, alongside a growing body of the-6
oretical research on policy mirror descent. In this study, we examine the practicality7
of MD-based policy updates in off-policy actor-critic. Specifically, we introduce prin-8
cipled MD adaptations of three widely used actor-critic algorithms and systematically9
evaluate their empirical effectiveness. Our findings indicate that, while MD-style policy10
updates are not significantly advantageous over conventional approaches to actor-critic,11
they can somewhat mitigate sensitivity to step size selection with widely used deep-12
learning optimizers.13

1 Introduction14

Many policy optimization methods incorporate a term that prevents the policy from changing too15
much. This typically takes the form of a Kullback-Leibler (KL) divergence to the previous policy,16
either as a regularization penalty or constraint in the update. These include the widely-used algo-17
rithms TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017) and MPO (Abdolmaleki et al.,18
2018b;a). Initial work proved that policy improvement could be guaranteed by preventing the policy19
from changing too much on each step (Kakade & Langford, 2002), inspiring follow-up work in the20
deep setting to explicitly constrain the policy update using KL divergences (Schulman et al., 2015;21
2017; Mei et al., 2019).22

These algorithms have since been framed as mirror descent (MD) algorithms for policy optimization23
(Neu et al., 2017; Geist et al., 2019; Vieillard et al., 2020a; Tomar et al., 2022; Vaswani et al., 2022).24
MD generalizes the typical Euclidean distance between parameter vectors in the gradient descent25
update to allow for any Bregman divergence, such as the KL divergence.1 MD has been well-26
motivated in machine learning, because the updates better reflect the underlying problem geometry27
(Raskutti & Mukherjee, 2015; Gunasekar et al., 2021). The connection between these RL algorithms28
and MD motivated the development of new algorithms that more closely adhere to the requirements29
of a true MD update and there is a growing literature of theoretical results motivating these MD30
updates in reinforcement learning (Abbasi-Yadkori et al., 2019; Vieillard et al., 2020a;b; 2022; Zhu31
et al., 2023; Johnson et al., 2023; Alfano et al., 2023; Xiao, 2022; Fatkhullin & He, 2024; Lan,32
2023; Xiong et al., 2024). Despite these compelling theoretical justifications, much less is known33
empirically about the utility of true MD updates for policy optimization.34

1RL algorithms have used either a KL penalty or a KL constraint. The KL penalty form is the one that corresponds to a
mirror descent update, and interestingly has been shown to be more effective than the constraint form (Lazić et al., 2021).

1

Under review for RLC 2025, to be published in RLJ 2025

In this work, we focus on the empirical practicality of MD in three off-policy actor-critic algorithms:35
SAC (Haarnoja et al., 2018; 2019) MPO (Abdolmaleki et al., 2018b) and GreedyAC (Neumann36
et al., 2023). We use the functional mirror descent perspective (Vaswani et al., 2022) and introduce37
principled MD variants of the actor updates in these algorithms. For MPO we remove the KL38
constraint, which intuitively plays a role similar to MD but does not actually give an MD update,39
and instead derive a more faithful MD update. We select three algorithms with different base updates40
to more broadly understand when, or if, MD can be beneficial in deep RL.41

We contribute a set of empirical results including: a bakeoff-style comparison of MD variants against42
their standard non-MD configurations, followed by a sequence of targeted experiments designed to43
uncover if MD-based actor-critic methods achieve the practical benefits the theory suggests. Across44
several continuous state and action environments, where function approximation is required, there45
appears to be little benefit to using these MD approaches. We then explore three settings where MD46
updates with function approximation could be beneficial: (1) mitigating the step-size cliff in policy47
gradient updates (Jordan et al., 2024; Sullivan et al., 2022), (2) reducing sensitivity to hyperparam-48
eter choices, (3) and increasing the actor replay ratio. We found MD updates do indeed reduce the49
step-size cliff; allowing for a larger range of step-size parameter values that avoid divergence. Un-50
fortunately, in the other two settings, the results were mixed. Taken together, these results suggest51
MD and standard gradient descent algorithms appear to be empirically comparable.52

2 Problem Formulation and Background53

The agent-environment interaction is formalized as a Markov Decision Process (MDP) defined as a54
5-tuple (S,A,P, r, γ), where S is the state space, A is the action space, P : S×A× S→ [0,∞) is55
the transition dynamics, r : S × A × S → R is the reward function, and γ ∈ [0, 1] is the discount56
factor. The agent starts in state S0 ∼ d0, where d0 : S → [0,∞) is the distribution of starting57
states. At each timestep t = 1, 2, 3, . . . , T the agent samples an action At from its policy π(· | St)58
where π : S→ ∆A is a function mapping states to probability distributions over actions, ∆A. After59
taking action At in state St, the agent transitions to a new state St+1 ∼ P(· | St, At) and receives60
a scalar reward Rt+1 = r(St, At, St+1). The return is the cumulative, future, discounted reward61
Gt

.
=

∑T
k=t γ

krk+1. The agent’s goal is to learn a policy π which maximizes J̃(π) .
= Eπ[G0],62

where the expectation is with respect to d0, P, and π.63

Typically, a parameterized policy πθ with parameters in θ ∈ Rn is learned by adapting θ to optimize64
J(θ)

.
= Eπθ

[G0]. Policy gradient methods like REINFORCE (Williams, 1992) obtain unbiased65
samples of ∇J(θ), which involves obtaining full episode trajectories. These gradient estimates are66
expensive to sample and can be high variance. In this work we consider (off-policy) actor-critic67
algorithms that learn and use action-value functions. The action-value function of π is the expected68
return when taking action a in state s and following π thereafter, qπ(s, a)

.
= Eπ [Gt|St = s,At = a].69

This function is approximated with a parametric critic qw(s, a) ≈ qπ(s, a). Such algorithms are70
typically off-policy, using replay buffers of past data to update the critic with one-step bootstrap71
updates, followed by different ways to update the policy to be greedy with respect to qw. We discuss72
these kinds of policy updates, and how to use mirror descent (MD) for them, in the next section.73
First, we give intuition about how to use MD in the simpler setting with REINFORCE.74

REINFORCE makes gradient descent updates with stochastic samples of ∇J(θ) by executing the75
parameterized policy πθ for an episode to obtain the trajectory s0, a0, r1, s1, a1, . . . , sT , terminating76
at some variable time T . The stochastic gradient corresponds to gt

.
=

∑T−1
t=0 γtGt lnπ(at|st) (Sut-77

ton et al., 1999). Because we can get unbiased, stochastic samples of the gradient, we can leverage78
standard optimization techniques like stochastic MD, explicitly shown by Vaswani et al. (2022). The79
standard gradient update corresponds to using80

θt+1 = argmin
θ

−J(θt) + ⟨−∇J(θt),θ − θt⟩+ 1
2λ∥θ − θt∥22

= argmin
θ
⟨−∇J(θt),θ⟩+ 1

2λ∥θ − θt∥22 = θt + λ∇J(θt)

2

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

where the first line uses a first-order Taylor series approximation around θt, the second drops the81
constant and the third equality simply solves this quadratic minimization in closed-form.82

The idea in MD is to replace the ℓ2 distance with one that is more meaningful for policies. The83
above finds the best nearby parameters, under the local Taylor series approximation, where nearby84
is defined by Euclidean distance ∥θ − θt∥22. However, small changes in the policy parameters85
could actually result in large changes to the policy, and vice versa. What we really want is to86
find the best nearby policy in distribution space. In MD, we can replace the distance with any87
Bregman divergence in ϕ, Dϕ, to get θt+1 = argmin θ⟨−∇J(θt),θ⟩ + 1

λDϕ(θ,θt), where ϕ88
is a convex function called the mirror map. The KL divergence between parameters is a valid89
Bregman divergence. Unfortunately, no Bregman divergence on parameters Dϕ(θ,θt) gives us a90
KL divergence on policies.91

Fortunately, a recent paper introduced a functional mirror descent (FMD) perspective (Vaswani et al.,92
2022) that makes it clear how we can obtain a KL divergence on the policies. The idea is to consider93
an MD step in policy space Π directly, also called the functional space:94

πt+1 = argmin
π∈Π

⟨−∇J̃(πt), π⟩+ 1
λDϕ(π, πt)

where λ is a stepsize, πt is the previous learned policy and the inner product ⟨, ⟩ is over the space of95
states and actions. Since Π is just the parameterized policy space, we can remove the constraint and96
directly optimize over the parameters97

θt+1 = argmin
θ
⟨−∇J̃(πθt), πθ⟩+ 1

λDϕ(πθ, πt). (1)

In practice, we do not completely solve the above optimization problem, and instead update θ with98
M > 1 SGD steps on Equation (1).99

A key subtlety to notice here is that we use∇J̃(πθt
) instead of∇J(θt). The first is the gradient with100

respect to the policy directly, whereas the second is the gradient w.r.t. to θ. In the standard gradient101
descent update, we would use∇J(θt). For MD, we have to reason about∇J̃(πθt) instead. We will102
see this when deriving the MD updates for the off-policy actor-critic algorithms in the Section 3.103

Remark: Because KL is not symmetric, we could also have chosen the KL in the other direc-104
tion, KL(πθt

||πθ), the mode-covering, forward KL (FKL). Vaswani et al. (2022) prove that using105
the above mode-seeking, reverse KL (RKL) divergence provides monotonic policy improvement106
guarantees for direct policy representations, under some conditions, but the FKL is preferable for107
softmax policy parameterizations. We provide derivations with both divergences in Section 3.2108

3 Mirror Descent for Off-policy Actor-Critic Methods109

In this section, we introduce the off-policy algorithms and develop their FMD variants.110

3.1 A Generic Form of Mirror Descent for Off-policy Actor-Critic Methods111

Actor-Critic methods alternate between updating an action-value critic and updating the actor. We112
consider a mirror descent variant for the actor update, where the loss decomposes across states s113
and changes as the action-values q change. Formally, ℓq(θ)

.
= Es∼d[ℓq,s(θ)] for some weighting114

over states d, and ℓq,s(θ) is defined differently for each actor-critic (AC) algorithm. For example,115
for vanilla AC, we have116

ℓq,s(θ) = −Ea∼πθ(·|s) [q(s, a)]

with gradient (using the log-likelihood trick)117

∇ℓq,s(θ) = −Ea∼πθ(·|s) [q(s, a)∇ lnπθ(a | s)] where∇ℓq(θ) = Es∼d[∇ℓq,s(θ)].
2In RL, it is common to call the mode-seeking KL the reverse KL and the mode-covering KL the forward KL. In the

optimization literation, unfortunately, it is exactly the opposite. To avoid confusion, we will periodically use the longer, more
descriptive names.

3

Under review for RLC 2025, to be published in RLJ 2025

In place of the standard gradient descent update, we can use a mirror descent update on this loss,118
using the same functional mirror descent argument as above. We define the loss on the policy directly119
ℓ̃q,s(π) = −Ea∼π(·|s) [q(s, a)] with ℓ̃q(π) = Es∼d[ℓ̃q,s(π)]. The functional mirror descent update120
starts from the current πt and obtains the next πt+1 using mirror descent update121

πt+1 = argmin
π∈Π

⟨∇ℓ̃q(πt), π⟩+ 1
λDϕ(π, πt) (2)

where for vanilla AC, ∂ℓ̃q,s
∂π(a|s) (πt) = −q(s, a) and ⟨∇ℓ̃q(πt), π⟩ = −Es∼d, a∼π(·|s)[q(s, a)]. We can122

again rewrite the update in terms of θ, getting123

θt+1 = argmin
θ

fq(θ) for surrogate loss fq(θ)
.
= ⟨∇ℓ̃q(πθt), πθ⟩+ 1

λDϕ(πθ, πt).

We typically cannot solve this optimization in closed-form. Instead, we approximate the solution by124
taking multiple gradient descent steps on this surrogate loss. For vanilla AC, we use the gradient125

gt = ∇θfq(θ) = −Es∼d, a∼πθ(·|s)[q(s, a)∇θ lnπθ(a|s)] + 1
λ∇θDϕ(πθ, πt) (3)

Or, alternatively, we can use SGD steps, with mini-batches of transitions from s ∼ d on loss126

fq,s(θ)
.
= ⟨∇ℓ̃q,s(πθt), πθ(·|s)⟩+ 1

λDϕ(πθ(·|s), πt(·|s)) where fq(θ)
.
= Es∼d[fq,s(θ)]. (4)

For vanilla AC, we get a surprising coincidence: the gradient in functional space∇θ⟨∇ℓ̃q(πθt
), πθ⟩127

is actually the same as in parameter space∇θ⟨∇ℓq(θt),θ⟩. Hence, we could have obtained the same128
update by swapping the Euclidean distance with a KL, without taking this functional perspective. In129
other words, the MD update for vanilla AC uses the same gradient as usual, but adds a KL-penalty130
term λ−1Dϕ(πθ, πt). This correspondence may help explain why several previous derivations did131
not use the functional view, and instead simply jumped to the KL form. An example of this is MDPO132
(Tomar et al., 2022), where the MD update is given in terms of the policy directly, and the switch to133
policy parameters is done without considering the potential discrepancy. Again, this happens to be134
correct for vanilla AC—there is no discrepancy—and MDPO (correctly) uses Equation (3) above.135
In general, though, we will not have such an equality, and using MD for other AC algorithms will136
not correspond to simply adding a KL-penalty term to the gradient descent update.137

3.2 Functional Mirror Descent for Soft Actor-Critic138

The previous section laid the ground-work for deriving the FMD updates for SAC; we simply need139
to define our surrogate loss. More specifically, we need to define ℓ̃q,s and obtain its gradient to get140
both the surrogate loss fq,s and its gradient to get our multiple MD updates.141

SAC minimizes a mode-seeking KL to the Boltzmann distribution over q with entropy scale τ > 0,142

ℓq,s(θ) = τKL(πθ(·|s) || Bτq(· | s)) for Boltzmann Bτq(a | s) ∝ exp

(
q(s, a)

τ

)
.

The loss is scaled by τ to adjust the increasing magnitude for larger entropy scales. The gradient for143
this loss is∇ℓq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπθ(a|s))∇ lnπθ(a|s)].144

Proposition 1. On time step t with current action-values q and policy πt, the surrogate objective145
for Soft Actor-Critic with a direct functional representation and any Bregman divergence Dϕ, is146

fq,s(θ) = Ea∼πθ(·|s)[−q(s, a) + τ lnπt(a | s)] + 1
λDϕ(πθ(·|s), πt(·|s)) (5)

with gradient147

∇θfq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπt(a | s))∇ lnπθ(a|s)] + 1
λ∇θDϕ(πθ(·|s), πt(·|s)).

4

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Proof. We first define the loss in policy space, ℓ̃q,s(π)
.
= τKL(π(·|s) || Bτq(· | s)). Now we148

differentiate it149
∂ℓ̃q,s

∂π(a | s) (πt) = −q(s, a) + τ(lnπt(a | s) + 1). (6)

Taking the inner product with πθ(·|s), we get150 〈 ∂ℓ̃q,s
∂π(a|s) (πt), πθ(·|s)

〉
=Ea∼πθ(·|s)[−q(s, a)+τ(lnπt(a|s)+1)]=Ea∼πθ(·|s)[−q(s, a)+τ lnπt(a|s)]

where the 1 disappears because Ea∼πθ(·|s)[1] = 1 and we ignore constants. We can plug this into151
Equation (4) to get Equation (5). Taking the gradient is straightforward, since neither q(s, a) nor152
lnπt(a | s) depend on θ. Again using the log likelihood trick, we get ∇Ea∼πθ(·|s)[−q(s, a) +153
τ lnπt(a | s)] = Ea∼πθ(·|s)[(−q(s, a) + τ lnπt(a | s))∇ lnπθ(a|s)].154

MD-SAC with a mode-seeking KL penalty (Reverse KL)155

Corollary 1. On time step t with current action-values q and policy πt, the surrogate objective for156
Soft Actor-Critic with a mode-seeking KL, namely Dϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)), is157

fq,s(θ) = Ea∼πθ

[
−q(s, a) +

(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(7)

with gradient158

∇θfq,s(θ) = Ea∼πθ

[(
−q(s, a) +

(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
)
∇θ ln(πθ(a | s))

]
.

Proof. We need to plug Dϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (5). We have159

1
λKL(πθ(·|s) || πt(·|s)) = 1

λEa∼πθ(·|s) [lnπθ(a|s)− lnπt(a|s)] .

Combining this − 1
λ lnπt(a|s) with the τ lnπt(a|s) term from the main loss, we get Equation (7).160

To derive the gradient, we primarily need to compute the gradient for the entropy term161
∇Ea∼πθ(·|s)[lnπθ(a|s)]. For completeness, we derive the gradient of the entropy in Lemma 1.162
Using the log-likelihood trick with Lemma 1, yields the gradient above.163

This update is similar to an actor-critic variant of the MD policy update employed by DAPO-KL164
(Xiong et al., 2024), but derived from the FMD perspective. We can contrast this with the standard165
SAC update, which uses ∇ℓq,s(θ) = Ea∼πθ(·|s)[(−q(s, a) + τ lnπθ(a|s))∇ lnπθ(a|s)]. For the166
very first MD step, the updates are actually the same! The reason is that on MD iteration k = 0, we167
start from πθ0

= πt and so the KL divergence does not play a role. After the first step, however,168
πθk

no longer equals πt and we have a different update. We can also see the update is different from169
simply adding a KL penalty to the SAC update, which corresponds to170

Ea∼πθ
[(−q(s, a) +

(
τ + 1

λ

)
lnπθ(a | s)− 1

λ ln(πt(a | s)))∇θ ln(πθ(a | s))]. (8)

MD-SAC with a mode-covering KL penalty (Forward KL) Using the mode-covering KL in171
Proposition 1 produces an algorithm that looks like TRPO, albeit with entropy regularization.172
Namely we would get a surrogate loss Ea∼πt [(−q(s, a) + τ lnπt(a | s))πθ(a|s)

πt(a|s) −
1
λ lnπθ(a | s)].173

However, unlike the mode-seeking KL, the mode-covering KL is not a Bregman divergence. So it is174
not a technically valid choice for mirror descent, which is restricted to using Bregman divergences.175

Instead, to get the mode-covering KL on the policy, we actually need to consider a Bregman diver-176
gence on the logits of the policy. This choice results in using a mode-covering KL on the policy177
itself. Vaswani et al. (2022) showed this result for a REINFORCE update; we prove this result for178
SAC below. Assume we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)). Our network179
outputs zθ(a, s), and we consider the functional space over z instead.180

5

Under review for RLC 2025, to be published in RLJ 2025

Proposition 2. Assume we have a finite number of actions, |A|, and use a softmax policy param-181
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt182

and logits zt, the surrogate objective for Soft Actor-Critic with the log-sum-exp mirror map183

fq,s(θ) = Ea∼πt(·|s)
[
(ςπt(a,s) − 1

λ) lnπθ(a|s)
]

with gradient184
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπt(a,s) − 1

λ)∇ lnπθ(a|s)
]

where v(s) .=
∑|A|

j=1 q(s, j)π(j | s) and ςπt
(a, s) = −q(s, a)+v(s)+τ lnπt(a | s)+τH(πt(· | s))185

The proof is given in Section 8.2 in the Supplementary Material. A key difference from Equation186
(7) is that actions are sampled from πt instead of πθ. The reason for this is that the mode-covering187
KL for the penalty requires sampling from πt and the SAC objective—which uses a mode-seeking188
KL—requires sampling from πθ. To avoid sampling actions twice, we should choose one of these189
policies and use importance sampling for one of the terms. We opted for sampling from πt, because190
this better matches existing algorithms like TRPO and because the gradient when sampling from πθ191
is much messier.192

3.3 Functional Mirror Descent for MPO193

Maximum A-Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018b) is an off-policy194
actor-critic algorithm that incorporates KL regularization in two ways. The original explanation195
builds on relative entropy policy search (Peters et al., 2010), with a relatively complex derivation,196
but recent work recast it in simpler terms (Vieillard et al., 2020a). The idea is as follows. Ideally,197
we would extract the following policy after updating the critic qt on time step t, for all s198

πKL(·|s) = argmin
p

−Ea∼p[qt(s, a)] + κKL(p || π(·|s)) ∝ π(a|s) exp
(
qt(s, a)

κ

)
.

This closed-form solution for the policy maximizes the vanilla AC objective, under a constraint to199
stay close to the current policy, and can be interpreted as a mirror descent or natural gradient update200
in policy space (Xiao, 2022; Agarwal et al., 2021). However, this policy may not be in the policy201
class. MPO approximates this target policy by minimizing a mode-covering KL divergence to it:202

ℓq,s(θ)=KL(πKL(·|s) || πθ(·|s))=Ea∼πKL(·|s)[lnπθ(a|s)] = Ea∼πt(·|s)[
1
κqt(s, a) lnπθ(a|s)]. (9)

This objective already prevents the new policy from moving too far from the current policy, by en-203
couraging the policy to match πKL. However, it is implicit and it is not obvious precisely how much204
it will deviate from the current policy. MPO, therefore, also adds a mode-seeking KL constraint to205
the optimization: KL(πθ || πθt−1

) < ϵ.206

We can revisit this algorithm in light of the FMD perspective. We consider Equation (9) to be the207
loss for MPO, and derive the functional mirror descent update for this loss, instead of using the208
added constraint. For space, here we provide the losses and include the gradient and derivations in209
Section 8 of the Supplementary Material. The generic form for the MD update for MPO uses the210
following surrogate loss:211

fq,s(θ) = Ea∼πθ(·|s)

[
−e q(s,a)

κ

]
+ 1

λDϕ(πθ(·|s), πt(·|s)).

The derivation is in Proposition 6. Using a mode-seeking KL for the Bregman divergence, we get212
(see Corollary 3)213

fq,s(θ) = Ea∼πθ

[
−e q(s,a)

κ − 1
λ ln(πt(a | s)) + 1

λ lnπθ(a | s)
]
.

For the softmax representation with a log-sum-exp mirror map (mode-covering, forward KL), we214
obtain surrogate loss (see Proposition 7)215

fq,s(θ) = Ea∼πt(·|s)

[(
1− exp

(
q(s, a)

κ

)
− 1

λ

)
lnπθ(a|s)

]
.

6

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

3.4 Functional Mirror Descent for Greedy Actor-Critic216

Greedy Actor-Critic (GreedyAC) is a recently proposed off-policy actor-critic algorithm (Neumann217
et al., 2023) inspired by the cross-entropy method. GreedyAC defines a percentile policy on q, that218
increases the probability of actions in the top ρ percentile and zeros the probability (density) for all219
other actions. Like MPO, this target policy πρ is difficult to directly represent, but it is feasible to220
minimize a (forward) KL divergence to it because we can sample from πρ. The GreedyAC algorithm221
also incorporated entropy, giving us the combined loss222

ℓq,s(θ) = KL(πρ(· | s) || πθ(· | s)) = Ea∼πρ(·|s)[− lnπθ(a|s)] + τEa∼πθ(·|s)[lnπθ(a|s)]. (10)

The generic form for the FMD update for GreedyAC uses the following surrogate loss223

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a|s)

πt(a|s)

]
+ τEa∼πθ(·|s) [lnπt(a|s)] + 1

λDϕ(πθ(·|s), πt(·|s)).

Notice now that we need to sample the primary loss with the percentile policy and the entropy224
separately. The GreedyAC algorithm does not have a closed-form for the percentile policy—namely225
we can sample from it but cannot compute its probabilities—so we cannot use importance sampling226
to make the two match. The derivation is given in Proposition 4. When using a mode-seeking KL227
for the Bregman divergence, we get (see Corollary 2)228

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a|s)

πt(a|s)

]
+ Ea∼πθ

[(
τ − 1

λ

)
ln(πt(a|s)) + 1

λ lnπθ(a|s)
]

For the softmax representation with a log-sum-exp mirror map (mode-covering, forward KL), we229
obtain surrogate loss (see Proposition 5)230

fq,s(θ) = E
a∼πρ(·|s)

[− lnπθ(a | s)] + E
a∼πt(·|s)

[(
τ lnπt(a|s) + τH(πt(·|s)) + 1− 1

λ

)
lnπθ(a|s)

]
.

4 Empirical Study231

In this section we empirically investigate MD variants of GreedyAC, SAC, and MPO. We used sev-232
eral continuous- and discrete-action classic control environments: Pendulum (Degris et al., 2012),233
Acrobot (Sutton & Barto, 2018), and Mountain Car (Sutton & Barto, 2018). Discrete actions in-234
cluded the extreme continuous actions and zero. Experiments always consisted of 100,000 steps235
except for Pendulum which used 50,000 steps. We also used HalfCheetah-v4, Walker2D-v4, and236
Hopper-v4 from the MuJoCo suite (Towers et al., 2023) and used 1 million steps for each. In all237
plots, solid lines denote mean performance with shaded regions denoting 95% bootstrap confidence238
intervals. All learning curves are smoothed for readability.239

Summary and some Implementation Details Hereon, we will label the FMD variants of SAC,240
MPO, and GreedyAC using MD-SAC, MD-MPO and MD-GreedyAC with RKL or FKL to indicate241
the variant. Standard algorithm variants are sometimes referred to using non-MD. Typically, we242
approximated the closed-form MD update with with M = 10 SGD updates, performing all M SGD243
updates on the same environment step. For computational feasibility in Section 4.1, we performed244
an MD update (i.e. M SGD updates) every M environment steps, ensuring that the number of SGD245
updates was equal for MD and non-MD algorithms. For all other experiments, we performed an MD246
update (i.e. M SGD updates) on each environment step.247

All algorithms optimize updates using a log-likelihood form for consistency, a natural choice for248
GreedyAC and MPO. While SAC typically uses reparameterization, this is challenging for MD-249
SAC with the FKL, so we apply the log-likelihood form to all SAC variants. Using a baseline250
v(s) for advantage estimates q(s, a) − v(s) was crucial, rather than relying solely on an action-251
value critic. We approximated v(s) with a sample average of 30 action-values from policy-sampled252
actions. This approach aligns with the original SAC proposal (Haarnoja et al., 2018), though later253
versions (Haarnoja et al., 2019) omitted it. In the continuous-action setting, MD-GreedyAC with254

7

Under review for RLC 2025, to be published in RLJ 2025

(a) Continuous-Action (b) Discrete-Action

Figure 1: Learning curves on the classic control suite. Dashed and dotted lines indicate MD-style
updates with FKL and RKL penalties respectively. Solid lines denote non-MD updates.

the RKL exhibited unstable learning due to the likelihood ratio in its gradient. We found clipping to255
be crucial for stability (see Supplementary Material, Section 7).256

We used the Adam optimizer (Kingma & Ba, 2014) with neural networks for both actor and critic,257
each consisting of 2 hidden layers with 256 units for MuJoCo, 64 units for continuous-action classic258
control, and 32 units for discrete-action classic control per layer. Continuous-action policies were259
parameterized as Squashed Gaussian distributions with a separate network predicting location and260
log-scale parameters, sharing inputs. We clipped the log-scale parameter to±103 and exponentiated261
for positivity. For discrete-actions, we used softmax policies. All algorithms used a single action-262
value critic. Hyperparameter sweeps and tuned values are listed in Section 7 in the Supplementary.263

4.1 Mirror Descent Bake-Off264

We begin with a bake-off style analysis, comparing each algorithm to its two MD variants, sweeping265
hyperparameters and reporting performance over 50 runs3 (30 for MuJoCo). Since hyperparameter266
tuning is often impractical in real-world applications, we assess algorithm sensitivity using a cross-267
environment hyperparameter tuning procedure (Neumann et al., 2023), tuning across the continuous-268
action classic control, discrete-action classic control, and MuJoCo suites separately.269

Classic Control Figures 1a and 1b show the learning curves on the continuous- and discrete-action270
classic control suite respectively. We did not find a consistent trend between MD and non-MD271
algorithms, both performing similarily.272

0 1000

Timesteps (×1000)

0

1000

2000

R
et

u
rn

Hopper

0 1000

Timesteps (×1000)

0

1000

2000

3000

Walker2D

0 1000

Timesteps (×1000)

0

2500

5000

7500

10000
HalfCheetah

SAC MD-SAC/RKL MD-SAC/FKL

Figure 2: Mujoco Suite

MuJoCo Gymnasium Suite De-273
spite the negative result, it is possible274
that things change in more difficult275
environments. Figure 2 shows the276
learning curves of SAC and its MD277
variants on the MuJoCo suite. Again,278
MD-style updates provided no con-279
sistent benefit. MD-SAC with FKL280
learned a better policy than SAC on281
Hopper but learned a worse policy282
than SAC on HalfCheetah. In all cases, SAC and MD-SAC with RKL performed similarly.283

3For continuous-action MD-GreedyAC with RKL, we only used 30 runs.

8

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

−8 −6 −4 −2 0 2

log(αactor)

0

100

200

S
te

p
s

(×
10

00
)

SAC

−8 −6 −4 −2 0 2

log(αactor)

MD-SAC/RKL

−8 −6 −4 −2 0 2

log(αactor)

MD-SAC/FKL

Met Convergence Criterion Did Not Meet Convergence Criterion

(0.9, 0.9)

(0.5, 0.1)

Figure 3: (Left) The number of steps for SAC and MD-SAC to learn a near-optimal policy for at
least 1,500 runs. Each point represents a single agents with a randomly sampled αactor ∈ [−9, 2].
An algorithm which is robust to the step size cliff would exhibit a wide, contiguous region of points
along the x-axis which are low on the y-axis, indicating that a wide range of step sizes induce
convergence to a near-optimal policy. Dashed lines indicate smallest/largest inlier working step
sizes for SAC. (Right) The environment.

4.2 Further Analysis of the Functional Mirror Descent Update284

The previous section found no definitive advantage to using the MD-style actor-critic algorithms285
in terms of learning speed. However, this does not preclude the possibility that MD offers other286
benefits. Our previous analysis may have focused on the wrong aspects, overlooking scenarios287
where MD could be advantageous. In this section, we conduct a more in-depth examination of the288
MD update to identify conditions under which it may provide meaningful improvements.289

4.2.1 Mitigating the Step Size Cliff290

Large actor step sizes can severely degrade policies (Jordan et al., 2024; Sullivan et al., 2022), known291
as the step size cliff. This cliff can be avoided by using small actor step sizes but such a strategy292
slows learning. Step sizes must be chosen to balance learning speed and stability. Since MD better293
accounts for policy changes, it may enhance robustness to the step size cliff.294

To test this, we considered a continuous-state, discrete-action MDP (Figure 3, Right). States con-295
sisted of the agent’s (x, y) position, between [0, 0] (lower left) and [1, 1] (upper right). The agent,296
starting at (0.5, 0.1), took actions either moving it nowhere or moving it 0.05 units along the four297
cardinal directions or four diagonals. The goal was a 0.1 radius circle at (0.9, 0.9), with rewards298
of −0.01 per step and +10 for entering the goal, which induced episode termination. We truncated299
episodes at 1,000 steps (without termination), set γ = 1, and ran experiments for 250,000 steps.300

To quantify how actor step sizes affect learning, we measured performance as the number of envi-301
ronment steps required for SAC and MD-SAC to maintain performance above a threshold ϱ. We302
set M = 10 and updated every environment step. Following Jordan et al. (2024), we estimated an303
approximate lower bound on J̃(π) using the last n returns without pausing learning. Concretely,304

we let J̃e,n = Ḡe−n+1:e − 3σ(Ḡe−n+1:e)√
n

, where Ḡe−n+1:e and σ(Ḡe−n+1:e) are the sample mean305

and standard deviation of the last n returns, and terminate when J̃e,n ≥ ϱ. We set n = 100 and306
ϱ = Gmin + 0.95(Gmax −Gmin).307

Figure 3 shows convergence times across at least 1,500 randomly sampled αactor ∈ [−9, 2] per al-308
gorithm using the Adam optimizer (Kingma & Ba, 2014). We fixed τ = αcritic = 10−3, ensuring309
SAC could learn well across many actor step sizes, and λ = 10−1 for MD-SAC variants. Occasion-310
ally, extreme αactor yielded convergence. We applied a local outlier factor algorithm to identify the311
largest/smallest inlier αactor leading to convergence and show these as dashed lines in Figure 3 (see312
Supplementary Material, Section 10.1).313

9

Under review for RLC 2025, to be published in RLJ 2025

−1000

1000

P
en

d
u

lu
m

R
et

u
rn

−4 −3 −2 −1 0

log(τ)

−1000

0

A
cr

ob
ot

R
et

u
rn

SAC MD-SAC/RKL MD-SAC/FKL

(a) SAC

−1000

1000

P
en

d
u

lu
m

R
et

u
rn

−∞ −3 −2 −1 0

log(τ)

−1000

0

A
cr

ob
ot

R
et

u
rn

GreedyAC MD-GreedyAC/RKL MD-GreedyAC/FKL

(b) GreedyAC

Figure 4: Performance distributions across entropy scales.

A broader range of actor step sizes resulted in convergence for MD-SAC compared to SAC. Within314
the lower limit of SAC’s working step size range, MD-SAC variants often converged faster. Further,315
MD-SAC with FKL was most robust to large step sizes. Even with good step sizes, each algorithm316
occasionally failed to learn a near-optimal policy within the duration of the experiment, especially317
noticeable for MD-SAC. Notably, many of these good—yet unsuccessful—step sizes produced rea-318
sonable performance but did not meet our convergence criterion. Furthermore, λ influenced the319
range of good step sizes for MD-SAC (see Supplementary Material, Section 10.1), generally in-320
creasing the range of good step sizes as λ decreased (higher KL penalty).321

4.2.2 Sensitivity to Entropy Scale322

Actor-Critics are notoriously sensitive to the entropy scale hyperparameter (Eimer et al., 2023; Neu-323
mann et al., 2023). Intuitively, MD should mitigate this sensitivity by restricting policy changes in324
policy space. Further, the FKL penalty form provides additional protection since the update samples325
actions from πt rather than from πθ. We analyzed performance distributions across different entropy326
scales τ for SAC and GreedyAC. Using the experimental setup in Section 4.1, we conducted 50 ad-327
ditional runs of MD-SAC and MD-GreedyAC for log τ ∈ {−4, 0} (MD-SAC) and log τ ∈ {−3, 0}328
(MD-GreedyAC). Figure 4 shows the performance distribution of each algorithm with λ set to the329
tuned values from Section 4.1. We see that MD-style updates did not substantially improve robust-330
ness to τ for either algorithm, though a moderate improvement was observed for MD-SAC (FKL)331
and MD-GreedyAC (RKL) on Pendulum.332

4.2.3 Increasing the Actor Replay Ratio333

Figure 5: Performance vs replay ratio over 60 runs
with continuous-actions.

In this section we test if increasing M can im-334
prove the MD update, because doing so could335
give a better approximation of the closed-form336
MD update in Equation 2. On each step, we337
increase the number of actor updates, though338
this still only corresponds to an approximation339
to one MD update. For a fair comparison, we340
also increase the number of actor updates for341
the non-MD variants, though the interpretation342
in that case is different. Each actor update is an-343
other standard gradient descent update. We ex-344
pect that increasing the number of actor updates345
for the MD algorithms should be beneficial, but346
may actually be harmful for the non-MD algo-347
rithms.348

10

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Using the tuned hyperparameters from Section 4.1, we evaluated each algorithm on the classic con-349
trol suite with actor replay ratios of 2, 4, 8, 16, 32, or 64 gradient updates for the actor per envi-350
ronment step over 60 runs, setting M to the number of actor updates per step and updating on each351
environment step. Our goal was to test the policy update, so we fixed the critic updates to 1 per352
step.4 Figure 5 shows the results for the continuous-action setting. Discrete-action results are shown353
in Section 10.2 in the Supplementary Material.354

We found no consistent relationship between actor replay ratio and performance. While large actor355
replay ratios sometimes degraded performance as expected, MD-style algorithms did not consis-356
tently benefit from increased updates and, in some cases, performed worse. Moreover, MD-style357
methods were not typically more robust to the actor replay ratio than non-MD variants, though358
they exhibited slightly greater robustness in the continuous-action setting than in the discrete-action359
setting.360

5 Discussion and Conclusion361

Our empirical analysis did not provide evidence for a significant difference between MD and362
NonMD algorithm variants. In this section we discuss potential reasons for this and propose fur-363
ther avenues for investigation. The potential reasons can be grouped into two categories: difficulty364
in approximately solving the MD optimization problem (Equation 4) and difficulty in optimizing an365
actor-critic algorithm’s objective with MD.366

Key to the performance of MD algorithms is how well the optimization problem in Equation 4 is367
approximated. If the approximation is too coarse, then the MD algorithm variants may be quite368
similar to their Non-MD counterparts. In a similar vein, if this optimization problem is difficult to369
solve and not much progress is made for any number of inner updates M , the resulting algorithm370
would again be quite similar to a Non-MD algorithm. In fact, we observed some evidence of this,371
since we found that the actor step size αactor was more crucial for performance than λ. In reality, if372
our approximation to the MD optimization problem was good enough, then αactor should have had a373
smaller impact on performance since its role in optimizing the policy is secondary to λ. If we were374
able to exactly solve the MD optimization problem, then αactor should play no role at all in the MD375
update.376

The performance of actor-critic algorithms heavily rests on the kind of optimizer used, and modern377
optimizers are crucial for successfully training neural networks with actor-critics. In contrast, SGD378
with fixed step sizes is typically much less effective practically. In this work, we used the Adam379
optimizer (Kingma & Ba, 2014) for training neural networks. But for MD, the hyperparameter λ380
is well though of as a step size controlling how updates are made in policy space. Although in this381
work we tuned the MD step size λ, it was nevertheless held constant after tuning. Because of this,382
the MD algorithms could have been at a significant disadvantage. We likely need an optimizer for383
the MD step size.384

We propose a few avenues for future research. The first being to verify whether the surrogate MD385
optimization problem is approximately solved in these MD-style actor-critic and policy gradient al-386
gorithms, and to develop improved methods for approximating the MD optimization problem if not.387
This could include different optimization strategies beyond Adam, such as second order methods,388
line search, or meta-learning. Next, we suggest developing new adaptive step size strategies for389
adjusting λ rather than keeping it constant, and potentially considering joint tuning of αactor and390
λ. Finally, we suggest a more thorough investigation of MD and actor-critic components to better391
understand the interplay between MD and actor-critic objectives, especially pertaining to how actor392
and critic step size affect the MD update and performance.393

4Note that increasing the replay ratio for the action-value has been shown to degrade performance (D’Oro et al., 2023;
Nikishin et al., 2022). But here we keep the number of critic updates at 1, and so those results do not directly apply.

11

Under review for RLC 2025, to be published in RLJ 2025

References394

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert395
Weisz. POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. In Proceedings of396
the International Conference on Machine Learning, 2019.397

Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan398
Belov, Nicolas Heess, and Martin Riedmiller. Relative Entropy Regularized Policy Iteration.399
arXiv preprint arXiv:1812.02256, 2018a.400

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-401
tin Riedmiller. Maximum a Posteriori Policy Optimisation. In Proceedings of the International402
Conference on Learning Representations, 2018b.403

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy404
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning405
Research, 2021.406

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A Novel Framework for Policy Mirror Descent407
with General Parameterization and Linear Convergence. Proceedings of the International Con-408
ference on Neural Information Processing Systems, 2023.409

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic Mirror Descent on Overparameterized410
Nonlinear Models. IEEE Transactions on Neural Networks and Learning Systems, 2022.411

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends in412
Machine Learning, 2015.413

Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton. Model-Free Reinforcement Learning414
with Continuous Action in Practice. In Proceedings of the American Control Conference, 2012.415

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and416
Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier.417
In Proceedings of the International Conference on Learning Representations, 2023.418

Theresa Eimer, Marius Lindauer, and Raileanu Roberta. Hyperparameters in Reinforcement Learn-419
ing and How to Tune Them. In Proceedigs of the International Conference on Machine Learning,420
2023.421

Ilyas Fatkhullin and Niao He. Taming nonconvex stochastic mirror descent with general Bregman422
divergence. In Proceedings of the International Conference on Artificial Intelligence and Statis-423
tics, 2024.424

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision425
processes. In Proceedings of the International Conference on Machine Learning, 2019.426

Suriya Gunasekar, Blake Woodworth, and Nathan Srebro. Mirrorless Mirror Descent: A Natural427
Derivation of Mirror Descent. In Proceedings of International Conference on Artificial Intelli-428
gence and Statistics, 2021.429

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy430
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the431
International Conference on Machine Learning, 2018.432

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash433
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-434
rithms and Applications, 2019.435

Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal Convergence Rate for Exact436
Policy Mirror Descent in Discounted Markov Decision Processes. In Proceedings of the Interna-437
tional Conference on Neural Information Processing Systems, 2023.438

12

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Scott M Jordan, Samuel Neumann, James E Kostas, Adam White, and Philip S Thomas. The Cliff439
of Overcommitment with Policy Gradient Step Sizes. Reinforcement Learning Conference, 2024.440

Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement Learning.441
In Proceedings of the International Conference on Machine Learning, 2002.442

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR, 2014.443

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling444
complexity, and generalized problem classes. Mathematical Programming, 2023.445

Nevena Lazić, Botao Hao, Yasin Abbasi-Yadkori, Dale Schuurmans, and Csaba Szepesvári.446
Optimization Issues in KL-Constrained Approximate Policy Iteration. arXiv preprint447
arXiv:2102.06234, 2021.448

Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On Princi-449
pled Entropy Exploration in Policy Optimization. In International Joint Conference on Artificial450
Intelligence, 2019.451

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A Unified View of Entropy-Regularized Markov452
Decision Processes. arXiv preprint arXiv:1705.07798, 2017.453

Samuel Neumann, Sungsu Lim, Ajin Joseph, Yangchen Pan, Adam White, and Martha White.454
Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy Improvement. In455
Proceedings of the International Conference on Learning Representations, 2023.456

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The457
Primacy Bias in Depp Reinforcement Learning. In Proceedings of the International Conference458
on Machine Learning, 2022.459

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-460
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and461
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,462
2011.463

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative Entropy Policy Search. In Proceedings464
of the AAAI Conference on Artificial Intelligence, 2010.465

Garvesh Raskutti and Sayan Mukherjee. The Information Geometry of Mirror Descent. IEEE466
Transactions on Information Theory, 2015.467

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region468
Policy Optimization. In Proceedings of the International Conference on Machine Learning, 2015.469

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy470
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.471

Ryan Sullivan, Jordan K Terry, Benjamin Black, and John P Dickerson. Cliff Diving: Exploring Re-472
ward Surfaces in Reinforcement Learning Environments. In Proceedings of the 39th International473
Conference on Machine Learning, 2022.474

R. S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.475

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,476
2018.477

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods478
for Reinforcement Learning with Function Approximation. In Proceedings of the International479
Conference on Neural Information Processing Systems, 1999.480

13

Under review for RLC 2025, to be published in RLJ 2025

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror Descent Policy481
Optimization. In Proceedings of the International Conference on Learning Representations, 2022.482

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,483
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-484
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-485
sium, 2023. URL https://zenodo.org/record/8127025.486

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Shivam Garg, Matthieu Geist,487
Marlos C. Machado, Pablo Samuel Castro, and Nicolas Le Roux. A General Class of Surro-488
gate Functions for Stable and Efficient Reinforcement Learning. In International Conference on489
Artificial Intelligence and Statistics, 2022.490

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.491
Leverage the Average: An Analysis of Regularization in RL. In Proceedings of the International492
Conference on Neural Information Processing Systems, 2020a.493

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen Reinforcement Learning. In494
Proceedings of the International Conference on Neural Information Processing Systems, 2020b.495

Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, and Matthieu Geist. Im-496
plicitly Regularized RL with Implicit Q-Values. In Proceedings of the International Conference497
on Artificial Intelligence and Statistics, 2022.498

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-499
ment Learning. Machine learning, 1992.500

Lin Xiao. On the Convergence Rates of Policy Gradient Methods. In Journal of Machine Learning501
Research, 2022.502

Zhihan Xiong, Maryam Fazel, and Lin Xiao. Dual Approximation Policy Optimization. In Proceed-503
ings of the ICML Workshop on Aligning Reinforcement Learning Experimentalists and Theorists,504
2024.505

Lingwei Zhu, Zheng Chen, Matthew Schlegel, and Martha White. Generalized Munchausen Rein-506
forcement Learning using Tsallis KL Divergence. arXiv preprint arXiv:2301.11476, 2023.507

14

https://zenodo.org/record/8127025

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Supplementary Materials508

The following content was not necessarily subject to peer review.509
510

6 Mirror Descent511

One significant advantage of Mirror Descent (MD) is its consideration of the geometry of the input512
space over which a function is optimized. Using an iterative optimization approach, mirror descent513
is able to induce non-Euclidean geometry (Raskutti & Mukherjee, 2015). Further, by clearly dis-514
tinguishing primal and dual spaces, MD addresses the philosophical issue of combining vectors in515
different spaces during gradient updating. Although the derivation of mirror descent can be found in516
a multitude of other sources, we provide its derivation and a brief discussion here for completeness.517
This section is organized as follows. We first briefly summarize mirror descent. We refer the reader518
to Bubeck (2015)’s comprehensive book on convex optimization – from which we extensively adapt519
the proceeding sections – for a more detailed discussion of mirror descent. We then derive mirror520
descent on the simplex with a negative entropy mirror map. Finally, we explore the connections521
between the lift-step-project form of mirror descent and its commonly used proximal form.522

Let us first define some terminology. In the following sections, we refer to an input x as being in523
some primal space. Following the notation of Bubeck (2015), we use a hatted symbol (e.g. x̂) to524
refer to the same point after transforming it to the dual space. For some set S, denote ∂S as the525
boundary of S and define the closure of S as S .

= S∪∂S. Denote as Rn
>0 the subset of Rn consisting526

of vectors whose elements are positive real numbers:527

Rn
>0

.
= {x | x ∈ Rn, xi > 0, ∀i ≤ n ∈ Z}

We use a similar definition for Rn
≥0.528

Consider an objective function which we would like to optimize J : X → R such that X ⊆ Rn.529
For subgradient-descent-style optimization algorithms, an optimization step at iteration t is taken by530
subtracting from input xt a scaled subgradient of J evaluated at xt:531

xt+1 ← xt − λgt for some λ ∈ R

where gt ∈ ∂J(xt), the subdifferential of J at xt defined as:532

∂J(x) = {g | J(x)− J(y) ≤ ⟨g,x− y⟩}
The subgradient gt (and the gradient ∇J itself) does not necessarily lie in the same space as the533
input. While xt ∈ X, gt is in the dual space, Rn. As an example, consider the case when X is the534
simplex and J(x) = ⟨x, ln(x)⟩. Then ∇J(x) = ln(x) − 1 /∈ X. Furthermore, if our objective is535
non-convex, then a subgradient may not exist. In this case, we can replace the subgradient in the536
equations above using a gradient, as long as our objective is smoth.537

The Lift Procedure The lift procedure of MD consists of lifting the input to the dual space, the538
same space that the (sub)gradient of J lies is. To do this, we introduce a mirror map. Let D be an539
open, convex set such that X ⊂ D and X ∩D ̸= ∅. We say that ϕ : D → R is a mirror map if it540
satisfies the following conditions541

• Convexity and Differentiability: ϕ is strictly convex and differentiable542

• Gradient Surjectivity: ∇ϕ : D→ Rn is surjective543

• Gradient Divergence: lim
x→∂D

∥∇ϕ(x)∥ =∞544

This is the common characterization of mirror maps Bubeck (2015) but note that we will later require545
∇ϕ to be injective on its domain.546

The lift procedure then consists of the transformation:547

x̂t ← ∇ϕ(xt) (11)

15

Under review for RLC 2025, to be published in RLJ 2025

The Step Procedure The step procedure consists of taking a step in the dual space:548

ŷt+1 ← x̂t − λgt (12)

where λ ∈ R is a stepsize parameter.549

The Project Procedure The project procedure consists of transforming ŷt+1 back to the primal550
set X. To begin, ŷt+1 is transformed back to D using the inverse gradient of the mirror map. That is551

yt+1 ← (∇ϕ)−1(ŷt+1) (13)

This procedure is often computed using the Legendre-Fenchel transform. For a function f : X→ R,552
the Legendre-Fenchel transform (or convex conjugate) of f is defined to be553

f∗(x∗)
.
= sup

x∈X

(⟨x∗,x⟩ − f(x)) (14)

A useful property of the Legendre-Fenchel transformation of f is that its gradient is the inverse of554
the gradient of f , that is:555

∇f∗(∇f(x)) = x

∇f(∇f∗(x)) = x
(15)

Therefore, if we are able to compute the gradient of the Legendre-Fenchel transform of ϕ, we can556
use it to compute Equation 13:557

yt+1 ← ∇ϕ∗(ŷt+1) (16)

To project yt+1 ∈ D back to the constraint set X we employ a projection operator ΠX
ϕ : D→ X:558

ΠX
ϕ (y)

.
= argmin

x∈X∩D

Dϕ(x,y) (17)

where Dϕ is the Bregman divergence in ϕ. To complete the mirror descent update, we simply apply559
this projection to yt+1:560

xt+1 ∈ ΠX
ϕ (yt+1) (18)

General Form Based on the preceding discussion, mirror descent has the following general form:561

yt+1 = ∇ϕ∗(∇ϕ(xt)− λgt) where gt ∈ ∂J(xt)

xt+1 ∈ ΠX
ϕ (yt+1)

from (11, 12, 13, 16)
from (18)

(19)

where x1 = argmin x∈X∩D ϕ(x).562

6.1 Deriving Mirror Descent on the Simplex563

Given a mirror map ϕ, the lift and step operations are immediately defined. For the projection step,564
we must derive the inverse of the lift step. This requires deriving:565

1. Inverse of mirror map gradient: (∇ϕ)−1566

2. Projection operator: ΠX
ϕ (y) = argmin

x∈X∩D

Dϕ(x,y) for some y ∈ D567

We will use the negative entropy mirror map, defined as:568

ϕ(x) = ⟨x, lnx⟩ =
n∑

i=1

xi ln(xi) (20)

which implies that D = Rn
≥0. We use the convention that 0 log 0 = 0.569

In Section 6.1.1, we derive the Legendre-Fenchel transform of the negative entropy mirror map and570
use it to compute the inverse of the mirror map gradient for (1). Next, in Section 6.1.2 and 6.1.3, we571
derive the projection operator (2).572

16

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

6.1.1 Legendre-Fenchel Transform of the Negative Entropy Mirror Map573

Recall the definition of the Legendre-Fenchel transform of ϕ:574

ϕ∗(x∗) = sup
x∈Rn

≥0

(⟨x,x∗⟩ − ϕ(x)) (21)

= sup
x∈Rn

≥0

(⟨x,x∗⟩ − ⟨x, ln(x)⟩) (22)

= sup
x∈Rn

≥0

f(x) (23)

where f is defined implicitly. Notice that575

∇f(x) = x∗ −∇ϕ(x)
= x∗ −∇⟨x, ln(x)⟩
= x∗ − ln(x)− 1

Now, the gradient is not defined on the boundary of Rn
≥0. Yet it is clear that our objective function576

here has a unique solution. We will therefore seek a solution in Rn
>0. Upon obtaining such a solution,577

the uniqueness property will ensure that this is indeed the sought after solution. Setting∇f(x) = 0578
and solving provides:579

x = ex
∗−1 (24)

substituting x back into Equation 22 we get580

ϕ∗(x∗) = ⟨ex∗−1,x∗⟩ − ⟨ex∗−1,x∗ − 1⟩ = 1⊤ex
∗−1 (25)

where 1 ∈ Rn is the vector whose elements are all 1. Hence ϕ∗(x∗) = 1⊤ex
∗−1 and ∇ϕ∗(x∗) =581

ex
∗−1582

6.1.2 Bregman Divergence of the Negative Entropy583

Similarly to above, let ϕ(x) = ⟨x, lnx⟩. The Bregman divergence of ϕ is584

Dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), (x− y)⟩ (26)
= ⟨x, ln(x)⟩ − ⟨y, ln(y)⟩ − ⟨ln(y) + 1,x⟩+ ⟨ln(y) + 1,y⟩ (27)

=

n∑
i=1

xi ln

(
xi
yi

)
−

n∑
i=1

xi +

n∑
i=1

yi (28)

(29)

This last equation is known as the generalized KL divergence and is exactly equal to the KL diver-585
gence when x and y lie on the simplex.586

6.1.3 Projection onto the Constraint Set587

Let X ⊂ Rn
≥0 denote the probability simplex over Rn:588

X
.
=

{
x | x ∈ RN , xi ≥ 0,

n∑
i=1

xi = 1

}
(30)

Let y ∈ Rn
>0. Let ΠX

ϕ denote the projection operator, projecting vectors in Rn
>0 onto the simplex X589

according to:590

ΠX
ϕ (y) = argmin

x∈X∩Rn
≥0

Dϕ(x,y) = argmin
x∈X∩Rn

≥0

n∑
i=1

xi ln

(
xi
yi

)
(31)

17

Under review for RLC 2025, to be published in RLJ 2025

We will now derive the closed form equation for this projection operator. To begin, recall Jensen’s591
inequality for some convex ψ:592

ψ

(∑
i aixi∑
i ai

)
≤

∑
i aiψ(xi)∑

i ai
for ai > 0 ∀i

and ψ(
∑

i xi) ≤
∑

i ψ(xi) when ai = 1 ∀i. Letting f(x) = x ln(x), we can rewrite the argument593
to the optimization problem in Equation 31 as:594

n∑
i=1

xi ln

(
xi
yi

)
=

n∑
i=1

yif

(
xi
yi

)
Using Jensen’s inequality, we get that:595

n∑
i=1

yif
(

xi

yi

)
∥y∥1

≥ f

n∑

i=1

yi
xi

yi

∥y∥1

 =⇒
n∑

i=1

yif

(
xi
yi

)
≥ ∥y∥1 f

n∑

i=1

xi

∥y∥1

Based on the conditions of Jensen’s inequality, we know that equality holds if and only if xj

yj
=596

xi

yi
∀i, j. This condition is satisfied if xi = yi

∥y∥1
, indicating that:597

argmin
X∩Rn

≥0

Dϕ(x,y) =
y

∥y∥1

6.2 Relationship to the Proximal Form of Mirror Descent598

It may not be immediately clear how the lift-step-project form of mirror descent is related to the599
proximal form of mirror descent. The proximal form is defined as:600

argmin
x∈X∩Rn

≥0

(
⟨x, gt⟩+ 1

λDϕ(x,xt)
)

where gt ∈ ∂J(xt) (32)

where again we can replace subgradients by gradients. Notice that we can re-write the general601
lift-step-project form of mirror descent from Equation 19 as:602

xt+1 = argmin
X∩Rn

>0

Dϕ(x,yt+1)

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(yt+1),x− yt+1⟩

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(yt+1),x⟩

= argmin
X∩Rn

>0

ϕ(x)− ⟨∇ϕ(xt)− λgt,x⟩ ▷ from (15)

= argmin
X∩Rn

>0

⟨x, λgt⟩+Dϕ(x,xt)

= argmin
X∩Rn

>0

⟨x, gt⟩+ 1
λDϕ(x,xt)

From here it is clear what exactly mirror descent is doing. It is minimizing the first order approxi-603
mation of the function J while staying in close proximity (as determined by λ) to the previous point604
as measured by the Bregman divergence in ϕ.605

As previously shown, the Bregman divergence in the negative entropy mirror map is the generalized606
KL divergence. Hence, the proximal form of mirror ascent as studied in this paper is defined by the607
iterative equation:608

xt+1 = argmax
X∩Rn

≥0

⟨x,∇J(x)⟩ − 1
λKL(x || xt) (33)

where KL is the generalized KL divergence on the simplex and J is some policy performance func-609
tion.610

18

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

7 Hyperparameter Tuning611

In this section, we list the ranges of hyperparameters swept for our analysis in Section 4.1 along612
with the tuned hyperparameters for each algorithm. Table 1 lists the tuned hyperparameters across613
all continuous-action classic control environments for each algorithm tested. Table 2 lists the tuned614
hyperparameters across all MuJoCo environments. Finally, Table 3 lists the tuned hyperparameters615
across all discrete-action environments.616

We swept the following hyperparameters. Replay buffers held all transitions, with batch sizes of 32617
(256 for MuJoCo). We swept critic step sizes αcritic = 10y for y ∈ {−4,−3,−2} and actor stepsizes618
αactor = 10ςactorαcritic, ςactor ∈ {−1, 0, 1}. The likelihood ratio in the gradient for MD-GreedyAC with619
an RKL penalty caused numerical instabilities, hence we found it crucial to clip this likelihood ratio.620
We clipped between

[
(1 + ε)−1, 1 + ε

]
and set ε = 0.7 in all experiments as we found the value to621

work well. We swept entropy scales τ = 10t for t ∈ {−4,−3,−2,−1, 0}. For MD updates, the622
two extreme entropy scales were excluded. For GreedyAC, the smallest τ was replaced with 0. Soft623
action-value functions were used. MPO did not use entropy regularization, instead we swept the KL624
policy coefficient κ = 10t−1, excluding the two lowest κ values for MD-MPO. For MD updates, we625
swept λ ∈ {±3,±2,±1, 0}, setting M = 10 unless otherwise explicitly stated. For GreedyAC, we626
set ρactor = 0.1, ρproposal = 0.2, and n = 10. Both policies used entropy regularization.627

On the MuJoCo environments, we reduced our hyperparameter sweep and only used SAC. We swept628
the critic stepsize 10y and entropy scale 10y+1 for y ∈ {−5,−4, . . . ,−1} as we found SAC to be629
most sensitive to these hyperparameters. We set ςactor = 10−1 and λ = 10.630

Table 1: Tuned Hyperparameters across environments for continuous-action algorithms

Algorithm
Hyper

αcritic ςactor τ κ λ

GreedyAC 10−3 1 10−1 - -
MD-GreedyAC (RKL) 10−3 1 10−2 - 1
MD-GreedyAC (FKL) 10−3 1 0 - 1

SAC 10−3 1 10−3 - -
MD-SAC (RKL) 10−3 1 10−3 - 102

MD-SAC (FKL) 10−3 1 10−3 - 101

MPO 10−3 1 - 10−5 -
MD-MPO (RKL) 10−2 10−1 0 10−4 10−1

MD-MPO (FKL) 10−3 1 0 10−4 10−1

Table 2: Tuned Hyperparameters across environments for the MuJoCo suite

Algorithm
Hyper

αcritic ςactor τ λ

SAC 10−3 10−1 10−2 -
MD-SAC (RKL) 10−3 10−1 10−2 101

MD-SAC (FKL) 10−3 10−1 1 101

8 Functional Mirror Decent Algorithm Derivations631

In this section, we provide mathematical proofs for each of the algorithm extensions to the functional632
mirror descent framework.633

19

Under review for RLC 2025, to be published in RLJ 2025

Table 3: Tuned Hyperparameters across environments for discrete-action algorithms

Algorithm
Hyper

αcritic ςactor τ κ λ

GreedyAC 10−3 1 10−3 - -
MD-GreedyAC (RKL) 10−3 1 0 - 10−1

MD-GreedyAC (FKL) 10−3 1 10−2 - 1
SAC 10−3 1 10−2 - -

MD-SAC (RKL) 10−3 1 10−2 - 102

MD-SAC (FKL) 10−3 1 10−2 - 102

MPO 10−3 1 - 10−2 -
MD-MPO (RKL) 10−3 1 0 10−2 1
MD-MPO (FKL) 10−3 1 0 10−3 102

8.1 Preliminary Results634

Lemma 1 (Gradient of the Negative Shannon Entropy). The gradient of the negative Shannon en-635
tropy is∇θEπθ

[lnπθ(a | s)] = Eπθ
[lnπθ(a | s)∇θ lnπθ(a | s)]636

Proof. We begin the proof by differentiating the argument to the expectation in integral form637
Eπθ

[− lnπθ(a | s)] = −
∫
A
πθ(a | s) ln(πθ(a | s)) da. We get:638

∇[πθ(a|s) lnπθ(a|s)] = lnπθ(a|s)∇πθ(a|s) + πθ(a|s)∇ lnπθ(a|s)

= lnπθ(a|s)∇πθ(a|s) + πθ(a|s)
1

πθ(a|s)
∇πθ(a|s) = (lnπθ(a|s) + 1)∇πθ(a|s)

Again using the log-likelihood trick, we get639

∇Ea∼πθ(·|s)[lnπθ(a|s)] = Ea∼πθ(·|s)[lnπθ(a|s)∇ lnπθ(a|s)] +∇Ea∼πθ(·|s)[1]

= Ea∼πθ(·|s)[lnπθ(a|s)∇ lnπθ(a|s)].
640

Lemma 2 (Bregman Divergence in Log-Sum-Exp). Let ϕ be the log-sum-exp function and z, z′ be641
the logits of two softmax distributions p and p′ respectively. Then Dϕ(z, z

′) = KL(p′ || p).642

Proof. The proof is given by Vaswani et al. (2022).643

8.2 Functional Mirror Descent for Soft Actor-Critic644

In this section, we provide additional proofs for Mirror Descent Soft Actor-Critic not included in the645
main text.646

Assume we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)). Our network outputs647
zθ(a, s), and we consider the functional space over z instead. We prove the result for the discrete648
action setting, but the updates extend to the continuous action setting.649

Proposition 3. Assume we have a finite number of actions, |A|, and use a softmax policy param-650
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt651

and logits zt, the surrogate objective for Soft Actor-Critic with the log-sum-exp mirror map652

fq,s(θ) = Ea∼πt(·|s)
[
(ςπt(a,s) − 1

λ) lnπθ(a|s)
]

with gradient653
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπt(a,s) − 1

λ)∇ lnπθ(a|s)
]

where v(s) .=
∑|A|

j=1 q(s, j)π(j | s) and ςπt
(a, s) = −q(s, a)+v(s)+τ lnπt(a | s)+τH(πt(· | s))654

20

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Proof. Letting ℓ̃q,s(π) equal that defined in the proof of Proposition 1, we can use the chain rule to655
get the partial derivatives in terms of the logits z(a, s) instead.656

∂ℓ̃q,s
∂z(a, s)

=

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=

|A|∑
j=1

(−q(s, j) + τ(lnπ(j | s) + 1))
∂π(j | s)
∂z(a, s)

We can compute the second term considering two cases. Let c(s) =
∑|A|

j=1 exp(zθ(j, s)), with657
π(a|s) = exp(z(a, s))/c(s). If a ̸= j, then we have658

∂π(j | s)
∂z(a, s)

= − exp(z(j, s))c(s)−2 exp(z(a, s)) = −π(j | s)π(a | s)

If a = j, then we have659

∂π(a | s)
∂z(a, s)

= exp(z(a, s))/c(s)− exp(z(a, s))c(s)−2 exp(z(a, s)) = π(a | s)(1− π(a | s))

Plugging this in above, we get that660

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

= π(a | s)(−q(s, a)+τ lnπ(a | s))−π(a | s)
|A|∑
j=1

(−q(s, j)+τ lnπ(j | s))π(j | s)

(34)
Notice that661

|A|∑
j=1

(−q(s, j)+τ lnπ(j | s))π(j | s) = −
|A|∑
j=1

q(s, j)π(j | s)+τ
|A|∑
j=1

lnπ(j | s)π(j | s) = −v(s)+τH(π(· | s))

and so finally we get that662

(34) = π(a | s)ς(a, s) for ς(a, s) .= −q(s, a) + v(s) + τ lnπ(a | s)− τH(π(· | s))

Taking the inner product with zθ(·|s), we get663 〈
∂ℓ̃q,s
∂z(·, s) (zt), zθ(·, s)

〉
= Ea∼πt(·|s) [ς(a, s)zθ(a, s)]

= Ea∼πt(·|s)

ς(a, s)
zθ(a, s)− |A|∑

j=1

exp(zθ(j, s))

= Ea∼πt(·|s) [ς(a, s) lnπθ(a|s)]

where the second line follows from the fact that Ea∼πt(·|s)[ς(a, s)] = 0 and so we can shift the664
values of zθ(·, s) without changing the expectation.665

Finally, with a logsumexp mirror map, Lemma 2 shows that Dϕ(z
π, zπt) = KL(πt || π), and so we666

get our surrogate objective667

fq,s(θ) = Ea∼πt(·|s) [ς(a, s) lnπθ(a|s)] + 1
λKL(πt(·|s) || πθ(·|s))

= Ea∼πt(·|s)
[
ς(a, s) lnπθ(a|s) + 1

λ ln(πt(a | s))− 1
λ ln(πθ(a | s))

]
= Ea∼πt(·|s)

[
(ς(a, s)− 1

λ) lnπθ(a|s)
]

The gradient is simple to compute, because we are sampling from πt,668

∇fq,s(θ) = Ea∼πt(·|s)
[
(ς(a, s)− 1

λ)∇ lnπθ(a|s)
]

669

21

Under review for RLC 2025, to be published in RLJ 2025

8.3 Functional Mirror Descent for Greedy Actor-Critic670

In this section, we provide additional proofs for Mirror Descent Greedy Actor-Critic not included in671
the main text.672

Greedy Actor-Critic minimizes a mode-covering KL between πθ and the percentile greedy policy673
πρ
θ with entropy scale τ ≥ 0.674

Proposition 4. On time step t with current action-values q and policy πt, the surrogate objective675
for Greedy Actor-Critic with a direct functional representation and any Bregman divergence Dϕ, is676

fq,s(θ) = Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt] +

1
λDϕ(πθ(·|s), πt(·|s)) (35)

with gradient677

∇θfq,s(θ) = Ea∼πρ(·|s)

[
−∇θπθ(a|s)

πt(a|s)

]
+τ Ea∼πθ(·|s) [lnπt(a|s)∇θ lnπθ(a|s)] +

∇θ
1
λDϕ(πθ(·|s), πt(·|s))

(36)

where πρ is the percentile greedy policy in πt.678

Proof. We first define the loss in policy space, ℓ̃q,s(π)
.
= KL(πρ(· | s) || π(· | s)) =679

Ea∼πρ(·|s)[− lnπ(a | s)] + τEa∼π(·|s)[lnπ(a | s)]. Now we differentiate it680

∂ℓ̃q,s
∂π(a | s) (π) =

−πρ(a | s)
π(a | s) + τ(lnπ(a | s) + 1) (37)

Taking the inner product with πθ(·|s), we get681 〈
∂ℓ̃q,s

∂π(a | s) (πt), πθ(·|s)
〉

= Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt(a | s)] (38)

where the 1 disappears because Ea∼πθ(·|s)[1] = 1 and we ignore constants. Plugging this into682
Equation (4), we get Equation (35). Taking the gradient is straightforward. Using the log-likelihood683
trick we get:684

∇θ

[
Ea∼πρ(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt]

]
=

Ea∼πρ(·|s)

[
−∇θπθ(a | s)

πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt(a | s)∇θ lnπθ(a | s)]

685

Corollary 2. On time step t with current action-values q and policy πt, the surrogate objective for686
Greedy Actor-Critic with a mode-seeking KL, namelyDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)),687
is688

fq,sθ = −Ea∼πρ(·|s)

[
πθ(a | s)
πt(a | s)

]
+ Ea∼πθ

[(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(39)

with gradient689

∇θfq,sθ =− Ea∼πρ(·|s)

[∇θπθ(a | s)
πt(a | s)

]
+ Ea∼πθ

[((
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
)
∇θ lnπθ(a | s)

] (40)

22

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Proof. We simply need to plug-inDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (35).690
We have691

1
λKL(πθ(·|s) || πt(·|s)) = 1

λEa∼πθ(·|s) [lnπθ(a|s)− lnπt(a|s)]
Combining this − 1

λ lnπt(a|s) with the τ lnπt(a|s) term from the main loss, we get Equation (39).692

The gradient is a straightforward calculation. Differentiating Equation (39) and using the log-693
likelihood trick with Lemma 1, yields the above gradient.694

Now let us consider the case where we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)).695
Our network outputs zθ(a, s), and we consider the functional space over z instead.696

Proposition 5. Assume we have a finite number of actions, | A |, and use a softmax policy param-697
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy πt698

and logits zt, the surrogate objective for Greedy Actor-Critic with the log-sum-exp mirror map is699

fq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ) lnπθ(a | s)
]

(41)

with gradient700
∇θfq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ)∇θ lnπθ(a | s)
]

(42)

where ςπτ (a,s) =
−πρ(a|s)
π(a|s) + 1 + τ lnπ(a | s) + τH(π(· | s))701

Proof. Letting ℓ̃q,s(π) equal that defined in the proof of Proposition 4, we can use the chain rule to702
get the partial derivatives in terms of the logits z(a, s) instead.703

∂ℓ̃q,s
∂z(a, s)

=

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=

|A|∑
j=1

([−πρ(j | s)
π(j | s)

]
+ τ(lnπ(j | s) + 1)

)
∂π(j | s)
∂z(a, s)

Similarly to Proposition 3, we can compute the second term considering two cases. Let c(s) =704 ∑|A|
j=1 exp(zθ(j, s)), with π(a|s) = exp(z(a, s))/c(s). If a ̸= j, then we have705

∂π(j | s)
∂z(a, s)

= − exp(z(j, s))c(s)−2 exp(z(a, s)) = −π(j | s)π(a | s)

If a = j, then we have706

∂π(a | s)
∂z(a, s)

= exp(z(a, s))/c(s)− exp(z(a, s))c(s)−2 exp(z(a, s)) = π(a | s)(1− π(a | s))

Plugging this in above, we get that707

|A|∑
j=1

∂ℓ̃q,s
∂π(j | s)

∂π(j | s)
∂z(a, s)

=π(a | s)
(−πρ(a | s)

π(a | s) + τ(lnπ(a | s) + 1)

)
−

π(a | s)
|A|∑
j=1

(−πρ(j | s)
π(j | s) + τ(lnπ(j | s) + 1)

)
π(j | s)

(43)

Notice that708

|A|∑
j=1

(−πρ(j | s)
π(j | s) + τ(lnπ(j | s) + 1)

)
π(j | s) = −1− τH(π) + τ

and so finally we get that709

(43) = π(a | s)ςπτ (a,s) for ςπτ (a,s)
.
=
−πρ(a | s)
π(a | s) + 1 + τ lnπ(a | s) + τH(π(· | s))

23

Under review for RLC 2025, to be published in RLJ 2025

where πρ is the percentile greedy policy in π. Taking the inner product with zθ(·|s), we get710 〈
∂ℓ̃q,s
∂z(·, s) (zt), zθ(·, s)

〉
= Ea∼πt(·|s)

[
ςπτ

t (a,s)
zθ(a, s)

]
= Ea∼πt(·|s)

ςπτ
t (a,s)

zθ(a, s)− |A|∑
j=1

exp(zθ(j, s))

= Ea∼πt(·|s)

[
ςπτ

t (a,s)
lnπθ(a|s)

]
where the second line follows from the fact that Ea∼πt(·|s)[ςπτ

t (a,s)
] = 0 and so we can shift the711

values of zθ(·, s) without changing the expectation.712

Finally, with a logsumexp mirror map, Lemma 2 shows that Dϕ(z
π, zπt) = KL(π || π), and so we713

get our surrogate objective714

fq,s(θ) = Ea∼πt(·|s)
[
ςπτ

t (a,s)
lnπθ(a|s)

]
+ 1

λKL(πt(·|s) || πθ(·|s))
= Ea∼πt(·|s)

[
ςπτ

t (a,s)
lnπθ(a|s) + 1

λ ln(πt(a | s))− 1
λ ln(πθ(a | s))

]
= Ea∼πt(·|s)

[
(ςπτ

t (a,s)
− 1

λ) lnπθ(a|s)
]

The gradient is simple to compute, because we are sampling from πt,715

∇fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ)∇ lnπθ(a|s)
]

716

8.4 Functional Mirror Descent for Maximum A-Posteriori Policy Optimization717

In this section, we provide additional proofs for Mirror Descent Maximum A-Posteriori Policy Op-718
timization not included in the main text.719

MPO minimizes a mode-seeking KL between πθ and πKL:720

ℓq,s(θ) = KL(πKL || πθ(·|s)) = −Ea∼π(·|s)

[
exp

(
q(s, a)

κ

)
lnπθ(a | s)

]
+ constant

where πKL(a | s) ∝ π(a | s) exp
(
q(s, a)

κ

)
for some π, typically the previously learned policy πθt . The constant is typically dropped. We721
can incorporate entropy regularization by subtracting τ Eπθ

[lnπθ(a | s)] to the objective above, for722
entropy scale τ .723

Proposition 6. On time step t with current action-values q and policy πt, the surrogate objective for724
Maximum A-Posteriori Policy Optimization with a direct functional representation and any Bregman725
divergence Dϕ, is726

fq,s(θ) = Ea∼πθ(·|s)

[
− exp

(
q(s, a)

κ

)
+ τ lnπt(a|s)

]
+ 1

λDϕ(πθ(·|s), πt(·|s)) (44)

gradient727

∇θfq,s(θ) = Ea∼πθ(·|s)

[(
− exp

(
q(s, a)

κ

)
+ τ lnπt(a|s)

)
∇θ lnπθ(a|s)

]
+ 1

λDϕ(πθ(·|s), πt(·|s))
(45)

Proof. The proof is a straightforward extension of the proof for Proposition 4, replacing the per-728
centile policy in πt, πρ, with the KL policy in πt, πKL. Following the exact same steps, we get729

Ea∼πKL(·|s)

[
−πθ(a | s)
πt(a | s)

]
+ τEa∼πθ(·|s) [lnπt] +

1
λDϕ(πθ(·|s), πt(·|s)) (46)

24

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Evaluating the expectation in the first term, we get730

Ea∼πKL(·|s)

[
−πθ(a | s)
πt(a | s)

]
= Ea∼πθ

[
− exp

(
q(s, a)

κ

)]
Substituting this back into Equation (46) and combining terms results exactly in Equation (44).731

The gradient is once again a simple calculation which involves using the log-likelihood trick to732
derive the gradient of the expectation in Equation (44).733

Corollary 3. On time step t with current action-values q and policy πt, the surrogate objective for734
Maximum A-Posteriori Policy Optimization with a mode-seeking KL, namelyDϕ(πθ(·|s), πt(·|s)) =735
KL(πθ(·|s) || πt(·|s)), is736

fq,s(θ) = Ea∼πθ

[
− exp

(
q(s, a)

κ

)
+
(
τ − 1

λ

)
ln(πt(a | s)) + 1

λ lnπθ(a | s)
]

(47)

with gradient737

∇θfq,s(θ) = Ea∼πθ

[(
− exp

(
q(s, a)

κ

)
+ (τ − 1

λ) ln(πt(a | s))+ 1
λ lnπθ(a | s)

)
∇θ lnπθ(a | s)

] (48)

Proof. We simply need to plug-inDϕ(πθ(·|s), πt(·|s)) = KL(πθ(·|s) || πt(·|s)) into Equation (44),738
re-arrange, and combine terms to get Equation (47).739

Using the log-likelihood trick with Lemma 1, yields the gradient.740

Now let us consider the case where we have a softmax parameterization, πθ(a | s) ∝ exp(zθ(a, s)).741
Our network outputs zθ(a, s), and we consider the functional space over z instead.742

Proposition 7. Assume we have a finite number of actions, | A |, and use a softmax policy param-743
eterization, πθ(a|s) = exp(zθ(a,s))∑|A|

j=1 exp(zθ(a,s))
. On time step t with current action-values q and policy744

πt and logits zt, the surrogate objective for Maximum A-Posteriori Policy Optimisastion with the745
log-sum-exp mirror map is746

fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ) lnπθ(a|s)
]

(49)

with gradient747
∇fq,s(θ) = Ea∼πt(·|s)

[
(ςπτ

t (a,s)
− 1

λ)∇ lnπθ(a|s)
]

(50)

where748

ςπτ (a,s) = − exp

(
q(s, a)

κ

)
+ 1 + τ lnπ(a | s) + τH(π(· | s))

Proof. Similarly to Proposition 4, this proof is a straightforward extension of the corresponding749
proof for GreedyAC in Proposition 5. We simply replace the percentile policy in πt, πρ, with the750
KL policy in πt, πKL. Following the exact same steps, we get751

fq,s(θ) = Eπt

[
(ςπτ

t
− 1

λ) lnπθ(a | s)
]

where ςπτ
t (a,s)

= −πKL(a|s)
πt(a|s) + 1 + τ lnπt(a | s) + τH(πt(· | s)). But notice that752

−πKL(a | s)
πt(a | s)

= − exp

(
q(s, a)

κ

)
(51)

Substituting this into the equation for ςπτ
t (a,s)

results in the surrogate above.753

The gradient is a straightforward computation, since sampling is performed according to πt:754

∇fq,s(θ) = Ea∼πt(·|s)
[
(ςπτ

t (a,s)
− 1

λ)∇ lnπθ(a|s)
]

755

25

Under review for RLC 2025, to be published in RLJ 2025

9 Closed Form Mirror Descent Updates on the Simplex756

Algorithm 1: Closed-Form Mirror Descent for Policy Im-
provement
input : mirror map ϕ : D ⊆ Rn → R, policy πi, λ > 0,

st ∈ S

xi ← πi(·|st)
x̂i ← ∇ϕ(xi)= ln(xi) + 1
ŷi+1 ← x̂i − λgi // For gradient gi
yi+1 ← ∇ϕ∗= eŷi+1−1

xi+1 ← ΠS|A|

ϕ (yi+1) =

argmin x∈S|A|∩D(x,yi+1)=
yi+1

∥yi+1∥1

πi+1(· | st)← xi+1

The general framework for757
utilizing closed-form MD up-758
dates with stepsize λ > 0759
is outlined in Algorithm 1.760
In blue, we show the update761
equations for the negative en-762
tropy mirror map and sim-763
plex policies, which we use in764
our experiments below. Algo-765
rithm 1766

We will use the following767
notations. Let M(i, j) =768
M (j,i) be the element of M ∈769
Rm×n at row j and column i.770
Define M(i, ·) = M (·,i) ∈771
Rn as the vector composed of the i-th column of M and M(·, j) = M (j,·)⊤ as the column vector772
composed of the j-th row of M . The indicator matrix for (s, a), denoted as 1(s, a) ∈ R|A|×|S|,773
is the matrix of zeros everywhere and a 1 at 1(a,s). The indicator matrix for column s, denoted as774
1(s, ·) ∈ R|A|×|S|, is the matrix of zeros everywhere and a column of 1 at 1(·,s).775

Let M ⊂ R|A|×|S| denote the space of probability matrices. Similarly to the previous sections, let776
Sn be the simplex in Rn, S be the state space and A the action space. For S ∈ M, each column777
has the simplex restriction, namely that S(j,i) ∈ [0, 1] and 1⊤S(i, ·) = 1 for i ≤ | A | ∈ Z,778
j ≤ | S | ∈ Z. For policy πθ parameterized by θ ∈ M, πθ(a | s) = θ(a,s) denotes the probability of779
selecting action a in state s.780

In Section 10, we analyze the closed-form MD-GreedyAC/RKL algorithm in more depth. For com-781
pleteness, we here provide the algorithms for the variants of GreedyAC, SAC, and MPO which use782
closed-form MD updates. We omit gradient derivations as each is a simple derivative calculation for783
the corresponding algorithm’s loss function with tabular function approximation. We introduce all784
algorithms with entropy regularization for entropy scale hyperparameter τ .785

Mirror Descent Greedy Actor-Critic Let q be an action-value function estimate. Closed-Form786
Mirror Descent Greedy Actor-Critic with an RKL penalty (CMD-GreedyAC/RKL) on the simplex787
is exactly Algorithm 1 with the following gradient in state s ∈ S:788

g = τ ln(θ(s, ·))− 1(s, a∗)
1

θ(s, a∗)
for a∗ = argmax

a∈A

q(s, a) (52)

Mirror Descent Soft Actor-Critic Let b : S→ Rn arbitrary and define At(s, a) = q(s, a)−b(s).789
A is the advantage estimate of action a in state swhen b is an approximation to the policy state-value790
function. Closed-Form Mirror Descent Soft Actor-Critic with an RKL penalty (CMD-SAC/RKL)791
on the simplex is exactly Algorithm 1 with the gradient:792

g = τ ln(θ)−A(s) where A(s) =

A(s, a1)
A(s, a2)

...
A(s, a|A|)

 (53)

in state s ∈ S793

Mirror Descent Maximum A-Posteriori Policy Optimisation Let πKL(a | s) be the KL policy794
in π as in Section 8. Closed-Form Mirror Descent Maximum A-Posteriori Policy Optimisation with795

26

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

an RKL penalty (CMD-MPO/RKL) on the simplex is exactly Algorithm 1 with the gradient in state796
s ∈ S:797

g = τ ln(θ(s, ·))− 1(s, ·)πKL(s, ·)
θ(s, ·) (54)

unlike the version of MPO introduced by Abdolmaleki et al. (2018b), MD-MPO with the negative798
entropy mirror map is equivalent to using a KL penalty rather than a constraint.799

10 Further Experimental Results800

In this section, we provide further experiments and analysis.801

10.1 Step Size Cliff802

0

100

200

S
te

p
s

(×
10

00
)

50%

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

M
D

-S
A

C
/R

K
L

log(λ) = −2

50%

log(λ) = −1

35%

log(λ) = 1

35%

log(λ) = 2

−8 −6 −4 −2 0 2

log(αactor)

0

100

200

S
te

p
s

(×
10

00
)

57%

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

M
D

-S
A

C
/F

K
L

−8 −6 −4 −2 0 2

log(αactor)

64%

−8 −6 −4 −2 0 2

log(αactor)

45%

−8 −6 −4 −2 0 2

log(αactor)

31%

Met Convergence Criterion Did Not Meet Convergence Criterion

Figure 6: The number of steps for MD-SAC to learn a near-
optimal policy for multiple values of log(λ) with RKL (top)
and FKL (bottom) penalties. Each point represents a single
agent with a randomly sampled αactor ∈ [−9, 2]. Dashed
lines indicate the smallest and largest working step sizes for
SAC using outlier detection as in Figure 3. Inset blue text
indicates the percentage of blue points.

In this section, we provide additional803
details and analysis regarding our ex-804
periments in Section 4.2.1.805

In our experiments in Section 4.2.1,806
a few of the extreme step sizes tested807
resulted in convergence for SAC, ac-808
cording to our convergence metric809
mentioned in Section 4.2.1. To deter-810
mine these outliers, we used a Local811
Outlier Factor algorithm from Scik-812
itLearn (Pedregosa et al., 2011) using813
30 neighbours and the L2-norm. We814
conducted the outlier detection based815
on the features (log(αactor), y) where816
αactor was the randomly sampled step817
size, y = 1 if the sampled αactor818
resulted in convergence according to819
our metric, and y = −1 otherwise.820

Figure 6 shows the results of similar experiments to those described in Section 4.2.1, except for821
log(λ) ∈ {−2,−1, 1, 2}. Again, we set log(τ) = log(αcritic) = −3 and provide plots for at least822
1,500 random seeds. We see a clear trend for MD-SAC with FKL here. As log(λ) increases, fewer823
actor step sizes work – the algorithm becomes more susceptible to the step size cliff. Again, we824
mention that many of the unsuccessful step sizes in this figure still produced reasonable performance825
but did not meet our criterion for convergence. Results for log(τ) = −4 are quantitatively similar,826
but fewer points meeting our convergence criterion.827

10.2 Replay Ratio828

Figure 7: Performance vs replay ratio
over 60 runs with discrete-actions.

In this section, we present additional results for our re-829
play ratio analysis in the discrete-action. All experiments830
follow the same setup as in Section 4.2.3.831

Figure 7 shows the sensitivity of each algorithm to the ac-832
tor replay ratio in the discrete-action setting, across clas-833
sic control problems. Similarly to the continuous-action834
results presented in Section 4.2.3, we found no consis-835
tent relationship between replay ratio and performance.836
Again, MD-style algorithms did not consistently benefit837
from increased number of actor updates. Instead, often838
increasing the number of actor updates per environment839

27

Under review for RLC 2025, to be published in RLJ 2025

Figure 9: Scatter plot of randomly sampled (log(λ),M) on Cliffworld for GreedyAC with softmax
policies over 1,500 random seeds. Colour denotes average episodic return on a linear scale. Each
row/column corresponds to a different critic/actor stepsize.

step was detrimental to performance – as in the case of840
MPO.841

10.3 Return Landscape for Mirror Descent Hyperparameters842

The hyperparameters λ and M determine both the step size of the MD update and the degree to843
which the MD objective is approximated, where an increasing M indicates a better approximate844
solution to the MD objective, with appropriately chosen actor step size. We were interested in845
determining if and how these hyperparameters affect the performance of algorithms.846

Figure 8: Randomly sampled (log(λ),M)
on Cliffworld for GreedyAC (simplex poli-
cies) over 1,500 random seeds. Colour
denotes episodic return on a linear scale.
Rows/columns show different critic/actor
stepsizes.

We therefore analyzed the return landscape as a847
function of (λ,M) across two domains, the tabu-848
lar Cliffworld environment (Sutton & Barto, 1998)849
and discrete-action Acrobot. We chose Acrobot be-850
cause each algorithm could learn well on it, but it is851
not as easy as Pendulum and not as hard as Moun-852
tainCar. On Cliffworld, we used tabular function ap-853
proximation, while for Acrobot we used neural net-854
works. We used the MD algorithms developed in the855
main text: on Cliffworld, we did not use the tabular,856
closed-form variants of these algorithms which were857
developed in Section 9. To analyze the return land-858
scape, we randomly sampled log(λ) ∈ [−5, 5] and859
M ∈ [3, 500] (M ∈ [3, 250] for Acrobot). We per-860
formed all M SGD updates every environment step.861
We then plotted scatter plots of (λ,M) with colour862
denoting average episodic return.863

We used GreedyAC which we found to be the least864
sensitive algorithm to hyperparameters. The entropy865
scale was fixed to 0. For Acrobot, all hyperparame-866
ters and experimental details followed those outlined867
in Setion 4. For the tabular Cliffworld environment,868
We swept critic step sizes αcritic ∈ {−1,−2,−3} and actor step sizes αactor = 10ςactor × αcritic with869
ςactor ∈ {−2,−1, 0}. On Cliffworld, we used both tabular softmax policies (MD-GreedyAC/FKL870

28

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

Figure 10: Scatter plot of randomly sampled (log(λ),M) on Acrobot for GreedyAC with softmax
policies and neural networks over 750 random seeds. Colours denote average episodic return. Each
row/column corresponds to a different critic/actor stepsize.

and MD-GreedyAC/RKL) and tabular simplex policies (MD-GreedyAC/RKL). Experiments were871
run for 25,000 steps.872

We will first consider the tabular experiment on Cliffworld. Figure 8 shows a scatter plot of 1,500873
random (log(λ),M) pairs for simplex policies with an RKL penalty on Cliffworld. Colour denotes874
episodic return on a linear scale. The figure indicates that for simplex policies, performance was875
primarily influenced by actor/critic stepsizes rather than λ and M . Furthermore, we found that876
minuscule (αactor = 10−5) actor step sizes generally required larger M , as expected, but did not877
often result in higher return.878

Figure 9 shows scatter plots of 1,500 randomly sampled (log(λ),M) pairs for RKL (left) and FKL879
(right) penalties and softmax policies on Cliffworld. Compared to simplex policies, softmax policies880
induced higher sensitivity to (log(λ),M), indicating that policy parameterization affects sensitivity.881
We explicitly point out the difference in scales in the colour bars in Figures 8 and 9, which makes882
this relationship quite clear. On the other hand, we observed that with minuscule actor step sizes883
(αactor = 10−5), the softmax policy parameterization tended to work better than the simplex policy884
parameterization. Again we note that larger values of M tended to result in higher return in this885
case. An FKL penalty induced lower sensitivity to (log(λ),M) compared to the RKL penalty in the886
softmax case. Softmax policy parameterizations seemed to be more sensitive to the actor and critic887
stepsizes than to either λ or M .888

Overall, we found low sensitivity to λ and M in the tabular case on Cliffworld. It is worth noting889
that for a well-tuned actor and critic step size, a wide range of values for λ and M induced similar890
performance. This could indicate that the MD objective is quite easy to solve on this problem or891
perhaps that the MD objective is difficult to solve, but the environment too easy to show a big892
difference in performance across multiple values of M .893

Figure 10 shows the corresponding scatter plot of 750 randomly sampled (log(λ),M) pairs on894
discrete-action Acrobot with neural networks. Compared to the tabular case, the patterns of perfor-895
mance sensitivity with neural networks were much less obvious. In both RKL and FKL cases, we896
observed higher sensitivity to λ and M . With an FKL penalty, we found a similar pattern to the tab-897
ular case: larger values of λ tended to induce higher performance. Furthermore, we noticed a slight898
trend with regards to αactor and M . For large values of M , performance tended to increase with899
decreasing αactor, perhaps indicating the benefits of a better approximation to the MD optimization900
in Equation 2.901

29

Under review for RLC 2025, to be published in RLJ 2025

10.4 Noisy Rewards902

Previous work has suggested that mirror descent can enhance robustness to reward noise (Vieillard903
et al., 2020a; Lazić et al., 2021). We analyzed GreedyAC’s performance in a noisy reward envi-904
ronment, focusing on the tabular setting where MD is analytically tractable. We designed a small905
MDP where MD updates dramatically improve over conventional ones. Figure 11 (right) shows a906
tabular tree MDP where the agent starts at the root and moves to leaf nodes via left or right ac-907
tions. Rewards are -10, except for one transition (blue edge) with a reward of -1 (probability 274

275)908
or -100 (probability 1

275). The optimal policy (γ = 1) is to always go right. We ran GreedyAC909
for 25,000 steps, including both closed-form and approximate MD updates. In this section, we will910
refer to MD-GreedyAC with RKL as the approximate MD update and denote the number of gradient911
steps made on the surrogate objective, M , in parentheses. We refer to CMD-GreedyAC/RKL as the912
closed-from MD variant with an RKL penalty.913

We swept the following hyperparameters and report performance across 50 runs. Critic step914
sizes were swept in 2x for x ∈ {−1,−2,−3}. Actor step sizes were swept in 2x for x ∈915
{−11,−10, . . . ,−1} for CMD-GreedyAC and standard GreedyAC. For MD-GreedyAC with RKL916
we instead swept x ∈ {−11,−9,−7,−5}. For MD-GreedyAC, we also swept λ = 2x for917
x ∈ {−15,−14,−13, . . . ,−1}. We tested M ∈ {250, 100, 10}. Simplex policies were initial-918
ized uniformly and used a negative entropy mirror map. We did not use entropy regularization. We919
used simplex policies, initialized uniformly, with an RKL penalty for the MD update.920

−20
0 2.5

−11

Non-MD

N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D

C-MD

MD(250)

Update

Timesteps (×10⁴)

A
v
er

ag
e

R
et

u
rn

Figure 11: (left) Learning curves on the noisy reward envi-
ronment. (middle) Performance distributions. (right) Envi-
ronment.

GreedyAC is unstable. It ini-921
tially learned the optimal policy but922
quickly switched to a suboptimal923
one. In contrast, MD-GreedyAC with924
RKL consistently learned the optimal925
policy for a range of values of M –926
faster than other update type, shown927
in Figure 11 (Left). The closed-form928
MD update was less sensitive to hyperparameters (Middle) but did not learn as quickly as the ap-929
proximate MD update. This finding suggests that the performance improvements of the approximate930
MD updates noted here may not completely stem from accurately approximating a closed-form up-931
date. Despite significant effort we could not extend this finding to large environments with function932
approximation: adding noise and partial observability to classic control domains did not yield sig-933
nificant advantages for MD updates.934

Timesteps (×10⁴)

−20
0 2.5

−11

A
v
er

a
g
e

R
et

u
rn

Update
N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D
−20

0 2.5

−11

Non-MD

C-MD

MD(250)

A
v
er

ag
e

R
et

u
rn

N
on

-M
D

M
D
(1
0)

M
D
(1
00

)

M
D
(2
50

)

C
-M

D

Update

Timesteps (×10⁴)

Figure 12: Learning curves and performance distributions when (left) tuning over lower actor step
sizes and (right) adding entropy regularization. Solid lines denote mean performance over 50 runs
with shaded regions denoting 95% percentile bootstrap confidence intervals.

One could ask how GreedyAC could be improved to match the performance of either MD-GreedyAC935
CMD-GreedyAC. Further reducing the actor step size inhibits learning and slows – but does not936
prevent – convergence to the suboptimal policy. Figure 12 (left) illustrates this phenomenon for937
smaller actor step sizes tuned over the additional values of αactor = 2x for x ∈ {−13,−12}. The938
figure shows that while a low actor step size slow convergence to the suboptimal policy, it did not939
prevent it. Further reducing the actor step size to 2−15 enabled GreedyAC to learn the optimal940

30

Investigating the Utility of Mirror Descent in Off-policy Actor-Critic

policy across all runs by the experiment’s end, but convergence remained slow, requiring the full941
25,000 steps. We conjecture that, if the experiment’s length were extended, GreedyAC would have942
eventually collapsed to the suboptimal policy even with this miniscule actor step size of 2−15. The943
reason for this collapse is an exploding gradient, and a small, fixed actor step size cannot alone944
prevent this.945

Entropy regularization enabled GreedyAC to learn the optimal policy. Figure 12 (Right) shows the946
learning curves of GreedyAC when tuning the entropy scale τ = 2x for x ∈ {−10,−8, . . . ,−2}. In947
this case, GreedyAC benefited from a significant improvement in learning and no longer converged948
to the suboptimal policy. Even so, the MD-style updates exhibited improved hyperparameter sensi-949
tivity compared to the GreedyAC update. This result perhaps indicates that MD style optimization950
induces some form of entropy regularization, as also suggested by results in the literature (Lazić951
et al., 2021; Azizan et al., 2022).952

31

