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Abstract

Neurodegenerative diseases like Alzheimer’s Disease
(AD) present unique clinical challenges due to complex,
progressive brain atrophy1 patterns. Structural Magnetic
Resonance Imaging (sMRI) is a critical tool for diagnosis of
such neurodegenerative diseases. However, current meth-
ods often lack explainability and fail to highlight clinically
meaningful regions from a clinician’s perspective. Iden-
tifying key biomarkers that effectively distinguish patients
with AD from healthy individuals using 3D sMRI scans thus
remains a central challenge. To address this, we propose
Relevance-augmented Self-Attention (Rel-SA), a neuroclin-
ical knowledge–informed attention mechanism for Vision
Transformers (ViTs). Rel-SA introduces a Relevance Bias
(Rel-Bias), integrating insights from the AAL3 and JHU
WM brain atlases to guide the model toward regions im-
plicated in AD progression. Through qualitative and quan-
titative evaluations, we demonstrate that Rel-SA not only
boosts diagnostic accuracy over ViT-base by ∼4% but also
enhances model interpretability efficiently with an addition
of only 24 parameters.

Our work highlights the importance of incorporating
clinical priors into model design and provides an effective
approach to embed domain knowledge into existing archi-
tectures, resulting in more robust and interpretable deep
learning solutions for neuroimaging.

1. Introduction

“Mapping the elusive patterns of the mind” has been a time-
less quest. Linking subtle structural changes in the brain tis-
sue with early signs of neurodegenerative diseases remains
a significant challenge in neuroscience. Dementia currently
affects more than 60 million people worldwide, a figure ex-
pected to soar to 139 million by 2050 [3]. Alzheimer’s
disease (AD) unfolds gradually over decades, progressing

*Equal contribution
1Brain atrophy refers to the loss of neurons and connections between

them, leading to a reduction in brain size and function.

from a currently undetectable preclinical phase to severe
dementia and ultimately death [44]. Given AD’s prolonged
progression and diagnostic challenges that span clinical, be-
havioural, psychological, and pathological assessments, no
single study has been able to document the full evolution
of the disease [44], leaving its timeline partially hypothet-
ical. The progression of Alzheimer’s involves volumetric
brain atrophies, with structural MRI (sMRI) images offer-
ing a reflective representation of these brain changes [4].
Therefore, sMRI has long been recommended for clinical
assessments [4, 46].

Deep learning has revolutionized computer vision, with
CNN-based approaches excelling on smaller datasets due
to their strong inductive biases [17, 27]. Of late, Vision
Transformers (ViTs) [17] have outperformed CNNs on var-
ious benchmarks by effectively capturing long-range de-
pendencies between image regions and offering expansive
receptive fields [26, 54]. However, adapting ViTs from
2D to 3D is nontrivial, as it involves increased complex-
ity in 3D data representation [12], a lack of inherent spatial
priors (making them data-hungry), and limited availability
of pre-trained models for transfer learning. These chal-
lenges are more pronounced in neuroimaging, where data
is high-dimensional yet scarce [25]. For neurodegenerative
diseases like AD, these shortcomings are particularly con-
sequential: diagnosis hinges on identifying subtle, stage-
specific atrophy patterns that evolve across neuroanatom-
ically ordered regions. For example, clinical neuroscience
research shows that early atrophy localizes to the hippocam-
pus and amygdala, impairing memory and emotional pro-
cessing [4, 44]. As AD progresses, degeneration expands
to the entorhinal cortex, middle temporal gyrus (impact-
ing semantic memory) [9], and eventually the striatum,
thalamus, and widespread cortical regions (middle frontal,
cingulate, parietal, and insular cortices) [40, 56]. Diffu-
sion tensor imaging further reveals white matter degrada-
tion, with decreased integrity in AD-vulnerable tracts [55].
Current computer vision approaches often overlook these
neuroscientific insights. Indeed, recent transformer-based
works, while delivering good performance on small-scale
datasets, remain largely data-driven [30, 56] black boxes.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2801



They achieve high accuracy on small datasets but often fail
to provide meaningful interpretations, potentially attending
to irrelevant brain regions to make predictions rather than
considering known biomarkers.
A natural question arises: Can we incorporate crucial
domain-specific knowledge, both clinical and empirical, as
an inductive bias for ViT-based models to learn effectively?
And how can we do that? To address this, we propose
Brain Atlas2-based clinical knowledge induction within
the model, such as ViTs, embedding clinical insights di-
rectly via our novel Relevance Augmented Self Attention
(Rel-SA) module. In this context, relevance denotes the ex-
plicit clinical prioritization of disease-associated brain re-
gions or biomarkers. Our experiments show that this ex-
plicit anatomical guidance enhances the ability of trans-
formers to differentiate AD and CN subjects while concur-
rently ensuring that the models agree with clinical knowl-
edge. We demonstrate the effectiveness of our approach
through qualitative visualizations and quantitative results
(§4) on two benchmark datasets (ADNI & AIBL). We
achieve performance comparable to non-interpretable meth-
ods while simultaneously providing interpretations better
aligned with clinical insights.
Our contributions can be summarized as follows:

• Rel-SA, encoding clinical priors using Relevance Bias:
We encode the clinical prominence of structural markers
critical in AD within the attention matrix in a ViT through
an additive bias term, which we call Relevance Bias (ab-
breviated as Rel-Bias). We derive these markers from the
meta-analysis of neuroscience literature. During train-
ing, the model learns to balance evidence-based priors
from neuroscience (the Rel-Bias term) with data-driven
attention scores. Importantly, this lightweight module
adds only 24 parameters in ViT-Base and significantly im-
proves both performance and interpretability.

• We unify two clinically validated brain atlases: 1) the
AAL3v1 atlas [47], parcellating the brain into 166 cor-
tical/subcortical regions 3, and 2) the JHU White Matter
atlas [1], segmenting white matter into 48 tracts. This
integration ensures comprehensive coverage of anatomi-
cally distinct regions. Each 3D MRI volume is mapped
to the combined Atlas parcels. This parcellation serves as
the spatial prior for our novel attention mechanism. To
the best of our knowledge, this is the first work to inte-
grate domain priors from combined brain atlases into a
ViT architecture.

2A brain atlas is a detailed map of the brain, dividing it into parcels.
A parcel in brain research refers to a defined region of the brain, grouped
based on structural and functional similarity.

3Cortical Region: It refers to a specific area of the brain’s outer layer
(the cortex) also called as grey matter, is responsible for key functions like
thinking, memory, sensation, and movement. A subcortical region: It is an
area beneath the brain’s outer layer (cortex). White matter: It consists of
nerve fibres (axons) coated with a fatty substance called the myelin sheath.

• Qualitative Evaluation through Leave-One-Out Anal-
ysis: We derive ten region sets ranked by their relevance
(high to low) to AD diagnosis and evaluate model inter-
pretability using a Leave-One-Out strategy (§5.2). We
identify regions critical to prediction by masking each set
and measuring changes in entropy, accuracy, and AUC.
Additionally, a Reverse Leave-One-Out analysis (§A.3),
retaining only one region set at a time, was conducted for
completeness. Results confirm that Rel-SA consistently
localizes attention to clinically meaningful areas. This
highlights the model’s strong alignment with neuroscien-
tific insights.

2. Related Work
The general landscape of architectures for medical image
analysis, particularly for ADNI classification, can be di-
vided into approaches that prioritize performance and those
that emphasize interpretability, often with a trade-off be-
tween the two. Below, we discuss the two paradigms.
Black-Box Approaches: Earlier works using CNN-based
architectures handle 3D sMRI scans as a sequence of 2D
image slices [14, 19, 43, 45, 48]. These works overlook
changes in volumetric attributes over spatially distant re-
gions, a key indicator of numerous neurodegenerative dis-
eases. Additionally, 3D CNNs require greater depth to fully
capture the global features necessary for understanding 3D
images, which is computationally expensive and memory-
intensive [33]. More recently, Vision Transformer [17] has
been used in 3D-input-based neurodegenerative disease di-
agnosis to overcome CNN limitations in modelling global
context. They achieve high accuracy in tasks like AD diag-
nosis, primarily through data-driven learning of volumetric
features [30, 37, 53, 56]. However, their reliance on purely
data-driven learning often results in a lack of interpretability
[38]. This limits their utility in clinical settings, where un-
derstanding why a model makes a prediction is as important
as the prediction itself. The next frontier is marrying these
powerful models with wisdom from clinical neuroscience –
explicitly directing them to disease biomarkers.
Interpretable approaches: Some recent works have at-
tempted to balance performance and interpretability by fo-
cusing on localized region-of-interest (ROI) analyses or
leveraging complex frameworks to integrate domain knowl-
edge [2, 20, 51]. While interpretable, these methods of-
ten fail to capture the widespread and diffuse patterns of
neurodegeneration characteristic of AD. Therefore, models
must balance attention across both high and low relevance
regions to holistically capture evolving biomarkers. Rel-
SA strives to achieve such balance, preserving the trans-
former’s ability to attend to novel patterns across the entire
brain while nudging attention to prioritize clinically rele-
vant regions. This dual mechanism (anatomical and clinical
prior, alongside data-driven attention) enables the model to
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Figure 1. 3D Densenet+ViT Architecture showing the introduction
of Rel-Bias in the Relevance-augmented Self-Attention module
(Rel-SA) of the Transformer blocks. (GAP: Global Average Pool-
ing, P.E: Position Embeddings, MLP: Multi-Layer Perceptron)

Figure 2. Rel-Bias calculation using relevance regions identified
using Atlas. The downsampled masks are precomputed and stored
before training. During training, the mask M is sent to each trans-
former block where its respective learnable parameters are used to
calculate Rel-Bias.

1) leverage established biomarkers and 2) discover patterns
that may be overlooked by traditional markers.

3. Architecture Design
Consider a subject’s sMRI scan represented as a greyscale
3D volume I ∈ R1×ID×IW×IH after preprocessing (§4).
We divide the 3D scan into N non-overlapping patches,
each patch P ∈ RpD×pW×pH . Each patch is embedded
into a E dimensional token vector using a 3D DenseNet-like
architecture. Note that each patch is embedded indepen-
dently of all other patches, similar to patchification in 2D
ViT models. Learnable positional embeddings are added to
encode spatial information effectively. This list of tokens,
X ∈ RN×E , is then sent to a Transformer model. The
output embeddings are then flattened and sent to a single
MLP layer for binary classification. We use the standard
cross-entropy loss for the training. Figure 1 describes this
architecture in detail.

3.1. Rel-SA: Relevance-augmented Self-Attention
We propose Rel-SA as a straightforward yet powerful way to
inject neuroscientific domain knowledge from brain atlases
into the ViT self-attention module. Concretely, we add a
relevance bias to the attention matrix prior to the softmax
operation, guiding the model to give preferential focus to
the regions of the brain known to be critical for Alzheimer’s

Figure 3. Visualization of high relevant (in orange) and low rele-
vant (in violet) brain regions by overlaying the 3D binary masks,
Mhigh and Mlow in all three planes (Sagittal, Coronal, and Axial).

diagnosis. Formally, the Rel-SA attention scores are com-
puted as

  \text {Rel-SA}(Q, K, V) = \sigma \Bigl (\frac {Q K^T}{\sqrt {d}} + \phi (M; w_{high}, \alpha )\Bigr )V    





  

 (1)

where \protect \mathbf  {Q} = \mathbf {X}W_Q  , \protect \mathbf  {K} = \mathbf {X}W_K   , \protect \mathbf  {V} = \mathbf {X}W_V   are the
query, key, and value projections of the token sequence
\protect \mathbf  {X}\in \mathbb {R}^{N\times E}   , and \sigma (\cdot ) is the softmax function. The term
\phi (\cdot ) is our Relevance Bias (Rel-Bias) derived from atlases
of known neuroanatomical markers of Alzheimer’s pathol-
ogy as described below.

Rel-Bias Derivation. We use two well-studied brain at-
lases — AAL3v1 and JHU WM — to identify parcels
strongly associated with AD. Specifically, we compile:
• 50 parcels from the AAL3v1 Atlas [4, 11, 15, 16, 18, 19,

22, 23, 31, 32, 34, 39, 41, 42, 44],
• 31 parcels from the JHU WM Atlas [6, 40, 56].
These parcels are deemed high relevance because they fre-
quently exhibit pathological changes in AD. We create two
3D binary masks per scan: one for these high-relevance
regions and another for the low-relevance (remaining) re-
gions. To align with our patch-wise tokens (see Fig-
ure 2, 3), we perform 3D Max-Pooling (kernel and stride
= (p_D, p_W, p_H)   ) on these masks. This downsampling step
assigns an entire patch as high relevance if it contains any
portion of a high-relevance parcel. Such a conservative ap-
proach mitigates the risk of ignoring crucial areas near par-
cel boundaries, e.g., if the Frontal Superior Gyrus abuts the
background, the relevant patch still receives a strong bias to-
ward this region. Figure A7 depicts volumetric coverage of
high and low relevant regions pre and post-downsampling.
Although the sagittal view in Figure 3 may visually sug-
gest that a large fraction of the brain is marked high rel-
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evance, the coronal slices reveal a more nuanced picture:
many cortical areas are excluded, and only central regions
known to be pivotal in AD diagnosis remain highlighted.
Hence, while we prioritize capturing critical regions, we do
not simply label most of the brain as “high relevance”. Af-
ter pooling, each mask is reshaped to yield a flattened vec-
tor M\in \mathbb {R}^{N\times 1}   where M = M_{\text {high}} + M_{\text {low}}   . A score vector
S\in \mathbb {R}^{N\times 1}   is then obtained via

  S(M; w_{high}, \alpha ) &= w_{\text {high}} \cdot M_{\text {high}} \;+\; w_{\text {low}} \cdot M_{\text {low}}, \\ w_{\text {low}} &= \alpha \cdot w_{\text {high}}, \quad \alpha \in (0, 1)        
         (3)

ensuring that w_{\text {low}} < w_{\text {high}}  , where whigh, α are learnable
parameters. Here, whigh and wlow are the scores of high
and low relevant regions, respectively. The final Rel-Bias
matrix \phi (M) has dimensions \protect \mathbb  {R}^{N \times N} and is computed as

  \phi (M; w_{high}, \alpha ) = \beta \;\cdot \; \bigl \lVert S(M)\, S(M)^T \bigr \rVert _F     





(4)

where \beta is a hyperparameter controlling the bias scale. Our
calculations reveal that the Rel-Bias term can modify the
probability value of a given patch by up to 20%.

Domain-aware Inductive Bias in Self-Attention. By in-
corporating these relevance-informed masks into the self-
attention matrix, Rel-SA effectively embeds domain-aware
inductive biases. It preferentially elevates interactions
among tokens that correspond to crucial neuroanatom-
ical parcels, thereby enhancing both performance (fo-
cusing model capacity on disease-critical regions) and
interpretability (making attention maps reflect clinically
grounded priorities). Empirically, we show that this leads
to higher classification accuracy and more meaningful at-
tention distributions for AD detection (see §4).

4. Experiments and Results
4.1. Experimental Setup
In this section, we present our experimental design to eval-
uate the proposed Rel-SA module for AD diagnosis from
3D sMRI data. We compare against several baselines and
state-of-the-art methods, reporting classification accuracy
and area under the ROC curve (AUC). Our experiments
span two major public datasets, ADNI and AIBL, to as-
sess both in-domain performance and generalizability. De-
tails of model training configuration and hyperparameters
are elaborated in Table A4 in the Supplementary Material.

4.2. Datasets and Preprocessing
ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive) [35]. We use T1-weighted sMRI scans from the ADNI
collection, which comprises both 1.5T and 3T acquisitions
taken at intervals of 6 months. We obtain 4,178 scans from
1,042 subjects. The data distribution is split into Control
Normal (CN) scans, containing 3,006 scans from 719

subjects, and scans of patients with AD, consisting of 1,172
scans from 323 subjects.
AIBL (Australian Imaging, Biomarker, and Lifestyle
Flagship Study) [24]. AIBL provides T1-weighted sMRI
scans from 596 subjects, for a total of 1,097 scans. After
the same preprocessing pipeline as ADNI, we obtain 940
CN scans from 497 subjects, and 157 AD scans from 104
subjects. Subjects range in age from 55–93 years.
We follow standard preprocessing: skull stripping, bias field
correction, registration to MNI-152 space, and Z-score in-
tensity normalization. The final input to the model has di-
mension 1 × 182 × 218 × 182, where the single channel
indicates grayscale sMRI data. We use a stratified 5-fold
subject-wise cross-validation with an 80:20 train-test split.

4.3. Baselines
We consider multiple baseline architectures to examine both
the impact of different patch-encoding backbones and the
effect of the Rel-SA module in isolation. In particular,
our baselines consist of three ViT variants, each differing
in how 3D patches are tokenized to create patch embed-
dings: (1) Standard ViT, which uses a linear projection;
(2) ResNet-ViT, which replaces the linear projection with
a 3D ResNet [28]; and (3) DenseNet-ViT, which uses a
3D DenseNet [29]. These three baselines isolate the choice
of patch encoder, allowing us to verify that any perfor-
mance benefits arise from Rel-SA rather than from improved
patch feature extraction. Results in Table 1 clearly demon-
strate that the inclusion of Rel-SA in the baseline variants
boosts performance across all classification metrics consis-
tently. Further, we also present β variations with the best-
performing model, DenseNet-ViT. Results demonstrate that
β=10 gives the best accuracy and AUC gains. We utilize the
same model in §5 for interpretability analysis.

4.4. Comparison with Existing State-of-the-Art
Methods for AD Classification

We compare our approach with state-of-the-art models for
AD classification in Table 2. Two of the methods, Medical-
Net [13] and M3T [33], utilize 3D scans as input; however,
they do not fully align with clinical evidence as they miss
out on considering important regions linked with AD [33].
Additionally, M3T presents results for low-resolution data
input of shape 128 × 128 × 128. The other two meth-
ods, ADDformer [37] and Khatri et.al [36], utilize slices
of the 3D scans to predict the classification, which may
cause them to miss out on volumetric information. None
of these methods provides any mechanisms to incorporate
domain knowledge, and the interpretations offered only par-
tially highlight relevant regions at best. In contrast, Rel-SA
is explicitly designed to embed domain knowledge into the
attention mechanism of ViT models, leading to more clini-
cally aligned and interpretable predictions. These compar-
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Table 1. Ablation studies for inclusion of Rel-SA on different model architectures and β values in 2-class (AD & CN) classification task.
This table shows the comparison of the first three rows (w/o Rel-SA) using three different model architecture settings with the next three
rows (w/ Rel-SA). The last five rows show the impact of varying β values in Rel-SA. All ViT models utilized pre-trained weights from
Hugging-face’s ViT-base (for only the transformer layers)

.

Model β Accuracy (%) (↑) AUC (%) (↑) Precision (%) (↑) Recall (%) (↑) F1-score (%) (↑) Loss(↓)
MLP + ViT - 77.29 75.51 70.42 71.03 70.7 0.89
3D ResNet + ViT - 78.00 75.37 73.86 69.15 70.68 0.64
3D DenseNet + ViT - 79.86 81.42 76.77 70.60 72.52 0.53

MLP + ViT + Rel-SA 10 80.02 (↑ 2.73) 82.05 (↑ 6.54) 75.82 (↑ 5.4) 72.03 (↑ 1.00) 73.43 (↑ 2.73) 0.71 (↓ 0.18)
3D ResNet + ViT + Rel-SA 10 82.05 (↑ 4.05) 84.23 (↑ 8.86) 79.42 (↑ 5.56) 76.72 (↑ 7.57) 76.97 (↑ 6.29) 0.53 (↓ 0.11)
3D DenseNet + ViT + Rel-SA 10 83.16 (↑ 3.3) 85.66 (↑ 4.24) 80.66 (↑ 3.89) 76.89 (↑ 6.29) 77.71 (↑ 5.19) 0.52 (↓ 0.01)

3D DenseNet + ViT + Rel-SA 0.1 77.05 78.80 72.41 65.31 66.89 0.53
3D DenseNet + ViT + Rel-SA 1 82.16 84.82 82.82 73.83 76.46 0.5
3D DenseNet + ViT + Rel-SA 10 83.16 85.66 80.66 76.89 77.71 0.52
3D DenseNet + ViT + Rel-SA 50 81.69 83.85 77.47 76.29 76.83 0.54
3D DenseNet + ViT + Rel-SA 100 81.57 84.1 80.92 75.77 77.64 0.56

Table 2. Performance comparison with SOTA models on ADNI and AIBL datasets for binary classification between Alzheimer’s Disease
(AD) and Cognitive Normal (CN). Results are reported as mean±std for stratified 5-fold subject-wise splits. The “Setup” column indicates
the type of input used by the model. The “Explanation” column denotes whether the model provides behaviour analysis with respect to
clinically relevant explanations, as presented in their respective studies.

Dataset ADNI AIBL Setup #Samples Explanation

Model Acc. (%) AUC (%) Acc. (%) AUC (%) (ADNI, AIBL)

MedicalNet [13] [33] (CNN) 88.89 88.80 82.76 79.07 3D Volume 4786, 817 ×
ADDformer [37] 88.2 96.00 - - Single-slice 388, 0 ×
Khatri et.al [36] 95.37 96.00 - - Single-slice 705, 0 partial
M3T [33] 93.21 96.34 93.27 92.58 Multi-slice, Multi-plane 4786, 817 partial

3D DenseNet + ViT 79.86±0.94 81.42±1.83 82.81±1.55 81.42±2.29 3D Volume 4178, 1097 ×
3D DenseNet + ViT + Rel-SA 83.16±0.54 85.66±0.87 87.40±2.58 83.57±2.25 3D volume 4178, 1097 ✓

isons help us assess classification performance and model
explanations with established AD-related regions derived
from clinical neuroscience literature, with our results in Ta-
ble 2 indicating that this approach achieves performance
comparable to state-of-the-art methods, while simultane-
ously being highly interpretable. We also note that there ex-
ist inconsistencies in the training and evaluation splits used
in existing literature. Hence, we report our results on the
largest dataset available to us.

5. Analysis

We present our results in Tables 1 and 2 for quantitative
analysis. We find that adding Rel-SA empirically improves
performance across all baselines, supporting our hypothesis
that injecting prior knowledge of disease-relevant regions
improves the model’s performance. We additionally pro-
vide qualitative results indicating the effectiveness of Rel-
SA in providing clinically aligned post-hoc explanations,
thus improving the reliability over baseline models. Finally,
we perform a Leave-One-Out analysis for a fine-grained
comparison of the behaviour shown by models with and
without Rel-SA by performing interventions on the input
data to simulate atrophy in specific brain regions. Our re-
sults indicate that the models trained with Rel-SA strongly

align with inferences from clinical theories regarding the ef-
fect of AD on various brain regions, while models without
Rel-SA show significant deviations. This further showcases
the ability of models trained with Rel-SA to provide clini-
cally relevant interpretations.

5.1. Qualitative Results
In this section, we compare the differences between the
vanilla ViT and the Rel-SA-augmented ViT in terms of how
they allocate their attention under three different scenarios:
(a) both models correctly classify an AD scan, (b) Rel-SA
correctly identifies AD while the vanilla ViT misclassifies
the same scan as CN, and (c) both models correctly clas-
sify a CN scan. For a better appreciation of the anatomical
regions, classical visual cues for Alzheimer’s disease are
presented in Figure A6 of the appendix. We also visualize
the effects of including Rel-SA by qualitatively comparing
the attended regions in models with and without the module
in Figure 4, with a more comprehensive visualization in the
appendix Figure A8.
Case 1: GT = AD, both models predict AD: Examining
sagittal slices (e.g., slice 90 in Figure 4) reveals that the
Rel-SA model concentrates heavily on the parietal and mid-
temporal lobes, regions well-documented for AD-related at-
rophy [44]. The vanilla ViT exhibits scant attention but no-
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Figure 4. Case-wise Comparative Analysis (§5.1) of Attention Rollout visualizations between 3D image scans belonging to the same
subject, when processed with Rel-SA augmented ViT and without Rel-SA (Vanilla ViT). Cases demonstrated are, Case 1: GT = AD, both
models predict AD; Case 2: GT = AD, Rel-SA predicts AD while vanilla ViT predicts CN; and Case 3: GT = CN, both models predict CN.

tably overlaps with Rel-SA in the mid-temporal area, likely
enabling it to arrive at the correct AD label. In coronal slice
108 and axial slice 90, Rel-SA highlights classic disease
markers such as enlarged ventricles, hippocampal atrophy,
and sulcal widening [21], while the vanilla ViT’s attention
is weaker yet still sufficient to classify the scan correctly.
Thus, although both models converge on an AD prediction,
Rel-SA provides a more clinically relevant distribution of
attention aligned with known biomarkers.
Case 2: GT = AD, Rel-SA predicts AD while vanilla
ViT predicts CN: In this instance, Rel-SA consistently
attends to hallmark AD indicators—including the parietal
cortex, medial temporal regions, and ventricular enlarge-
ment across multiple slices (e.g., slices 110, 108, 80). Con-
versely, the vanilla ViT’s attention is scattered or muted
in precisely these disease-relevant structures, causing it to
overlook key morphological cues of AD. For example, in
slice 108, Rel-SA clearly demarcates the ventricles and hip-
pocampus, whereas the vanilla ViT yields only faint atten-
tion in those locations. This lack of focus culminates in a
CN classification by the vanilla ViT, illustrating how Rel-
SA’s targeted attention mechanism can prevent crucial AD
features from being missed.
Case 3: GT = CN, both models predict CN: When a
healthy subject is correctly identified, Rel-SA’s heatmaps
show pronounced focus on “healthy” anatomical land-
marks, such as the hippocampus, thalamus, cingulate gyrus,
and overall cortical structure indicating a thorough check

for the absence of AD pathology (e.g., undilated ventri-
cles, lack of substantial cortical thinning [9]). In contrast,
the vanilla ViT’s attention maps are less consistently con-
centrated on these canonical healthy regions, although they
still arrive at the correct CN decision. These differences
imply that Rel-SA’s attention mechanism provides a more
methodical survey of known healthy markers, while vanilla
ViT’s scattered coverage, although still adequate for classi-
fication, does not provide relevant interpretations.

In summary, these three scenarios illustrate that Rel-SA
systematically directs attention toward anatomically rele-
vant sites in both diseased and healthy subjects, allowing
for clinically consistent predictions. The vanilla ViT may
sometimes succeed (Cases 1 and 3), but its less targeted ap-
proach risks missing key AD markers (Case 2) or neglecting
standard healthy indicators, thus sacrificing interpretability.

5.2. Leave-One-Out Analysis
Rel-SA intuitively imbues information about the impor-
tance of certain brain regions in the prediction of AD to the
attention matrix. To verify if the model effectively learns
the contribution of specific brain regions in AD prediction,
we perform a Leave-One-Out analysis, masking out a set of
regions from the input scan before passing it to the model.
For this analysis, we divide the brain into ten subregions
based on clinical literature, neuropathological staging, and
known AD-relevant atrophic patterns. We then create 10 bi-
nary masks (M1–M10), each mask occluding a specific set
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Figure 5. We compare models with and without Rel-SA using the Leave-One-Out analysis described in §5.2. We compare the change
in entropies of model predictions for patients with AD (plots A and E) and the CN subjects (plots B and F). Plots C and G contain the
accuracy of AD predictions with and without Rel-SA, respectively, while plots lots D and H provide the same analysis for CN subjects.
Plots I and J show the AUC curves for models with and without Rel-SA, while the final plot K is a visualization of the AUC curve in the
“Reverse” Leave-One-Out analysis (§A.3).

of regions. We discuss the regions covered in each mask in
§A.2 of the Supplementary Material.

In contrast to standard computer vision applications,
where occluding or masking out a part of an image hides
certain visual cues, removing a region in sMRI can mimic
“tissue loss”. Although this does not perfectly reflect true
atrophy, our masking experiments suggest that the model
may interpret missing voxels as pathological degenerations.
To systematically investigate this, we conduct a selective
region removal analysis and assess its impact on model pre-
dictions. For this analysis, we evaluate changes in entropy
of logit probabilities, class-wise accuracy variations, and
ROC curve shifts following the removal of specific brain
regions to quantify how the model adjusts its confidence
and classification behavior in response to missing anatomi-
cal structures. The results are summarized in Figure 5.
First, Mask 1 (covering regions typically affected in
early AD like the hippocampus): reveals that removal of
the regions contained in it drastically lowers the RelSA-
augmented ViT overall AUC (e.g., from a baseline of

0.85 to about 0.60) and pushes the model towards high-
confidence AD predictions as indicated by the predictions’
entropies in Figure 5 (A,B,C,D,I). This behavior implies
that the network views absent or severely altered voxels in
these early-atrophy-prone areas as a strong AD cue. Cor-
respondingly, the same masking impairs CN accuracy, re-
flecting the role of a preserved Mask 1 region in recogniz-
ing healthy structures. In contrast, the vanilla ViT exhibits
a more modest performance decline when M1 is removed,
and it does not always become highly confident about AD
(Figure 5 (E,F,G,H,J)). This less pronounced effect suggests
the vanilla ViT is not as sensitive to early atrophy signals
in Mask1, aligning less closely with clinical expectations.
These results indicate that the Rel-SA-augmented ViT bet-
ter adheres to clinical research - which states that the regions
within Mask1 show high levels of atrophy in patients with
AD [4]. Evidently, not having Rel-SA makes it hard for the
vanilla ViT model to derive this relationship between AD
and the brain regions involved.
Masks 2–6: encompass mid-brain and sensorimotor cor-
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tices commonly implicated in later AD stages. Occluding
these regions yields moderate decreases in AUC (ranging
from ∼0.73 to 0.83) and typically pushes the ViT hav-
ing Rel-SA to classify subjects as AD. In particular, the
model gains confidence in its AD predictions as quantified
by entropy values in Figure 5 (A). The accuracy of AD
classification increases while the accuracy of CN classifi-
cation goes down (Figure 5 (C,D)). However, the effects
of these regions are not as prominent as the regions cov-
ered in Mask 1. This pattern suggests both confounding
effects (masking may appear as atrophy) and the model’s
ability to rely on alternative areas for discrimination. Ad-
ditionally, CN classification accuracy reduces from remov-
ing these mid-brain voxels, possibly due to misclassification
from CN to AD, signaling that the network looks for rela-
tively intact mid-brain regions in healthy scans to predict
CN. In contrast, vanilla ViT (Figure 5 (E,F,G,H,J)) exhibits
inconsistent shifts in performance. For some masks (e.g.,
Mask 3, Mask 4), we see a modest increase in AD accuracy,
suggesting the model sometimes treats masked mid-brain
tissue as an AD cue. In other cases, accuracy and confi-
dence show little or no change. This analysis highlights the
importance of domain knowledge in identifying AD from
regions that do not have significant visual atrophy in the
early stages of AD.
Mask 7: Although ranked seventh in relevance, its removal
causes a mild yet noticeable effect on both AD and CN clas-
sification. For the Rel-SA model, we observe a small drop
in AD AUC (e.g., from ∼0.82 to ∼0.78), alongside a mod-
est rise in CN accuracy as seen in Figure 5 (A,B,C,D). These
shifts, while not as pronounced as higher-priority atrophy
regions, suggest that Mask 7 might contribute relevant vi-
sual cues derived from data rather than acting as mere back-
ground. The vanilla ViT similarly exhibits some impact on
Mask 7 removal, though its changes in accuracy and en-
tropy are erratic without the guidance provided by Rel-SA.
Thus, introducing Rel-SA “nudges” the model toward more
consistent, clinically aligned patterns.
Masks 8–9: In contrast, removing Masks 8 and 9 (consid-
ered lower-priority regions for early AD) generally leaves
AD detection performance near the baseline across the dif-
ferent metrics, indicating they offer fewer decisive disease
cues than Mask 7. At the same time, the Rel-SA model of-
ten sees a slight boost in CN accuracy and confidence, im-
plying that these regions do not strongly support AD iden-
tification but hold some information beneficial for distin-
guishing healthy scans. In contrast, in the case of the vanilla
ViT, removing Mask 8 can lead to an increase in CN accu-
racy and confidence, but Mask 9 shows negligible correla-
tion with classification outcomes, reflecting a more variable
reliance on these sub-regions without Rel-SA’s guidance.
Lastly, Mask 10 (cerebellum): demonstrates a curious ef-
fect for both the Rel-SA and vanilla ViT models: although

classic AD progression literature does not prioritize cerebel-
lar changes early on, removing it can decrease performance
for both AD and CN, accompanied by a small drop in AUC.
This indicates that both models have unexpectedly lever-
aged cerebellar cues, possibly due to dense tissue signatures
resembling cortical regions, proximity to medial temporal
lobes, or spurious data artifacts.

6. Conclusion

This study explores how domain knowledge can influ-
ence a model’s performance in predicting the presence of
Alzheimer’s Disease. Our results depict that integrating do-
main knowledge from Neuroscience into AI models can
have a considerable impact on their intricate understand-
ing of the sMRI data. The key lies in leveraging domain
knowledge as the right inductive bias. The proposed method
(Rel-SA), presents a simple, efficient, and highly effective
method in this direction. It achieves a maximum accuracy
improvement of approximately ∼ 4% when integrated into
a hybrid 3D ResNet-ViT architecture. Furthermore, the
adaptability of Rel-SA is validated on the AIBL dataset,
yielding a similar performance gain of ∼ 4.6%. Notably,
this improvement is achieved with a negligible parametric
overhead of just 24 additional parameters. In addition, in-
terpretations derived from the model enhanced with Rel-
SA align closely with established clinical literature on AD,
as evidenced by findings from leave-one-out analysis. The
model’s performance is further supported by visual inter-
pretations that are consistent with domain knowledge.

7. Discussion and Future work

We expect our study to achieve broader generalization
across populations and AD subtypes with access to larger
and more diverse labelled sMRI datasets. Minor residual
skull fragments were observed in countable ADNI2 scans
due to variability in skull stripping, which we addressed
through careful manual review. Moreover, recent studies
suggest that omitting skull-stripping may preserve informa-
tive signals relevant to prediction tasks [52], making this a
valuable direction for future investigation. Spurious corre-
lations involving cerebellar regions remain another area for
investigation.

Looking ahead, we plan to extend our framework beyond
binary classification to multi-stage and multi-disease set-
tings such as Parkinson’s and frontotemporal dementia us-
ing disease-specific atrophy masks [15, 49]. Longitudinal
data will further enable sub-mask-driven tracking of early
to late atrophy stages aligned with Braak’s staging [9]. We
also aim to integrate complementary modalities like PET,
fMRI, and clinical test scores to enrich biomarker represen-
tations. Additionally, evaluating domain shift scenarios will
enhance real-world generalization and clinical utility.
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