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ABSTRACT

Compound AI systems integrating multiple components, such as Large Language
Models, specialized tools, and traditional machine learning models, are increas-
ingly deployed to solve complex real-world tasks. However, optimizing compound
systems remains challenging due to their non-differentiable structures and diverse
configuration types across components, including prompts, hyperparameters, and
model parameters. To address this challenge, we propose OPTIMAS, a unified
framework for effective optimization of compound systems. The core idea of
OPTIMAS is to maintain one Local Reward Function (LRF) per component, each
satisfying a local–global alignment property, i.e., each component’s local reward
correlates with the global system performance. In each iteration, OPTIMAS effi-
ciently adapts the LRFs to maintain this property while simultaneously maximizing
each component’s local reward. This approach enables independent updates of
heterogeneous configurations using the designated optimization method, while en-
suring that local improvements consistently lead to performance gains. We present
extensive evaluations across five real-world compound systems to demonstrate that
OPTIMAS outperforms strong baselines by an average improvement of 11.92%,
offering a general and effective approach for improving compound systems.
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Figure 1: Overview. Given a compound AI system’s heterogeneous configurations (e.g., prompts,
parameters) across multiple components, OPTIMAS maintains globally aligned Local Reward Func-
tions (LRFs) as the system evolves, where each supervises a component and assigns higher local
rewards to outputs with higher system performance (aka. global rewards). It iteratively adapts LRFs
and optimizes each component to maximize its local reward for effective system optimization.

1 INTRODUCTION

Modern AI systems increasingly employ compound systems that integrate multiple complex compo-
nents, such as Large Language Models (LLMs), tool/function calls, and traditional machine learning
models like retrievers (Yuksekgonul et al., 2025; Khattab et al., 2023; Du et al., 2023). These
components collaborate to process heterogeneous data sources and solve complex tasks through
specialized subtask allocation (Zaharia et al., 2024; Zhou et al., 2025; Leike et al., 2018; Kandogan
et al., 2025; Chen et al., 2025b). While compound AI systems have yielded performance advantages
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Figure 2: Five real-world and challenging compound AI systems. The goal is to automatically
optimize the configuration across a heterogeneous set of components and parameters, e.g., model
parameters, prompts, model selection choice, and hyperparameters. See Appendix D for details.

over monolithic models (Du et al., 2023; Huang et al., 2023; Leblond & et al., 2023; Lewis et al.,
2020; Liu et al., 2023), they can be highly sensitive to the failure of individual components, which
leads to cascading failures in the final results (Cemri et al., 2025; tse Huang et al., 2025; Peng et al.,
2025; Chen et al., 2024a). For example, if an LLM misinterprets an input query, it can retrieve
irrelevant or misleading information. This leads to subsequent tool calls operating on incorrect inputs,
producing unreliable outputs throughout the system. Therefore, optimizing these systems as a whole
is crucial for maintaining reliability and global system performance (i.e., global rewards).

However, optimizing these compound AI systems end-to-end is fundamentally challenging due to
their non-differentiable nature. Second, it is hard to jointly optimize heterogeneous configurations
(textual or numerical, continuous or discrete) from individual components, including prompts,
hyperparameters, model selections, and even model weights. Moreover, running the entire compound
AI system during optimization to achieve global reward is costly.

Previous works have largely focused on optimizing specific configurations in isolation, such as
optimizing prompts through textual feedback (Yuksekgonul et al., 2025; Khattab et al., 2023; Yang
et al., 2024; Madaan et al., 2023; Wu et al., 2024a) or model selection through iterative search (Chen
et al., 2025b; 2024c). Yet these approaches can fail to capture critical bottlenecks. For example, a
perfectly optimized prompt can struggle to compensate for a poorly chosen model. Even when the
components are individually well optimized, they may still collaborate suboptimally, as the upstream
component might not have visibility into which inputs are effective for the downstream components.
Consequently, previous methods typically require costly system runs over many configurations to
identify the best configuration for the components to work well together, leading to low data efficiency
due to the large number of configurations.

Present work. Here we propose OPTIMAS (Figure 1), a unified framework for the effective and
data-efficient optimization of compound AI systems. The core idea is to learn a globally aligned
Local Reward Function (LRF) per component, such that independently maximizing a component’s
local reward still reliably improves the global rewards. We show that under mild conditions, our
approach converges reliably, providing strong theoretical guarantees. Furthermore, since the learned
LRFs can be used to optimize components locally, OPTIMAS has higher data efficiency by avoiding
extensive runs of the entire compound AI system to achieve high global reward.

Specifically, each LRF estimates the contribution of a component’s output to the global reward.
All LRFs are implemented using a shared LLM backbone, with separate projection heads for
each component to produce component-specific rewards. We propose a lightweight adaptation
mechanism using mini-batch preference data to ensure the LRFs remain aligned with the evolving
system configuration (Figure 3). Leveraging this decentralized structure, OPTIMAS applies specific
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Table 1: A comparison of OPTIMAS with selected methods. OPTIMAS optimizes compound systems
with heterogeneous configurations and enables higher data efficiency with local optimization to
reduce number of system runs. We prove OPTIMAS’s convergence under mild conditions.

Supports Optimizes Data Convergence
compound system heterogeneous config. efficiency guarantee

OPRO (Yang et al., 2024) ✗ ✗ ✗ ✗
DSPy (Khattab et al., 2023) ✔ ✗ ✗ ✗
TextGrad (Yuksekgonul et al., 2025) ✔ ✗ ✗ ✗
LLMSelector (Chen et al., 2025b) ✔ ✗ ✗ ✔
OPTIMAS ✔ ✔ ✔ ✔

optimization method to each component based on its configuration type. For example, reinforcement
learning for model parameters (Rafailov et al., 2023; Schulman et al., 2017) or metric-guided search
for prompts and hyperparameters (Yang et al., 2024; Opsahl-Ong et al., 2024; Liashchynskyi &
Liashchynskyi, 2019). Overall, OPTIMAS iteratively updates heterogeneous configurations towards
a higher global reward by using each adaptive LRF as an objective. By optimizing a component to
maximize its local reward, OPTIMAS reduces the entire system runs to maintain higher data efficiency.

We conduct extensive experiments to evaluate OPTIMAS across five real-world compound systems
(Figure 2), including challenging settings such as behavior-driven product recommendation and
medical analysis. OPTIMAS consistently outperforms strong baselines, achieving an average relative
improvement of 11.92% with higher data efficiency, while baseline methods occasionally improve
performance. For example, while DSPy improves the performance on the multi-hop QA system, it
may degrade performance on other tasks, such as product recommendation. In contrast, OPTIMAS
is the only method that improves performance across all five tasks, consistent with our theoretical
guarantee (Section 4.4) that aligning local and global rewards enables effective optimization.

2 RELATED WORK

Optimizing LLM single-step generation. Prior work extensively optimizes prompts for Large
Language Models (LLMs) in single-step generation to improve performance (Yang et al., 2024;
Madaan et al., 2023; Guo et al., 2024; Shinn et al., 2023; Yu et al., 2024; Yin et al., 2025; Chen et al.,
2025a; Williams, 1992), but these methods are limited in their ability to handle complex, multi-step
tasks. For example, addressing complex queries often requires combining multiple components—such
as LLMs, tools, and machine learning predictors—to obtain accurate predictions.

Optimizing multi-component/multi-step generation. Compound AI systems consisting of multiple
components enable more complex planning and specialized processing at each task step (Khattab
et al., 2023; Yao et al., 2023; Liu et al., 2023; Du et al., 2023; Zhang et al., 2025). Previous studies
typically optimize different components separately, such as optimizing LLM prompts (Khattab et al.,
2023; Wu et al., 2024a; Yuksekgonul et al., 2025), fine-tuning model weights using supervised
learning (Zhao et al., 2025; Chen et al., 2024d) or reinforcement learning (Lin et al., 2023; Chen
et al., 2025c), developing model routing (Chen et al., 2025b) and layer grouping (Chen et al., 2023)
strategies, and selecting hyperparameters (Wang et al., 2023; Falkner et al., 2018; Pham et al., 2018;
Liu et al., 2019). In contrast, OPTIMAS enables end-to-end optimization across all components.

Reward modeling for multi-step tasks. To provide more fine-grained supervision, recent works
break down global rewards (e.g., answer accuracy) into more targeted signals (i.e., dense/process
rewards). Representative approaches include leveraging or bootstrapping from human step-wise
annotations (Lightman et al., 2024; Uesato et al., 2022; She et al., 2025); hierarchical planning that
assigns rewards to error correction steps (Wang et al., 2025); using Monte Carlo Tree Search to assign
credit to intermediate reasoning steps (Wang et al., 2024; Ma et al., 2025; Jiao et al., 2024; Chen et al.,
2024b; Setlur et al., 2025) or actions (Chen et al., 2025d; Choudhury, 2025). Recently, Chen et al.
(2024d) leverage Bayesian optimization to decompose global losses into local losses for optimizing
model weight. Optimas differs by dynamically aligning local rewards with global rewards through
preference-based adaptation. This design is applicable to both differentiable and non-differentiable
configurations, without requiring fixed decomposition or extensive retraining. The local optimization
avoids extensive system runs and offers higher data efficiency. Moreover, we provide theoretical
analysis to prove the convergence of our framework. We highlight our key contributions in Table 1.
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3 PROBLEM FORMULATION: OPTIMIZING COMPOUND AI SYSTEMS

Compound AI system. A compound AI system is represented as a directed acyclic graph G = (C, E),
where C = {Ck}Kk=1 is a set of K distinct components (task nodes) and E is the set of all possible
directed edges between components. A component of the compound system can be an LLM, a general
machine learning model, a model selector, etc.We denote the input and output to each component Ck

as xk and yk, respectively. The system input is treated as a source node C0.

The system can operate with dynamic planning: for each input instance x, the connections E(x) ⊆ E
between the components can be adaptive. A directed edge (Ci, Cj) ∈ E(x) indicates that the output
of component Ci is routed as input to component Cj when processing instance x. By default, we
assume the component indices follow the topological order over E , meaning that Ci is the upstream
component of Cj if i < j.

Component configurations. A component Ck : (xk;vk) 7→ yk is controlled by a configuration
policy vk. The configuration space V can either be empty (indicating no optimizable configuration
for the component), discrete (e.g., textual prompts or model selections), or continuous (e.g., model
parameters or hyperparameters). We denote the joint configuration policy by v = (v1, . . . ,vK).

Forward execution. For a given input x and configuration policy v, the system executes components
in topological order over the edge set E(x): yk = Ck

(
{yi | Ci ∈ pa(Ck)}; vk

)
, where pa(Ck)

denotes all the parents of component Ck over E(x). For clarity, we define the overall system as
f(x; v) := y, where y is a collection of outputs from one or more components.

Optimization objective. Given a dataset D with initial inputs and a user-defined global reward
function R : X × Y → R that evaluates the final system output, the optimization goal is to find the
configuration policy v⋆(x) that maximizes the expected global reward:

v⋆ = argmax
v

Ex∼D
[
R(x, f(x; v))

]
. (1)

4 OPTIMAS: GLOBALLY ALIGNED LOCAL REWARDS FOR OPTIMIZATION

Challenges. Directly optimizing the objective in Eq. 1 is difficult. As the configuration spaces are
typically non-differentiable, gradient-based optimization cannot be used. Moreover, each policy
vk may control a different configuration type, so the joint policy v can span heterogeneous spaces.
Therefore, previous efforts (Yuksekgonul et al., 2025; Zhao et al., 2025; Chen et al., 2025b; Khattab
et al., 2023) largely focus on optimizing the policy for single types of configurations, which simplifies
the optimization problem; however, this also leads to suboptimal compound systems.

Key intuition. To address the challenges, our approach (Figure 3) learns Local Reward Functions
(LRFs) that align with the global reward for individual components, allowing local and independent
optimization on heterogeneous components using different optimization approaches.

Such local-global alignments (Section 4.1) encourage that the global reward to increase during local
optimizations (Section 4.3). Moreover, as the system configurations change during optimization, the
LRFs should be adapted to remain aligned. To ensure alignment, OPTIMAS employs a lightweight
adaptation mechanism that updates LRFs with minimal data sampled from the system, preserving
consistency with the global reward (Section 4.2).

4.1 LEARNING LOCAL REWARD FUNCTIONS

Definition (Local Reward Function (LRF)). An LRF on component Ck is defined as rk :
(xk, yk)→ R, which evaluates the component’s output yk given the provided context xk.

Implementation. We implement all LRFs with a LLM backbone ϕ and separate linear heads hk for
a component Ck. The backbone encodes the concatenated text inputs [xk, yk] into an embedding,
and the corresponding head projects this embedding to a scalar reward value. Using such a multitask
neural network ensures scalability with large number of components and reduces memory costs.
Specifically, each LRF is modeled as:

rk(xk, yk) = hk ◦ ϕ([xk, yk])), for all k if vk is non-empty. (2)
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Figure 3: OPTIMAS optimization iteration. At each iteration, OPTIMAS updates a component Ck by
first collecting a mini-batch of preference data and adapting its Local Reward Function rk to remain
aligned with the global task metric. This alignment helps ensure that optimizing the component to
maximize its local reward also improves the global reward.

Property (Local–global alignment). An LRF rk is said to be aligned with the global reward R if,
for every input x and for any two candidate outputs y+k , y

−
k of Ck,

rk(xk, y
+
k ) ≥ rk(xk, y

−
k )

=⇒ Edownstream

[
R
(
x, f(x;v−k

) ∣∣ y+k ] ≥ Edownstream

[
R
(
x, f(x;v−k)

) ∣∣ y−k ], (3)

where v−k denotes the configurations of all downstream components (those that directly or indirectly
receive information originating from Ck). The expected global reward for each candidate output
is estimated via Monte Carlo sampling. This involves executing the downstream components with
the candidate output and the outputs from the non-downstream components fixed, capturing their
stochasticity, and averaging the resulting global rewards from the final system outputs.

Objective of reward functions. To make each LRF rk conform to the local-global alignment
property, we collect Dk(v), a preference dataset under the current system configuration v, and train
each rk using a pairwise log-sigmoid ranking loss:

Lk(Dk(v)) = −E(xk, y
+
k , y−

k )∼Dk(v)

[
log σ

(
rk(xk, y

+
k )− rk(xk, y

−
k )

)]
, (4)

The collection of Dk(v) follows the following steps: 1) execute the compound system up to Ck

and record the partial trajectory
〈
x, (x1, y1), . . . , (xk−1, y k−1)

〉
; 2) sample two candidate outputs

for Ck (e.g., via higher-temperature decoding or alternate hyperparameters); and 3) estimate their
expected task metrics according to the expectation terms on the right-hand side of Eq. 3. The output
with the higher expected value is labeled as y+k , and the other as y−k in Dk(v).

4.2 ADAPTIVE LOCAL REWARD FUNCTIONS

Problem: Misaligned LRFs in the evolving system. As the system configuration changes during
optimization, LRFs trained under a previous configuration vt may become inaccurate under the
updated configuration vt+1. Specifically, (1) after updating Ck, the same outputs from its upstream
component Ci (i < k) may lead to different global reward, making ri misaligned. (2) Its downstream
components Cj (j > k) now receive inputs generated by the updated Ck, which may fall outside
the distribution seen by their LRFs. These shifts accumulate over time, degrading the local–global
alignment property (Eq. 3) that LRFs are designed to satisfy.

However, retraining all LRFs from scratch after every configuration update is expensive. To address
this, we develop a lightweight adaptation strategy that incrementally refines the LRFs as the system
changes, maintaining alignment without full retraining.

5



Published as a conference paper at ICLR 2026

Stage 1: Initial reward modeling. Given the initial system configuration and a dataset with
initial inputs, we first construct an offline preference dataset for each component and train its
LRF to convergence. This offline phase establishes well-aligned LRFs that accurately reflect each
component’s contribution to the global reward.

Stage 2: Online reward function adaptation. When any configuration changes, we sample a small
batch of input data and construct a mini-batch of preference data Bk for each component Ck using the
steps described in Section 4.1. We then optimize the LRF on Ck on the objective Lk(Bk) following
the definition in Eq. 4. To enable stable optimization and improve data efficiency, we maintain a
buffer of previous generated preference data into Bk . This adaptation helps maintain the local–global
alignment property in Eq. 3.

4.3 OPTIMIZATION WITH GLOBALLY ALIGNED LOCAL REWARD FUNCTIONS

Local Optimization. As each component has its own LRF, OPTIMAS flexibly applies a specialized
optimization method for each component. See details in Appendix F. Concisely,

• For textual prompts, we use prompt optimization algorithms such as OPRO (Yang et al., 2024) that
ranks candidate prompts by their average local reward and select the best-performing one.

• For components that are trainable models (e.g., an LLM), we apply reinforcement learning—such
as Proximal Policy Optimization (PPO) (Schulman et al., 2017)—using the LRF as the critic.

• For discrete or low-dimensional continuous configurations, such as model selection or hyperpa-
rameter tuning, we construct a probability distribution over candidate values based on their local
rewards and sample from it to update the configuration.

Overall algorithm (Figure 3). Starting with the initial system configuration, OPTIMAS leverages
initial reward modeling to learn a set of LRFs that are well-aligned with the global reward. At
each iteration optimization, OPTIMAS randomly selects a component to optimize, conducts local
optimization, and if the local configuration change leads to improved global reward, it updates the
system and adapts the LRF using minimal amount of data. To prevent potential cascading errors,
the new configuration is accepted only if it improves the global reward on a small validation set.
Since the optimization with LRFs is conducted locally, the number of system runs to achieve a high
global reward is reduced, as we later show in the experiments. The detailed algorithm is provided in
Appendix A.

4.4 THEORETICAL INSIGHTS

We prove that the local–global alignment property holds for the LRFs constructed in Section 4.1.

Theorem 4.1 (Informal). Under regularity conditions, the minimizer of equation 4 satisfies the
local-global alignment property (equation 3). In addition, maximizing rk

(
xk, Ck(xk;vk)

)
over vk

and maximizing R(x, f(x;v−k) | Ck(xk;vk)) over vk will yield the same solution.

We defer the formal statement for this theorem to appendix B. Since solving equation 1 is generally
challenging, we introduce some regularity conditions to make the convergence analysis tractable.

As the configurations v are heterogeneous, where some of the coordinates are discrete, and some are
continuous, without loss of generality, we assume the first M configurations v(1) = {v1, ...,vM}
are continuous, and the last (K −M) configurations v(2) = {vM+1, ...,vK} are discrete. We write
the objective function Ex∼D

[
R(x, f(x; v)

]
as l(v) = l(v1,v2, ...,vK) := l(v(1),v(2)).

Assumption 4.1. Suppose for any given configuration v(2), the initial level set {v(2) : l(v(1),v(2)) ≤
l(v0,(1),v(2))} is a compact set, where v0,(1) is the initialization used in the algorithm for v(1). In
addition, for every component k and every fixed v−k, l(·,v−k) has a unique maximizer.

Theorem 4.2. Under Assumption 4.1, the algorithm will converge to the component-wise maximum,
that is, the limit point v∗ satisfies

l(v∗) ≥ l(vk,v
∗
−k),

for any k ∈ [K] and any vk.
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Table 2: Performances of each method on the compound systems. The best and second-best results in
each column are highlighted. Relative improvement is computed with respect to the best baseline.

AMAZON
Product Rec.

(Acc.)

PUBMEDQA
Medical Analysis

(Acc.)

STARK-PRIME
Complex Retrieval

(MRR)

HOTPOTQA
RAG
(F1)

BIGCODEBENCH
Verified Code Gen.

(Pass Rate)

Single LLM 20.20±1.43 54.13±2.73 0.00±0.00 21.58±1.24 35.47±0.34
Unoptimized 21.21±3.78 57.46±0.75 40.73±0.64 33.80±1.51 36.67±1.35
REINFORCE 21.89±2.65 - - - -
LLMSelector - 67.93±0.09 - - -
HBC 21.55±2.07 58.80±0.58 36.95±0.59 21.16±0.97 27.78±2.08
TextGrad 20.88±3.53 56.96±2.24 41.31±1.67 24.86±1.19 35.71±0.10
DSPy 18.18±0.82 60.26±0.40 41.40±0.04 44.90±0.32 33.81±2.75
OPTIMAS 24.24±0.82 69.13±0.33 50.54±0.70 50.48±1.48 38.92±0.36
Rel. Improv. 14.3% 1.8% 22.1% 12.4% 9.0%

Table 3: Number of equivalent runs on the entire systems (in thousands) by TextGrad, DSPy, and
OPTIMAS in Table 2. We control the optimization process of each to use comparable system runs.

AMAZON PUBMEDQA STARK-PRIME HOTPOTQA BIGCODEBENCH Average

TextGrad 0.32 0.70 0.70 2.12 0.18 0.80
DSPy 0.24 0.66 0.66 2.09 0.28 0.79
OPTIMAS 0.31 0.52 0.51 2.02 0.21 0.71

In fact, our theoretical analysis shows that by conducting local optimization, OPTIMAS is essen-
tially performing coordinate maximization. Therefore, existing convergence results for coordinate
maximization directly apply. Also, note that the block-coordinate (round-robin) updates adopted in
OPTIMAS do not guarantee global optimality in non-convex problems, but this does not constitute a
flaw unique to our method; rather, it reflects a standard limitation of non-convex optimization broadly,
and our global convergence guarantees only hold under additional structural assumptions, such as
Polyak–Łojasiewicz or Kurdyka–Łojasiewicz conditions.

5 EXPERIMENTS

We firstly summarize the datasets, baselines, and metrics, with details provided in the appendix.

Benchmarks & Evaluation (Appendix C). We evaluate OPTIMAS on five real-world tasks:

• AMAZON (Jin et al., 2024): A behavior-driven recommendation task based on Amazon products,
evaluated using accuracy to measure if the predicted next item matches the ground-truth item.

• PUBMEDQA (Jin et al., 2019): A clinical classification dataset derived from PubMed abstracts (Na-
tional Center for Biotechnology Information (NCBI), 2024), evaluated by accuracy, defined as the
proportion of predictions that exactly match the ground-truth labels.

• STARK-PRIME (Wu et al., 2024b): A retrieval benchmark over semi-structured biomedical
corpora, evaluated using Mean Reciprocal Rank (MRR).

• HOTPOTQA (Yang et al., 2018): A multi-hop question answering dataset, evaluated using the F1
score between predicted and ground-truth answers.

• BIGCODEBENCH (Zhuo et al., 2024): The instruction split of BigCodeBench for self-verifying
code generation, evaluated using pass rate.

Compound Systems (Figure 2, cf. Appendix D). We design a compound system per benchmark with
diverse and common patterns for agentic systems. All systems are accessible in our code repository.

Baselines (See Appendix E for details). We compare OPTIMAS against five baselines: Unoptimized,
REINFORCE (Williams, 1992), LLMSelector (Chen et al., 2025b), Hierarchical Behavior Cloning
(HBC) (Le et al., 2018), TextGrad (Yuksekgonul et al., 2025), DSPy (Khattab et al., 2023; Opsahl-Ong
et al., 2024). Moreover, we provide a single LLM reference which prompts an LLM to complete the
task directly. This reference is used for justifying our system design in the experimental setup.
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Next Item

Decider
Prompt

Pick the next item based on 

summary + feedback.

Based on the provided summary and feedback, select the next item that 

best aligns with the user's preferences and recommendations. Ensure 

that your choice reflects the desired characteristics outlined in the 

summary, while incorporating any constructive feedback received.

Candidate

Profiler
Parameters

< Model parameter change>
Session

Analyzer
Parameters

Candidate

Profiler
Parameters

Next Item

Decider
Prompt

Based on the provided summary and 

feedback, select the next item that 

best aligns with the user's 

preferences and recommendations. 

Ensure that your choice reflects the 

desired characteristics outlined in 

the summary, while incorporating 

any constructive feedback received.

Analyze the provided context (summary of user browsing 

behavior) and feedback (item-by-item assessments) to determine 

which candidate item the user is most likely to engage with next in 

their e-commerce session. Return only the index number of the 

chosen item. Consider how well each item aligns with the detected 

user intent from the context and the specific strengths/weaknesses 

noted in the feedback. Prioritize items that complement rather than 

duplicate what the user has already viewed.

Appendix

(a) AMAZON system
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Aggregator Hyperparameter
{‘relation_weight’: 

0.1, 'text_weight': 0.1}
{'relation_weight’: 1.0, 'text_weight': 0.1}

Text

Scorer
Prompt

Given a question and a 

list of 5 entities with their 

property information, 

assign each entity a 

relevance score between 

0 and 1 based on how 

well its properties match 

the requirements 

described in the question.

You are tasked with assessing the relevance of five entities based 

on a specific question. For each entity, carefully analyze its 

properties in relation to the question\'s requirements. Assign a 

relevance score from 0 to 1, where 0 means no relevance and 1 

means complete relevance. Please provide a brief justification for 

each score, highlighting both direct matches and any relevant 

implicit connections. Strive for clarity and precision to ensure 

that the scores accurately reflect the entities\' relevance to the 

question.

Text

Scorer
Prompt

~(Same as “Config.

After” in the last row )

Given a question and a list of 5 entities, each with detailed 

property information, assign a relevance score between 0 

and 1 to each entity based on the following criteria:

(b) STARK-PRIME system

Component Config. Config. Before Config. After

Keyword

Extractor
Prompt

Extract keywords from the query to 

retrieve relevant content.

Extract the essential keywords and phrases from the 

following query to enhance content retrieval. Focus on 

the most impactful terms that represent the main idea.

Hint

Generator
Prompt Generate useful hints to answer the query.

Generate relevant and actionable hints to effectively 

address the given query, ensuring clarity and 

conciseness in your responses.

Answer

Generator
Prompt

Given some hints, directly answer the 

query with a short answer for the query.

Given 3 to 5 clear and relevant hints, provide a direct 

and concise answer to the query in no more than 10 

words. Your response should strictly focus on the 

question without any additional context or elaboration. 

If the hints are ambiguous, unclear, or insufficient to 

formulate an answer, clearly indicate that more 

information is needed for a proper response.

Retriever Hyperparameter (number of retrieved passages) k=1 k=5

Answer

Generator
Prompt

Given 3 to 5 clear and relevant hints, provide a direct 

and concise answer to the query in no more than 10 

words. Your response should strictly focus on the 

question without any additional context or elaboration. 

If the hints are ambiguous, unclear, or insufficient to 

formulate an answer, clearly indicate that more 

information is needed for a proper response.

Please provide a clear and direct answer to 

the following query, using the hints. Limit 

your response to 5 words or less, and include 

any relevant numerical data. Avoid any 

additional explanations or context.

Appendix

(c) HOTPOTQA system

Figure 4: Global reward and configuration updates of the three compound AI systems over the
optimization iterations. For conciseness, we only show the local optimization steps that lead to an
increase in global reward on the validation sets. The annotations show the optimized components.

Table 4: Average pairwise ranking accuracy on validation sets, measuring how often the method
assigns a higher score to the output with higher expected global reward.

AMAZON PUBMEDQA STARK-PRIME HOTPOTQA BIGCODEBENCH Avg.

LLM Judge 51.25% 49.54% 54.37% 50.00% 42.45% 49.52%
OPTIMAS 84.93% 65.28% 76.64% 72.40% 90.57% 77.96%

5.1 PERFORMANCE OF THE SYSTEMS DURING AND AFTER OPTIMIZATION.

Takeaway 1: OPTIMAS leads to consistent and substantial improvements (Table 2). We compare
OPTIMAS with the baselines under similar numbers of system runs. Under this controlled data cost
(Table 3), OPTIMAS consistently improves global rewards across all compound systems, achieving
an average relative improvement of 11.92% compared to the best baseline.
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(a) Candidate Profiler on AMAZON (b) Answer Generator on HOTPOTQA
Figure 5: Local reward models with varying alignment quality are used to optimize a selected
component in each task, where we observe that higher alignment quality yields higher global rewards.

Given some hints, 
directly answer the query with a short answer.

(local reward=0.17, global reward=0.32)

Before optimizing with LRF:

After:

Given 3 to 5 clear and relevant hints, 
provide a direct and concise answer to the 

query in no more than 10 words

…. 
(local reward=0.22, global reward=0.36)

(a) Local-Global Reward Correlation (b) Prompts for Answer Generator on HotpotQA (c) Length-Local Reward Correlation

Figure 6: An interpretability study on what is learned by LRFs. With (a) a well-aligned LRF, we find
that (b) the optimized prompt explicitly constrains the output length of the component. We attribute
this to that (c) the LRF prefers short outputs, which is consistent with the use of F1 as global metric.

For REINFORCE, while it yields performance gain from the unoptimized baseline, OPTIMAS
outperforms it by around 3%. Moreover, REINFORCE needs collecting the reward signal from
downstream Monte Carlo sampling, which requires more than three times the data than OPTIMAS.
While the strong baseline DSPy shows notable improvements on some datasets (e.g., a 21.6% gain on
HOTPOTQA), their performance may be inconsistent and can even degrade the system (e.g., a 14.3%
drop on the AMAZON dataset). For LLMSelector, it requires 2.8k times of forwarding through the
entire system, which is 3x more expensive than OPTIMAS.

Takeaway 2: Local optimization improves global rewards (Figure 4). We study how the configu-
rations change in the local optimization. Within a small number of iterations, OPTIMAS achieves
a substantial average improvement of 41.7% over the initial global reward on the validation sets,
using lightweight and data-efficient updates. Interestingly, we observe a mixed updates on prompts,
model parameters, and hyperparameters, which can lead to improved global reward. For example,
updating the prompt of Text Scorer in the 9-th iteration improves global reward from 0.49 to 0.56.
Among these cases, they involve optimizing different components to achieve the highest global reward
empirically, showing the importance of being able to optimize different types of configurations.

5.2 WHY AND HOW OPTIMAS WORKS: ALIGNMENT, INTERPRETABILITY, AND EFFICIENCY

We conduct extensive in-depth study to understand the mechanism in OPTIMAS framework.

Takeaway 3: OPTIMAS yields high local-global alignment quality (Table 4). To measure alignment
quality of LRFs, we compute pairwise ranking accuracy: the probability that an output with higher
global reward receives a higher score than an output with lower global reward. This reflects how well
the learned LRFs aligns with global rewards. We compare against a LLM Judge, which prompts a
gpt-4o model to score the outputs of components based on 20 in-context examples. This approach
is similar to prior methods such as TextGrad, which rely on few-shot reasoning over textual patterns.
In Table 4, LLM Judge performs closer to random guessing, due to the diversity and stochasticity
of components’ outputs that make it difficult to reason reliably. In contrast, our LRFs achieve
substantially higher performances. Moreover, LRFs internalize the local-global alignment within
their weights without relying on limited in-context examples, enabling more precise alignment.
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Figure 7: Impact of training data size and LRF backbone size on alignment quality, measured by
pairwise ranking accuracy: the percentage of preference pairs where local and global rewards agree.

Takeaway 4: Higher alignment quality usually leads to higher global reward (Figure 5). To
understand how alignment quality affects global reward, we conduct controlled experiments, where
we select a key component, apply local reward models with varying alignment quality to optimize it,
and measure the average global reward achieved after updating the component. In Figure 5, we show
a strong positive correlation between the LRF’s alignment quality and the global reward improvement.

Takeaway 5: LRFs learn interpretable directions to improve global reward (Figure 6). An
important aspect of system optimization is interpretability, i.e., if the configuration updates are reliable
and understandable. We provide a study in Figure 6, where the LRF learns to favor concise answers.
In fact, it is more feasible to interpret configuration updates with LRFs. Specifically, one can perturb
the component outputs in certain ways, and observe the changes in local rewards to obtain insights.

Takeaway 6: OPTIMAS is data- and computationally efficient. (Figure 7 & Appendix G). We
study the efficiency of OPTIMAS along two axes on the HOTPOTQA system: (1) how much training
data is needed to learn effective LRFs, and (2) whether large LRF backbones are necessary.

We train LRF models using varying percentages of available training data (12.5%–100%) and measure
alignment quality via pairwise ranking accuracy. Figure 7 (left) shows the performance degrades
gracefully: using just 12.5% of the data yields 65.46% accuracy (92.7% of full-data performance),
and 25% recovers 95.1%. This indicates that OPTIMAS is data efficient, where LRF can be learned
from relatively few system runs. Moreover, Figure 7 (right) compares 1B, 3B, and 8B LRF backbones
and reports alignment quality. The results show that OPTIMAS is computationally efficient, where
lightweight models are sufficient for learning local-global alignment.

In Appendix G, we further show that local and global reward landscapes are closely aligned across
retriever top-k settings, that modest numbers of prompt candidates and adaptation inputs suffice for
strong performance, and provide a cost comparison on the AMAZON system showing that OPTIMAS
achieves the best performance while using a comparable number of effective system runs.

6 CONCLUSION

OPTIMAS is a unified framework to optimize compound AI systems with heterogeneous configura-
tions. OPTIMAS’ way to maintain globally aligned local reward functions allows every component,
whether a fine-tunable LLM, LLM API, tools, or model selector, to be optimized locally while
improving the overall system. On five real-world tasks, OPTIMAS outperforms strong baselines,
effectively optimizes components with different configurations, and exhibits high alignment quality
and reliable interpretations. We believe OPTIMAS will serve as a general, data-efficient approach for
continually optimizing practical systems. For future work, we aim to further apply OPTIMAS on even
larger systems, with the goal of understanding complex reward modeling and scalability.
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ETHICS STATEMENT

The applications of compound AI systems today include, but are not limited to, decision processes in
socially and economically important domains, making their optimization an increasingly significant
research problem. While our work aims to make optimization of such systems more data-efficient,
robust, and interpretable, we recognize potential ethical concerns. In high-stakes settings such
as healthcare or recommendation platforms, optimization could inadvertently amplify biases or
propagate unsafe behaviors from individual components; our framework mitigates these risks by
aligning local rewards with global performance, thereby reducing the likelihood of harmful emergent
behaviors and creating opportunities to incorporate fairness- and safety-sensitive objectives. Another
concern is malicious use of optimized compound systems; however, our approach relies on safety-
aligned LLMs and tools, and we observe that aligning local and global objectives does not reduce
the effectiveness of existing safeguards, while the decentralized optimization structure may even
increase opportunities to detect misuse. Regarding data, our experiments rely solely on publicly
available datasets or synthetic user interactions without any personally identifiable information (PII),
and no private or sensitive user data were used. We believe this work contributes to the safe and
responsible advancement of AI by providing both theoretical and practical insights into optimizing
compound AI systems, and to promote further research in this direction we release all code, models,
and benchmarks described in this paper.

REPRODUCIBILITY STATEMENT

We provide full open access to our implementation code, including the original datasets, compound
system implementations, and the OPTIMAS framework. To support reproducibility, we provide
Appendix C (Dataset Details), Appendix D (System Details), Appendix E (Baseline Details), and
finally, Appendix F (OPTIMAS Details).
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A ALGORITHM

Algorithm 1 Component-wise optimization with reward-model adaptation

Input
C = {C1, . . . , CK} ▷ components
v0 = (v0

1, . . . ,v
0
K) ▷ initial configuration policy

Θ0 = {θ01, . . . , θ0K} ▷ parameters of local reward functions
Global reward R(·), preference dataset size k, total iterations T
Training dataset D and validation dataset Dv

1: v∗ ← v0

2: Θt ← Θ0

Optimization loop
3: for t = 0, . . . , T − 1 do

Scheduler: choose a component to optimize
4: it ∼ Uniform

(
{1, . . . ,K}

)
Local optimization for the chosen component Cit

5: if Cit is an LLM with prompts then
6: ṽ t+1

it
← PROMPTOPTIMIZATION(vt

it
, θt+1

it
)

7: else if Cit has trainable weights then
8: ṽ t+1

it
← PPOTRAIN(vt

it
, θt+1

it
)

9: else if Cit has a hyperparameter configuration then
10: ṽ t+1

it
← HYPERPARAMETERSEARCH(vt

it
, θt+1

it
)

11: end if
12: ṽ← vt with vt

it
replaced by ṽ t+1

it
Validation

13: if
∑

xv∈Dv
R
(
xv, f(xv; ṽ)

)
>

∑
xv∈Dv

R
(
xv, f(xv;v

t)
)

then
14: vt+1 ← ṽ; v∗ ← vt+1

15: Reward-model adaptation
16: Dt ← COLLECTPREFERENCEDATA(D,Θt, k) ▷ create k (x+, x−) pairs
17: Θt+1 ← REWARDMODELTRAIN(Θt, Dt)
18: else
19: vt+1 ← vt

20: Θt+1 ← Θt

21: end if
22: end for
23: return v∗

B THEORETICAL ANALYSIS

Formal statement of and proof of Theorem 4.1 According to the procedure described in Sec-
tion 4, the positive and negative pairs are determined by comparing the expected task metrics. We
assume the estimated metrics at y+k and y−k are chosen following P(y+k is labeled as positive) =

σα(Edownstream

[
R
(
x, f(x;v−k(x))

) ∣∣ y+k ]−Edownstream

[
R
(
x, f(x;v−k(x))

) ∣∣ y−k ]), where σα(u) =
1

1+exp(−αu) is the sigmoid function with parameter α > 0. α = +∞ corresponds to the case where
the pairs are chosen deterministically.

Theorem B.1. Under the conditions specified above, the maximizer of Eq. 4 satisfies the local-global
alignment property Eq. 3. In addition, maximizing rk(x,Ck(xk;vk)) over vk and maximizing
R(x, f(x;v−k) | Ck(xk;vk)) over vk will yield the same solution.

Proof. We first present a lemma.

Lemma B.1. Suppose (x, y) ∈ Rp × {−1, 1} follows the distribution P(y = 1 | x) = σ1(p
∗(x))

for some function p : Rp → (0, 1). Then

argmaxpE[log(σ1(y · p(x)))] = p∗.
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Proof. We take the derivative of the left-hand side with respect to p and set it to 0:

E[
σ1(y · p(x)) · σ1(−y · p(x))

σ1(y · p(x))
· y] = 0,

which is equivalent to
E[σ1(−y · p(x)) · y] = 0.

We then have
σ1(−p(x))σ1(p

∗(x))− σ1(p(x))σ1(−p∗(x)) = 0,

and therefore p(x) = p∗(x).

Applying this lemma, we can obtain the solution to Eq. 4 is α ·Edownstream

[
R
(
x, f(x;v−k(x))

) ∣∣ yk]
for some positive α, and therefore it satisfies the local-global alignment property Eq. 3.

In the following, we then prove that maximizing rk(x, πk(x)) over vk and maximizing
R(x, f(x;v−k) | πk(x)) over vk will yield the same solution.

Lemma B.2. Assume the local–global alignment property Eq. 3 holds for component Ck. Let v(x)
and ṽ(x) be two configuration policies that differ only in the policy for component Ck; denote the
corresponding local outputs by yk and ỹk, respectively. If

Ex

[
rk
(
xk, ỹk

)]
> Ex

[
rk
(
xk, yk

)]
,

then
Ex

[
R
(
x, f(x; ṽ(x))

)]
≥ Ex

[
R
(
x, f(x;v(x))

)]
.

Proof. Fix an arbitrary input instance x. Because the two policies differ only at Ck, all other
component configurations remain the same, so we can write

f
(
x;v−k(x), yk

)
and f

(
x;v−k(x), ỹk

)
,

where v−k(x) denotes downstream configurations (independent of the choice at Ck). By assumption
on the expected local reward, we have rk(xk, ỹk) ≥ rk(xk, yk) for almost every x. Applying the
alignment property Eq. 3 pointwise yields

Edownstream
[
R
(
x, f(x;v−k(x), ỹk)

) ∣∣xk

]
≥ Edownstream

[
R
(
x, f(x;v−k(x), yk)

) ∣∣xk

]
.

Taking the expectation over x (law of total expectation) gives

Ex

[
R
(
x, f(x; ṽ(x))

)]
≥ Ex

[
R
(
x, f(x;v(x))

)]
.

Hence increasing the expected local reward for Ck cannot decrease—and may strictly increase—the
expected global objective. □

Proof of Theorem 4.2 We first show that the algorithm is essentially performing coordinate
maximization on l(v). In fact, given a previous configuration vt, at time t, the updated configuration
vt+1 only changes the configuration of a single component, say, Ck. As the change is solved by
maximizing rk(x,Ck(xk;vk)), by Theorem 4.1, this is equivalently maximizing l(vk,v−k) for the
k-th coordinate.

To rule out cycling, we first prove that the discrete block v(2) stabilizes. Consider the sequence
(v1,(1),v1,(2)), (v2,(1),v2,(2)), ..., (vt,(1),vt,(2)), .... We first show that there exists T > 0, such that
for all k > 0, vT+k,(2) = vT,(2).

As v(2) are discrete, there are finitely many different configurations. In addition, according to the
assumption that the coordinate-wise maximum is unique, each update will result in a strict decrease
in the loss function. Therefore, after finite number of iterations, v(2) will not change.

Now when we consider all the iterations that are later than the time T , v(2) is fixed, and we only
need to consider the update regarding v(1). In this case, we apply Theorem 4.1 of (Tseng, 2001) and
complete the proof.
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C DATASET DETAILS

This appendix provides the essential statistics and source information for the five compound-system
benchmarks used in our experiments (Figure 2). For each dataset we specify the train / validation
/ test split sizes, the task formulation as used in the compound pipeline, and the evaluation metric
reported in the main paper

AMAZON (Behavior-Driven Next-Item Recommendation). The corpus is derived from Amazon
MMLU dataset (Jin et al., 2024). Each instance consists of a user’s historical behaviour sequence
(views, clicks, purchases) and the target “next item” to be recommended. We split it into to 335 / 60
/ 99 user sequences after filtering malformed entries. Accuracy - whether the predicted item number
1 matches the ground truth - is the evaluation metric.

PUBMEDQA (Medical Analysis based QA). PUBMEDQA (Jin et al., 2019) contains biomedical
abstracts paired with yes/no/maybe answers to research questions. We keep the original “expert” split
and discard ambiguous samples, resulting in 475 / 25 / 500 question–abstract pairs. Our compound
system frames the task as three-way classification; exact-match accuracy is reported.

STARK-PRIME (Semi-Structured Knowledge Base Retrieval). STARK-PRIME -Prime origi-
nates from STARK benchmark introduced by (Wu et al., 2024b). It blends free-text passages with
relational triples from biomedical knowledge graphs. Queries are natural-language questions; rele-
vance labels are automatically propagated from the original STARK annotations. We uses the original
dataset split: 495 / 51 / 96 queries. Performance is measured by Hit@1, which is the rate of ranking
the ground truth items in the predicted ranking list.

HOTPOTQA (Retrieval-Augmented Multi-Hop QA). We adopt the HOTPOTQA (Yang et al.,
2018) and keep the official train/dev/test splits: 1000, 250, and 100 questions respectively. Each
example in the set contains a question and its (human-annotated) answer. We report answer-level F1
score.

BIGCODEBENCH (Self-Verified Code Generation). We use a subset of the full-instruction subset
of BigCodeBench (Zhuo et al., 2024) due to efficiency issue. After proportionally drop the data,
we obtain 500 / 25 / 70 coding tasks. Each sample includes a natural-language specification and
reference unit tests. Our metric is pass@1: the proportion of generated programs that pass all tests in
one try.

D COMPOUND AI SYSTEM DETAILS

Table 5 summarizes each pipeline’s modules (columns: System, Module, Model, Config, and Opti-
mization). In the table below, we clarify the various configuration spaces and optimization methods
used across the five systems.

AMAZON (Behavior-Driven Next-item Recommendation). Session Analyzer and Candidate Pro-
filer both use the Qwen 2.5 1.5B model; we optimize their model parameters with PPO reinforcement
learning (Schulman et al., 2017). This helps each module better encode task-specific knowledge, i.e.,
user sessions and product candidates. The final Next Item Decider is a GPT-4o-mini module, whose
prompt we optimize.

PUBMEDQA (Medical Analysis based QA). Two modules (Context Model Selector and Solver
Model Selector) each do discrete model selection from a list of possible LLMs. At inference time,
these selectors use a reward model to pick the best LLM for each input instance. The Context

1Model Selection (LLMs): we search over {gpt-4o, gpt-4o-mini, gpt-3.5-turbo-0125,
gpt-4-turbo, claude-3-5-haiku-20241022, claude-3-5-sonnet-20241022,
claude-3-7-sonnet-20250219}.

2Aggregator (STaRK): we search relation_weight,text_weight ∈ {0.1, 1.0}.
3Retriever (HotpotQA): we search k ∈ {1, 5, 10, 25}.
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Table 5: Modules, models, and optimization methods. Model Selection (LLMs)1 indicates a discrete
choice of LLMs. Aggregator2 is tuned over coefficients relation_weight and text_weight.
Retriever3 has a hyperparameter k.

System Module Model Config Optimization

Amazon
Session Analyzer Qwen 2.5 1.5B Model Params PPO (RL)
Candidate Profiler Qwen 2.5 1.5B Model Params PPO (RL)
Next Item Decider GPT-4o-mini Prompt Prompt Opt.

PubMed

Context Model Selector – Model Selection (LLMs)1 Hyperparam Search
Context Analyst One of {gpt-4o, . . . }1 Prompt Prompt Opt.
Solver Model Selector – Model Selection (LLMs)1 Hyperparam Search
Problem Solver One of {gpt-4o, . . . }1 Prompt Prompt Opt.

STaRK
Text Scorer Claude 3 Haiku Prompt Prompt Opt.
Relation Scorer Claude 3 Haiku Prompt Prompt Opt.
Aggregator2 – Coefficients Hyperparam Search

HotpotQA

Question Rewriter GPT-4o-mini Prompt Prompt Opt.
Info Extractor GPT-4o-mini Prompt Prompt Opt.
Retriever3 – #Retrieved passages Hyperparam Search
Hint Generator GPT-4o-mini Prompt Prompt Opt.
Answer Generator GPT-4o-mini Prompt Prompt Opt.

BigCodeBench
Code Generator Claude 3 Haiku Prompt Prompt Opt.
Unit Test Generator Claude 3 Haiku Prompt Prompt Opt.
Final Code Generator Claude 3 Haiku Prompt Prompt Opt.

Analyst and Problem Solver modules then receive the chosen model and optimize only the prompt for
improved medical QA performance.

STARK-PRIME (Semi-Structured KB Retrieval). We have two scoring modules (Text Scorer,
Relation Scorer), both using Claude 3 Haiku with prompt optimization. The Aggregator merges
these two scores; we tune two numeric weights, relation_weight and text_weight, each
set in {0.1, 1.0}. We perform a global hyperparameter search across the entire training set for the
Aggregator module, tuning relation_weightand text_weight. After identifying the best
fixed combination, we use it in for inference.

HOTPOTQA (Retrieval-Augmented Multi-Hop QA). Four GPT-4o-mini modules (Question
Rewriter, Info Extractor, Hint Generator, Answer Generator) each rely on prompt optimization to
improve multi-hop reasoning. Meanwhile, the Retriever is a retriever with a key hyperparameter
k, the number of passages to pull. We search k ∈ {1, 5, 10, 25} which we also tune via global
hyperparameter search across training instances.

BIGCODEBENCH (Self-Verified Code Generation). All three modules (Code Generator, Unit
Test Generator, Final Code Generator) are Claude 3 Haiku LLMs; each uses prompt optimization to
iteratively refine code solutions based on test outcomes. The global objective is a higher pass rate on
the final code.

Overall, the table illustrates how different modules can require different types of optimization—
from prompt tuning (textual modifications) and model-parameter fine-tuning (PPO) to discrete model
selection and hyperparameter search. By unifying these heterogeneous updates within our OPTIMAS
framework, we effectively coordinate local improvements to achieve consistent global reward gains.

All experiments were run on a node with 8 NVIDIA A100 GPUs (80 GB memory each); depending
on the complexity of the compound system and hyperparameters, training and optimization typically
finished in 2–8 hours.

Before on-policy optimization, we train a reward model on preference pairs (“chosen” vs. “rejected”
system outputs) so it can assign higher scores to better outputs. Table 6 highlights the main hyperpa-
rameters for this stage. We adopt LoRA for memory efficiency, and use an early-stopping mechanism
based on the evaluation loss (patience=512 steps) to reduce overfitting.

After training the reward model, we run iterative on-policy optimization for each module in the
compound AI system. Table 7 lists the key hyperparameters. For example, the train size (50) limits
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Table 6: Key hyperparameters for the local reward model training.

Parameter Value
Base model Llama 3 8B Instruct
LoRA rank 32
LoRA alpha 16
Maximum sequence length 2048 tokens
Learning rate 2e-6
Number of epochs 25
batch size 32

how many examples are used to train each module’s local configuration, while the search size (50) sets
how many samples we use when searching for the best local update. When a module is selected, we
collect a small preference data, retrain (or adapt) the reward model as needed, then locally optimize
that module’s parameters or prompts to maximize its local reward.

Table 7: Key hyperparameters for on-policy optimization.

Parameter Value / Description
Train size 50
Search size 50
Prompt candidates 3
Local optimization steps 3
Fresh input size 20
Validation size 20

E BASELINE DETAILS

We provide the details to reproduce the reported baseline results and the results of OPTIMAS.
• Unoptimized: This system uses default settings for all components without any optimization.
• LLMSelector (Chen et al., 2025b): A lightweight policy selects the best LLM per component via

model routing, without updating other configurations. Only applicable on PUBMEDQA. We run
LLMSelector (Chen et al., 2025b) with the LLMDIAGNOSER to estimate per-module performance,
following their procedure. We perform two rounds of allocation updates with 100 training examples
each round.

• REINFORCE (Williams, 1992): A policy-gradient baseline that directly updates the parameters of
local LLM components to maximize the task reward. This method is only applicable on AMAZON,
where we deploy two locally hosted LLMs with trainable parameters. We optimize each component
with REINFORCE using sampled trajectories from the full system and propagate the scalar reward
back to the corresponding module-level policy. We use 16 rollouts per step to estimate the expected
system performance, with learning rate 10−5 for 100 training steps.

• Hierarchical Behavior Cloning (HBC) (Le et al., 2018): A hierarchical imitation learning method
that optimizes components to produce outputs similar to those that lead to high global rewards.
Specifically, we collect successful trajectories to approximate ground truth intermediate outputs,
and then perform supervised updates on the local components to mimic/clone the ideal behavior.
We run HBC using the collected preference dataset by replacing the original reward model
with the embedding similarity score. With the same input in the preference dataset, we use
text-embedding-3-small to embed the module output and the preferred output in the pref-
erence dataset and calculate the embedding similarity score. We further weight the similarity score
using the gap of the preferred output score and the rejected output score to get the reward for HBC.

• TextGrad (Yuksekgonul et al., 2025): A gradient-based prompt tuning method using estimated
gradients from black-box LLMs to improve prompt efficacy.
We run TextGrad using GPT-4o mini to optimize each component’s prompt independently in
separate epochs. Validation is performed every two optimization steps using 20 held-out validation
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instances. A batch size of 4 is used across all components and datasets. The best-performing
prompt, as determined by validation frequency of LLM-generated textual feedback, is selected as
the final configuration.

• DSPy (Khattab et al., 2023; Opsahl-Ong et al., 2024): A prompt optimization framework using the
MIPRO algorithm that jointly refines module-level instructions and few-shot demonstrations. We
conduct optimization on DSPy’s MIPRO (Opsahl-Ong et al., 2024) prompt optimization approach.
For fair comparison, we disable the few-shot example and system prompt optimization and only
conducts optimization on the user instructions. We dynamically set the number of iterations for the
MIPRO optimizer to match the budget of system runs in Table 3.

For TextGrad, DSPy, and OPTIMAS, we consistently using the same 20 held-out validation instances
on each dataset to select the best configurations.

F OPTIMAS DETAILS

Component selection. At each iteration t, we randomly select a component to optimize.

Local Optimization Steps for Different Configurations. Given a globally aligned LRF rk, we
perform local optimization on each component Ck to improve its configuration vk. Specifically, we
solve:

vt+1
k = arg max

vk∈Vk

Exk

[
rk
(
xk, Ck(xk;vk)

)]
subject to d

(
vk,v

t
k

)
≤ δ, (5)

where vt
k is the configuration before the t-th iteration, d(·, ·) is a distance function over configurations,

and δ defines a trust region that bounds allowable updates. This constraint ensures that rk is used
within a region where it is expected to produce reliable evaluations.

In practice, explicitly setting the trust region threshold δ can be difficult due to heterogeneous
configuration types (e.g., continuous weights or discrete tokens). Instead, we adopt a conservative
number of update steps to restrict the magnitude of change during each iteration.
• Prompt tuning. For textual prompts, we apply prompt optimization algorithms (Yang et al., 2024;

Wu et al., 2024a), using rk as the evaluation metric. We sample multiple prompts limited by a max
number of prompt candidates. The prompts are ranked by average reward over validation instances,
and the best-performing prompt is selected.

• Model fine-tuning. When Ck is an LLM or neural model with trainable parameters, we can apply
reinforcement learning algorithms, such as Proximal Policy Optimization (PPO) (Schulman et al.,
2017), using rk as the critic. The model parameters are updated for a small and fixed number of
steps.

• Model selection and hyperparameter tuning. For discrete or low-dimensional continuous
configurations, such as model selection, tool routing, or scalar hyperparameters, we formulate
the optimization as a sampling problem parameterized by a probabilistic distribution. Since these
configurations are instance-specific, the expectation in Eq. Eq. 5 reduces to a single input. For each
input x, we evaluate a set of candidate configurations using the LRF rk, and compute a probability
distribution over candidates proportional to exp{rk(xk, Ck(xk;vk))}. This distribution is then
used to sample the configuration update for the current iteration.

Under a conservative update to the configuration of a component Ck, the expected global reward is
guaranteed to maintain or improve, if the local–global alignment property in Eq. Eq. 3 holds.

G MORE EXPERIMENT RESULTS

G.1 LOCAL VS. GLOBAL REWARD LANDSCAPES

To better understand how local objectives reflect global performance, we sweep the retriever’s top-k
setting on HOTPOTQA and compare local and global rewards (Table 8). The two landscapes are
closely aligned: both are unimodal and peak at nearby values (k=5 for the local reward and k=10 for
the global reward). The top-3 configurations {5, 10, 15} coincide, differing only in the order of the
top-2. This alignment shows that the local reward provides a reliable proxy for the global objective,
lending empirical support to our theoretical guarantee that local optimization drives system-level
gains.
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Table 8: On HOTPOTQA, sweeping the retriever’s top-k reveals closely aligned local and global
reward landscapes.

k 1 2 3 5 10 15 25

Local reward 0.4247 0.5578 0.5695 0.6124 0.6117 0.5949 0.5123
Global reward 0.3398 0.3493 0.3325 0.3598 0.3645 0.3568 0.3465

G.2 PROMPT CANDIDATES PER STEP

Table 9: On HOTPOTQA, we vary the number of candidate prompts per optimization step. We
compute the global performance (F1) under each experiments.

# candidates 3 5 7 10

Final F1 0.2822 0.1945 0.2968 0.2405

Another factor is the number of candidate prompts considered at each optimization step. On HOT-
POTQA, we vary this number from 3 to 10 and measure the resulting global performance (Table 9).
The best F1 score is achieved with 7 candidates, although results with fewer candidates remain
competitive. These findings indicate that exhaustive candidate pools are unnecessary, and that modest
numbers already yield strong performance with lower computational cost.

G.3 NEW INPUTS FOR LRF ADAPTATION

Table 10: On HOTPOTQA, number of new inputs used to collect preference pairs for LRF adaptation
vs. final global performance (F1).

# new inputs 10 20 30 40

Final F1 0.2773 0.2822 0.2659 0.2533

Finally, we explore how many new inputs are needed when adapting the LRFs. On HOTPOTQA, we
test adaptation with 10 to 40 new inputs (Table 10). Performance improves up to about 20 inputs,
after which gains plateau and even slightly decline. This suggests that effective adaptation can be
achieved with relatively small amounts of new data, reinforcing the practicality of our approach in
scenarios where data collection is limited.

G.4 COST ESTIMATION

We report a detailed breakdown of the cost on the AMAZON system. This is the only system where
components have trainable local models and thus requires PPO training. For all methods, we measure
cost in terms of full system runs, i.e., one invocation of the system and assume that all components
contribute equally to the per-run cost. We label the three components on Amazon system as A,B,C
in topological order.

For OPTIMAS, the total of ≈ 0.31k effective full system runs decomposes into three parts: (i) LRF
training: we collect 60 initial preference pairs per component; each pair requires 2 full system runs,
giving 60× 2 = 120 runs; (ii) LRF adaptation: during local optimization, we update the LRFs 5
times, each time collecting 10 new preference pairs per component, again with 2 runs per pair, for a
total of 5× 10× 2 = 100 runs; and (iii) global validation: whenever a local update is predicted to
improve the global metric, we evaluate the new configuration on a held-out validation set. We use 20
validation inputs and observe 7 such updates, but the effective cost is discounted by a factor of 2/3
due to cached trajectories:

20× 7× 2
3 ≈ 93.

The discount factor arises because, for each validation, we do not always need to downstream sample
the entire system: roughly speaking, if A is updated, we need 1 system run per validation input; if B
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Table 11: Cost–performance comparison on the AMAZON system. Individual cost components are
shown in actual runs, with total runs measured in thousands (k). “LRF training” and “LRF adaptation”
only apply to OPTIMAS, which learns trainable local reward functions. DSPy and TextGrad optimize
only the prompt of the last component C, and we report their cost as an effective number of full
system runs (see text).

Method LRF training LRF adaptation Validation cost Total runs (k) Performance (%)

OPTIMAS 120 100 93 0.31 24.24
TextGrad — — 320 0.32 20.88
DSPy — — 240 0.24 18.18

is updated, we need 2/3 system run per validation input; if C is updated, we need 1/3 system run per
validation input

1 + 2
3 + 1

3

3
= 2

3

of a full system run. The resulting global performance is 24.24%.

For DSPy and TextGrad, we follow their standard setup and optimize only the prompt for the final
component C, while holding A and B fixed. To obtain a fair cost comparison in terms of effective
full system runs, we (i) pre-compute a pool of 20 validation inputs by running A and B once, and
then (ii) run only C during optimization. Assuming A, B, and C have comparable cost, we convert
the number of C-only calls into an effective number of full system runs by dividing by three. With 48
optimization steps for TextGrad and 36 for DSPy, this yields

20× 48/3 = 320 and 20× 36/3 = 240

effective full system runs, corresponding to 0.32k and 0.24k in Table 11. These are conservative
lower bounds, since any additional evaluation of upstream components would only increase their
cost.

Under this cost-normalized view, OPTIMAS achieves the best global performance while using a
comparable (slightly lower) effective number of full system runs than TextGrad and only moderately
more than DSPy. This demonstrates that local optimization with learned reward functions can deliver
stronger performance without incurring prohibitive cost.

Additional PPO training cost. Beyond system-run cost, OPTIMAS incurs additional compute for
training local models with PPO. We measure this cost in GPU-hours. For each local PPO update on
the AMAZON system, we train for 3 epochs on a single NVIDIA A100-SXM4-80GB GPU. Averaged
over 5 runs of local optimization, each run takes approximately 12 minutes, yielding a total of about
6 GPU-hours (equivalently, 1.5 hours on 4 GPUs). This one-time training overhead is modest relative
to the cost of repeated system evaluations and is only required for systems with trainable local
components.
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