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ABSTRACT

As visual generation technologies continue to advance, the scale of video datasets
has expanded rapidly, and the quality of these datasets is critical to the perfor-
mance of video generation models. We argue that temporal splitting, detailed
captions, and video quality filtering are three key factors that determine dataset
quality. However, existing datasets exhibit various limitations in these areas. To
address these challenges, we introduce Kinda-45M , a large-scale, high-quality
video dataset featuring accurate temporal splitting, detailed captions, and superior
video quality. The core of our approach lies in improving the consistency between
fine-grained conditions and video content. Specifically, we employ a linear clas-
sifier on probability distributions to enhance the accuracy of transition detection,
ensuring better temporal consistency. We then provide structured captions for the
segmented videos, with an average length of 200 words, to improve text-video
alignment. Additionally, we develop a Video Training Suitability Score (VTSS)
that integrates multiple sub-metrics, allowing us to filter high-quality videos from
the original corpus. Finally, we incorporate several metrics into the training pro-
cess of the generation model, further refining the fine-grained conditions. Our
experiments demonstrate the effectiveness of our data processing pipeline and the
quality of the proposed Kinda-45M dataset.

“A woman is cracking eggs into a bowl of spinach in the kitchen.”Panda-70M

Kinda-45M
“A woman is standing in a modern kitchen, engaging in a conversation 
or explaining something while gesturing with her hands. She is wearing 
a black top and has long, braided hair. The kitchen is well-lit with 
warm lighting, and there are various kitchen items on the counter, 
including a vase with red flowers, a bowl of eggs, and a green bowl. The 
woman appears to be in a cheerful mood, smiling and using……”

Kinda-45M
“a person preparing a dish in a kitchen setting. The person is seen 
cracking eggs into a bowl filled with spinach leaves. The scene is focused 
on the hands and the bowl, with various kitchen items like a bottle of oil, 
a container of salt, and a teapot visible in the background. The person‘s 
hands are the main focus, showing the careful and deliberate action of 
cracking the eggs and adding them to the spinach ……”

“A shirtless man flexing his muscles in front of a crowd.”

Kinda-45M
“A muscular individual with a tattooed torso and arms is standing in 
front of a microphone, holding a piece of paper. The person is wearing a 
white tank top and appears to be in a celebratory or victorious mood, 
as indicated by their raised fists and the expression of triumph on their 
face. The background suggests a sports event, specifically a boxing match, 
as indicated by the presence of a microphone……”

Kinda-45M
“Two men are engaged in a handshake, with one of them flexing his 
muscles. The man on the left has a heavily tattooed arm, with visible ink 
on his forearm and bicep. He is wearing a black sleeveless shirt and has a 
yellow wristband. The man on the right has a muscular build, with a 
tattoo on his right arm and a cap on his head. He is shirtless, revealing 
his well-defined muscles ……”

VTSS
3.72

VTSS
4.13

VTSS
3.69

VTSS
3.56

Panda-70M Unfiltered

Kinda-45M   Filter out (freeze-frame video) 

VTSS
1.05

VTSS
1.69

Panda-70M Unfiltered

Kinda-45M Filter out (overexposed video) 

Panda-70M

Figure 1: Comparison between Kinda-45M and Panda-70M. We propose a large-scale, high-
quality dataset that significantly enhances the consistency between multiple conditions and video
content. Kinda-45M features more accurate temporal segmentation, more detailed captions, and
improved video filtering based on the proposed Video Training Suitability Score (VTSS).
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1 INTRODUCTION

Generative AI, particularly video generation tasks, has recently garnered significant interest from
researchers. These tasks involve generating high-quality videos from textual descriptions or images.
A critical factor in the success of these models is the quality of the datasets used for training. Several
open-source datasets (e.g. Panda-70M(Chen et al., 2024b), MiraData (Ju et al., 2024), OpenVid (Nan
et al., 2024), and VidGen (Tan et al., 2024)) have been introduced, each carefully selecting data
sources and applying various evaluation metrics for video filtering. Moreover, innovative approaches
have been employed in the video captioning process, such as the multi-modal caption model (Chen
et al., 2024b) or structured captions (Ju et al., 2024).

Despite the success of the data processing pipelines introduced by previous datasets, we argue that
the core challenge lies in establishing accurate and fine-grained conditioning for video data, which
is crucial for both reducing the complexity of the training process and improving the quality of the
generated outputs. To achieve this, we believe there are three key issues that need to be addressed:

First, the alignment between text and video semantics is essential. Unlike video question answer-
ing tasks, where captions are primarily driven by specific question-based details, video generation
requires captions that are directly tied to the visual content itself. Due to the infinite granularity of
visual signals, this necessitates captions that are rich and detailed. Furthermore, raw video data often
contains complex transitions, adding additional challenges in ensuring the accuracy of captions.

Second, the effective evaluation and filtering of low-quality data remains underexplored. Low-
quality video data, such as poor visual quality or excessive artificial effects, can impede the training
process. However, accurately assessing and filtering such data presents an ongoing challenge. Ex-
isting methods typically rely on manually selected quality metrics and heuristic threshold-based
filtering, which are often designed for other tasks and may not align with the specific requirements
of video generation. As a result, these approaches may not effectively ensure the desired data quality
for training.

Third, even with data filtering processes in place, the videos within the dataset still vary in quality,
with each video potentially exhibiting different strengths and weaknesses (e.g., one video may have
lower clarity but better aesthetic appeal). Training with such heterogeneous data in the same manner
may introduce ambiguity for the model, hindering its ability to learn effectively.

To address these issues, we present Kinda-45M , a large-scale high-quality video dataset with more
accurate video splitting, detailed captions, better data filtering methods and metric conditions. As
video content reaches considerable quality, the consistency between fine-grained conditions and
video content determines the performance of generation models. We propose a more refined data
processing pipeline based on this key insight. Since accurate video splitting leads to better temporal
consistency, we first employ a linear classifier on probability distributions to enhance the accuracy
of transition detection. Then We generate structured captions for the segmented video clips, with an
average length of 200 words, to improve text-video alignment. Sequentially, to prevent the erroneous
deletion of high-quality data during filtering, we train a network to predict Video Training Suitability
Score (VTSS) on human-aligned datasets to model the joint distribution of sub-metrics. This network
takes videos and sub-metrics as input, and outputs a single value called Video Training Suitability
Score as the only metric to filter data. Additionally, we introduce data metrics as extra conditions
(Metric Conditions) into the generation model during training, helping model distinguish data with
different quality and further improving the consistency between fine-grained conditions and video
content, which results in better performance and controllability of the generation model.

To further validate Kinda-45M and our data processing pipeline, we train video generation models
on different datasets. Both the dataset benchmark and the performance of the video generation
model demonstrate the advantage of the Kinda-45M dataset. We perform more ablation studies to
demonstrate effectiveness of our data processing pipeline.
Our contributions can be summarized as follows:

• We present a large-scale high-quality dataset called Kinda-45M , with accurate video split-
ting, detailed captions and higher-quality video content.

• We propose a refined data processing pipeline to further improve the consistency between
fine-grained conditions and video content, including transition detection methods, struc-
tured caption system, Video Training Suitability Score and metric conditions.
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• Comprehensive experiments demonstrate the advantages of Kinda-45M dataset and the
effectiveness of our data processing pipeline.

2 RELATED WORK

Recent advancements in diffusion models have driven the evolution of image generation models
into video generation models. In the field of text-to-video (T2V) generation, significant efforts have
been made to develop large-scale T2V models, trained on extensive datasets using traditional U-Net-
based diffusion architectures (Zeng et al., 2024; Clark & Jaini, 2024; Ge et al., 2023; Yu et al., 2023;
Khachatryan et al., 2023) and Transformer-based (DiT) architectures (Ma et al., 2024; Chen et al.,
2023b; Lu et al., 2023; Chen et al., 2024a; Xing et al., 2024). The success of these video generation
models heavily depends on the quality of the video-text datasets.

2.1 VIDEO DATASETS

While several video datasets (Caba Heilbron et al., 2015; Anne Hendricks et al., 2017; Rohrbach
et al., 2015; Zhou et al., 2018; Xu et al., 2016; Wang et al., 2023b; Sanabria et al., 2018; Wang
et al., 2023a; Chen et al., 2023a) have been applied to tasks such as action recognition, video un-
derstanding, visual question answering (VQA), and video retrieval, there remains an urgent need for
a high-quality, open-source dataset specifically tailored for training video generation models, pro-
viding rich video-text pairs. Datasets such as YouCook2 (Zhou et al., 2018), VATEX (Wang et al.,
2019), and ActivityNet (Caba Heilbron et al., 2015) offer high-quality human caption annotations.
Another set of datasets, including Miradata (Ju et al., 2024), VidGen-1M (Tan et al., 2024), and
OpenVid-1M (Nan et al., 2024), automatically generate high-quality captions and filter data using
manually selected thresholds on multiple dataset metrics.

However, these datasets are insufficient in size to support the training of large models. Datasets, in-
cluding YT-Temporal-180M (Zellers et al., 2021), HD-VILA-100M (Xue et al., 2022), ACAV (Lee
et al., 2021), etc., contain hundreds of millions of video-text pairs, but their captions are automati-
cally generated via speech recognition, leading to subpar quality. Panda70M (Chen et al., 2024b),
the largest publicly accessible video-text dataset, has become a popular choice for video genera-
tion due to its scale and considerable quality. However, its quality still needs further improvement.
Specifically, the captions in Panda-70M often provide simplistic, incomplete descriptions of video
content, and the frequent transitions in the training videos can result in semantic inconsistencies,
potentially leading to undesired or uncertain transitions in the generated videos.

2.2 VIDEO DATA CURATION

Caption 
accuracy

Caption 
completeness

Temporal 
consistency

Aesthetics 
score

Clarity 
score

Panda-70M
Kinda-45M

Figure 2: Quantitative comparison with Panda-70M.
Kinda-45M has a significant improvement in the consis-
tency between fine-grained conditions and video content.

As models continue to scale up in size, effective data cu-
ration is of paramount importance (Zhou et al., 2023),
particularly in the formulation of a well-suited training
dataset. This is crucial for enhancing model performance
and improving training efficiency during both the pre-
training and supervised fine-tuning phases. In the realm
of large language models (LLMs), various data curation
approaches have been proposed (Xie et al., 2023; Maha-
rana et al., 2023; Tirumala et al., 2023), including op-
timizations for data quantity, data quality, and domain
composition. However, there remains a lack of work
exploring data curation strategies in the video domain.
Stable Video Diffusion (Blattmann et al., 2023) offers
a comprehensive overview of the curation of large-scale
video datasets, including techniques such as video clip-
ping, captioning, and filtering. However, the dataset is not open-source. In this study, we propose
a novel data processing pipeline for video data and introduce a new video filtering metric. Unlike
traditional video quality assessment models (Wu et al., 2023; Zhao et al., 2023; Wu et al., 2022; Sun
et al., 2024), which focus primarily on the aesthetic and technical qualities of a video, our approach
emphasizes the suitability of videos as training data.

3
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3 KINDA-45M DATASET

Kinda-45M is a large-scale high-quality video dataset with accurate video splitting, detailed captions
and higher-quality video content. In summary, Kinda-45M contains 45 million video clips with an
average duration of 13.75 seconds and a resolution of 720p, each captioned by a text description
averaging 202 words in length. We compare Kinda-45M dataset with previous video datasets in
Tab. 1. Kinda-45M dataset simultaneously provides a large number of videos (over 10M) and high-
quality fine-grained text captions (longer than 200 words), significantly improving the quality of
large scale video datasets. Additionally, as shown in Fig. 2, we further compare Kinda-45M with
Panda-70M on a series of dataset metrics, such as aesthetic scores and clarity scores, demonstrating
a significant improvement in consistency between fine-grained conditions and video content. Since
these two datasets come from the same raw datasets, the superiority of Kinda-45M dataset also prove
the effectiveness of our data processing pipeline.

Table 1: Comparison of Kinda-45M and pervious text-video datasets. Kinda-45M is a video
dataset that simultaneously possesses a large number of videos (over 10M) and high-quality fine-
grained captions (over 200 words). We propose structured captions and an expert model (Video
Training Suitability Score) for accurate data filtering. ”TVL” and ”ATL” are abbreviations for ”Total
Video Length” and ”Average Text Length”.

Dataset #Videos ATL(words) TVL(hours) Text Filtering Resolution

LSMDC (Rohrbach et al., 2015) 118K 7.0 158 Manual Sub-metrics 1080p
DiDeMo (Anne Hendricks et al., 2017) 27K 8.0 87 Manual Sub-metrics -
YouCook2 (Zhou et al., 2018) 14K 8.8 176 Manual Sub-metrics -
ActivityNet (Caba Heilbron et al., 2015) 100K 13.5 849 Manual Sub-metrics -
MSR-VTT (Xu et al., 2016) 10K 9.3 40 Manual Sub-metrics 240p
VATEX (Wang et al., 2019) 41K 15.2 ∼115 Manual Sub-metrics -
WebVid-10M (Bain et al., 2021) 10M 12.0 52K Alt-Text Sub-metrics 360p
HowTo100M (Miech et al., 2019) 136M 4.0 135K ASR Sub-metrics 240p
HD-VILA-100M (Xue et al., 2022) 103M 17.6 760.3K ASR Sub-metrics 720p
VidGen (Tan et al., 2024) 1M 89.3 - Generated Sub-metrics 720p
MiraData (Ju et al., 2024) 330K 318.0 16K Generated & Struct Sub-metrics 720p
Panda-70M (Chen et al., 2024b) 70M 13.2 167K Generated Sub-metrics 720p

Kinda-45M (Ours) 45M 202.1 172K Generated & Struct Expert Model 720p

4 METHOD

As shown in Fig. 3, we propose a refined data processing pipeline for Kinda-45M dataset. Our
pipeline aims to further improve the consistency between fine-grained conditions and video content.
Our main contributions are shown in the red box of Fig. 3. Specifically, we start from the same raw
data with Panda-70M (Chen et al., 2024b) dataset. First, we propose a more accurate and efficient
transition detection method for video splitting in section 4.1. Then we caption splitted videos with
an average length of 200 words based on our structured caption system in section 4.2. Subsequently,
we train a Video Training Suitability Score (VTSS) for data filtering to prevent high-quality data
from the erroneous deletion in section 4.3. Finally, we introduce multiple data sub-metrics as Metric
Conditions into the generation model to enrich the fine-grained conditions in section 4.4.

4.1 VIDEO SPLITTING

Splitting videos into temporal segments is crucial for creating video generation datasets. Transition-
free video data enable more accurate alignment between text and video, while reducing the difficulty
of model training and improving the temporal consistency of generated results. Current video split-
ting methods (Castellano) typically detect transitions based on changes in image features between
consecutive frames, relying on manually adjusted thresholds as criteria, but often overlook tempo-
ral information. As a result, these methods struggle to distinguish between gradual transitions and
fast-motion scenes, leading to missed detections in the former and incorrect detections in the latter.

To address the above issues, we first propose a Color-Struct SVM (CSS) module that adopting
a learning-based approach for more accurate detection of changes between frames compared to
threshold-basd method. Then we leverage temporal smoothing and statistical features to differentiate
between gradual transitions and fast-motion scenes.

4
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• …
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• … 
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Diffusion 
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Diffusion 
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Metrics 
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Filter

Re-annotated data

Split

Caption

Recaption

“A woman is standing in a 
modern kitchen, engaging in a 
conversation or explaining 
something while gesturing with 
her hands. She is wearing a 
black top and has long, braided 
hair ……”

Figure 3: The proposed data processing pipeline. Compared with previous pipeline, we propose
better splitting methods, structured caption system, training suitability assessment network and fine-
grained conditioning in red box, improving the consistency between conditions and video content.

We assume that transitions occur with a low probability at any given moment in the video. We treat
image pairs from the same video source as negative examples and pairs from different video sources
as positive examples. We select BGR histogram correlation to measure color distance and Canny
Luminance SSIM to measure structural distance, which together measure inter-frame changes. For
images Ii and Ij , the color distance dcolor and structural distance dstruct are defined as follows:

Hi = Histogram(bgr(Ii)) (1)

dcolor(Hi, Hj) =

∑
p(Hi(p)− H̄i)(Hj(p)− H̄j)√∑
p(Hi(p)− H̄i)2(Hj(p)− H̄j)2

(2)

Ei = max(Gray(Ii),Canny(Gray(Ii))) (3)

dstruct(Ei, Ej) = SSIM(Ei, Ej) (4)

Then an SVM classifier is employed, using color distance dcolor and structural distance dstruct
as the relevant input features; see Eq. 1, Eq. 2, Eq. 3, Eq. 4 . Regarding temporal information, we
hypothesize that video changes are relatively stable over time. By estimating a Gaussian distribution
of changes from past frames, if the current frame’s change exceeds the 3σ confidence interval,
we consider it a significant transition. This method enhances the differentiation between gradual
transitions and fast-motion scenes without increasing computational load. Extensive experiments
demonstrate the effectiveness of the transition detection method in A.1.

4.2 VIDEO CAPTIONING

Detailed captions usually lead to better text-video consistency, which largely determines the gran-
ularity of semantic responses. To obtain more detailed captions, we propose a structured caption
system, which consists of: (1) the subject, (2) actions of the subject, (3) the environment in which
the subject is located, (4) the visual language including style, composition, lighting, etc. (5) the cam-
era language including camera movement, angles, focal length, shot sizes, etc. (6) world knowledge.
We generate these aspects separately, and merge them as the final caption.

5
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Figure 4: Distribution of the caption
length (in words) in Kinda-45M dataset.

Similar to previous works (Chen et al., 2024b; Tan et al.,
2024; Ju et al., 2024), we first collect a caption dataset
by using GPT-4V (OpenAI, 2023) to generate video cap-
tions based on our structured system. We then fine-tune a
caption model based on LLaVA (Liu et al., 2023) for the
entire dataset. Our experiments during fine-tuning show
that training the vision encoder improves the accuracy of
the caption. And a high-resolution vision encoder helps
the caption model capture video details better. To alle-
viate the computational burden caused by high-resolution
inputs, we perform average pooling with a 2x2 kernel on
the spatial dimensions of the tokens, ensuring minimal information loss. Notably, we adopt a mixed
training strategy involving both static images and dynamic videos, enabling the model to concur-
rently learn visual understanding in both static and dynamic scenarios. This also enhances data
diversity, alleviating the issue of insufficient training samples when solely relying on video data.

When utilizing the caption model to describe videos, a structured caption system often generates
longer captions (over 300 words). Different from MiraData (Ju et al., 2024), we limit the caption
length to around 200 words. Because the information entropy of the video is finite, and longer
captions may repeat mentioned concepts frequently, making it harder for the generation model to
extract key information. Finally, we run our captioner on the whole dataset, and the distribution of
caption lengths is shown in Fig. 4. Furthermore, we evaluate the quality of captions with caption ac-
curacy and completeness. As shown in Fig. 2 and Tab. 1, our structured caption system significantly
improve the quality of captions, providing better text-video consistency.

4.3 DATA FILTERING

In the large-scale raw dataset, the quality of video content vary significantly. When the performance
of the generation model is built upon videos with considerable content quality, it is necessary and
crucial to filter out low-quality data and remain high-quality data accurately. Traditional methods
often use various sub-metrics to evaluate video quality and then manually set thresholds to filter
the desired data. Since these sub-metrics are not completely orthogonal with each other, the video
quality is actually a joint distribution of all sub-metrics, which means these thresholds should have
implicit constraints with each other. However, existing methods neglect the joint distribution of sub-
metrics, resulting in inaccurate thresholds. Meanwhile, since multiple thresholds need to be set, the
cumulative effect of inaccurate threshold lead to larger deviations during filtering. Therefore, not
only low-quality videos are not correctly filtered out as shown in Fig. 1, but also high-quality videos
are mistakenly deleted as shown in Fig. 5.

Filter outMultiple manuall thresholds

Retained (VTSS:4.50) Our expert model (TSA)

Filter outMultiple manuall thresholds

Retained (VTSS:3.56) Our expert model (TSA)
 

Figure 5: The deleted high-quality data by inaccurate multiple manual thresholds.

To address this issue, we propose a Training Suitability Assessment Network to model the joint
distribution of sub-metrics. This network takes videos and sub-metrics as input, and outputs a single
value called Video Training Suitability Score (VTSS) as the only metric to filter data. This score
reflects whether a video is suitable for training purposes. Specifically, we first collect the training
set from human evaluation based on a new criteria. Then we train the Training Suitability Assessment
Network and employ it to calculate VTSS for all videos. Finally, we set a single threshold for VTSS
based on its distribution to filter desired data.

4.3.1 NEW CRITERIA AND HUMAN EVALUATION

We have defined a new annotation criterion that assigns a score reflecting whether a video is suit-
able as training data for video generation models. This criterion primarily considers the following
aspects of video quality: Dynamic Quality: A high-quality video should exhibit good dynamics,
which are evaluated based on two factors: the extent of subject movement and the temporal stability

6
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of the motion. The motion area in the video should cover more than 30% of the frame; otherwise, the
score of the video will be decreased for insufficient dynamics. Temporal stability considers the cam-
era movement; non-professional videographers often produce videos with irregular and significant
shaking. We decrease the scores of such videos to distinguish them from professional works. Static
Quality: Each frame of a high-quality video should have rich subject details, reasonable compo-
sition, aesthetic appeal, clear and distinct subjects, and saturated colors. Although this metric may
involve some subjectivity, it is crucial for assessing the overall visual quality. Video Naturalness:
We prefer videos that are natural and unprocessed. Special effects, transitions, subtitles, and logos
can introduce biases in the video’s original distribution, making it harder for generation models to
learn. Additionally, we consider the safety of the video content, rejecting videos with political,
terrorist, violent, pornographic, gory, or otherwise disturbing content. In order to reduce the bias
between the labeled scores and the true scores, each video is labeled by 8 experts and subjected to a
bias elimination process, as described in the App A.2.

static branch

Continuous
frames

Middle 
frame

Static branch

Dynamic branch

Feature fusion Branch

ConvNeXt

Swin 
transformer

static feature

dynamic feature

MLP

Aesthetic score
Clarity score
Optical flow
… 

Label feature WCGB

Video Training 
Suitability 

Score

Feature 1

Feature 2

Feature 3

WCGB

weight
Final 

feature

Figure 7: The pipeline of Training Suitability Assessment Network.

4.3.2 TRAINING SUITABILITY ASSESSMENT NETWORK

Figure 6: The distribution of Video Training Suitability Score.

As shown in Fig. 7, we propose a Training Suit-
ability Assessment Network, which takes videos
and sub-metrics as input, and outputs a single
value called Video Training Suitability Score
(VTSS). Corresponding to the aforementioned
annotation criteria, our network is divided into
dynamic and static branches. Additionally, we
retain various data labels from traditional data
filtering strategies and pass this extra informa-
tion to the network model as a new branch. For
the features of different branches, the 3D Swin
Transformer is used as the backbone for the
dynamic branch, while the ConvNext network
serves as the backbone for the static branch. To
integrate the features from different branches, we propose a Weight Cross-Gating Block (WCGB)
to incorporate the information from the label branch into the other two branches. Since the label
branch inherently reflects various characteristics of the video, which are related to both dynamic and
static features, we use label features to enhance the dynamic and static features. Given that different
video labels focus on dynamic and static aspects to varying degrees, we learn a fusion weight to
adjust the proportion of label features integrated with the two types of video features.

After training Training Suitability Assessment Network on the human-aligned dataset, we employ it
to predict Video Training Suitability Score (VTSS) for all videos, and obtain the score distribution as
shown in Fig. 6. Since the VTSS distribution can roughly be divided into two Gaussian distributions,
we simply chose the decomposition value 2.5 as the VTSS threshold. Based on this threshold, we
filtered out a dataset containing a total of 45 million video clips with corresponding captions. And
we name the dataset as Kinda-45M , which is the final dataset we present.

7
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4.4 METRICS CONDITIONING

In previous pipelines, data metrics are simply used for data filtering. Meanwhile, the quality of
the filtered data still varied, making it difficult for the model to distinguish between high-quality
and low-quality data. To address this issue, we propose a more fine-grained conditioning method
to incorporate quality information of different videos into the generation model during training,
leading to better consistency between conditions and video content. During inference, this method
also enables fine-grained control over the generated videos.

Layer Norm

Scale, Shift

Cross 
Attention

Self
Attention

TimestepMLP

CaptionT5

MLP

Metrics condition

MLP

MLP

Motion 
score

Clarity 
score

Aesthetics 
score

Figure 8: The pipeline of metrics conditions.

Specifically, during video diffusion training, we first
encode data metrics such as motion score, aesthetic
score, and clarity score into frequency embeddings.
Subsequently, frequency embeddings are passed
through an MLP to obtain multiple embeddings,
which are then directly added to the timestep embed-
dings and incorporated into the transformer block
using Adaptive Layer Normalization (AdaLN). This
method has two main advantages. First, it does
not increase the computational load of the diffusion
model. Second, compared to adding conditions in
captions like Open-sora (Zangwei et al., 2024), it al-
lows for more precise control by being more sensi-
tive to numerical scores, and posses a stronger ability to decouple control over different metrics.
During the inference stage, we can set different feature scores, such as setting all scores to the
highest value, to generate high-quality videos.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

To validate he superiority of Kinda-45M dataset and the effectiveness of our data processing
pipeline, we train the same generation model from scratch on different datasets for comparison. Our
text-to-video base model is based on a 3D attention-like Sora structure (Brooks et al., 2024), and the
VAE employs a causal convolution-based 3D VAE. Since the training was done from scratch, we set
the video duration to 2 seconds and the resolution to 256x256 for faster convergence. All models are
trained on their respective datasets passing through 140M data samples in total. To evaluate the per-
formance of generation models, we conduct a comprehensive evaluation on the public benchmark
VBench (Huang et al., 2023). Due to the domain gap between the captions provided by VBench and
training set, we performed prompt expansion on the captions in VBench.

5.2 QUANTITATIVE RESULTS

Table 2: Quantitative results of text-to-video generation. We compare the performance of gen-
eration models trained on different datasets with VBench. The generation model trained on Kinda-
45M surpasses other models on both quality score and semantic score, with the highest total score.

VBench Aesthetic
Quality Scene Subject

Consistency
Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Imaging
Quality

Object
Class

Multiple
Objects

Panda-70M 0.3988 0.1106 0.8584 0.9435 0.9576 0.9742 0.7722 0.4250 0.3017 0.0223
Kinda-all 0.4808 0.2105 0.9335 0.9668 0.9857 0.9855 0.4222 0.5535 0.5453 0.1154
Kinda-46M
(manual threshold) 0.4683 0.2135 0.9388 0.9664 0.9810 0.9870 0.4028 0.5422 0.4858 0.1099

Kinda-45M 0.4832 0.1994 0.9245 0.9613 0.9766 0.9851 0.5750 0.5585 0.4739 0.1145
Kinda-all (condition) 0.5272 0.3211 0.9162 0.9514 0.9210 0.9718 0.9833 0.5316 0.7734 0.2492
Kinda-45M (condition) 0.5318 0.3163 0.9222 0.9554 0.9246 0.9768 0.9194 0.5344 0.7794 0.2953

VBench Human
Action Color Spatial

Relationship
Temporal

Style
Appearance

Style
Overall

Consistency
Quality
Score

Semantic
Score

Total
Score

panda-70M 0.2400 0.5942 0.0482 0.1281 0.2014 0.1404 0.7343 0.3093 0.6493
Kinda-all 0.5180 0.8958 0.2168 0.1630 0.1971 0.1881 0.7758 0.4668 0.7140
Kinda-46M
(manual threshold) 0.4700 0.9128 0.1978 0.1589 0.2003 0.1893 0.7704 0.4548 0.7073

Kinda-45M 0.4880 0.9172 0.1923 0.1571 0.1960 0.1850 0.7819 0.4504 0.7156
Kinda-all (condition) 0.8280 0.9106 0.2434 0.2039 0.2019 0.2277 0.7823 0.5874 0.7433
Kinda-45M (condition) 0.8080 0.8960 0.2689 0.2045 0.2009 0.2279 0.7846 0.5915 0.7460
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As shown in Tab. 2, we comprehensively evaluate models trained on Panda-70M and our dataset
at the same step. The generation model trained on Kinda-45M surpasses other models on both
quality score and semantic score, with the highest total score. Furthermore, we visualize the
VBench metrics comparison in Fig. 9. Kinda-45M significantly improves the generation model’s
performance on aesthetic quality, object class, multi-objects, human action, and color.

aesthetic
quality

scene

subject
consistency

background
consistency

temporal
flickering

motion
smoothness

dynamic
degree

imaging
quality

object
class

multiple
objects

human
action

color

spatial
relationship

temporal
style

appearance
style

overall
consistency

图表标题

Panda-70M Kinda-45M-condition

Figure 9: Visualization of quantitative results of text-to-video generation. Kinda-45M signifi-
cantly improves the generation model’s performance on aesthetic quality, object class, multi-objects,
human action, and color.

5.3 QUALITATIVE RESULTS

We visualize the generated videos on VBench’s prompts in Fig. 10. The generation model achieve
the optimal performance on Kinda-45M , with both the best video quality and text-video consistency.
Kinda-45M outperform the larger Panda-70M dataset with only 45M data, indicating that our data
quality far exceeds that of Panda-70M. See A.5 for more video generation results.

5.4 ABLATION EXPERIMENTS

We conduct extensive ablation experiments to demonstrate the superiority of our dataset and the
entire pipeline. Specifically, we performed ablation experiments on different data processing and
training strategies, divided into the following groups: (1) Panda-70M: baseline. (2) Kinda-all: All
58M data after video splitting and captioning. (3) Kinda-46M: manually filtered data from Kinda-
all using multiple thresholds. (4) Kinda-45M: filtered dataset from Kinda-all using VTSS. (5)
Kinda-all-condition: Kinda-all with metrics conditions. (6) Kinda-45M-condition: Kinda-45M
with metrics conditions.

Data Processing. Comparing the results of training from Panda-70M and Kinda-all in Tab. 2 and
Fig. 10, we find that Kinda-all produce better results, especially in temporal quality, such as subject
consistency, background consistency and temporal flickering. This indicates that our newly proposed
re-splitting algorithm can more accurately segment transitions, reducing semantic inconsistencies
between video segments. Additionally, our recaptioning algorithm provided more detailed video
descriptions, making it easier for the model to learn the relationship between visual and textual
information. To further demonstrate the superiority of our splitting and captioning methods, we
conducted extensive comparative experiments, detailed in the App. A.1.

Data Filtering. Comparing the results of training from Kinda-all&Kinda-45M and Kinda-all-
condition&Kinda-45M-condition, we find that the results from the latter one perform better than
that from the former datasets. This indicates that filtering out low-quality data and retaining high-
quality data are necessary to prevent the model from learning biased distributions from low-quality
data. In addition, comparing the results of training from Kinda-46&Kinda-45M, it can be concluded
that our filtering method based on single VTSS results in better filtering performance, when more

9
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“A happy fuzzy panda playing guitar nearby a 
campfire, snow mountain in the background”
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Figure 10: Qualitative results of text-to-video generation. We train the same generation model
from scratch on different datasets for comparison. The generation model achieve the optimal per-
formance on Kinda-45M , with both the best video quality and text-video consistency.

high-quality data and less low-quality data being retained. Extensive ablation experiments of Train-
ing Suitability Assessment Network are conducted in the App. A.3.

Metrics conditions. Comparing the results of training from Kinda-45M&Kinda-45M-condition,
the generation model shows significant improvements in video quality, when metrics conditions
are injected into it. This indicates that guiding model training using sub-metrics is necessary, as
it helps the model implicitly model the importance of different data. In addition, we compare our
AdaLN-based injection method with text-encoder based method (Zangwei et al., 2024) in App. A.4
Fig. 13. It can be discovered that our injection method has more precise control and stronger ability
to decouple control over different metrics, when the style of videos transfer with the motion score.

6 CONCLUSION

In this paper, we present a large-scale high-quality dataset called Kinda-45M , with accurate video
splitting, detailed captions and higher quality video content. Kinda-45M dataset is currently the only
video dataset that simultaneously possesses a large number of videos (over 10M) and high-quality
fine-grained text captions (longer than 200 words), significantly improving the quality of large scale
video datasets. Additionally, we propose a refined data processing pipeline to further improve the
consistency between fine-grained conditions and video content, including better transition detection
method, structured caption system, and data filtering method and fine-grained conditioning.

Limitations. Despite all the strength above, Kinda-45M is still insufficient to support the training
of an extremely large video generation model with over 1B parameters. A larger-scale datasets need
to be further collected and processed. Meanwhile, the performance, generalization, and scaling laws
of generation models on high-quality datasets need further exploration.
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A APPENDIX

A.1 EFFECTIVENESS OF VIDEO SPLITTING METHODS

You may include other additional sections here. To validate the accuracy and efficiency of our
proposed Color-Struct SVM (CSS) for scene transition detection, we conduct the following experi-
ments.

We annotate transitions in 10,000 video clips, creating a test set (approximately half of the videos
contain transitions). We then apply our proposed method and an open-source method to detect
transitions in the test set, recording the precision and recall of the detections. The open-source
method is primarily based on pyscenedetectCastellano, and we test two versions: one that detects
transitions based solely on HSL (Hue, Saturation, Lightness) and another that uses both HSL and
edge detection. The experimental results are shown in the table below. It can be observed that our
transition detection algorithm outperforms the two pyscenedetect-based methods in terms of both
precision and recall (Tab. 3). Notably, our algorithm achieves a high recall rate, indicating that it
rarely misses transitions in videos.

Table 3: Transitions Detection Metrics for Different Methods

Method Accuracy Recall Precision

Pydetect(hsl) 0.4421 0.3096 0.5920
Pydetect(hsl+edge) 0.4574 0.4146 0.5854
Ours 0.7741 0.9395 0.7547

On the other hand, we compare the runtime efficiency of our method with that of the open-source al-
gorithms. We record the CPU runtime of our algorithm and other open-source algorithms at different
resolutions, with the experimental results shown in Tab 4. We find that at a resolution of 256x256,
our method performs comparably to other methods. However, as the video resolution increases, our
method becomes significantly faster than the other methods (Fig 11).

Table 4: Time Consumption for Different Resolutions and Methods(ms)

Resolution Our Method Pydetect(hsl) Pydetect(hsl+edge)

2562 1.42 0.68 2.50
5122 2.45 2.63 8.82
720p 6.15 10.73 30.57
1080p 12.26 26.16 70.11
4k 41.98 102.55 267.18

A.2 ELIMINATION OF DEVIATIONS BETWEEN TRUE SCORES AND LABELED SCORES

After establishing the criteria, we randomly sample a batch of data and have it annotated by trained
experts, with each video being scored by eight experts on a scale of 1 to 5. To ensure that the anno-
tations closely reflect the true suitability scores, we need to address two types of errors: Individual
Preference Bias: As shown in the Fig. 12, we visualize the violin plots of scores given by different
experts. The expert on the left tends to give lower scores, while the expert on the right tends to give
higher scores. These individual preferences can cause the final scores of some videos to be lower or
higher than their actual values. Therefore, we standardize the scores of each expert and then scaled
them using the mean and variance of the overall scores to eliminate the bias introduced by different
experts. From the figure, it can be seen that the scores processed through our normalization and
rescaling methods align more closely with the overall score distribution. Label Fluctuation Bias:
As shown in the Fig. 12, each video is annotated by eight experts, and different experts may assign
different scores due to varying interpretations of the criteria. This leads to label fluctuations. We use
the mean score to reduce the error caused by these fluctuations.
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Figure 11: Time Consumption for Different Resolutions and Methods. Our method is faster than
the others at higher video resolutions.
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Figure 12: Score distribution of different experts and videos. Fig.(a) visualizes the score distri-
bution of different experts. We eliminate individual preference bias through normalization. Fig.(b)
visualizes the score distribution of different videos. We reduce label fluctuation bias with average.

A.3 ABLATION EXPERIMENTS OF TRAINING SUITABILITY ASSESSMENT NETWORK

Table 5: Performance Metrics for Different Combinations of Video, Image, and Feature

Dynamic
branch

Static
branch

Feature
branch WCGB PLCC↑ SRCC↑ KRCC↑ RMSE↓

✓ 0.8684 0.8580 0.7027 0.4644
✓ ✓ 0.8730 0.8637 0.7111 0.4555
✓ ✓ ✓ 0.8953 0.8864 0.7397 0.4203
✓ ✓ ✓ ✓ 0.8974 0.8868 0.7406 0.4099

We conduct comprehensive ablation experiments on our Training Suitability Assessment Network.
The experimental results are shown in Tab 5 . The baseline model utilizes only dynamic features.
Adding the static branch enables the model to capture more static information, thereby improving
overall performance. The inclusion of the feature branch allows the model to leverage additional la-
bel information, further enhancing its performance. The WCGB module integrates label information
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with dynamic and static features through a cross-gating mechanism, achieving optimal performance.
Each module addition significantly boosts the model’s performance.

Combining dynamic and static branches allows the model to capture both types of information. The
feature branch utilizes label information for further improvement. The WCGB module optimizes
feature integration, achieving the best results.

A.4 COMPARISON OF RESULTS FROM DIFFERENT METRICS CONDITIONS
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Figure 13: Comparison of results from different metrics conditions. Our method has more pre-
cise control under the same normalized metrics score and stronger ability to decouple control over
different metrics, when the style of videos transfer with the motion score.
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A.5 MORE QUALITATIVE RESULTS OF TEXT-TO-VIDEO GENERATION
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Figure 14: More qualitative results of text-to-video generation.
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