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ABSTRACT

Algorithmic predictions are increasingly informing societal resource allocations
by identifying individuals for targeting. Policymakers often build these systems
with the assumption that by gathering more observations on individuals, they
can improve predictive accuracy and, consequently, allocation efficiency. An
overlooked yet consequential aspect of prediction-driven allocations is that of
timing. The planner has to trade off relying on earlier and potentially noisier
predictions to intervene before individuals experience undesirable outcomes, or
they may wait to gather more observations to make more precise allocations. We
examine this tension using a simple mathematical model, where the planner collects
observations on individuals to improve predictions over time. We analyze both the
ranking induced by these predictions and optimal resource allocation. We show
that though individual prediction accuracy improves over time, counter-intuitively,
the average ranking loss can worsen. As a result, the planner’s ability to improve
social welfare can decline. We identify inequality as a driving factor behind
this phenomenon. Our findings provide a nuanced perspective and challenge the
conventional wisdom that it is preferable to wait for more accurate predictions to
ensure the most efficient allocations.

1 INTRODUCTION

Algorithmic predictions are playing a central role in societal resource allocation. Policymakers and
organizations are increasingly turning to algorithmically-driven systems in contexts where resources
are scarce in order to target resources with greater precision (Eubanks, 2018; Kleinberg et al., 2015;
Kube et al., 2023; Mashiat et al., 2024; Perdomo et al., 2023; Toros & Flaming, 2018). Underpinning
this growing reliance on predictions is the assumption that by gathering more observations about
individuals over time, we can improve prediction accuracy and, consequently, allocation efficiency.

In practice, decisions around the timing of predictions and how they inform allocations reveal
consequential trade-offs that the planner must navigate. On the one hand, the planner may wait
to collect extensive data to refine their predictions before intervening. On the other hand, they
can intervene early by relying on coarser data and noisier predictions. The potential advantage of
the latter is that, in a fixed-horizon setting where the planner wants to prevent individuals from
experiencing undesirable outcomes, the “window of opportunity” for this undesirable outcome to be
realized closes. Furthermore, the underlying population changes with time, as those at greatest risk
of experiencing such outcomes are more likely to “fail out” of the population early if they do not
receive resources (Bierman, 2002; Abebe et al., 2020; Salganik et al., 2020). These factors pull in
different directions, and it is not immediately apparent which factor dominates.

We examine this tension using a simple, versatile model where the planner predicts and intervenes
on a population over time. Modeling a generic resource allocation problem, we assume the planner
has a fixed budget of resources to prevent individuals from experiencing undesirable outcomes, such
as eviction, job loss, poor health, or dropping out of school (Mashiat et al., 2024; Perdomo et al.,
2023; Zezulka & Genin, 2024; Chan et al., 2012; Subbhuraam, 2021; Faria et al., 2017; Mac Iver
et al., 2019). At each time step, the planner collects observations about individuals to improve their
estimate of their underlying failure probability. The planner then uses the rankings induced by these
estimates to allocate resources. Specifically, we ask:
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1. Ranking: How does the ranking loss change as the planner collects more data, but some
individuals fail out of the population?

2. Allocation: For a given instance of this problem, what is the optimal time to allocate resources?
When is early intervention justified?

We present our results for two allocation problems: First, in a stylized setting, the planner is tasked
with allocating all resources at once but can choose when to do so. We then use this as a building
block to study the case where the planner can allocate resources over time. For both the ranking
and allocation problems, we examine the role of inequality—as measured by the variance in the
underlying failure probabilities—and surface it as a driving factor behind the optimal solutions.

We show that although individual prediction accuracy improves with more observations, counter-
intuitively, this does not translate into improvements in the average ranking loss. To observe this,
we decompose ranking loss into two counteracting effects: one due to improvements in prediction
from additional observations and the second due to the change in population as individuals fail out
of the active pool. We identify fundamental statistics that drive these two effects. We show that the
change-in-population effect negatively impacts ranking performance and that this effect grows at
least proportionally to the variance in the failure probabilities.

We then address both instantiations of the resource allocation problem. For the setting where the
planner must allocate all resources simultaneously, we derive an upper bound on the optimal allocation
time. We explicitly identify the roles of inequality and budget in expediting or deferring the optimal
allocation time. We show that with high inequality or a large budget, allocating resources earlier
results in greater social welfare. For the setting where the planner can allocate the budget over time,
we design a provably optimal algorithm with a running time independent of the number of individuals.
Using this algorithm, we then demonstrate that the optimal solution can concentrate the allocation
around any time-point t, and it behaves consistently with our findings on one-time allocation.

Our results provide a nuanced perspective on the role of timing in prediction-driven allocations. In
settings where the planner observes and intervenes on a population over time, they must balance
the desire for more accurate predictions with the necessity for timely interventions. In the presence
of significant inequality within the population, more accurate predictions do not necessarily lead to
better ranking or improved allocations, providing a potential justification for early resource allocation.

For an extensive discussion on the related work and adjacent problem settings, refer to Appendix B.

2 MODEL AND PRELIMINARIES

In this section, we first introduce the notations necessary to present the basics of our model. We
provide further notation, as needed, throughout the paper and summarize the key notations in Table 1.

We model the population over which the planner acts. We assume there is an initial population of
N individuals and consider a finite horizon setting where t ∈ [1, T ].1 Each individual i has some
failure probability pi ∈ [0, 1], which captures their likelihood of failing out of the population between
time steps. In the absence of intervention, this failure probability remains the same across time, and
failure events of different individuals are independent.2 Once an individual fails, they are no longer
in the active pool of the population. We denote this active pool at time t by At.

Prediction and ranking. At each time step t, the planner observes a signal oti from each active
individual i ∈ At. These signals are analogous to observing loan or rental payments in housing and
credit scoring, exam scores in education, and medical check-ups and tests in clinical settings. In our
working model, these signals are drawn independently from a Bernoulli process

oti ∼ Ber(p̃i) , (1)
where p̃i is a function of pi. We drop the explicit dependence on pi from p̃(pi) for ease of notation.

We assume that p̃ is an increasing function: The more likely an individual is to fail, the more likely we
are to observe signals indicating this possibility. An individual i will leave p̃i/pi positive observations
in expectation. Thus, a larger p̃ results in more observations from individuals before they fail out.

1Though we primarily consider the finite horizon setting, the key insights hold in the infinite horizon setting.
2If the problem has further structure, such as when students share a teacher, this assumption may not hold.
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The planner is interested in the predictions as a means to rank and prioritize individuals. Given
observations drawn from Eq. (1) and a prior over the failure probability, we will examine how the
ranking risk of the Bayes’ optimal ranking, measured on the active population, changes over time.
This is the subject of Section 3.

Targeting and allocation. The planner has a budget B of resources, such as housing vouchers,
unemployment insurance, and preventive health screenings, to allocate to individuals in the active
pool. We assume that assigning a resource to an individual has a fixed unit cost. We consider two
common instantiations of allocation problems: We first study the one-time allocation problem, where
the planner is tasked with finding the optimal time t to allocate B. We then consider an over-time
allocation problem, where the planner aims to find the optimal distribution of the budget across time.

To measure the efficiency of allocations, we define by ut(p) the expected utility the planner gets
from intervening on an individual with failure probability p. The planner’s primary objective is to
maximize the utility over all treated individuals when there is no spillover effect. We assume that
ut(p) is non-increasing in t and non-decreasing in p, which captures the idea that the planner does
not get more utility from intervening on the same individual later or from intervening on a better-off
individual. We further assume that the utility function is concave in p, reflecting diminishing returns.
Without loss of generality, we let ut(0) = 0.

The utility framework we define above allows for significant generality. In particular, we note that
for any individual i, the utility the planner gets from intervening on i may depend on i’s unobserved
characteristics, but this does not affect our results. Further, we make basic assumptions on ut,
allowing us to prove results in a general setting. To build intuition, at various points, we use a specific
example of utilities, defined below.
Example 2.1 (Fully effective treatment). Suppose that once an individual receives a resource, they do
not fail out of the population at subsequent time steps. The planner’s utility then equals

ut(p) = 1− (1− p)T−t , (2)

i.e., allocating to individual has the same expected utility as the probability that this individual would
have failed by time T without this intervention.

For the allocation problems we consider, the planner uses the ranking induced by the predicted failure
rates. We find that these rankings, in and of themselves, are interesting objects of study as they reveal
complex trade-offs over time.

3 RANKING OVER TIME

In this section, we exclusively focus on ranking, which will form the basis for our main results on
allocation presented in subsequent sections. We present our main ranking-related result separately
both because it helps build intuition for the delicate tradeoff a planner needs to consider for the
allocation problems, but also because it shows that these tradeoffs are present in other interventions
that leverage risk-based rankings.

Informally, we show that even though individual predictions may improve as more observations
become available over time, ranking quality can in fact decline. We demonstrate that inequality—as
defined by the variance in the failure probabilities—characterizes such settings. The intuition is as
follows: Although individual predictions improve over time, in high inequality settings, individuals
with high p (which were easier to distinguish from low p individuals based on coarse information)
are more likely to drop out earlier, leaving behind an active population that is harder to rank.

Ranking risk. We define ranking quality using ranking risk Rt at time t. We consider a common
notion of ranking risk based on pairwise ranking loss (Mohri, 2018). Given two individuals at time t,
the pairwise ranking problem predicts which individual has the higher failure probability based on
observations up to t. We assign a loss of zero if the prediction is correct and one otherwise.

We denote the number of positive observations from an active individual i up to time t by

yti :=
∑
t′∈[t]

ot
′

i . (3)

3
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Then ranking individuals based on their yt is Bayes optimal in terms of the zero-one pairwise ranking
loss.3 Formally, the zero-one risk of optimal (pairwise) ranking at time t is

Rt = Prti,j
(
ytj < yti | pj ≥ pi

)
. (4)

Here, Prti,j(·) is the probability when we choose two active individuals from At independently.

Main result. We now present our main result on the dynamics of the optimal ranking risk. This
result relies on certain approximations of the ranking risk, which we will detail later in this section.
Theorem 3.1. Given an instantiation of our ranking problem at time t, the ranking risk of the optimal
ranking can only improve in the next time step if

√
t · Vart[p]

(1− Et[p])2
− O(1)︸ ︷︷ ︸

change-in-population effect

<
Capprox.√

2π t︸ ︷︷ ︸
gain in observations

, (5)

where we assume that the inverse of p̃(·) is O(1)-Lipschitz. The proof presents the exact form of O(1)
and Capprox. which we skip here for clarity of exposition.

See proof on page 28.

The necessary condition stated in Eq. (5) highlights two key insights into when ranking quality de-
creases over time. First, as t increases, the left-hand side—which measures the change-in-population
effect—increases, whereas the right-hand side—which measures the gain in observations—decreases.
Second, as either the mean or variance in failure probability increases, it is again harder to satisfy
Eq. (5). Combined, these insights highlight that later rankings are only preferred under conditions
where inequality and average failure probabilities are low.

We next discuss the main steps towards proving Theorem 3.1.

Approximating ranking risk. To approximate ranking risk, we recall observations are drawn
from Ber(p̃). Eq. (3) then implies yt ∼ Binomial(t, p̃). For analytic tractability, we approximate
this with the normal distribution N , with mean t · p̃ and variance t · σ̃2. Here, σ̃2 := p̃ · (1− p̃). The
independence of the draws in Eq. (4) implies

ytj − yti
t

∣∣ (p̃i, p̃j) ∼ N (
p̃j − p̃i,

σ̃2
ij

t

)
,

where σ̃2
ij := σ̃2

i + σ̃2
j . Denoting the cumulative distribution function of the standard normal

distribution with Φ(·), it is then straightforward to simplify Rt as

Rt ≈ Et
i,j

[
Φ
(
− |p̃j − p̃i|

σ̃ij

√
t
)]

. (6)

Note that the dependence of Rt on t appears in two places: inside Φ(·), which captures the effect of
gathering more observations over time, and Et

i,j , which models a change-in-population effect.

Decomposing step-change in ranking risk. We denote the change in Rt in one time step by
∆Rt := Rt+1 −Rt. Using Eq. (6), we can decompose ∆Rt into two parts:

• The change in Φ(·) after one step, which we obtain by approximating Φ(x) with
1√
2πx

exp(−x2/2) and taking the derivative with respect to t.

• The change of Et
i,j after one step. To compute this, denote the distribution in failure probability

of the population At by Pt. Since an active individual at t with a failure probability of p survives
until t+ 1 with a probability of 1− p, we can write

Pt+1(p) =
( 1− p

1− µt

)
Pt(p) , (7)

where µt := Et[p]. Using this, we can compute the expected change in population as follows:

Et+1
i,j [·] =

Et
i,j

[
(1− pi) (1− pj) (·)

]
(1− µt)2

.

3Refer to Proposition E.4 for a proof.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Putting these two parts together, the change in ranking risk after one time step is

∆Rt = Et
i,j

[
1√
2πt

exp
(−(p̃j − p̃i)

2

2σ̃2
ij

t
){ σ̃ij

|p̃j − p̃i|
[ (1− pi)(1− pj)

(1− µt)2
− 1

]
− |p̃j − p̃i|

2σ̃ij

}]
. (8)

Intuitively, we can think of the exponential multiplier as a kernel enforcing similarity of p̃i and p̃j .
Such a filter pushes ∆Rt towards positive values, which means that as the filter becomes stricter
for larger t, the effect of losing vulnerable individuals dominates the gain from collecting more
observations on the remaining population. We make a mild assumption here that there exists a
constant α ∈ (0, 1) bounded away from zero such that plugging exp(−x2) ≈ 1{exp(−x2) ≥ α}
into Eq. (8) does not change the value of ∆Rt. Then Capprox. := ln(1/α). The rest of the proof of
Theorem 3.1 is straightforward which we leave to the proof of the theorem in the appendix.

4 ONE-TIME ALLOCATION

In the previous section, we examined how ranking metrics evolve over time. In this section, we
explore how these dynamics impact the allocation problem driven by the ranking.

The allocation policy varies depending on when resources become available and any spending
restrictions in place. We assume a fixed budget for a specific population and explore two variations:
In the general case, the budget can be spent flexibly over time. For example, funding may be available
for a student cohort and can be allocated across multiple years before graduation. In the specific
case, the budget must be spent all at once, often due to administrative constraints, and the question
becomes: when is the optimal time to allocate it? For example, cancer screenings may need to occur
at a certain age, or school empowerment programs may be restricted to a specific grade due to the
high cost of developing materials and training staff for multiple grades.

We first focus on the one-time allocation problem. We do so not only because it may represent a
real-world constrained allocation problem, but also because it provides valuable intuition for the
more general variation of the problem. Importantly, strong theoretical results from this analysis offer
key insights into the timing, budget, and inequality dynamics that form the core of our contribution.
Informally, our main result states:
Theorem (Informal). For the one-time allocation problem, there exists a t∗ that is a fraction of the
horizon T , such that the planner can best optimize utility by allocating B before t∗. This t∗ decreases,
favoring earlier allocations, when inequality in the failure probabilities is high or the budget is large.

To explicitly state this theorem, we need to introduce additional terminology, concepts, and definitions.
Formally, given a budget B, at a chosen time t, the planner ranks active individuals At in descending
order of their number of positive observations yt, and allocates resources to the first B of them.4

Denote the predicted ranking by injection rt : At → [N t], where individual i with rt(i) = 1 is the
most eligible one. The total utility of allocating a budget B at time t is given by

W t =
∑
i∈At

ut(pi) · 1{rt(i) ≤ B} .

Proving our results requires establishing an upper bound t∗ such that W t can increase over the next
steps only if t is less than t∗. In other words, deferring allocation is only justifiable if we have not
reached this critical time. The results in this section show an intricate relationship between the timing
of prediction and allocation with the inequality of the initial population and scarcity of resources.

Before presenting our results in full generality, we first consider the fully effective treatment setting,
where the utility function follows Eq. (2). Although many real-world treatments may not be fully
effective, many are, in fact, sufficiently effective for this special case to serve as a useful approximation
for understanding their dynamics. For instance, consider housing vouchers or dropout prevention
programs, which have been found to be very effective.5 Due to its significance and analytical
tractability, we present specific results for this case that also provide intuition for our general findings.

4Proposition E.4 implies this is the Bayes optimal ranking in our setting.
5For instance, Gubits et al. (2016) found “significant positive impacts ... in families offered a voucher, and

these impacts extended beyond housing stability.”
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4.1 THE FULLY EFFECTIVE TREATMENT SETTING

Recall from Example 2.1 that the utility function in the case of fully effective treatments follows
ut(p) = 1− (1− p)T−t. To state our results, we also need to define a measure of inequality:
Definition 4.1 (G-decaying distribution). We say distribution P over p is G-decaying for G ≥ 0 if

−G · P(p)
1− p

≤ dP
dp
≤ 0 .

Intuitively, G bounds how rapidly the distribution decreases. Smaller values of G corresponds to a
greater inequality. For example, if P(p) ∝ (1 − p)β−1, which is the probability density function
corresponding to Beta(1, β) distribution, then P is (β − 1)-decaying. Under this definition, the
highest inequality in the population corresponds to the uniform distribution that is 0-decaying.

Recall that at each time step t, the planner observes ot ∼ Ber(p̃) from each active individual. To
simplify notation, we assume the following concave observation model.
Assumption 4.2 (Observation model). We assume observations from an individual with failure
probability p are independently drawn from Ber(p̃), where p̃ = 1− (1− p)γ , and γ > 1.

We make the concavity assumption for ease of presentation, but note that dropping this assumption
only strengthens the main results. Furthermore, we show that a weaker version of our result holds for
any Lipschitz concave p̃ with bounded curvature.
Theorem 4.3 (Conditions for fully effective treatment). Suppose treatments are fully effective and
the initial distribution over failure probabilities is G-decaying. The overall utility can improves after
time t only if t < t∗, where

t∗ :=
T

2
+

(
G

4
+

γ + γ−1

4
+ 1

)(
(γ + 1) ln(

N

B
) + 1

)
.

See proof on page 28.

This theorem implies that we rarely need to go beyond the halfway point of the time horizon to
optimally allocate resources, and that this t∗ can be even smaller when we have high levels of
inequality (corresponding to smaller G) or a larger budget. We further illustrate the intuition behind
this theorem with an example in a simple setting in Appendix C. Combined, these results indicate that
high levels of inequality and scarcity of resources play an important and consistent role in determining
optimal allocation time—an insight we find carries over to more general settings.

4.2 THE GENERAL CLASS OF UTILITY SETTING

We define the class of (λ1, λ2)-decaying utility functions below. The fully effective treatment setting
corresponds to a (1, 1)-decaying utility. Refer to Proposition E.11 for the proof and other examples.
Definition 4.4 ((λ1, λ2)-decaying utility). We say a utility function ut(p) is (λ1, λ2)-decaying for
positive λ1 and λ2 if at every t and p,

ut+1(p) ≤ ut(p)− λ1 · p
1− p

, (bounded decrease over time)

(ut)′(p) ≤
(λ2 − ut(p)

1− p

)
· (ut)′(0) . (bounded increase with p)

When there is no finite λ2 such that the second bound holds, we say that the utility is λ1-decaying.

Our definition of (λ1, λ2)-decaying utility functions contains the essential elements to describe the
utility function’s behavior: a higher λ1 indicates a stronger decrease over time, while a higher λ2

signifies a faster increase with p. Our main result of this section states:
Theorem 4.5 (Conditions for a general class of utilities). For the general class of utilities, the overall
utility can improve after time t only if t < t∗ := (γ + 1) ln(NB ), or the following conditions hold:

1. When the utility function is (λ1, λ2)-decaying with λ1 ≥ λ2,

(ut+1)′(0) ≥
(
λ1

λ2

)
t− t∗

1 + (2 + γ + γ−1 +G) t∗+1
2t−t∗+1

.

6
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2. When the utility function is (λ1)-decaying,

(ut+1)′(0) ≥ λ1 ·
(
t− t∗

t∗ + 1

)
.

See proof on page 29.

This theorem shows that for a wide-range of settings, the optimal allocation can happen early: Our
assumptions about the concavity of the utility function and its zero value at p = 0 imply that
(ut+1)′(0) is a decreasing function of t. Conversely, regardless of whether the utility is (λ1, λ2)-
decaying or just λ1-decaying, the right-hand side of the bounds increases with t. Determining the
timing of the optimal allocation is intertwined with the level of inequality and the budget. In particular,
consistent with the previous section, a higher inequality and larger budget favor earlier allocations.

5 OVER-TIME ALLOCATION

The one-time allocation problem presented in the previous section helps as a building block for a
more general setting, which we now consider. We study the problem of allocating a fixed budget
over time to maximize total utility. First, we discuss the complexity of the problem under a naive
optimization approach. Then, we characterize the optimal solution and present a method to find it
regardless of the number of individuals. Through semi-synthetic experiments, we demonstrate that
the optimal allocation follows a similar intuition to one-time allocation, where higher inequality or a
larger budget shifts the optimal allocation toward earlier times.

5.1 CHARACTERIZING THE OPTIMAL OVER-TIME ALLOCATION

We begin by describing a Markov decision process (MDP) that governs the allocation problem. Let
At

k denote the set of active individuals at time t who have k positive observations, i.e., yt = k. We
define the state at t by N t

k := |At
k|, for k ≤ t. An allocation policy specifies the individuals to treat

from At
k at each state. The policy, along with the current state and the prior distribution over p, is

sufficient to determine a distribution over the next state.

A naive approach to finding the optimal policy for the described MDP is as follows. Since individuals
with a higher yt yield a higher expected utility,6 the optimal allocation at every time t should treat
those with the highest yt. Given a budget of B, we can specify a rollout of such a policy by the
budget spent at each time step, resulting in

(
B+1
T−1

)
possibilities. In the case of many agents, and thus

a large B, the MDP dynamic becomes almost deterministic, and the optimal policy converges to a
single fixed rollout.

Iterating over all
(
B+1
T−1

)
rollouts to find the optimal policy is computationally infeasible. However,

we find a characterization of the optimal solution that significantly cuts down our search space.

Theorem 5.1 (Optimal over-time allocation). The optimal over-time allocation in the limit of many
individuals follows a specific pattern: For a non-decreasing sequence q : [T ]→ {0, 1, . . . , T}, there
exists a time step t̂ ∈ [T ] such that,

• At t ̸= t̂, everyone with yt ≥ q(t) will be treated. At the next step, q(t+ 1) ∈ {q(t), q(t) + 1}.

• At t = t̂, everyone with yt > q(t) and some with yt = q(t) will be treated. At the next step,
q(t+ 1) ∈ {q(t) + 1, q(t) + 2}.

See proof on page 32.

This theorem narrows down the search space of possible policies to three parameters: t̂, q(·), and
what portion of At̂

q(t̂)
to treat. In particular, our search space no longer depends on the budget B or

the number of individuals.

6Refer to Lemma E.5 for a formal proof.
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5.2 AN ALGORITHM TO FIND THE OPTIMAL SOLUTION

In this section, we present an algorithm that uses Theorem 5.1 to find the optimal policy, ensuring that
its runtime does not scale with the number of individuals or the budget size. We build the algorithm
to do so in pieces. First, we show that we can iterate over the joint space of unspecified parameters in
O(T 3 · 2T−1) steps:

Lemma 5.2. We can iterate over the joint space of unknown parameters of Theorem 5.1 by specifying
the time step t̂ ∈ [T ], the initial value of the sequence q(·) from the set of {0, 1, 2}, and a binary
sequence of length T . This requires O(T 3 · 2T−1) steps.

See proof on page 33.

This lemma utilizes the structure of sequence q(·) in Theorem 5.1 and reduces it to a binary sequence
given t̂. It also utilizes a linear structure of total utility to determine how many people to treat
from At̂

q(t̂)
. These are the first steps in Algorithm 1.

At the heart of Lemma 5.2 is Algorithm 2 that simulates a trajectory. This algorithm uses a backup
formula that updates N t

k based on N t−1
k and N t−1

k−1. Algorithm 2 also requires calculating expectation
with respect to p ∼ Pt(· | yt = k). In our simulation, this posterior has a closed form. However, in
general, since p is a bounded scalar, the posterior calculation can be well-approximated by a constant
number of operations.

Given an efficient way to iterate over the search space, we next prove that Algorithm 1 can find the
optimal policy without increasing the run time:

Theorem 5.3. Algorithm 1 finds the optimal over-time allocation in O(T 3 · 2T ) steps.

See proof on page 33.

In real-world settings, time steps are typically on the scale of a month or a year. Therefore, T is
usually a small constant and the complexity of Algorithm 1 as stated in Theorem 5.3 is manageable.
Compared to the naive iteration over

(
B+T−1
T−1

)
possible trajectories, Algorithm 1’s complexity is

significantly reduced by dropping the dependence on the number of individuals and B. Powered by
this algorithm, we next visualize the optimal over-time allocation in semi-synthetic settings.

Algorithm 1 Optimal over-time allocation
1: Uopt ← 0

2: for t̂ = 1 to T and q(·) ∈ valid sequences according to Theorem 5.1 do
Simulate as At̂

q(t̂)
are all treated:

3: {N t
q(t)}

T
t=1 ← SIMULATETRAJ(1, {N1

0 , N
1
1 }, q(·))

4: Emax ← 1{q(1) = 0} ·N1
1 +

∑T
t=2 N

t
q(t) ▷ maximum expenditure

Simulate the difference as if no one in At̂
q(t̂)

was treated:

5: {∆N t
q(t)}

T
t=t̂
← SIMULATETRAJ(t̂, {0, . . . , 0, N t̂

q(t̂)
, 0, . . . , 0}, q(·) + 1{(·) = t̂})

6: ∆E ← N t̂
q(t̂)
−
∑T

t=t̂ ∆N t
q(t) ▷ decrease from the max. expenditure

7: ρ← Emax−B
∆E ▷ proportion of At̂

q(t̂)
to be left untreated

8: if ρ ≥ 1 or ρ ≤ 0 then continue to the next possible q(·) end if

Calculate the total utility:
9: for t = 1 to T and k = q(t) do ut

k ← Ep∼Pt(·|yt=k)[u
t(p)] end for

10: U ← (1− ρ)N t̂
q(t̂)

ut̂
q(t̂)

+
∑

t ̸=t̂(N
t
q(t) + ρ∆N t

q(t))u
t
q(t) + 1{q(1) = 0} ·N1

1 u1
1

11: if U > Uopt then Uopt ← U , qopt ← q, t̂opt ← t̂ end if ▷ check for optimality
12: end for
13: return Uopt, qopt, t̂opt

8
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5.3 VISUALIZING THE OPTIMAL SOLUTION

Algorithm 1 enables us to tractably find the optimal over-time allocation. Using this algorithm, we
next present the effect of the inequality as encoded in prior distribution of p and the budget size on
the optimal over-time allocation.

Our goal is to demonstrate that even in the simplest non-contrived settings, the tradeoff between
gaining more observations and losing vulnerable individuals strongly exists. Therefore, we make
minimal assumptions about the model: Suppose the treatments are fully effective, the observation
model is p̃ = p, and the initial distribution over failure probabilities follows Beta(α, β). The
beta distribution is a common and sufficiently expressive choice for modeling priors over [0, 1]-
bounded random variables. It is also the conjugate prior for the binomial distribution, which allows
us to write the posterior distribution over failure probability in closed form.: Pt(· | yt = k) =
Beta(α+ k, β + 2t− k).

Data and parameters estimation. To make our simulations more realistic, we choose the ini-
tial distribution to reflect real-world data. In particular, we use National Education Longitudinal
Study (NELS) of 1988, a longitudinal study with follow-ups at four points throughout the students’
education.7 In this data, failure corresponds to student dropout and is recorded.

We estimate the beta distribution parameters in the following manner. Let m0 and m1 be the
proportion of the initial pool of individuals who failed right before the first and second steps,
respectively. Assuming there has been no intervention at the first step, it follows from the central
limit theorem that m0 → α

α+β and m1 → α(α+1)
(α+β)(α+β+1) at a fast rate of O(1/

√
N). By solving for

α and β, we can accurately estimate the initial distribution as a Beta distribution. Our estimation
gives α = 0.028 and β = 0.35 for the case of NELS data. The mean of the estimated distribution
also aligns with the NELS-provided estimation of dropout probability, with both methods predicting
a dropout rate of around 7%.

Results. We first study the effect of budget size. Theorem 4.3 suggests that in case of one-time
allocation, the optimal allocation time shifts with ln(NB ). Fig. 1 suggests that a similar trend holds
true in case of over-time allocation: A larger budget favors earlier allocations.
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Figure 1: Optimal over-time allocation for three sizes of the budget and a fixed prior estimated from
NELS data. The orange curve depicts the optimal q(·) and the filled circle corresponds to t = t̂.

We next extend our analysis beyond the NELS data distribution to study the effect of initial distribution,
particularly inequality, on the optimal allocation. Theorem 4.3 suggests that greater inequality can
further favor earlier allocation. To simulate this effect, we fix B

N at 10% and consider three priors with
differing tail decay. Fig. 2 indicates that as the prior approaches a uniform distribution, corresponding
to maximum inequality in terms of our definition of G-decaying distributions, optimal allocation
significantly favors earlier times.

These visualizations confirm that a similar intuition as the one-time allocation setting also appears in
the over-time allocation problem.

7https://nces.ed.gov/surveys/nels88/
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Figure 2: Optimal over-time allocation for three different priors and a fixed B
N = 10%. The orange

curve depicts the optimal q(·) and the filled circle corresponds to t = t̂.

6 DISCUSSION

Our work contributes a timing dimension to an emerging body of research on evaluating prediction-
driven allocation. Predictive systems are introduced with the promise of minimizing waste and
increasing efficiency. This existing predisposition, amplified further by the traditional focus on
maximizing predictive accuracy, encourages practices that favor waiting to collect more information
over acting early with noisier signals. Our study presents a simple model that challenges this practice.

Our work opens numerous lines of inquiry. For instance, we assume the planner has a fixed budget B,
corresponding to a fixed unit-cost intervention, that they can allocate all at once or over time. There
are various natural variations worth exploring: For instance, we could consider heterogeneity in cost
across time or different pi values. In the same spirit as Perdomo (2024), we can also consider trading
off this B with other interventions or parameters in the problem. We also think the tradeoffs between
acting early and waiting to reduce uncertainty extend beyond our welfare-maximizing framework. For
instance, future work could adapt our dynamic model to fairness-focused frameworks for studying
uncertainty, such as those developed by Singh et al. (2021), and explore whether information gains
consistently lead to improved outcomes.

We make generic assumptions about the failure probabilities and collection of observations. In settings
motivating our study, the failure probabilities change over time, favoring increasing inequality in the
absence of interventions. Likewise collecting observations for vulnerable individuals may be more
costly, contain less signal, or may otherwise be undesirable (Monteiro Paes et al., 2022). Another
general assumption we made is that, while individuals have heterogeneous values of p, we do not
account for variations in their initial conditions or “starting points.” Enriching the model we study to
include such insights would only further justify early interventions in the presence of high inequality,
though it would be interesting to examine the extent to which it does so. We should also point out
that we consider the allocation problem in an unconstrained setting to highlight the generality of
the tradeoffs. However, practical constraints can further limit the optimal allocation, in one way or
another.

Our work introduces a potential lens through which to examine tradeoffs incurred by waiting to
improve prediction accuracy. Our results, on their own, do not endorse early or late allocations for
any specific setting. Each policy problem should be examined empirically, and policymakers must
consider various community, policy, and practical considerations. Indeed, targeting as an effective
means of improving welfare—which has fueled the use of predictive systems—is, itself, an actively
debated policy concept (Shirali et al., 2024). Nonetheless, we believe that the machine learning
community can contribute to discussions around how to best evaluate predictive systems in such
policy settings.
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A NOTATIONAL CONVENTIONS

The variables related to an individual i are indexed with a subscript i. The variables related to time t
are indexed with a superscript t. The variables transformed with p̃(·) are denoted with a tilde.

Symbol Notion
t Time step which takes a value from 1 to T
T Horizon
pi Failure probability of individual i
oti Binary observation from an active individual at time t
ϵ Noise on observation model of Eq. (1)
p̃ p̃(p) := (1− ϵ)f(p) + (1− f(p))ϵ

yti Number of positive observations from an active individual i up to time t: yti :=
∑

t′∈[t] o
t′

i

At Set of active individuals at time t
At

k Set of active individuals at t with yt = k: At
k := {i | yti = k}

It Set of individuals treated at t
Āt

k At
k excluding those who will be treated at t: Āt

k := At
k \ It

N Number of initial individuals at time t = 1
N t Number of individuals who made it to time t: N t := |At|
nt Proportion of initial individuals who made it to time t: nt := N t/N
nt
k nt

k := |At
k|/N

n̄t
k n̄t

k := |Āt
k|/N

Pt(·) Posterior over p for an active individual at t
Pt
k = Pt(· | yt = k) Posterior over p given an individual has made it to t and yt = k

Prt(·) Probability measure over active individuals at time t
Prti,j(·) Probability measure over two independent active individuals i and j at time t

Prt(yt = k) Probability that an active individual at t has yt = k
Prt(yt = k | p) Likelihood that an active individual with failure probability p shows yt = k
Et[·] Expectation over active individuals at time t
Et
k[·] Expectation over active individuals at time t with yt = k

Et
i,j [·] Expectation over two independent active individuals i and j at time t

µt Mean of failure probability at time t: µt := Et[p]
µt
k Mean of failure probability at time t given yt = k: µt := Et

k[p]
Vart[·] Variance under Prt(·)
σ̃2
i σ̃2

i := p̃i · (1− p̃i)
σ̃2
ij σ̃2

ij := σ̃2
i + σ̃2

j

G(·) Cumulative distribution function (CDF) of the standard normal distribution
g(·) Probability density function (PDF) of the standard normal distribution

Table 1: Glossary
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B RELATED WORK

Prediction for allocation. Algorithmic predictions are increasingly employed to identify individuals
who are most in need of limited resources. In many of these applications, the timing of prediction
and allocation is of the utmost importance. Examples include directing assistance to tenants at risk of
eviction based on their predicted risk (Mashiat et al., 2024), using early warning systems to identify
students at risk of dropout (Faria et al., 2017; Mac Iver et al., 2019; Perdomo et al., 2023), prioritizing
homelessness assistance while considering population dynamics (Toros & Flaming, 2018; Azizi et al.,
2018; Kube et al., 2023), making ICU discharge decisions based on readmission probability (Chan
et al., 2012), and improved targeting of humanitarian aids (Aiken et al., 2022). For a discussion on
the role of machine learning in clinical medicine in particular, refer to Obermeyer & Emanuel (2016).

The adoption of predictive tools in resource allocation often comes with a promise that improvements
in prediction accuracy can transfer to the allocation setting. Recent critical studies, however, have
challenged this (Barabas et al., 2018; Shirali et al., 2024; Perdomo, 2024). Our work gives a new
timing dimension to this problem where prediction improvement is entangled with the population
dynamics. Our work also emphasizes the role of inequality in this dynamic setting. In line with
Shirali et al. (2024) we found inequality a determinant factor in deciding which form of allocation
works best in the interest of social welfare.

Welfare-maximizing treatment assignment under budget constraints is also a well-established topic
in economics (Bhattacharya & Dupas, 2012; Kitagawa & Tetenov, 2018). While much of the
literature focuses on estimating static heterogeneous treatment effects for a fixed population, we
extend this work by examining the problem’s dynamic aspects. Our model also bypasses the need to
estimate treatment effects in observational settings (Athey & Wager, 2021) by incorporating these
complexities into a general class of utility function and emphasizing the often-overlooked role of
timing in predictions and allocations.

Related problem settings. A related setting that introduces a similar tradeoff to ours is when
observations come at a cost (Stokey, 2008; Zhou et al., 2024). Our setting is distinct from this line
of research as in our model, the cost of additional observations arises naturally from the loss of
opportunity to intervene early, rather than being part of the modeling assumptions.

Our work is closely related to subsidy allocation in the presence of income shocks, as studied
by Abebe et al. (2020). Their model captures a more general dynamic where individuals fail
after experiencing potentially multiple shocks. Unlike Abebe et al. (2020), we do not assume a
full information setting. In a similar vein, our proposed dynamic is also related to the dynamic
models of opportunity allocation (Heidari & Kleinberg, 2021) and the dynamics of wealth across
generations (Acharya et al., 2023).

Generally, the best estimates of the treatment effect are obtained when the allocation is randomized.
This is often not the case when we need to learn while treating those in need (Wilder & Welle,
2024). The sample independence assumption is often violated in these settings (Shirali, 2022) and
recent works have proposed various estimators to improve the power of estimators (Mate et al., 2023;
Boehmer et al., 2024). Our model largely circumvents this complexity, as a simple ranking based on
available observations is always Bayes optimal.

Our discussion is related to decision-focused learning (Mukhopadhyay & Vorobeychik, 2017; Wilder
et al., 2019; Elmachtoub et al., 2020; Elmachtoub & Grigas, 2022) in the Operations Research
community, where predictions are informed by their downstream applications. In our work, we
employ a simplified observation model that allows us to consistently obtain a posterior distribution
over hidden variables. This approach circumvents the challenges that could arise from inaccurate or
biased predictions. There is also a direct connection between our Algorithm 1 and decision-focused
learning. If we consider prediction as the ranking of individuals at all time points, then this algorithm
effectively identifies the optimal prediction tailored for the subsequent allocation step.

Our over-time allocation is also related to multi-armed bandit problems with resource constraints
in addition to reward (or utility) generation (Agrawal & Devanur, 2016; Slivkins et al., 2023). In
particular, our model is most similar to the rotting bandit (Levine et al., 2017) where reward decreases
over time. Unlike the standard bandit problems, in our problem observations are available from all
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individuals and not only those treated. The exploration/exploitation tradeoff then lies in waiting for
further information or treating those already estimated to be vulnerable.

Prediction and policy problems. Historically, policy planning has relied on aggregate data;
however, the promise of improved resource allocation, reduced costs, and more preventative in-
terventions has led to the widespread adoption of algorithmic systems on an individual basis in
governments (Athey, 2017; Levy et al., 2021). Our work contributes to this discussion, as our insights
have direct implications for policy planning in evolving social contexts.

While causal inference can inform policy-making, it is not always necessary (Kleinberg et al., 2015).
Our framework falls under the category of prediction policy problems where an accurate ranking
of individuals is sufficient for effective allocation. Related to this topic, Wang et al. (2024) raise
concerns about the legitimacy of decision-making based on predictive optimization.

The debate surrounding risk assessment tools has largely centered around their inherently predictive
nature. However, as emphasized by Barabas et al. (2018) in the context of the criminal justice system,
the focus of risk assessment should be on guiding interventions rather than merely making predictions.
Our research aligns with this perspective by studying prediction not as an isolated task but as an
integral part of the resource allocation process.

The long-lasting effect of interventions. The Moving to Opportunity (MTO) experiment, spon-
sored by the U.S. Department of Housing and Urban Development, exemplifies an early intervention
aimed at improving life outcomes by providing low-income families with children living in disad-
vantaged urban public housing the opportunity to relocate to less distressed private-market housing
communities (de Souza Briggs et al., 2010; Ludwig et al., 2008; Gennetian et al., 2012; Ludwig et al.,
2013; Chetty et al., 2016). The mixed findings of the MTO experiment across different age groups
and the contrast between interim and long-term analyses highlight the crucial role that timing and the
considered time horizon play in determining intervention’s effect.

The MTO experiment also shows early interventions and environmental factors can have a long-
lasting influence. In our model, we consider the extreme case of this when individuals subject to
intervention are no longer vulnerable at any future time point. Hardt & Kim (2023) discuss how these
long-lasting effects inform future predictions.

Shapiro (2004) argues that initial differences, rather than wage disparities, are the primary drivers
of persistent inequality in the United States. Consistently, Derenoncourt (2022) show that while
moving to areas with better economic opportunities theoretically provided improved prospects, local
responses counteracted many of the potential benefits. Such complexities are all abstracted into the
probability of failure in our model. While this abstraction helps us focus on specific aspects, we
acknowledge that it does not capture the full range of dynamics in the real world.
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C AN ILLUSTRATION OF TRADEOFFS IN ONE-TIME ALLOCATION

To further illustrate why the budget and inequality are key factors in determining the cost of waiting
for accurate predictions in one-time allocation, we present the following example.

Suppose initially, P1 = Beta(1, G + 1). This ensures that P1 is G-decaying according to Defini-
tion 4.1. Consider the problem of whether postponing the allocation from t = 1 to t + 1 = 2 is
beneficial, or equivalently, whether ∆W t := W t+1 −W t > 0. For simplicity of the illustration, we
assume p̃ = p and fully effective treatments.

Denoting the set of active individuals at t with yt = k by At
k and N t

k := |At
k|, a direct calculation

gives

N1
0 = N E[1− p̃] = N

G+ 1

G+ 2
, N1

1 = N E[p̃] = N
1

G+ 2
,

N2
1 = N E[(1− p)(1− p̃)p̃] = N

2(G+ 1)

(G+ 2)(G+ 3)
, N2

2 = N E[(1− p)p̃2] = N
2

(G+ 2)(G+ 3)
.

Note that N1
1 > N2

2 and N1
1 < N2

1 +N2
2 .

Lemma E.5 implies that the optimal allocation at t, should treat those who have higher yt. Therefore,
in our example, assuming B < N1

1 , the optimal allocation at t = 1 only treats those in A1
1. Similarly,

at t + 1 = 2, it first treats those in A2
2 and then A2

1. So, defining U t
k := Ep∼Pt(·|yt=k)[u

t(p)], for
B < N1

1 , it is straightforward to obtain

∆W t =

{
B (U2

2 − U1
1 ) , B ≤ N2

2 ,

−B (U1
1 − U2

1 ) +N2
2 (U2

2 − U1
1 ) , B > N2

2 .

Lemma E.5 implies U1
1 ≥ U2

1 . Therefore, increasing the budget after N2
2 can only decrease ∆W t

and favors earlier allocations. The effect of inequality is also well-captured in U2
2 − U1

1 . A direct
calculation shows sign(U2

2 − U1
1 ) = sign

(
(G+ 1)(T − 4)− 6

)
. Hence, ∆W>0 necessitates

G >
6

T − 4
− 1 .

In other words, higher inequality, reflected in smaller values of G, can render postponing allocation
from t to t+ 1 unjustifiable.

We illustrate the effect of budget and inequality by simulating one-time allocation for T = 6
and N = 10000 in Fig. 3. Consistent with the theory, a high inequality corresponding to G ≤ 2 can
make W t+1 ≤W t. Even when this is not the case, a high budget can still favor earlier allocation.

0 1 2 3 4 5
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N (%)

-12

-10
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Figure 3: Illustration of the effect of the budget and inequality on one-time allocation.
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D SUPPLEMENTARY ALGORITHMS

Algorithm 2 Simulate trajectory
1: inputs:
2: t0 : starting time of simulation
3: {N t0

k }
t0
k=0 : number of individuals with yt0 = k for k = 0, . . . , t0

4: q : [T ]→ {0, 1, . . . , T}: a valid non-decreasing sequence according to Theorem 5.1
5: output:
6: {N t

q(t)}
T
t=t0 : number of individuals reaching yt = q(t) for t > t0

7: function SIMULATETRAJ(t0, {N t0
k }

t0
k=0, q(·))

8: for t = t0 + 1 to T do
9: for k = 0 to t do

Find the remaining number of individuals from the previous step:
10: N

t−1

k ← N t−1
k · 1{k < q(t− 1)}, N

t−1

k−1 ← N t−1
k−1 · 1{k − 1 < q(t− 1)}

Backup formula:

11:
N t

k ← N
t−1

k · Ep∼Pt−1(·|yt−1=k)

[
(1− p)(1− p̃)

]
+N

t−1

k−1 · Ep∼Pt−1(·|yt−1=k−1)

[
(1− p) p̃

]
12: end for
13: end for
14: return {N t

q(t)}
T
t=t0

15: end function
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E SUPPLEMENTARY STATEMENTS

E.1 GENERAL STATEMENTS

Lemma E.1. Suppose f : [0, 1]→ R is a non-decreasing function of p. Consider two probability
density functions P and Q such that P(p)

Q(p) is a non-decreasing continuous function of p. Then, we
have EP [f(p)] ≥ EQ[g(p)]. As a direct implication of this lemma, the sign of inequality flips if
either f or the density ratio is non-increasing.

Proof. Define σ(p) := P(p)
Q(p) . Since

∫ 1

0
Q(p) dp =

∫ 1

0
Q(p)σ(p) dp = 1, and σ is continuous, there

should exist a critical value p∗ such that σ(p) ≥ 1 for p ≥ p∗, and σ(p) ≤ 1 for p < p∗. Using this
critical value to decompose the expectations and the fact that f(·) is non-decreasing, we obtain

EP [f(p)]− EQ[f(p)] =

∫ 1

0

f(p)Q(p) (σ(p)− 1) dp

=

∫ 1

p∗
f(p)Q(p) (σ(p)− 1) dp−

∫ p∗

0

f(p)Q(p) (1− σ(p)) dp

≥ f(p∗)

∫ 1

p∗
Q(p) (σ(p)− 1) dp− f(p∗)

∫ p∗

0

Q(p) (1− σ(p)) dp = 0 .

Lemma E.2. Consider two non-increasing functions a : R → [0, 1] and b : R → [0, 1]. If∫∞
−∞ b(x) dx is finite and non-zero, the following inequality always holds:(∫ ∞

−∞
b(x)2 dx

)
·
(∫ ∞

−∞
a(x) b(x) dx

)
≥

(∫ ∞

−∞
a(x)2 b(x)2 dx

)
·
(∫ ∞

−∞
b(x) dx

)
. (9)

Proof. Define the difference between the left-hand side and the right-hand side of the inequality given
in Eq. (9) as ∆. For simplicity, consider integrals as a discrete sum with a step size of δ. Increasing
the value of a(x′) would change the value of ∆ by

1

δ

d∆

da(x′)
= b(x′) ·

∫ ∞

−∞
b(x)2 dx− 2a(x′) b(x′)2 ·

∫ ∞

−∞
b(x) dx .

This implies that for any x′ such that b(x′) > 0, increasing a(x′) will decrease ∆ if and only if

a(x′) b(x′) >
1

2

∫∞
−∞ b(x)2 dx∫∞
−∞ b(x) dx

.

Since both a and b are non-increasing non-negative functions, their multiplication is also a non-
increasing non-negative function. Therefore, increasing a(x′) will decrease ∆ if and only if x′ is
larger than a critical value x∗. The non-increasing constraint on a then implies that for a fixed b, the
minimum value of ∆ corresponds to a constant function a(x) = a0. In this case,

∆ =
(
a0 − a20

)
·
(∫ ∞

−∞
b(x)2 dx

)
·
(∫ ∞

−∞
b(x) dx

)
For a0 ∈ [0, 1], the above equation is always greater than or equal to zero, which completes the
proof.

E.2 STATEMENTS ABOUT THE OPTIMALITY OF RANKING

Lemma E.3 (Bayes optimal ranking). Consider a statistical model P = {pθ : θ ∈ Θ = [a, b]}
that induces a family of continuous probability distributions over a sample space X . Assume
P has a univariant sufficient statistics T : X → R. Consider samples drawn independently
from two probability distributions with distinct parameters: X1 ∼ pθ1 , X2 ∼ pθ2 . For a ranking
function δ : X × X → {−1, 1}, define the ranking loss as

loss((θ1, θ2); δ(x1, x2)) := 1{δ(x1, x2)(θ2 − θ1) < 0} .
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Consider Θ1 and Θ2 independently drawn from a prior P over Θ. If for any θ2 ≥ θ1,
T (x2) ≥ T (x1) ⇐⇒ pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) , a.e. , (10)

then for any choice of P that has no point mass, the Bayes optimal ranking rule is δ∗(x1, x2) =
χ{T (x2) ≥ T (x1)}.

Proof. For Θ1 and Θ2 independently drawn from P , the Bayes risk of ranking is

R(P⊗2; δ) = EΘ1∼P
Θ2∼P

[
EX1∼pΘ1
X2∼pΘ2

[
loss((Θ1,Θ2); δ(X1, X2))

]]
.

The independence also allows us to decompose the posterior over Θ1 and Θ2 given X1 = x1

and X2 = x2 as P(Θ1 | x1)P(Θ2 | x2). It is well-known that the minimizer of the Bayes risk is

δ∗(x1, x2) = argmin
δ(·,·)

R(P⊗2; δ) ∈ argmin
δ∈{−1,1}

EΘ1∼P(·|x1)
Θ2∼P(·|x2)

[
loss((Θ1,Θ2); δ) | X1 = x1, X2 = x2

]
.

Plugging the ranking loss into this, we can further simplify the conditional expectation and obtain
δ∗(x1, x2) ∈ argmin

δ∈{−1,1}
EΘ1∼P(·|x1)
Θ2∼P(·|x2)

[
loss((Θ1,Θ2); δ) | x1, x2

]
= argmin

δ∈{−1,1}

1 + δ

2
Pr(Θ1 > Θ2 | x1, x2) +

1− δ

2
Pr(Θ1 ≤ Θ2 | x1, x2)

= argmin
δ∈{−1,1}

δ
[
Pr(Θ1 > Θ2 | x1, x2)− Pr(Θ1 ≤ Θ2 | x1, x2)

]
= sign

(
Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

)
.

Now, using a change of variable trick and the Bayes’ rule, we have
Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

=

∫ b

a

∫ θ2

a

P(θ1 | x1)P(θ2 | x2) dθ1 dθ2 −
∫ b

a

∫ θ1

a

P(θ1 | x1)P(θ2 | x2) dθ2 dθ1

=

∫ b

a

∫ θ2

a

[
P(θ1 | x1)P(θ2 | x2)− P(θ2 | x1)P(θ1 | x2)

]
dθ1 dθ2

=

∫ b

a

∫ θ2

a

P(θ1)P(θ2)
Z(x1, x2)

[
pθ1(x1) pθ2(x2)− pθ1(x2) pθ2(x1)

]
dθ1 dθ2 ,

where Z(x1, x2) is the partition function. The integral bound enforces θ2 ≥ θ1. Then if the condition
of Eq. (10) holds, we can conclude

sign
(
Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

)
= sign(T (x2)− T (x1)) .

Proposition E.4. Consider the observation model o ∼ Ber(p̃), where p̃(·) is a non-decreasing
function. Define yt =

∑
t′∈[t] o

t. For any prior P over p that has no point mass, ranking individuals
based on their yt is Bayes optimal.

Proof. At any time t, define the statistical model P =
{
pθ = (Ber(p̃(θ)))⊗t : θ ∈ [0, 1]

}
where we

can think of the model parameter θ as the failure probability p. All the observations from individual i
until t can be interpreted as a sample from a model in P : X = [o1, . . . , ot] ∼ pθ. Then, it is
straightforward to see yt is a sufficient statistic for P and pθ(x) = θ̃y

t

(1− θ̃)t−yt

. The increasing
property of p̃ also implies that θ2 ≥ θ1 ⇐⇒ θ̃2 ≥ θ̃1.

For θ2 ≥ θ1, plugging pθ into the condition of Eq. (10) gives

pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) ⇐⇒
( θ̃2
θ̃1

1− θ̃1

1− θ̃2

)yt
2−yt

1

≥ 1 , a.e.

Since for 1 > θ̃2 ≥ θ̃1 > 0, we have θ̃2
θ̃1

1−θ̃1
1−θ̃2

≥ 1, we can conclude

pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) ⇐⇒ yt2 ≥ yt1 , a.e.
Therefore, P meets the sufficient condition given in Eq. (10) of Lemma E.3, and ranking based on its
sufficient statistic yt is Bayes optimal.
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E.3 STATEMENTS ABOUT THE EFFECT OF ONE MORE OBSERVATION OR ONE MORE TIME STEP

Lemma E.5 (Expected utility is monotone in the number of positive observations and time). For any
utility function ut(p) that is non-decreasing in p, we have

Et
k+1[u

t(p)] ≥ Et
k[u

t(p)] ,

for every k < t. If the utility is also non-increasing in t, we have

Et
k[u

t(p)] ≥ Et+1
k [ut+1(p)] ,

for every k ≤ t. Here, Et
k denotes expectation with respect to p ∼ Pt

k = Pt(· | yt = k).

Proof. We first prove the monotonicity in k. The likelihood Prt(yt = k | p) has a closed-form of(
t
k

)
p̃k(1− p̃)t−k. Using this, we have

Pt
k+1(p)

Pt
k(p)

∝ Prt(yt = k + 1 | p)
Prt(yt = k | p)

=
p̃

1− p̃

( t− k

k + 1

)
.

This is a non-decreasing continuous function of p̃ and, consequently, of p, for every k < t. Since the
utility function is also non-decreasing in p, Lemma E.1 proves the monotonicity in k.

We next prove the monotonicity in t. Using the Bayes rule and the update rule of Eq. (7), we have

Pt
k(p)

Pt+1
k (p)

∝ Pt(p) Prt(yt = k | p)
Pt+1(p) Prt+1(yt+1 = k | p)

∝
( 1

1− p

) Prt(yt = k | p)
Prt+1(yt+1 = k | p)

.

Plugging the closed-form expression of likelihoods into this, we obtain

Pt
k(p)

Pt+1
k (p)

∝ 1

(1− p)(1− p̃)
.

Again, this is a non-decreasing continuous function of p̃ and, consequently, of p, for every k < t.
Since the utility function is also non-decreasing in p, Lemma E.1 implies Et

k[u
t(p)] ≥ Et+1

k [ut(p)].
Using the fact that the utility is also non-increasing in t, completes the proof.

Lemma E.6 (A positive draw from Ber(p) is more informative than Ber(p̃)). Consider the ob-
servation model o ∼ Ber(p̃), where p̃(p) is a concave function with p̃(0) = 0 and p̃(1) = 1.
Let z ∼ Ber(p) be a random draw from an individual with failure probability p. For any utility
function ut(p) non-increasing in t and non-decreasing in p, we have

Et
k[u

t(p) | z = 1] ≥ Et+1
k+1[u

t+1(p)] , (11)

for every k ≤ t. Here, Et
k[·] denotes expectation with respect to p ∼ Pt

k = Pt(· | yt = k).

Proof. Expanding the left-hand side of Eq. (11), we have

Et
k[u

t(p) | z = 1] =
Et
k

[
Pr(z = 1 | p) · ut(p)

]
Et
k

[
Pr(z = 1 | p)

] =
Et
k[p · ut(p)]

Et
k[p]

.

On the other, expanding the right-hand side of Eq. (11) using the updating rule of Pt+1(p) ∝
Pt(p)(1− p) from Eq. (7), we have

Et+1
k+1[u

t+1(p)] =
Et+1[p̃k+1(1− p̃)t−k · ut+1(p)]

Et+1[p̃k+1(1− p̃)t−k]
=

Et
k[(1− p)p̃ · ut+1(p)]

Et
k[(1− p)p̃]

.

Define g(p) := (1 − p)p̃. We argue that g(p) is concave on [0, 1]. To see this, observe that
g′′(p) = −2p̃′ + (1 − p)p̃′′. The concavity of p̃ implies p̃′′ ≤ 0. Then, given that p̃(0) = 0,
p̃(1) = 1, and the range of p̃ is within [0, 1], it follows that p̃′ ≤ 0. Thus, we can conclude g′′(p) ≤ 0
for p ∈ [0, 1]. A direct consequence of the concavity of g is that g′(p)(0−p) ≥ g(0)−g(p) = −g(p).
A straightforward integration then shows that for arbitrary p2 ≥ p1 > 0,

p2
p1
≥ g(p2)

g(p1)
. (12)
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This inequality will allow us to further bound Et+1
k+1[u

t+1(p)] as follows. Using ut+1(p) ≤ ut(p), the
difference of the expanded sides of Eq. (11) can be bounded by

Et
k

[
(p1g(p2)− p2g(p1)) · ut+1(p1)

]
Et
k[p1 · g(p2)]

,

where p1 and p2 are two independent draws fromPt
k. Using symmetry and the fact that the distribution

has no point mass, we can write the numerator as

Et
k

[
(p1g(p2)− p2g(p1)) · ut+1(p1) ·

(
1{p2 ≥ p1}+ 1{p2 < p1}

)]
= Et

k

[
(p1g(p2)− p2g(p1))(u

t+1(p1)− ut+1(p2)) · 1{p2 ≥ p1}
]
.

Then the fact that utility is non-increasing in p and Eq. (12) imply the numerator is non-negative.
This completes the proof.

Lemma E.7. Consider the observation model o ∼ Ber(p̃). Define µt
k := Et

k[p] and s̃tk := Et
k[(1−

p)p̃], where Et
k[·] denotes expectation with respect to p ∼ Pt

k = Pt(· | yt = k). For any arbitrary
function f : [0, 1]→ R, the following identities hold:

Et+1
k [f(p)] =

Et
k[(1− p)(1− p̃) · f(p)]

1− µt
k − s̃tk

,

Et+1
k+1[f(p)] =

1

s̃tk
Et
k[(1− p)p̃ · f(p)] .

Proof. Using the updating rule of Pt+1(p) ∝ Pt(p)(1− p) from Eq. (7), we have

Et+1
k [f(p)] =

Et+1[f(p) · p̃k(1− p̃)t+1−k]

Et+1[p̃k(1− p̃)t+1−k]
=

Et[(1− p)(1− p̃) · f(p) · p̃k(1− p̃)t−k]

Et[(1− p)(1− p̃) · p̃k(1− p̃)t−k]

=
Et
k[(1− p)(1− p̃) · f(p)]

1− µt
k − s̃tk

.

Using the same techniques, we also obtain

Et+1
k+1[f(p)] =

Et+1[f(p) · p̃k+1(1− p̃)t−k]

Et+1[p̃k+1(1− p̃)t−k]
=

Et[(1− p)p̃ · f(p) · p̃k(1− p̃)t−k]

Et[(1− p)p̃ · p̃k(1− p̃)t−k]

=
1

s̃tk
Et
k[(1− p)p̃ · f(p)] .

Lemma E.8 (Bounding the effect of one more positive observation on expected utility). Consider
the observation model o ∼ Ber(p̃), where p̃(p) is a concave function with p̃(0) = 0 and p̃(1) = 1.
Define U t

k := Et
k[u

t(p)] and µt
k := Et

k[p] as the expected utility and the expected failure probability
of an active individual at time t who has k positive observations. For any concave (λ1, λ2)-decaying
Lu(t)-Lipschitz utility function ut, we have

U t+1
k+1 − U t+1

k ≤ Lu(t+ 1) · (λ2 − U t+1
k ) ·

µt+1
k+1 − µt+1

k

1− µt+1
k

.

Proof. Denote the cumulative distribution function corresponding to Pt
k by F t

k. The concavity of p̃
and its boundary values imply p̃(p) is non-decreasing in p. Then, a straightforward argument shows
F t+1

k (p) ≤ F t+1
k+1(p). Let π : [0, 1]→ [0, 1] be the optimal transport map from Pt+1

k to Pt+1
k+1. The

definition of π implies

U t+1
k+1 − U t+1

k = Et+1
k

[
ut+1(π(p))− ut+1(p)

]
.

Using the concavity of the utility function, we can upper bound the above by

U t+1
k+1 − U t+1

k ≤ Et+1
k

[
(ut+1)′(p) · (π(p)− p)

]
.
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Our observation that F t+1
k (p) ≤ F t+1

k+1(p) implies that π(p) ≥ p. In other words, the optimal map

must always shift the mass to the right. Furthermore, since
Pt+1

k+1

Pt+1
k

∝ p̃
1−p̃ is an increasing function

of p̃ (and therefore p), it follows that π(p)− p is non-decreasing in p. The concavity of utility also
implies that (ut+1)′(p) is non-increasing. Then, Chebyshev’s sum inequality allows us to bound
U t+1
k+1 − U t+1

k as the product of two terms:

U t+1
k+1 − U t+1

k ≤ Et+1
k [(ut+1)′(p)] · Et+1

k [π(p)− p] = Et+1
k [(ut+1)′(p)] · (µt+1

k+1 − µt+1
k ) . (13)

Since the utility is concave, (ut+1)′ is non-increasing. This enables us to apply Chebyshev’s sum
inequality, allowing us to write

Et+1
k [(ut+1)′(p) · (1− p)] ≥ Et+1

k [(ut+1)′(p)] · (1− µt+1
k ) ,

which gives an upper bound on Et+1
k [(ut+1)′(p)]. Now, since the utility function is (λ1, λ2)-decaying,

we have

Et+1
k [(ut+1)′(p)] ≤

Et+1
k [(ut+1)′(p) · (1− p)]

1− µt+1
k

≤
Et+1

[
Lu(t+ 1) · (λ2 − ut+1(p)) · p̃k(1− p̃)t+1−k

]
Et+1

[
p̃k(1− p̃)t+1−k

]
· (1− µt+1

k )

= Lu(t+ 1)
λ2 − U t+1

k

1− µt+1
k

.

Plugging this into Eq. (13) completes the proof.

Lemma E.9 (Bounding the effect of one more observation and one more time step on expected failure
probability). Consider the observation model o ∼ Ber(p̃), where p̃(p) = 1− (1− p)γ and γ > 1.
Suppose the initial distribution P1 is G-decaying. For any k < t, the following inequalities hold:

µt
k+1 ≥ µt+1

k+1 , (effect of one more time step)

µt+1
k+1 − µt+1

k ≤ µt+1
k+1(1− µt+1

k+1)
( 1

k + 1
+

2 + γ + γ−1 +G

γ (t− k) + t+ 1

)
. (effect of one more observation)

Proof. The proof of the effect of one additional time step is straightforward: Starting from the
definition of µt

k+1 and using the updating rule Pt+1(p) ∝ Pt(p)(1− p) from Eq. (7), we have

µt
k+1 =

Et[p · p̃k+1(1− p̃)t−k−1]

Et[p̃k+1(1− p̃)t−k−1]
=

Et+1
k+1[p · (1− p)−1(1− p̃)−1]

Et+1
k+1[(1− p)−1(1− p̃)−1]

.

Then, since (1− p̃) is non-increasing in p, a direct application of Lemma E.1 gives µt+1
k ≥ µt+1

k+1.

In the second part, we prove the effect of one more observation. We start by writing µt+1
k as

µt+1
k =

Et+1[p · p̃k(1− p̃)t+1−k]

Et+1[p̃k(1− p̃)t+1−k]
=

Et+1[p · d
dp (p̃

k+1) · (1− p̃)t−k · (1− p)]

Et+1[ d
dp (p̃

k+1) · (1− p̃)t−k · (1− p)]
. (14)

Here, we used the identity p̃′ = γ 1−p̃
1−p . Using integration by parts, we can write the numerator as

Et+1[p · d
dp̃

(p̃k+1) · (1− p̃)t−k · (1− p)] = p · p̃k+1(1− p̃)t−k · Pt+1(p)(1− p)
∣∣∣1
0

−
∫ 1

0

p̃k+1(1− p̃)t−k · Pt+1(p)(1− p) dp

+ γ (t− k)

∫ 1

0

p · p̃k+1(1− p̃)t−k · Pt+1(p) dp

−
∫ 1

0

p · p̃k+1(1− p̃)t−k · d
dp

(
Pt+1(p)(1− p)

)
dp .
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Here, we again applied the identity p̃′ = γ 1−p̃
1−p to arrive at the third term. The first term is zero. We

next simplify and bound the last term. Using the updating rule Pt+1(p) ∝ Pt(p)(1− p) from Eq. (7)
we can write

Pt+1(p)(1− p) =
P1(p)(1− p)t+1

Zt+1
,

where Zt+1 is a normalizing constant. Taking the derivative with respect to p and simplifying
equations, we obtain

d

dp

(
Pt+1(p)(1− p)

)
= −(t+ 1)Pt+1(p) +

(P1)′(p)(1− p)t

Zt+1
.

Since P1 is G-decaying, we have

−(t+ 1 +G)Pt+1(p) ≤ d

dp

(
Pt+1(p)(1− p)

)
≤ −(t+ 1)Pt+1(p) .

Using these bounds in the expansion via integration by parts and simplifying the integrals as expecta-
tions, we can impose the following bounds:

(γ (t−k)+t+2)µt+1
k+1−1 ≤ Et+1

k+1[p·
d

dp̃
(p̃k+1)·(1−p̃)t−k ·(1−p)] ≤ (γ (t−k)+t+G+2)µt+1

k+1−1 .

Using similar arguments, we can also derive the following bounds:

γ (t− k) + t+ 1 ≤ Et+1
k+1[

d

dp̃
(p̃k+1) · (1− p̃)t−k · (1− p)] ≤ γ (t− k) + t+G+ 1 .

Plugging these bounds into Eq. (14), we obtain
(γ (t− k) + t+ 2)µt+1

k+1 − 1

γ (t− k) + t+G+ 1
≤ µt+1

k ≤
(γ (t− k) + t+G+ 2)µt+1

k+1 − 1

γ (t− k) + t+ 1
. (15)

Using the lower bound from Eq. (15), after a straightforward calculation, we obtain
µt+1
k+1 − µt+1

k

µt+1
k+1 (1− µt+1

k+1)
≤ 1

γ (t− k) + t+G+ 1

[ 1

µt+1
k+1

+
G

1− µt+1
k+1

]
. (16)

One can verify that the maximum of the terms inside the brackets occurs only when µt+1
k+1 reaches its

smallest or largest values. Here, we only present the case where µt+1
k+1 takes its smallest value, but a

similar bound will hold when it takes its largest value. Therefore, the last missing piece of the proof
is a lower bound on µt+1

k+1. Using the upper bound from Eq. (15), we have

µt+1
k+1 ≥ µt+1

k +
1− (G+ 1)µt+1

k+1

γ (t− k) + t+ 1
.

Repetitively applying the above operation yields

µt+1
k+1 ≥ µt+1

0 +

k+1∑
k′=1

1

γ (t− k′) + γ + t+ 1
− (G+ 1)

k+1∑
k′=1

µt+1
k′

γ (t− k′) + γ + t+ 1
.

An implication of Lemma E.1 is µt+1
k′ ≤ µt+1

k′+1. We also know µt+1
0 ≥ 0. Using these, we can obtain

the lower bound
µt+1
k+1 ≥

S

1 + (G+ 1)S
,

where S =
∑k+1

k′=1(γ (t− k′) + γ + t+ 1)−1. Using the naive bound S ≥ k+1
γt+t+1 , we can further

lower bound µt+1
k+1 as

µt+1
k+1 ≥

k + 1

γt+ t+ 1 + (k + 1)(G+ 1)
.

Plugging this into Eq. (16) gives
µt+1
k+1 − µt+1

k

µt+1
k+1 (1− µt+1

k+1)
≤ γt+ t+ 1 + (k + 1)(G+ 1)

γ (t− k) + t+G+ 1

[ 1

k + 1
+

1

γt+ t+ 1 + (k + 1)G

]
.

Without further ado, using k ≤ t and simplifying the equations complete the proof:
µt+1
k+1 − µt+1

k

µt+1
k+1 (1− µt+1

k+1)
≤ 1

k + 1
+

2 + γ + γ−1 +G

γ (t− k) + t+ 1
.
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E.4 OTHER STATEMENTS

Proposition E.10. Suppose the distribution P over p is G-decaying according to Definition 4.1. This
guarantees

µ := E[p] ≥ µ :=
1

2 +G
,

σ2 := Var[p] ≥ σ2 :=
2µ

3 +G
− µ2 .

Note that
dµ

dG < 0 and ∂σ2

∂G < 0. The above inequalities are tight for P = Beta(1, 1 +G).

Proof. Using G-decaying property of P and integrating by parts, we obtain

µ =

∫ 1

0

pP(p) dp ≥ − 1

G

∫ 1

0

(1− p)p
dP
dp

dp

= − 1

G
(1− p)pP(p)

∣∣∣1
0
+

1

G
E
[d(1− p)p

dp

]
=

1− 2µ

G
.

Rearranging the terms proves µ ≥ µ := 1
2+G .

Similarly, using the G-decaying property of P and integrating by parts again, we have

σ2 + µ2 = E[p2] =
∫ 1

0

p2 P(p) dp ≥ − 1

G

∫ 1

0

(1− p)p2
dP
dp

dp

= − 1

G
(1− p)p2P(p)

∣∣∣1
0
+

1

G
E
[d(1− p)p2

dp

]
=

2µ− 3E[p2]
G

.

Rearranging the terms, we obtain

E[p2] ≥ 2µ

3 +G
.

This implies σ2 ≥ σ2 := 2µ
3+G − µ2.

Proposition E.11. The following notions of utility fit into our definition of (λ1, λ2)-decaying utilities:

1. If the treatment is fully effective, the utility function is (1, 1)-decaying.

2. If the treatment succeeds with probability c and otherwise fails the individual, as in the case of a
risky medical procedure, the utility function is (c, c)-decaying.

3. If the treatment succeeds with probability α and otherwise has no effect, the utility function is
(α, 1)-decaying.

4. If the treatment reduced failure probability from p to p/γ for γ > 1, the utility function is(
(1− γ−1)T−t, 1

)
-decaying.

Proof. The proof follows by plugging ut(p) of each case into Definition 4.4:

1. In case of fully effective treatments, ut(p) = 1− (1− p)T−t. The decrease in utility over time is

ut(p)− ut+1(p) (1− p) = p .

Therefore, λ1 ≤ 1. The increase in utility with p is

(1− p)
(ut)′(p)

(ut)′(0)
+ ut(p) = (1− p)T−t + ut(p) = 1 .

So, λ2 ≥ 1. Putting these together, ut(p) is (1, 1)-decaying.
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2. When treatment succeeds with probability c and fails otherwise, ut(p) = c− (1− p)T−t. The
decrease in utility over time is

ut(p)− ut+1(p) (1− p) = c p .

Therefore, λ1 ≤ c. The increase in utility with p is

(1− p)
(ut)′(p)

(ut)′(0)
+ ut(p) = (1− p)T−t + ut(p) = c .

Hence, λ2 ≥ c. Putting these together, ut(p) is (c, c)-decaying.

3. When treatment succeeds with probability α and has no effect otherwise, ut(p) = α + (1 −
α)(1− p)T−t − (1− p)T−t = α− α (1− p)T−t. The decrease in utility over time is

ut(p)− ut+1(p) (1− p) = α− α (1− p) = αp .

So, λ1 ≤ α. The increase in utility with p is bounded by

(1− p)
(ut)′(p)

(ut)′(0)
+ ut(p) = (1− p)T−t + ut(p) = (1− α)(1− p)T−t + α ≤ 1 .

Hence, λ2 ≥ 1. Putting these together, ut(p) is (α, 1)-decaying.

4. In case treatment reduces p to p/γ, we have ut(p) = (1− p/γ)T−t − (1− p)T−t. The decrease
in utility over time is bounded by

ut(p)− ut+1(p) (1− p) = (1− p/γ)T−t − (1− p)(1− p/γ)T−t−1

= (1− p/γ)T−t−1(1− 1/γ) p ≥ (1− 1/γ)T−t p .

Hence, λ1 ≤ (1− γ−1)T−t. The increase in utility with p is bounded by

(1− p)
(ut)′(p)

(ut)′(0)
+ ut(p)

= (1− p)
(1− p)T−t−1 − 1

γ (1− p/γ)T−t−1

1− 1/γ
+ (1− p/γ)T−t − (1− p)T−t

=

1
γ (1− p)T−t − (1− p/γ)T−t−1

[
1/γ − p/γ − (1− 1/γ)(1− p/γ)

]
1− 1/γ

=

1
γ (1− p)T−t − 1

γ (1− p/γ)T−t

1− 1/γ
+ (1− p/γ)T−t−1 ≤ 1 .

So, λ2 ≥ 1. Putting these together, ut(p) is
(
(1− γ−1)T−t, 1

)
-decaying.

Lemma E.12. Consider the observation model o ∼ Ber(p̃), where p̃(p) = 1− (1− p)γ and γ > 1.
Suppose the initial distribution P1 is non-increasing. Let lt be the smallest yti such that individual i
would be treated at t given a budget of B to be spent at t. We have

lt ≤ (γ + 1) · ln
(N
B

)
.

Proof. For notational brevity, let k = lt. Define the complementary cumulative distribution function
(CCDF) of a binomial random variable by

b(k, t) :=

t∑
k′=k+1

(
t

k′

)
p̃k

′
(1− p̃)t−k′

.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Note that b(·, ·) implicitly depends on p, which we have omitted from the notation for brevity. The
following identity will be proved to be useful:

db(k, t)

dp̃
=

t∑
k′=k+1

(
t

k′

)
k′ · p̃k

′−1(1− p̃)t−k′
−

t−1∑
k′=k+1

(
t

k′

)
(t− k′) · p̃k

′
(1− p̃)t−k′−1

= t · p̃t−1 +

t−1∑
k′=k+1

(
t

k′

)
(k′ − tp̃) · p̃k

′−1(1− p̃)t−k′−1

= t · p̃t−1 + t ·
t−1∑

k′=k+1

(
t− 1

k′ − 1

)
p̃k

′−1(1− p̃)t−k′−1 − t ·
t−1∑

k′=k+1

(
t

k′

)
p̃k

′
(1− p̃)t−k′−1

= t · p̃t−1 +
t

1− p̃
·
(
b(k − 1, t− 1)− p̃t−1

)
− t

1− p̃

(
b(k, t)− p̃t

)
=

t

1− p̃
·
(
b(k − 1, t− 1)− b(k, t)

)
.

Intuitively, the above identity relates the derivative of the CCDF with respect to p̃ to its finite difference
across time. The CCDF is also related to the number of individuals with yt > k. Denoting the
number of individuals with yt = k′ by N t

k′ , we can write:
t∑

k′=k+1

N t
k′ = N t · Et[b(k, t)] .

Using the two identities presented above, we have
t−1∑
k′=k

N t−1
k′ −

t∑
k′=k+1

N t
k′ = N t−1 · Et−1[b(k − 1, t− 1)]−N t · Et[b(k, t)]

= N t−1 · Et−1[b(k, t)]−N t · Et[b(k, t)] +
1

t
N t−1 · Et−1[(1− p̃)

db(k, t)

dp̃
] .

Now, applying the updating rule Pt+1(p) ∝ Pt(p)(1− p) from Eq. (7), we obtain
t−1∑
k′=k

N t−1
k′ −

t∑
k′=k+1

N t
k′ = N t · Et[

p

1− p
b(k, t)] +

1

t
N t · Et[

(1− p̃

1− p

)db(k, t)
dp̃

]

≥ 1

t
N t · Et[(1− p̃)

db(k, t)

dp̃
] . (17)

Using integration by parts, we can expand the expectation:

Et[(1− p̃)
db(k, t)

dp̃
] = P̃t(p̃)(1− p̃) · b(k, t)

∣∣∣1
0
−
∫ 1

0

b(k, t) · d
dp̃

(
P̃t(p̃)(1− p̃)

)
dp̃ .

Here, P̃ denotes the distribution over p̃. For k < t, the first term above is zero. To bound the second
term, note that P̃t(p̃) = Pt(p)

p̃′ . Then, using the identity p̃′ = γ
(
1−p̃
1−p

)
, we have

d

dp̃

(
P̃t(p̃)(1− p̃)

)
=

1

γ p̃′
d

dp

(
Pt(p)(1− p)

)
≤ − t

γ
P̃t(p̃) .

We used (Pt)′(p) ≤ 0 to arrive at the above inequality. Plugging this into Eq. (17) and doing a
straightforward calculation, we obtain( γ

γ + 1

) t−1∑
k′=k

N t−1
k′ ≥

t∑
k′=k+1

N t
k′ .

By repetitively applying such inequalities, we have

( γ

γ + 1

)k t−k∑
k′=0

N t
k′ ≥

t∑
k′=k

N t
k′ .
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Since the last individual who is treated at t has yt = k, the right-hand side is lower bounded by B.
The sum in the left-hand side is also bounded by the total number of initial individuals. These yield
the following bound on k:

k ≤
ln(NB )

ln(1 + γ−1)
.

Using ln(1 + x) ≥ x
1+x completes the proof.

F MISSING PROOFS

Proof of Theorem 3.1. Using the step function approximation, the exponential multiplier in Eq. (8)
is only non-zero if

|p̃j − p̃i|
σ̃ij

≤
√

2 ln(1/α)

t
.

This implies the following lower bound on ∆Rt:

∆Rt ≥

√
t

2 ln(1/α)
· Et

i,j

[ (1− pi)(1− pj)

(1− µt)2
− 1

∣∣∣ |p̃j − p̃i|
σ̃ij

≤
√

2 ln(1/α)

t

]
−
√

ln(1/α)

4πt
.

Suppose p̃−1(·) is L−1-Lipschitz continuous. Using this and σ̃2
ij ≤ 1/2, we can further bound ∆Rt

by

∆Rt ≥

√
t

2 ln(1/α)
· Et

[ (1− p)(1− p− L−1

1−2ϵ

√
2 ln(1/α)

t )

(1− µt)2
− 1

]
−

√
ln(1/α)

4πt

=

√
t

2 ln(1/α)
·
Vart[p]− (1− µt) L−1

1−2ϵ

√
2 ln(1/α)

t

(1− µt)2
−
√

ln(1/α)

4πt
.

The ranking improves over time when ∆Rt < 0. In this case, it is necessary for the lower bound
presented above to be negative as well. This completes the proof with Capprox. = ln(1/α).

Proof of Theorem 4.3. We build on the more general results of Theorem 4.5. First, observe from
Proposition E.11 that the fully effective treatment corresponds to a (1, 1)-decaying utility function.
Define twarm−up := (γ + 1) ln(NB ). Plugging λ1 = λ2 = 1 and (ut+1)′(0) = T − t − 1 into
Theorem 4.5, we have

T − (t+ 1) ≥ t− twarm−up

1 + C
twarm−up+1

2t−twarm−up+1

. (18)

Here, we summarized 2 + γ + γ−1 +G into C. Consider two cases depending on whether t is less
than or larger than tc := (T + twarm−up − 1)/2. When t ≥ tc, we can relax the right-hand side of
Eq. (18) by

T − (t+ 1) ≥ t− twarm−up

1 + C k+1
T

.

Simplifying this bound through a straightforward calculation, we get

t+ 1 ≤ T + (twarm−up + 1)(C + 1)

2 + (twarm−up + 1)CT

=
T

2
+

(twarm−up + 1)(C2 + 1)

2 + (twarm−up + 1)CT

≤ T

2
+ (twarm−up + 1)(

1

2
+

C

4
) .

Therefore, we can conclude, either t < tc or the above bound should hold. Since the above bound is
larger than tc, this is the looser bound. Setting this to t∗ completes the proof.
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Proof of Theorem 4.5. We use the following shorthands and notation throughout the proof. Let
N t

k := |At
k| where At

k is the set of active individuals at t with yt = k. In the limit of many
individuals, N t

k = N t · Et[
(
t
k

)
p̃k(1− p̃)t−k]. Denote the posterior over p given yt = k by Pt

k. The
Bayes’ rule implies Pt

k(p) ∝ Pt(p) p̃k(1 − p̃)t−k. Denote the expectation over individuals in At
k

by Et
k[·]. In the limit of many individuals, Et

k[·] = Ep∼Pt
k,o∼Ber(p̃)[·]. We use the shorthand U t

k to
denote Et

k[u
t(p)] and µt

k to denote Et
k[p] and s̃tk to denote Et

k[(1− p)p̃].

Assuming the prior over p has no point mass, Proposition E.4 implies ranking individuals in descend-
ing order of yt is optimal. Therefore, given a budget of B, the optimal planner sorts individuals in
descending order of yt and allocates to the top B. Let lt be the lowest yt of an individual that has
received the allocation.

Suppose at time t, we have lt = k. Then B > N t
t implies k < t. We argue that postponing the

allocation from time t to time t+ 1 can only increase overall utility if lt+1 is either k or k + 1:

• We first rule out lt+1 > k + 1. If lt+1 > k + 1, only individuals with yt+1 > k + 1 can be
treated. This will be a subset of the individuals that could be treated at t. In particular, individuals
with yt = k will not be eligible at t+ 1. Therefore, the whole budget has not been spent which
violates the optimality of allocation at t+ 1.

• We next rule out lt+1 < k. The key observation is Lemma E.6, which states that the expected
utility of an individual with yt = k who fails at the next step is higher than that of an individual
with yt+1 = k + 1. In other words, failing provides a stronger signal than o regarding the
individual’s likelihood of failure. Formally, when lt+1 < k, everyone who was eligible for
treatment at time t and survived to t+ 1 remains eligible. The individuals who failed during this
transition are replaced by new individuals with yt+1 ≤ k+1. In the best case, the expected utility
from each new individual is U t+1

k+1. However, Lemma E.6 suggests that the expected utility of
those who failed and were replaced is at least U t+1

k+1. Therefore, postponing allocation cannot be
justified.

In the remainder of the proof, we derive an upper bound on ∆W t := W t+1 − W t when lt+1

is either k or k + 1. We will then further simplify this bound to obtain sufficient conditions for
∆W t ≤ 0.

• We first examine the case where lt+1 = k. Suppose at time t, we are able to treat ∆t individuals
from At

k. This number changes to ∆t+1 at time t+ 1. The change in total utility after postponing
allocation for one step can be written as

∆W t = W t+1 −W t =
(
∆t+1U t+1

k +

t+1∑
k′=k+1

N t+1
k′ U t+1

k′

)
−
(
∆tU t

k +

t∑
k′=k+1

N t
k′U t

k′

)
.

From At
k, a ratio of µt

k fail and a ratio of s̃tk proceed to the next step while revealing one more
positive observation. This allows us to relate N t+1

k′ with N t
k′ and N t

k′−1 for k′ ≥ 1:

N t+1
k′ = N t

k′(1− µt
k′ − s̃tk′) +N t

k′−1s̃
t
k′−1 . (19)

Plugging this into W t+1, we obtain

W t+1 = ∆t+1U t+1
k +

t∑
k′=k+1

N t
k′(1− µt

k′ − s̃tk′)U t+1
k′ +

t+1∑
k′=k+1

N t
k′−1s̃

t
k′−1U

t+1
k′

= ∆t+1U t+1
k +N t

ks̃
t
kU

t+1
k+1 +

t∑
k′=k+1

N t
k′

[
(1− µt

k′ − s̃tk′)U t+1
k′ + s̃tk′U t+1

k′+1

]
.

The summand above can be significantly simplified. Using Lemma E.7 with f = ut+1, we have

(1− µt
k′ − s̃tk′)U t+1

k′ + s̃tk′U t+1
k′+1 = Et

k′ [(1− p) · ut+1(p)] .

Since the utility is (λ1, λ2)-decaying, we can upper bound the above by

Et
k′ [(1− p) · ut+1(p)] ≤ Et

k′ [ut(p)− λ1p] = U t
k′ − λ1µ

t
k′ . (20)
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Plugging this into W t+1 allows us to upper bound ∆W t:

∆W t ≤ ∆t+1U t+1
k −∆tU t

k +N t
ks̃

t
kU

t+1
k+1 − λ1

t∑
k′=k+1

N t
k′µt

k′ . (21)

Spending a fixed budget requires

∆t+1 = ∆t +

t∑
k′=k+1

N t
k′ −

t+1∑
k′=k+1

N t+1
k′ .

Using Eq. (19) and performing a straightforward calculation, we can simplify ∆t+1 as

∆t+1 = ∆t −N t
ks̃

t
k +

t∑
k′=k+1

N t
k′µt

k′ . (22)

Plugging this into Eq. (21), we obtain

∆W t ≤ −∆t(U t
k − U t+1

k ) +N t
ks̃

t
k(U

t+1
k+1 − U t+1

k )−
( t∑
k=k+1

N t
k′µt

k′

)
(λ1 − U t+1

k ) . (23)

For a utility function non-increasing in time, we have U t+1
k ≤ Et+1

k [ut(p)]. Since Pt+1
k (p)

Pt
k(p)

∝
(1 − p)(1 − p̃) is continuous and decreasing in p, for a utility function non-decreasing in p,
Lemma E.1 implies Et+1

k [ut(p)] ≤ Et
k[u

t(p)] = U t
k. Therefore, we can conclude the upper bound

of Eq. (23) is decreasing in ∆t. Thus, we can further upper bound ∆W t by finding an upper
bound on ∆t. Since lt+1 = k, it is necessary to have ∆t+1 ≥ 0. Using Eq. (22), this will impose
an upper bound on ∆t:

∆t ≥ N t
ks̃

t
k −

t∑
k′=k+1

N t
k′µt

k′ .

Plugging this into Eq. (23), we have

∆W t ≤ N t
ks̃

t
k(U

t+1
k+1 − U t

k)−
( t∑
k=k+1

N t
k′µt

k′

)
(λ1 − U t

k) . (24)

• We next consider the case of lt+1 = k + 1. We follow steps similar to those in the previous case.
The change in total utility after postponing allocation for one step is

∆W t = W t+1 −W t =
(
(∆t+1 −N t+1

k+1)U
t+1
k+1 +

t+1∑
k′=k+1

N t+1
k′ U t+1

k′

)

−
(
∆tU t

k +

t∑
k′=k+1

N t
k′U t

k′

)
.

Plugging N t+1
k′ expansion from Eq. (19) into W t+1, we obtain

W t+1 = (∆t+1 −N t+1
k+1)U

t+1
k+1 +

t∑
k′=k+1

N t
k′(1− µt

k′ − s̃tk′)U t+1
k′ +

t+1∑
k′=k+1

N t
k′−1s̃

t
k′−1U

t+1
k′

= (∆t+1 −N t+1
k+1)U

t+1
k+1 +N t

ks̃
t
kU

t+1
k+1 +

t∑
k′=k+1

N t
k′

[
(1− µt

k′ − s̃tk′)U t+1
k′ + s̃tk′U t+1

k′+1

]
.

As we showed in the previous case, the summand above can be bounded by U t
k′−λ1µ

t
k′ . Plugging

this into W t+1 allows us to upper bound ∆W t:

∆W t ≤ (∆t+1 −N t+1
k+1)U

t+1
k+1 −∆tU t

k +N t
ks̃

t
kU

t+1
k+1 − λ1

t∑
k′=k+1

N t
k′µt

k′ . (25)
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Spending a fixed budget requires

∆t = (∆t+1 −N t+1
k+1) +

t+1∑
k′=k+1

N t+1
k′ −

t∑
k′=k+1

N t
k′ .

Using Eq. (19) and performing a straightforward calculation, we can simplify ∆t+1 as

∆t = (∆t+1 −N t+1
k+1) +N t

ks̃
t
k −

t∑
k′=k+1

N t
k′µt

k′ .

Plugging this into Eq. (25), we obtain

∆W t ≤ (N t+1
k+1 −∆t+1)(U t

k − U t+1
k+1) +N t

ks̃
t
k(U

t+1
k+1 − U t

k)−
( t∑
k=k+1

N t
k′µt

k′

)
(λ1 − U t

k) .

We argue postponing allocation is only justified if U t+1
k+1 > U t

k. Otherwise, the eligible individuals
with the lowest yt at the previous step already have higher expected utility than the newly
eligible individuals at t+ 1. This implies that the above upper bound is increasing in ∆t+1. The
largest ∆t+1 happens when ∆t+1 approaches N t+1

k+1. The reader can already verify this will lead
to the same bound as the previous case (Eq. (24)).

Before proceeding to analyze the upper bound of Eq. (24), we make one more observation. Recall
that in Eq. (20) we used (λ1, λ2)-decaying property of the utility function. However, Lemma E.6
implies another complementary bound of this quantity:

Et
k′ [(1− p) · ut+1(p)] ≤ U t

k′ − Et
k′ [p · ut+1(p)] ≤ U t

k′ − U t+1
k′+1µ

t
k′ .

Comparing this with the bound in Eq. (20), we observe that any result involving λ1 can always be
updated by substituting λ1 with U t+1

k+1. Such an update to Eq. (24) results in

∆W t ≤ (N t
ks̃

t
k −

t∑
k=k+1

N t
k′µt

k′)(U t+1
k+1 − U t

k) .

Recall that deferring allocation requires U t+1
k+1 > U t

k. The above equation further implies that
N t

ks̃
t
k ≥

∑t
k=k+1 N

t
k′µt

k′ is also necessary. Now, looking back at Eq. (24), we can conclude that
under these necessary conditions, the upper bound is decreasing in U t

k. Hence, decreasing U t
k to U t+1

k
can only increase the bound:

∆W t ≤ N t
ks̃

t
k(U

t+1
k+1 − U t+1

k )−
( t∑
k=k+1

N t
k′µt

k′

)
(λ1 − U t+1

k ) . (26)

We will use this inequality as a basis for the remainder of the proof.

The following identity will be useful:

N t
ks̃

t
k =

(
t

k

)
N t · Et[(1− p)p̃ · p̃k(1− p̃)t−k]

=

(
t

k

)
N t+1 · Et+1[p̃k+1(1− p̃)t−k] =

(k + 1

t+ 1

)
N t+1

k+1 . (27)

Here, we used the updating rule Pt+1(p) = Pt(p)
(

1−p
1−µt

)
from Eq. (7). Eq. (27) implies that

individuals with yt = k who survive to the next step while showing one more positive observation,
form

(
k+1
t+1

)
of N t+1

k+1. So we can conclude that the rest of N t+1
k+1 comes from N t

k+1. Therefore, we
have

N t
k+1 ≥

( t− k

t+ 1

)
N t+1

k+1 . (28)

Plugging this and Eq. (27) into Eq. (26), we obtain

∆W t ≤ N t+1
k+1

(k + 1

t+ 1

)[
(U t+1

k+1 − U t+1
k )−

( t− k

k + 1

)
µt
k+1 (λ1 − U t+1

k )
]
. (29)

In the rest of the proof, we consider two cases where the utility function is either (λ1, λ2)-decaying
or just λ1-decaying.
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The case of (λ1, λ2)-decaying utility. The difference (U t+1
k+1 − U t+1

k ) in Eq. (29) captures the
effect of one more observation on the expected utility. For a (λ1, λ2)-decaying utility, Lemma E.8
upper bounds this effect by

U t+1
k+1 − U t+1

k ≤ (ut+1)′(0) · (λ2 − U t+1
k ) ·

µt+1
k+1 − µt+1

k

1− µt+1
k

.

Here, we used (ut+1)′(0) in place of the Lipschitz constant of ut+1 in the lemma because the utility
function is concave. Plugging this into Eq. (29) and using the assumption that λ1 ≥ λ2, we obtain

∆W t ≤ C
[
(ut+1)′(0)− λ1

λ2

( t− k

k + 1

)µt
k+1 (1− µt+1

k )

µt+1
k+1 − µt+1

k

]
.

Here, we summarized all the terms multiplying before the bracket as a constant C, since these terms
do not affect the sign of ∆W t. It is straightforward to verify µt

k+1 ≥ µt+1
k+1 and µt+1

k ≤ µt+1
k+1. Then,

for γ > 1, Lemma E.9 yields

∆W t ≤ C
[
(ut+1)′(0)−

(λ1

λ2

) t− k

1 + (2 + γ + γ−1 +G) k+1
2t−k+1

]
. (30)

The upper bound of Eq. (30) is increasing in k. Therefore, the last missing piece of the proof is an
upper bound on k. Lemma E.12 provides such an upper bound and completes this part of the proof.

The case of λ1-decaying utility. As we discussed above, decreasing U t
k in Eq. (24) can only

increase the bound. Setting U t
k then gives

∆W t ≤ N t
ks̃

t
kU

t+1
k+1 −

( t∑
k=k+1

N t
k′µt

k′

)
λ1 .

Plugging Eq. (28) into this, we obtain

∆W t ≤ N t+1
k+1

(k + 1

t+ 1

)[
U t+1
k+1 −

( t− k

k + 1

)
µt
k+1λ1

]
. (31)

Concavity of the utility function and its zero value at p = 0 imply

U t+1
k+1 ≤ (ut+1)′(0) · µt+1

k+1 .

Plugging this into Eq. (31), we have

∆W t ≤ C
[
(ut+1)′(0)−

( t− k

k + 1

)
λ1

]
,

where all the factors outside of the brackets are summarized in C. Using the upper bound on k from
Lemma E.12 completes this part of the proof.

Extending to all future times. As the final remark of the proof, note that the upper bounds provided
in all cases are shrinking with t. Therefore, if ∆W t ≤ 0, then postponing allocation to any future
time cannot be justified.

Proof of Theorem 5.1. Consider N individuals initially at time t = 1. Denote the subset of At

with yt = k byAt
k. Define nt

k := |At
k|/N . Denote the set of individuals treated at t by It. Excluding

It from At
k, denote the remaining by Āt

k := At \ It, and define n̄t
k := |Āt

k|/N . In the limit of
N →∞, we can treat nt

k and n̄t
k as continuous variables taking any value in [0, 1].

Step 1. The following property of the problem dynamics allows us to infer whether At
k is empty or

not based on the previous step.

Lemma F.1. Defining n̄t
−1 = 0, at any time t and for any k, we have

nt+1
k > 0 ⇐⇒ n̄t

k > 0 or n̄t
k−1 > 0 .

See proof on page 34.
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Step 2. Consider two active individuals i and j at time t. If yti > ytj , for any utility function non-
decreasing in p, Lemma E.5 implies treating i yields more utility than j in expectation. Therefore,
the optimal allocation at any point should not target individuals with lower yt while there are active
individuals with a higher yt.

Step 3. We show that, except for the first time step, at each time t on the optimal path, the treated
individuals at t should have similar values of yt.

Lemma F.2. For At ̸= ∅ and t ≥ 2 on the optimal path, for any i, j ∈ It, we should have yti = ytj =

max {i′ | i′ ∈ At}.

See proof on page 34.

Step 4. When an individual i with yti = k ≥ 1 is treated at t, not only is At
k non-empty, but At

k−1 is
also non-empty.

Lemma F.3. For k ≥ 1, if there exists i ∈ It on the optimal path such that yti = k, then nt
k−1 > 0.

See proof on page 34.

Step 5. Using the structure imposed on the optimal solution in the previous steps, we next restrict
It+1 based on It.

Lemma F.4. Suppose At ̸= ∅ and let k = max{yti | i ∈ At}. On the optimal path,

• If It = At
k, either It+1 ⊆ At+1

k or It+1 = At+1
k+1 = ∅.

• If It ⊂ At
k, either It+1 ⊆ At+1

k+1 or It+1 = At+1
k+2 = ∅.

See proof on page 34.

Step 6. Except for one time step, at every t on the optimal path, either It = ∅ or It treats everyone
with yt ≥ k for some k. If there were two time steps t and t′ violating this, because of the linearity
of the expected utility in |It| and |It′ |, optimally, one would become zero or treat everyone above a
cutoff. This and Lemma F.4 complete the proof.

Proof of Lemma 5.2. We first iterate over two of the three unspecified parameters, t̂ and q(·) in
Theorem 5.1. There are T possibilities for t̂. A valid sequence q(·) can then be determined by
specifying q(1) and a binary sequence of length T − 1. The tth binary value in this sequence
determines whether q(t+ 1)− q(t) will be: 0 or 1 if t ̸= t̂, or 1 or 2 if t = t̂. Since the maximum yt

at each time t is t, it is straightforward to verify that for any sequence that starts with q(1) > 2, there
exists another sequence with q(1) ≤ 2 that treats similar individuals. Therefore, there are effectively
only three choices for q(1).

Given t̂ and a valid sequence q(·), there remains to determine the allocation at t̂ based on the available
budget. Let ρ denote the proportion of At̂

q(t̂)
who are not treated. One can verify that for a fixed t̂

and q(·), both the spending and the expected total utility are linear in ρ. Therefore, to find ρ, we only
need to simulate an allocation for two distinct values of ρ. We then use these two points to identify
the linear relationships and determine the optimal ρ under the budget constraint. In Algorithm 1, we
perform this by simulating the trajectories for ρ = 0 and ρ = 1 which takes O(T 2) steps.

Proof of Theorem 5.3. While iterating the search space through Lemma 5.2, we can store the number
of individuals fromAt

k treated at each t and k. Then there remains to calculate U t
k :== Ep∼Pt(·|yt=k).

Assuming the expectation under posterior distribution can be calculated efficiently in constant steps,
we can calculate the total utility of an instance. This operation takes O(T 2) but since this is happening
in the same loop of iteration as Lemma 5.2, it does not add to the asymptotic complexity of the
algorithm.
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Proof of Lemma F.1. For k ≥ 1, At+1
k will consist of those in Āt

k who survive and have ot+1 = 0,
or those in Āt

k−1 who survive and have ot+1 = 1:

nt+1
k = n̄t

k Et
k

[
(1− p)(1− p̃)

]
+ n̄t

k−1 Et
k−1

[
(1− p) p̃

]
.

Here, Et
k denotes expectation with respect to p ∼ Pt

k = Pt(· | yt = k). We implicitly used the fact
that the targeting cannot distinguish people with the same yt. The same update rule works for k = 0
if we set n̄t

−1 = 0. One can also verify that since the prior over p has no point mass, the expectations
above are non-zero. This completes the proof.

Proof of Lemma F.2. The proof is by contradiction with optimality and has multiple steps:

• Let k = max {yti | i ∈ At}. Since nt
k+1 = 0, Lemma F.1 requires n̄t−1

k+1 = n̄t−1
k = 0. On the

other hand, when nt
k > 0, Lemma F.1 requires either n̄t−1

k or n̄t−1
k−1 to be non-zero. Since we just

argued n̄t−1
k = 0, it is required to have n̄t−1

k−1 > 0.

• Since n̄t−1
k−1 > 0, Lemma F.1 implies nt

k−1 > 0. Then Step 2 requires that if It contains
individuals with different yt, there should be two individuals i, j ∈ It such that yti = k and
ytj = k − 1.

• Consider the following tie-breaking when treating individuals with a similar yt: Assign a random
priority value z1i ∈ [0, 1) to each individual i in the initial pool. At time t, update the priority
value by zti = zt−1

i + oti 2
t−1. If any two individuals are at a tie to receive the treatment, choose

the one with the lowest priority value. This tie-breaking does not change the optimality of an
allocation rule.

• So far we showed n̄t−1
k−1 > 0, i.e., there exist some individuals in At−1

k−1 left untreated at t− 1, but
there exists j ∈ At

k−1 who is treated at t. We argue this is suboptimal as the budget to treat j
could have been spent earlier to treat those in At−1

k−1, yielding higher utility. To see this, consider a
counterfactual allocation rule that treats one more individual from At−1

k−1 at t− 1, to be referred to
as individual j′. This individual has either failed or made it to t. If failed, Lemma E.6 implies
that the counterfactual treatment could be more effective. If j′ is active at t, she will either have
ytj′ = k or ytj′ = k− 1. If ytj′ = k, then she is treated with others in At

k. If ytj′ = k− 1, still j′ is
treated. This is because j′ maintains the lowest priority value among At

k−1 by the construction of
the priority values. Since j′ is treated in any case if she makes it to t, she could be treated earlier
at t− 1. This could yield a higher or similar utility as ut is non-increasing in t. This contradiction
shows yti = ytj = k.

Proof of Lemma F.3. The proof is obvious for t = 1 since k can only be 1 and unless the budget is
excessively large to treat everyone, we have n1

0 > 0. For t ≥ 2, Lemma F.2 requires nt
k > 0 and

nt
k+1 = 0. Then Lemma F.1 implies n̄t−1

k = 0 and n̄t−1
k−1 > 0, so nt

k−1 > 0.

Proof of Lemma F.4. We first prove the first part the lemma. If It = At
k, there are two possibilities

for k. If k = 0, then Āt
k = ∅ and Step 2 implies no one is left untreated at t. So, It+1 = At+1

k+1 =

At+1 = ∅. If k ≥ 1, then Lemma F.3 implies nt
k−1 > 0. Then Itk = At

k implies n̄t
k−1 > 0 and

n̄t
k = 0. Applying Lemma F.1 gives nt+1

k > 0 and nt+1
k+1 = 0. Therefore, using Lemma F.2, treated

individuals at t+ 1 should be among At+1
k or no one will be treated.

We next prove the second part of the lemma. If It ⊂ At
k, we have n̄t

k > 0 and nt
k+1 = n̄t

k+1 = 0.
Then Lemma F.1 implies nt+1

k+1 > 0 and nt+1
k+2 = 0. Therefore, using Lemma F.2, treated individuals

at t+ 1 should be among At+1
k+1 or no one will be treated.
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