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Abstract

The increasing use of complex and opaque001
black box models requires the adoption of in-002
terpretable measures, one such option is ex-003
tractive rationalizing models, which serve as004
a more interpretable alternative. These mod-005
els, also known as Explain-Then-Predict mod-006
els, employ an explainer model to extract ra-007
tionales and subsequently condition the pre-008
dictor with the extracted information. Their009
primary objective is to provide precise and010
faithful explanations, represented by the ex-011
tracted rationales. In this paper, we take a012
semi-supervised approach to optimize for the013
plausibility of extracted rationales. We adopt014
a pre-trained natural language inference (NLI)015
model and further fine-tune it on a small set016
of supervised data (10%). The NLI predic-017
tor is leveraged as a source of supervisory018
signals to the explainer via entailment align-019
ment. We show that, by enforcing the align-020
ment agreement between the explanation and021
answer in a question-answering task, the per-022
formance can be improved without access to023
ground truth labels. We evaluate our approach024
on the ERASER dataset and show that our ap-025
proach achieves comparable results with super-026
vised extractive models and outperforms unsu-027
pervised approaches by > 100%.028

1 Introduction029

Large language models such as Google’s030

BERT (Devlin et al., 2018) and OpenAI’s GPT031

series (Brown et al., 2020) are gaining widespread032

adoption in natural language processing (NLP)033

tasks. These models achieved impressive perfor-034

mance in multiple NLP tasks ranging from solving035

text generation to information extraction (Liu036

et al., 2023). However, little is known regarding037

how answers are generated or which portion of038

the input text the model focuses on. These flaws039

highlight concerns surrounding trust and fear of040

undesirable biases in the model’s reasoning chain.041

Explainable AI (XAI) is currently an active field of 042

research aimed at addressing these issues (Adadi 043

and Berrada, 2018; Cambria et al., 2023; Yeo 044

et al., 2023). In this work, we focus on extractive 045

rationalizing models (Lei et al., 2016), which are 046

also known as Explain-Then-Predict (ETP) models, 047

and are designed towards producing highlights 048

serving as faithful explanations. Faithfulness is 049

defined as serving an explanation that represents 050

the model’s reasoning process for a given decision, 051

while plausibility refers to the level of agreement 052

with humans (Jacovi and Goldberg, 2020). An 053

advantageous characteristic of ETP models is that 054

they concurrently produce the explanation and the 055

task label, eliminating the necessity for an added 056

layer of interpretation. 057

Figure 1: An example from the FEVER dataset, where
the bold statement is the annotated rationale. Given the
document and claim, the label denotes that the docu-
ment contains evidence supporting the claim. The NLI
predictor interprets this as a form of entailment between
the claim and rationale.

This differs from post-hoc techniques such as 058

LIME (Ribeiro et al., 2016) or SHAP (Lundberg 059

and Lee, 2017), specifically tailored to interpret 060

black-box models. Although these techniques are 061

model-agnostic by design, they are computation- 062

ally expensive and do not guarantee faithfulness 063

nor optimized for plausibility. Chain-of-thought 064

(CoT) (Wei et al., 2022) is another popular ap- 065
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proach, aimed at prompting Large Language Mod-066

els (LLM) such as OpenAI’s GPT4 to elucidate067

its own prediction, in the form of reasoning steps068

which is said to be a form of explanation. How-069

ever, we note that though the reasoning steps are070

seemingly plausible and convincing, there is no071

guarantee of the reasoning being faithful towards072

the supported output. This is largely due to the073

issue of hallucination in LLMs which causes it to074

generate erroneous answers (Huang et al., 2023),075

meaning that the explanation can be equally hal-076

lucinated, thereby denying its faithfulness. ETP077

models instead constrain the predictions on a com-078

pressed subset of the input, referred to as rationales,079

thereby guaranteeing the output to be solely condi-080

tioned on the subset. This can be seen as a binary081

form of feature relevance.082

In our work, we focus on improving the plausi-083

bility of rationales, measured via matching human084

annotations. Several work has established bench-085

mark datasets that consist of both the task label086

as well as human-annotated rationales (Bao et al.,087

2018; DeYoung et al., 2019). Current works in ex-088

tractive rationalization mostly implement a pipeline089

procedure of training an explainer and a predic-090

tor (DeYoung et al., 2019), trained either jointly or091

separately. The training approach for these models092

can be bifurcated into two primary methods: super-093

vised or unsupervised rationale extraction. In our094

methodology, we strike a balance by leveraging a095

minimal subset of annotated rationales (≤ 10%) to096

refine an ETP model. This refinement is applied097

to a separate NLI predictor, functioning as an aux-098

iliary instructor for the explainer in the event of099

limited annotated rationales. More importantly, the100

explainer has no access to the annotations, which101

are exclusively presented to the NLI predictor.102

Our approach is inspired by recent work in en-103

suring factual consistency in abstraction summa-104

rization (Roit et al., 2023), which has been found105

useful in cases of hallucination. The authors use106

the entailment signal as a reward in reinforcement107

learning to ensure factuality in summarization tasks.108

We instead optimize for plausibility and constrain109

the explanation to be aligned with the given query.110

Our proposed approach is simple to implement111

yet effective in providing effective learning signals.112

Firstly, we create an augmented dataset based on113

the alignment between the provided rationales and114

the NLI classes. This is used to provide further115

fine-tuning to the NLI predictor. The NLI predictor116

is then used to annotate each sentence such that it117

can be used to train the explainer. 118

NLI models are designed to determine whether 119

a hypothesis contradicts, entails, or is neutral to a 120

given premise. As such, they provide useful signals 121

to align a given explanation to the answer produced 122

by the predictor. An example shown in Figure 1, 123

in a fact verification example, the purpose of the 124

rationale is to act as evidence to either support or 125

refute the given claim. This can be interpreted 126

alternatively as an NLI task where the claim acts 127

as the premise while the rationale is the hypothesis, 128

in this case entailing the premise. We further note 129

that this simple principle not only addresses the 130

scenario of scarce supervisory labels but can also 131

act as a counter-checker against the predictor. As 132

seen later on, this can have some desirable effects 133

on the robustness of rationales (Chen et al., 2022) 134

and enhanced predictive performance. In summary, 135

the three key contributions of this work are the 136

following: 137

• A simple yet effective approach that improves 138

the plausibility and robustness of extracted ra- 139

tionales, while simultaneously improving task 140

performance. The approach achieves compet- 141

itive results against supervised models while 142

outperforming unsupervised models by a large 143

margin (>100%). 144

• To the best of our knowledge, this is the first 145

work to utilize an auxiliary NLI predictor in 146

a semi-supervised fashion for extractive ratio- 147

nalization. 148

• Our approach has low resource requirements, 149

using models of <300M parameters, and a 150

small set of human-annotated rationales. 151

2 Methodology 152

2.1 Problem setting 153

Given an input document consisting of N sen- 154

tences, xi = {xi,1, xi,2, ..., xi,N}. The task ob- 155

jective can be decomposed into two steps, namely 156

rationale extraction, and task prediction. An ex- 157

plainer, fθ takes in the input document and gener- 158

ates a binary mask over the sentences indicating 159

the rationales, fθ(ẑi|xi) ∈ {0, 1}N . 160

The predictor, gϕ can only consider the masked 161

inputs during inference, since the initial reason for 162

extractive rationalization is to present the rationales 163

as a faithful explanation towards the task prediction, 164

ŷi = gϕ(ẑi ⊙ xi), ⊙ is the element-wise multipli- 165

cation. As rationales are designed to be a concise 166
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representation of the original text, there naturally167

exists a trade-off between generating a sparse z168

and retaining sufficient information to accurately169

infer the task label. In various studies, optimization170

strategies are generally consistent, differing mainly171

in the use of human-annotated labels for training172

rationale extractors. Our approach, however, em-173

ploys a semi-supervised method using an auxiliary174

predictor optimized for NLI, denoted as fNLI .175

2.2 Semi-supervised NLI signal176

Humans tend to prefer explanations that are aligned177

with the supported answer, similar to how NLI178

tasks involve generating the alignment between179

two sentences. As such, NLI predictors naturally180

serve as helpful supervision in the absence of anno-181

tated rationales. This is especially applicable in a182

fact-verification scenario where the task is to infer183

if a given claim is supported by the provided docu-184

ment. For example, given a document containing185

the following annotated rationale: "Kung Fu Panda186

opened in 4,114 theaters, grossing $20.3 million187

on its opening day" along with a claim: "Kung Fu188

Panda made more than $1 million on opening day.".189

The rationale acts as supporting evidence if the cor-190

responding label, yi = SUPPORT, indicates that the191

claim should be supported given the document and192

vice versa. The NLI predictor is fine-tuned based193

on this simple heuristic, to match each sentence in194

the document against the query. It is trained on the195

augmented dataset created via a label transforma-196

tion technique shown in Algorithm 1. Note that197

the transformation operates under the assumption198

that there are no contradictory sentences against199

the label, ie in xi,j contradicts the claim when the200

label is entailment. The transformation takes into201

account both annotated labels only during training202

and predictions otherwise.203

During training, the NLI predictor acts as the204

source of supervision in place of the human-205

annotated rationales. As the explainer is trained206

to predict a binary mask, Algorithm 1 can be im-207

plemented in reverse to transform the NLI outputs208

back to rationale labels, z̃ for the explainer’s train-209

ing, (see Appendix for more details). We note that210

the above approach is likewise applicable to binary211

true/false tasks where the predictor has to indicate212

if the answer is true or false concerning the ques-213

tion. This extends the applicability towards most214

NLP tasks since they can always be rephrased as215

such.216

Algorithm 1 Rationale to NLI label transformation
Input: Annotated rationale, zi, task label, yi
Output: NLI label,z̃i

1: for zi,j in zi do
2: if zi,j = 1 ∧yi = TRUE then
3: ˜zi,j = entailment
4: else if zi,j = 1 ∧yi = FALSE then
5: ˜zi,j = contradiction
6: else
7: ˜zi,j = neutral
8: end if
9: end for

10: return z̃i

2.3 Sentence-level training 217

We utilizes a pipeline approach consisting of a 218

shared encoder, along with separate decoders for 219

the explainer and predictor. The input is first en- 220

coded into contextualized hidden states, hi,1:L = 221

enc(xi,1:L), where L is at the token level. We fol- 222

low (Paranjape et al., 2020) and transform the 223

token-level hidden states into sentence-level by con- 224

catenating the starting and ending tokens and feed- 225

ing it into an explainer decoder to produce ratio- 226

nales, z̃i = fθ(hi), where hi = MLP (hi,s ⊕ hi,e), 227

⊕ is the concatenation process. 228

The predictor is conditioned on the rationales 229

and trained using standard cross entropy. 230

Lgϕ = −Ez∼fθ(z|x)[log(ŷi|ẑ)] (1) 231

The explainer loss, Lfθ is similarly computed 232

with (1), but against the augmented targets, z̃i = 233

fNLI(z̃i|xi, yi) ∈ {0, 1}N , instead of the anno- 234

tated targets. The full training and inference ap- 235

proach is depicted in Figure 2, where the NLI pre- 236

dictor is first fine-tuned before training the ETP 237

model. The choice of a shared encoder allows 238

for a form of dependency between ei and ŷi, as 239

the encoder has to jointly optimize the represen- 240

tation to infer both the task label and rationales 241

accurately. The final loss is thus a combination 242

of both the predictor and explainer cross-entropy 243

loss, Ltotal = Lgϕ + λLfθ , where λ balances the 244

trade-off between classification and plausibility per- 245

formance. 246

The label transformation is only used during 247

training as it requires access to yi which is not 248

available at test time. However, we will show how 249

fNLI can remain useful during inference by acting 250

as a counter-checker against ŷi. 251
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Figure 2: An overview of the proposed approach during
training (bold in blue) and inference (bold in red). The
NLI predictor only has access to the task label during
training. The NLI predictor is initially fine-tuned using
a limited set of annotated rationales, before generat-
ing artificial targets for the explainer. Cross-checking
alignment is conducted during inference against the pre-
dictor.

2.4 Inference252

During inference, the rationales are extracted solely253

by the trained explainer, fθ. However, fNLI can act254

as a counter-checker against the predictor gϕ in the255

event of a distributional shift in gϕ. Given ẑi and a256

prefix (claim in fact verification or question-answer257

pair in Q&A task), fNLI denotes if ẑi contradicts258

or entails the prefix. We ignore the neutral probabil-259

ity and re-weight the NLI class probabilities before260

summing up the n selected sentences in each in-261

stance, ỹCi = 1
n

∑n
j=1 ỹ

C
i,j , where C denotes the NLI262

class instance. The output task label is then cho-263

sen as either generated from the predictor or NLI264

predictor, whichever is higher, ŷi = max(ŷi, ỹ
C
i ).265

This is helpful in the case where gϕ is less confident266

and fNLI steps in by breaking down the task into267

simpler components such as computing the overall268

entailment/contradictory score across all sentences269

or true/false in binary questions.270

3 Experiments271

3.1 Datasets272

We evaluate our approach against unsupervised and273

supervised baselines across three benchmark tasks274

from ERASER. ERASER contains a suite of NLP275

tasks, extended with human-annotated rationales,276

to assess plausibility.277

• FEVER: A fact-verification dataset, each in-278

stance consists of a claim and a document,279

where the goal is to determine if the claim is280

supported or refuted using information from 281

the document. 282

• BoolQ: Question-answering task, containing a 283

context document from Wikipedia and a ques- 284

tion, the answer is either true or false. Due to 285

the long sequence, we select the most relevant 286

portion of the context using TF-IDF scoring 287

similar to (Paranjape et al., 2020). 288

• MultiRC: A multi-hop dataset, requiring rea- 289

soning over multiple sentences to infer to cor- 290

rect answer. Multiple answer choices can be 291

associated with a single question and the task 292

is to predict if the answer is true or false. 293

3.2 Experimental Setup 294

We use RoBERTa-base (Liu et al., 2019) as the 295

shared encoder between the explainer and predictor. 296

The NLI predictor, fNLI is a DeBERTa-large trans- 297

former (He et al., 2021) fine-tuned on multiple NLI 298

datasets, we use the v3 variant. Our approach is ag- 299

nostic to the choice of the pre-trained transformer 300

for both the backbone encoder and NLI predictor. 301

We selected RoBERTa-base, with its 125M param- 302

eters, due to its computational efficiency compared 303

to larger models, while still maintaining high per- 304

formance. We fine-tune the NLI predictor with 305

only 10% of the training data. We list the full hy- 306

perparameter details in A.2. A notable benefit of 307

our approach is that it does not require an expensive 308

search over objective-related hyperparameters. 309

3.3 Baselines 310

We evaluate our approach against both supervised 311

and unsupervised models, along with predictors 312

subjected to full context. We refer to Full-C as 313

the predictor-only set up to assess the gap in task 314

performance between using the full context as com- 315

pared to a subset. Supervised trains the explainer 316

against human-annotated labels, zi, instead of z̃i in 317

our hard-masking approach, serving as the upper 318

bound for plausibility. 319

IB is an unsupervised approach from (Paran- 320

jape et al., 2020) which optimizes a information- 321

bottleneck objective and selects top N% according 322

to pre-defined sparse prior. The author additionally 323

introduces a semi-supervised approach of using 324

25% of the annotated rationales which we refer to 325

as IB-25%. Note that this baseline is subjected to 326

higher supervision compared to ours (10%). We did 327

not implement IB with similar supervision since 328

there were minor differences in implementation, 329
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though we included the reported results for the330

sake of fairness (R). We choose 10% based on em-331

pirical results, serving as a good trade-off between332

minimal resource requirement and performance, al-333

beit a comparable level of supervision (25%) can334

be referred from Table 4. All evaluated approach335

implements an ETP-type setup, consisting of an336

explainer and predictor except for Full-C.337

3.4 Metrics338

We report task performance using classification339

metrics such as accuracy and F1-score, while the340

plausibility of extracted rationales is assessed us-341

ing token-F1 (DeYoung et al., 2019) at the sentence342

level. We leave out any faithfulness metrics such as343

sufficiency as we assume ETP models to be inher-344

ently faithful given that the predictor is only sub-345

jected to the extracted explanation. We also assess346

the robustness by exposing the explainer to adver-347

sarial inputs. The adversarial attack is generated by348

prefixing the context with an adversarially crafted349

query (Chen et al., 2022), by replacing detected350

nouns and adjectives with antonyms to distract351

the explainer. This attack aims to evaluate the ex-352

plainer’s proficiency in disregarding sentences that353

are subtly incongruent and out of context, while354

similarly influencing the predictor’s context win-355

dow.356

We employ the following equations (Chen et al.,357

2022) to compute the normalized discrepancy in358

task performance, ∆T and plausibility, ∆P be-359

tween the original and perturbed inputs as an in-360

dicator of robustness. Additionally, we utilize the361

attack rate, AR to gauge the frequency with which362

the explainer identifies adversarial sentences.363

∆T =
1

N

N∑
i=1

Mt(ŷi, yi)−Mt(ŷ
A
i , yi)

Mt(ŷi, yi)
(2)364

365

∆P =
1

N

N∑
i=1

Mp(ẑi, zi)−Mp(ẑ
A
i , zi)

Mp(ẑi, zi)
(3)366

367

AR =
1

N

N∑
i=1

ẑi ∩ zAS (4)368

Mt and Mp is the scoring function for task and369

plausibility performance, for which we use the F1370

and Token-F1 measurement. ŷAi , and ẑAi refer to371

the generated class label and rationale given the372

adversarial input. zAS refers to the position of the373

adversarial prefix.374

4 Results 375

In this section, we will assess our approach against 376

the introduced baselines. All results are averaged 377

over three runs with different seeds. For Full-C, we 378

do not report plausibility performance since there 379

is no explainer module. In the ERASER bench- 380

mark, the number of annotated rationale sentences 381

varies between instances as well as tasks. The 382

BoolQ dataset features a greater quantity of anno- 383

tated sentences and also includes more extended 384

continuous spans of these sentences. The objective 385

of the experiment is to judge the various ETP mod- 386

els’ reasoning capabilities over a compressed span 387

of text while having the generated explanation stay 388

as close as possible to human references. Further- 389

more, we are also interested in studying how an 390

NLI predictor can provide useful learning signals 391

to the explainer in the event of limited annotations. 392

4.1 Plausibility and Task Analysis 393

The task and plausibility performance is shown 394

in Table 1. We are unable to replicate the exact 395

results for IB, but for the sake of fairness, we re- 396

port the performances gathered from the original 397

work (Paranjape et al., 2020). Judging from the 398

results, our approach achieves highly competitive 399

performance against the gold standard for both task 400

(Full-C) and plausibility (Supervised). In FEVER, 401

it even surpasses the full context approach (94.2 vs 402

93). It goes to show that ETP-like models can ben- 403

efit from ignoring spurious noise by conditioning 404

the predictor to only text considered essential for 405

inferring the target class. The additional usage of 406

fNLI as a cross-checker during inference also pro- 407

vided considerable improvements across all three 408

benchmarks, at little to no cost in computational 409

resources. 410

In terms of plausibility, our method delivers a 411

token-f1 score that is on par with the fully super- 412

vised approach across all datasets except BoolQ. 413

We note that a likely reason is that the target ra- 414

tionales are largely inconsistent in length, with in- 415

stances stretching across as many as six contiguous 416

sentences. Since the NLI predictor is optimized to- 417

ward matching each sentence with the given query. 418

It may fare worse when individual sentences ap- 419

pear to be unrelated to the query but are nonetheless 420

annotated as rationales. Table 2 shows the percent- 421

age proportion of sentences annotated as rationales 422

over the target. It’s noteworthy that the explainer 423

marks fewer sentences due to the NLI predictor’s 424
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FEVER MultiRC BoolQ
Task Plausibility Task Plausibility Task Plausibility

Approach Acc F1 Token-F1 Acc F1 Token-F1 Acc F1 Token-F1

Full-C 93 91.8 - 76 72 - 65.8 53 -
Supervised 90.1 88.4 83.4 74.3 70.5 64.1 72.4 65.9 76
IB 85.9 85.9 38.9 64.1 63 23.1 64 63.5 10.3
IB w 25% 85.1 85.1 38.4 67.6 67.5 52.7 58.6 52.1 11.4
IB w 25% (R) - 88.8 63.9 - 66.4 54 - 63.4 19.2

Ours (10%) 93.7+0.5 92.6+0.5 80.1 72.5+0.0 68.6+0.4 56.4 67.4+2.1 51.4+8.6 29.6

Table 1: Classification and plausibility performance comparison across the three ERASER tasks. Test results are
averaged across 3 seeds. The subscript refers to the case where the NLI predictor is used as a counter checker, in
2.4. Results highlighted in bold refer to the best-performing approach. The supervised approach acts as the upper
bound on plausibility performance. R is the reported results of the IB approach (Paranjape et al., 2020).

FEVER MultiRC BoolQ

100 56.7 20

Table 2: Percentage of extracted over target ratio-
nales. BoolQ has the lowest percentage out of all three
datasets.

tendency to classify the majority of sentences as425

neutral, deeming them non-essential for task pre-426

diction.427

Nonetheless, optimizing the explainer with NLI428

supervision is proven to be superior compared to429

the unsupervised information bottleneck objective430

by (Paranjape et al., 2020). Our approach outper-431

forms the former by large margins in terms of plau-432

sibility on FEVER (> 25%) and BoolQ (> 50%),433

even when provided with a lower amount of super-434

vision (10% vs 25%). The performance gap is even435

larger when compared to fully unsupervised (IB),436

with more than twice the scores. The IB method437

learns a sparse mask over the input document, xi438

by maximizing the mutual information between439

rationale zi and task label yi while limiting the440

extraction budget to a pre-defined prior. However,441

estimating the prior is difficult and can be detrimen-442

tal in instances with varying rationale lengths such443

as in BoolQ. Our approach sidesteps the compli-444

cated training yet achieves a better-tuned explainer445

in extracting plausible rationales.446

4.2 Robustness447

In this section, we evaluate the robustness of ETP448

models when faced with inputs prefixed with an449

adversarial query. The query is unrelated to the doc-450

ument and carries a contrastive meaning with re-451

spect to the original. For example, given a claim in452

FEVER, "Earl Scruggs was a musician who played453

banjo.", the noun, "Earl Scruggs" and "banjo" is 454

replaced to form the adversarial sentence "manch- 455

ester archer was a songwriter who played mandolin 456

.". The attack is minimally changed from the query 457

to distract the explainer. A model with limited 458

robustness might interpret the attack as pertinent 459

due to its analogous semantics, thereby influencing 460

the predictor and undermining task performance. 461

The robustness results are reported in Table 3. We 462

found similar findings as compared to (Chen et al., 463

2022) who note that ETP models exhibit greater 464

robustness compared to predictors subjected to the 465

full context. 466

In the FEVER dataset, our approach suffers the 467

lowest drop in task and plausibility performance, 468

while having the lowest AR in both datasets. IB 469

has the highest AR, even extracting every adver- 470

sarial sentence in FEVER. A contributing factor to 471

our approach’s low AR rate is that the NLI signal 472

is derived by verifying if a sentence aligns with 473

the query based on the provided task label. This 474

strengthens the explainer’s proficiency in dismiss- 475

ing instances that don’t satisfy this criterion. On 476

the other hand, the explainer trained with IB is 477

emphasized to maximize the task objective, which 478

can lead to situations where a minimally perturbed 479

sentence is mistakenly perceived as useful. This 480

further proves that training with NLI feedback pro- 481

duces more robust and plausible models. 482

5 Ablation 483

5.1 Importance of NLI training 484

In this study, we seek to question the usefulness 485

of introducing further fine-tuning using the lim- 486

ited set of annotations. While the NLI predictor is 487

previously fine-tuned on various NLI tasks, the sen- 488

tence lengths in its training distribution differ from 489
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FEVER MultiRC
Approach ∆T ∆P AR ∆T ∆P AR

Full-C 11.2 - - 29.6 - -
Supervised 10.8 37 54.6 14.3 26.7 68.3
IB (25%) 12 35.8 100 4.9 19.1 93
Ours (10%) 7.8 8.4 32.3 10.2 27.1 67.2

Table 3: In both FEVER and MultiRC, we measure
robustness with a preference for lower values. Models
considering the full context are evaluated solely based
on the difference in task performance as they don’t en-
gage in rationale extraction. All values are normalized
percentages drop computed via ( 2),( 3) and ( 4)

Figure 3: Task and Plausibility performance drop when
there is no further fine-tuning on the NLI predictor (10%
data). The metrics are computed similarly to robustness
using ( 2) and ( 3) and are presented in normalized
percentages.

those in our experimental datasets. Additionally,490

domain-specific semantics differences can intro-491

duce variations in the NLI predictor’s inference492

process. Consequently, the NLI predictor might493

not always accurately discern the NLI class, lead-494

ing to the generation of misleading signals for the495

explainer. To quantify the effectiveness of further496

fine-tuning, we compute the drop-in performance497

on both task and plausibility between an NLI pre-498

dictor that is fine-tuned, referred to as FI and one499

that is not, NFI. The gap in task and plausibility500

performance is reported in Figure 3.501

These results substantiate our initial hypothe-502

sis. Without fine-tuning, NFI struggles to provide503

meaningful feedback to the explainer, primarily504

because of its limited capability to accurately de-505

termine whether a specific sentence should support506

or contradict the query based on the given task la-507

bel. Taking a closer look at sentence classifications508

in Figure 4 reveals that the NFI tends to mistak-509

enly identify neutral sentences as entailments. In510

the FEVER example, although the initial sentence511

shares a noun with the claim, it does not address512

Figure 4: Example of query and input document where
the sentences highlighted in green refer to the NLI predi-
cator without fine-tuning. Yellow refers to the annotated
rationale as well as extracted by the fine-tuned predictor.

the death of the noun’s subject yet the NFI incor- 513

rectly recognizes it as entailment. Similarly, in the 514

MultiRC instance, the concluding sentence lacks 515

any significant connection to the given question 516

or answer. This may be the reason why despite a 517

significant drop in accurately extracting the correct 518

rationale, 58.9% in MultiRC and 61.3% in BoolQ, 519

the task performance surprisingly does not incur 520

a huge loss (< 10%). A neutral sentence would 521

not drastically change the class probabilities of the 522

predictor as compared to a contradicting sentence. 523

Nevertheless, incorporating additional fine-tuning 524

on the NLI predictor is still essential in filtering 525

out false positives such as sentences with neutral 526

relationships in inferring the output. 527

5.2 Model sizes and NLI supervision 528

Ablation type Acc F1 Token-F1

Original (base w 10%) 72.5 68.6 56.4
Large 74.3 71.2 58.1
Base w 25% 73.3 71.1 57.9
Base w 50% 73.8 70.9 58
Without NLI Pre-FT 69.2 64.3 52.6

Table 4: Ablation on model size, % NLI supervision and
effects of not doing pre-finetuning of fNLI on general
NLI tasks (SNLI, MultiNLI). Implemented on MultiRC.

We carry out further analysis on the effect of 529

both model size and amount of NLI supervision 530

given to fNLI . We compare RoBERTA-large 531

(330M) with the original 10% supervision and 532

the base model with increased level of supervi- 533

sion ∈ [25, 50]. We additionally compare a De- 534

BERTa encoder without prior fine-tuning on NLI 535

datasets, while similarly fine-tuning on 10% of an- 536

notated rationales. The benefits of using a larger 537

encoder and increased NLI supervision for fNLI 538
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can be observed from Table 4. Notably, there is lit-539

tle difference in both accuracy and Token-F1 with540

higher supervision. Furthermore, our approach541

remains effective using off-the-shelf encoders with-542

out prior fine-tuning. This highlights the strength543

of our approach which remains effective even in544

low-resource conditions.545

6 Related Works546

Linguistic Interpretability: Among various547

interpretability approaches, extractive rational-548

ization has seen plenty of works produced in549

recent years (Gurrapu et al., 2023). Other similar550

practices include the use of attention (Mohankumar551

et al., 2020; Serrano and Smith, 2019) as a form552

of interpretation to rank text tokens in terms553

of importance. The topic has caught interested554

researchers’ attention, leading to a division of555

the field into two groups, either disagreeing or556

agreeing on the usage of attention as a faithful557

interpretation. The former states that even when558

attention scores are randomly scrambled, it has559

little effect on the predictor’s output (Jain and560

Wallace, 2019), along with the difficulty of561

generating counterfactuals. Other stances reason562

that attention weights are biased as they encode563

information on neighboring tokens (Bai et al.,564

2021; Tutek and Šnajder, 2022). On the other hand,565

(Wiegreffe and Pinter, 2019) argues that there566

exist multiple combinations of weights that could567

lead to a single output and that the effectiveness568

of attention weights depends on the definition569

of faithfulness. This has driven several works570

to improve the faithfulness of attention-based571

networks by constraining the attention with the572

task (Chrysostomou and Aletras, 2021b) or directly573

penalizing the attention scores corresponding574

to important words (Chrysostomou and Aletras,575

2021a).576

577

Extractive Rationalization: The approach578

was first introduced by (Lei et al., 2016), who579

proposed REINFORCE (Williams, 1992) with580

sparsity regularization to train the explainer581

through the predictor’s learning objective in582

an end-to-end fashion. (DeYoung et al., 2019)583

introduces the ERASER benchmark, containing584

seven NLP tasks. The author utilizes a BERT-to-585

BERT pipeline for the explainer and predictor and586

performs sequential training. (Atanasova et al.,587

2022) constrains the explainer to be consistent588

and confident while (Lakhotia et al., 2020) adopts 589

the Fusion-In-Decoder (Izacard and Grave, 2020) 590

to process long sequence documents and extract 591

rationales at the sentence level. 592

However, obtaining supervised rationales is of- 593

ten a privilege that’s not readily accessible. This 594

has prompted a large number of research in un- 595

supervised techniques for extracting faithful ratio- 596

nales. (Paranjape et al., 2020) strives for concise- 597

ness in rationales via optimizing an information 598

bottleneck objective. (Ghoshal et al., 2022) ad- 599

dressed the issue of spurious correlation in QA 600

tasks by incorporating an additional question gen- 601

eration objective and (Jain et al., 2020) decom- 602

poses the joint objective into modular components. 603

(Glockner et al., 2020) encode each sentence sep- 604

arately and aggregate the final task loss using the 605

normalized weights of each sentence. During infer- 606

ence, the sentence with the lowest loss is selected 607

as the rationale. In our approach, we do not make 608

such an assumption, and optimize for every rational 609

sentence. 610

7 Conclusion 611

In this paper, we have introduced a simple yet 612

unique way of generating artificial learning signals 613

from an alternative source, to cope with scenarios 614

where human-annotated rationales are scarce. The 615

method harnesses a transformer pre-trained on the 616

NLI task. Through additional fine-tuning, the NLI 617

predictor can produce less biased labels, enhancing 618

the learning process for the explainer. 619

Through the extensive experiments conducted, 620

we have shown that our work can alleviate the plau- 621

sibility and robustness of ETP models in a low- 622

resource environment. Notably, with just 10% of 623

the annotated rationale, our method delivers per- 624

formance on par with fully supervised models and 625

significantly outperforms both semi-supervised ap- 626

proaches that utilize more annotated data as well as 627

unsupervised ones. We have also demonstrated the 628

relevance between an NLI label and the plausibility 629

of the generated explanation. In future directions, 630

we plan to extend this work toward models that 631

generate abstractive explanations, where the NLI 632

signal can act as verification feedback to ensure the 633

mitigation of biased explanations. Another inter- 634

esting direction is to study how can we extend the 635

NLI predictor’s coverage beyond a single sentence, 636

to capture the correspondence between longer doc- 637

uments. 638
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8 Limitations639

We only evaluate a singular trait of interpretability:640

plausibility. We note that multiple other traits of641

interpretability are equally important and we leave642

that to further work. The sizes of the encoder mod-643

els implemented in this work are relatively small,644

with the biggest consisting of 300M parameters.645

Though model scaling is the primary objective, we646

note the importance of extending our work towards647

larger models given the popularity of NLP research648

surrounding LLMs.649
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A Appendix 802

In the main paper, we showed how the label trans- 803

formation technique is used to transform an anno- 804

tated rationale into an NLI-associated label, for the 805

purpose of fine-tuning the NLI predictor. We will 806

now show how the reverse is applied to facilitate 807

the training of the explainer. 808

A.1 Reverse label transformation 809

Given a query, q and each sentence, xi, we con- 810

catenate the query and sentence as input to the 811

NLI predictor, where the NLI class label is gener- 812

ated as ỹi = fNLI(q ⊕ xi). This applies to both 813

queries with a single sentence such as the claim 814

in FEVER and BoolQ or double sentences in Mul- 815

tiRC, comprising of both the question and answer. 816

The NLI class, ỹi is used together with the task 817

label, yi to generate z̃i, used in place of zi for the 818

semi-supervised explainer. The transformation is 819

detailed in Algorithm 2. T refers to False, F to 820

FALSE, C to Contradiction, and E to Entailment. 821

Note that if the fNLI indicates that the sentence 822

is neutral to the query, the sentence is automati- 823

cally labeled as a non-rationale. This is similar in 824

the case where if a document is annotated as false 825

with respect to the query, all rationales should be a 826

contradiction and vice versa. 827

Algorithm 2 Reverse label transformation
Input: query, qi, input document, xi, task label, yi
and NLI predictor, fNLI

Output: NLI label,z̃i
1: for each xi,j ∈ xi do
2: ỹi ← fNLI(qi ⊕ xi,j)
3: if (ỹi = E and yi = T) or (ỹi = C and

yi = F) then
4: ˜zi,j ← 1
5: else
6: ˜zi,j ← 0
7: end if
8: end for
9: return z̃i
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A.2 Hyperparameters828

We use the AdamW optimizer from (Loshchilov829

and Hutter, 2017) with ϵ set at 1e-8 and fix the830

batch size at 8. We use a learning rate warm-up831

scheduler with the final rate capped at 2e-5 and clip832

all gradient norms at a value of 1.0 while applying833

a dropout of 0.2 for the explainer decoder. The834

explainer decoder is a two-layer MLP with ReLU835

activation. Early stopping is implemented where836

the training is stopped if the validation loss does not837

improve after 3 epochs. We run all our experiments838

for a maximum of 10 epochs, on NVIDIA A6000s,839

implemented with PyTorch. We do not find much840

difference in changing the values of λ and set it to841

1.842
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