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Abstract

We introduce a class of neural networks named PLEIADES (PoLynomial Ex-
pansion In Adaptive Distributed Event-based Systems), which contains temporal
convolution kernels generated from orthogonal polynomial basis functions. We
focus on interfacing these networks with event-based data to perform online spa-
tiotemporal classification and detection with low latency. By virtue of using
structured temporal kernels and event-based data, we have the freedom to vary
the sample rate of the data along with the discretization step-size of the network
without additional finetuning. We experimented with three event-based benchmarks
and obtained state-of-the-art results on all three by large margins with significantly
smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K
parameters on the DVS128 hand gesture recognition dataset and 100% with a
small additional output filter; 2) 99.58% test accuracy with 277K parameters on
the AIS 2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on
the PROPHESEE 1 Megapixel Automotive Detection Dataset.

1 Introduction

Temporal convolutional networks (TCNs) [Lea et al.,2016] have been a staple for processing time
series data from speech enhancement [Pandey and Wang) 2019]] to action segmentation [Lea et al.,
2017]]. However, in most cases, the temporal kernel is very short (usually size of 3), making it difficult
for the network to capture long-range temporal correlations. The temporal kernels are intentionally
kept short, because keeping a long temporal kernel with a large number of trainable kernel values
usually leads to unstable training. In addition, they require a large amount of memory to store the
weights during inference. One popular solution for this has been to parameterize the temporal kernel
function with a simple multilayer perceptron (MLP), which promotes stability [Romero et al.| [2021]
and more compressed parameters, but often significantly increases computational load.

Here, we introduce a method of parameterization of temporal kernels, named PLEIADES (PoLyno-
mial Expansion In Adaptive Distributed Event-based Systems), that can in many cases reduce the
memory and computational costs compared to explicit convolutions. The design is fairly modular, and
can be used as a drop-in replacement for any 1D-like convolutional layers, allowing them to perform
long temporal convolutions effectively. In fact, we augment a previously proposed (1+2)D causal
spatiotemporal network [Pe1 et al.,[2024] by replacing its temporal kernels with this new polynomial
parameterization. This new network architecture serves as the backbone for a wide range of online
spatiotemporal tasks ranging from action recognition to object detection.

Even though our network can be used for any spatiotemporal data (e.g. videos captured with
conventional cameras), we investigate in this work the performance of our network on event-based
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data (e.g. data captured by an event camera). Event cameras are sensors that generate outputs events
{—1,+41} responding to optical changes in the scene’s luminance [Gallego et al., 2020|], and can
generate sparse data on an incredibly short time scale, usually at 1 microsecond. Event cameras
can produce very rich temporal features, capturing subtle motion patterns, and allow for flexible
adjustment of the effective frames per second (FPS) in our network by varying the timebin size. This
makes it suitable to test networks with long temporal kernels sampled at different step sizes. For
readers interested in the performance on conventional camera data, we report preliminary results on
the KITTI 2DOD task in Appendix [B.3]

The code for building the structured temporal kernels, along with a pre-trained PLEIADES network
for evaluation on the DVS128 dataset is available here: https://github.com/PeaBrane/Pleiades.

2 Related Work

2.1 Long Temporal Convolutions and Parameterization of Kernels

When training a neural network containing convolutions with long (temporal) kernels, it is usually
not desirable to explicitly parameterize the kernel values for each time step. First of all, the input data
may not be uniformly sampled, meaning that the kernels need to be continuous in nature, making
explicit parameterization impossible In this case, the kernel is treated as a mapping from an event
timestamp to a kernel value, where its mapping is usually achieved via a simple MLP [Qi et al., 2017,
Romero et al.| 2021} [Poli et al.| [2023]]. In cases where the input features are uniformly sampled,
explicit parameterization of the values for each time step becomes possible in theory. However,
certain regularization procedures need to be applied [Fu et al.,|2023]] in practice, otherwise the training
may become unstable due to the large number of trainable weights. Storing all these weights may
also be unfavorable in memory-constrained environments (for edge or mobile devices).

The seminal work proposing a memory encoding using orthogonal Legendre polynomials in a
recurrent state-space model is the Legendre Memory Unit (LMU) [Voelker et al.l 2019]], where
Legendre polynomials (a special case of Jacobi polynomials) are used. The HiPPO formalism [[Gu
et al.,2020] then generalized this to other orthogonal functions including Chebyshev polynomials,
Laguerre polynomials, and Fourier modes. Later, this sparked a cornucopia of works interfacing with
deep state-space models including S4 [Gu et al.| 2021a]], H3 [Fu et al., [2022], and Mamba [Gu and
Dao| [2023]], achieving impressive results on a wide range of tasks from audio generation to language
modeling. There are several common themes among these networks that PLEIADES differs from.
First, these models typically only interface with 1D temporal data, and usually try to flatten high
dimensional data into 1D data before processing [Gu et al., [2021a) [Zhu et al., [2024]], with some
exceptions [Nguyen et al.,|2022]]. Second, instead of explicitly performing finite-window temporal
convolutions, a running approximation of the effects of such convolutions is performed, essentially
yielding a system with infinite impulse responses where the effective polynomial structures are
distorted [Stockell 2021} |Gu et al.l 2020]. And in the more recent works, the polynomial structures
are tenuously used only for initialization, but then made fully trainable. Finally, these networks
mostly use an underlying depthwise structure [Howard et al.|2017] for long convolutions, which may
limit the network capacity, albeit reducing the compute requirement of the network.

2.2 Spatiotemporal Networks

There are several classes of neural networks that can process spatiotemporal data (i.e. videos and
event frames). For example, a class of networks combines components from spatial convolutional
networks and recurrent networks, with the most prominent network being ConvLSTM [Shi et al.|
2015]. These types of models interface well with streaming spatiotemporal data, but are oftentimes
difficult to train (as with recurrent networks in general). On the other hand, we have a class of easily
trainable networks that perform (separable) spatiotemporal convolutions such as the R(2+1)D and
P3D networks [Tran et al.l 2018, |Qiu et al., 2017]], but they were originally difficult to configure
for online inference as they do not assume causality. However, it is easy to configure the temporal
convolutional layers as causal during training, such that the network can perform efficient online
inference with streaming data via the use of circular buffering [Pei et al., 2024] or incorporating
spike-based [Shrestha and Orchard, 2018| or event-based [Ivanov et al.,|2022] processing.

21t requires an uncountable-infinite number of “weights” to explicitly parameterize a continuous function.
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2.3 Event-based Data and Networks

An event produced by an event camera can be succinctly represented as a tuple F = (p, x, y, t), where
p denotes the polarity, x and y are the horizontal and vertical pixel coordinates, and ¢ is the timestamp
of the event. A collection of events can then be expressed as £ = {E, E», ...}. To feed event-based
data into conventional neural networks, events are often discretized into uniform timebins yielding
tensors generally shaped (2, H, W, T'), where H & W are the height & width of the sensor/layer and
T is a time period. Different discretizations have been explored in the past. The simplest approach
is to count the number of events in each timebin [Maqueda et al.l 2018]]. Others include replacing
each event with a fixed or trainable kernel [Zhu et al., 2019, |Gehrig et al., | 2019] before evaluating
the contribution of that kernel to a given bin. Here, we use direct binning and event-volume binning
methods [[Pei et al.,2024], yielding the 4d tensor (2, H, W, T') to our network, noting that we retain
the polarity unlike previous works [Zhu et al.,2019].

The most popular class of event-based networks is spiking neural networks, which generate spikes {0,
+1} with continuous timestamps at each neuron, usually described with predetermined fixed internal
dynamics [Gerstner and Kistler, 2002} |Gerstner et al.,[2014]]. These networks can be efficient during
inference, as typically they only need to propagate 1-bit signals, but they are also difficult to train
without specialized techniques to efficiently simulate the neural dynamics and ameliorate the spiking
behaviors. The SLAYER model [Shrestha and Orchard, 2018|] computes the neuron response using a
kernel from the spike response model (SRM), taking only limited forms such as decaying exponent &
alpha function. The kernel is used to temporally convolve the input spikes. PLEIADES generalizes
the impulse-response kernel of SLAYER by making the kernel a fully trainable convolution kernel,
thus fully adapted to input and network structure.

A recent line of work (in parallel to ours) is to interface event-based processing with deep state-
space modeling [Schone et al.| 2024, [Soydan et al.,[2024]], while we here still retain the orthogonal
polynomial structures (see Section [2.1). Other works have proposed training using differentiable
functions, surrogate gradients, to bridge the discontinuous gap of spikes to use backpropagation
[Neftci et al., |2019], so that spiking networks can be trained like standard neural networks.

3 Temporal Convolutions with Polynomials

In this section, we discuss: 1) how the temporal kernels are generated from weighted sums of
polynomial basis functions; 2) how the temporal kernels are discretized in timebins; 3) how the
convolution with the input feature tensor can be optimized by changing the order of operations. In
the following, we index the input channel with c, the output channel with d, the polynomial degree or
basis with n, the spatial dimensions with = and ¥, the input timestamp with ¢, the output timestamp
with ¢/, and the temporal kernel timestamp with 7.

3.1 Building temporal kernels from orthogonal polynomials

Jacobi polynomials Py(f“’ﬁ ) (7) are a class of polynomials that are orthogonal relative to a weighting
function: )
e [P P ()1 = 1) (L4 ) dr = G,

-1
where d,,,, is the Kronecker delta, which is 1, or 0, if n = m, or n # m, respectively, hence
establishing the orthogonality condition. h%a’ﬁ) is a normalization constant that we ignore. A
continuous function can be approximated by taking the weighted sum of these polynomials up
to a given degree N, where the weighting coefficients {vo,71, ..., yv } are the trainable network
parameters.

When this parameterization is used in a 1D convolutional layer typically involving multiple input and
output channels, then naturally we require a set of coefficients for each pairing of input and output
channels. More formally, if we index the input channels with ¢ and the output channels with d, then
the continuous kernel connecting c to d can be expressed as

N
kcd(T) = Z ’Vcd,npfzaﬁ) (T) (1)
n=0



Training with such structured temporal kernels restricts expressivity compared to temporal kernels
parametrized with a weight parameter at each timebin by not permitting discrete jumps across bins.
However, there are several key advantages in using structured continuous kernels that largely over-
compensate for the reduced expressivity. First, this implicit parameterization allows for resampling
of the kernels during discretization, meaning that the network can interface with data sampled at
different rates without additional fine-tuning (see Section[3.2). Second, having a functional basis will
allow an intermediate subspace to store feature projection, which can sometimes improve memory
and computational efficiency (see Section [3.3). Finally, since a Jacobi polynomial basis is associated
with an underlying Sturm-Louville differential equation, this injects physical inductive biases into
our network, making the training more stable and guiding it to a better optimum (see Section [5.1] for
an empirical proof).

3.2 Discretization of the convolution kernels

In the current implementation of our network, which interfaces with time binned inputs, a discretiza-
tion of the temporal kernels is needed. One method is integrating the temporal kernels over the time
bins of interest.

We start by defining the antiderivative of the temporal kernels as

ch(T):[ k(') dr’ —/ Z%MP(”( ") dr’

n= (2)

Yed,n (oz B)
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where the constant term does not depend on 7 and can be ignored. To evaluate the integral of k.q(7)
in the time bin [7g, 70 + A7], that we denote as the discrete k4[], we take the difference

Ecd[’r(ﬂ = Kpd(’ro + AT) — Kpd(To)
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where P is the appropriately defined discrete polynomials, to obtain the discrete form of Eq. 1} Eq.
can be considered a generalized matrix multiplication where the dimension n (the polynomial basis
dimension) is contracted, see Section[3.3] Fig.[I]provides a schematic representation of the operations
to generate discretized temporal kernels for multiple channels.

(€)

Under this discretization scheme, it is very easy to resample the continuous temporal kernels (either
downsampling or upsampling), to interface with data sampled at arbitrary rates, i.e. arbitrary bin sizes
for event-based data. The network can be trained at a given step size A7, but adapted to perform
inference at a different rate (either faster or slower), without any additional tuning. The discretized
polynomial basis can be regenerated using the equations above with a new A7, and everything else
in the network can remain unchanged[

3.3 Optimal order of operations

Given discretized kernels, the notation is simplified by employing the Einstein notation or einsum,
where repeating indices are summed over by convention. The equation above is rewritten as

kear = ’YCann‘rv

3This is true if the scale of the input data is invariant under resampling. For event-based data accumulated into
bins, the contribution, that is, the integral over time of an event must remain independent of the discretization;
the bin values have to be rescaled by a factor reciprocal to the new bin size relative to the original one. For
example, if the bin size is doubled, then the bin values need to be appropriately halved.
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Figure 1: Generating discrete temporal kernels for multiple channels, based on trainable coefficients
and fixed basis orthogonal polynomials. Here, 3 temporal kernels one per channel, is generated from 4
basis polynomials discretized over 5 timebins. The shaded areas represent the discretized polynomial
values. The kernel coefficients may be organized as a 3 X 4 matrix, and the discretized basis
polynomials may be organized as a 4 x 5 matrix. The matrix multiplication of the two (contraction
of coefficients) then yields the final discretized kernels for the 3 channels discretized over 5 timebins
as a 3 X 5 matrix.

where the repeating index n is summed over (or contracted) on the right-hand side, corresponding to
summing over the polynomial basis. See Appendix [A.T|for a detailed description of the contraction
rules. The temporal convolution of a kernel EijT with a spatiotemporal input feature tensor u to
obtain the output y at discrete time ¢’, position (2, y) and output channel d is written as

Ydxyt’ = Yedn Mt (P) Uczyt 4

where M (P) is the convolution operator matrix, a sparse Toeplitz matrix generated from P (see
Appendix[A3). If a depthwise convolution is performed [Howard et al} 2017], the equation simplifies
0 Yewyt: = Yen My (?) Ucgyt- Here, only one channel index c is needed, as the connections are
parallel thus the input and output channels do not mix. The kernels are assumed to be separable into
spatial and temporal convolutional kernels; thus, the temporal indices do not interact with the spatial

indices = and y. Each temporal kernel is applied separately to each spatial bin.

All einsum operations are associative and commutativeﬂ so we have full freedom over the order of
contractions. For example, we can first generate the temporal kernels from the orthogonal polynomials,
then perform the convolutions with the input features (the typical order of operations, from left to
right). However, equally valid, we can also first convolve the basis polynomials with the input
features separately, then weigh and accumulate these results using the polynomial coefficients. This
can be written as Yedn (Mt Uczyt) = Vedn Tezynt’ = Ydzye’ 10 einsum form, where = represents
the intermediate projections. Note that this freedom of ordering of contractions is not possible for
unstructured temporal kernels since there is no intermediate basis 7 on which to project anything.

In practice, we select the contraction path to optimize memory or computational usage [Gray.
and Kourtis| [2021]], depending on the training hardware and cost considerations. Memory and
computational costs can be calculated for any contraction path, given the dimensions of the contraction
indices (tensor shapes) (see Appendix [A.2]for cost calculations). By leveraging the opt_einsum
library, with a tailored adjustment of its cost-estimation rules (see Appendix[A-3), it can automatically
determine an optimal contraction path. Further refinements and applications are discussed in the
related literature [Gray and Kourtis| 2021} |Pei, 2025, Pei et al., 2025].

The coefficients y are the trainable parameters, and form a compressed representation of the binned
temporal kernel k.4 when the polynomial expansion is less than the number of bins n < 7. End-
to-end networks with temporal layers convolving with PLEIADES kernels can leverage standard
optimization methods such as backpropagatio

“Einstein summation (einsum) restores permutation invariance to otherwise non-commutative matrix multi-
plications and tensor contractions by explicitly labeling contraction indices.

5 An optimal forward contraction path automatically implies an optimal backward path, so standard autodif-
ferentiation suffices.



4 Network Architecture
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Figure 2: A representative network used for eye tracking. The backbone consists of 5 spatiotemporal
blocks. Full convolutions are denoted by darker blue blocks (full conv), depthwise-separable convolu-
tion by lighter blocks (DWS conv). The detection head is inspired by CenterNet, with the modification
that the 3 x 3 convolution is made depthwise-separable and a temporal layer is prepended to it.

The main network block is a spatiotemporal convolution block, factorized as a (1+2)D convolution. A
1D temporal convolution is performed on each spatial bin (pixel) followed by a 2D spatial convolution
on each temporal frame; this is similar to a R(2+1)D convolution block [Tran et al., 2018]], and
the (1+2)D network for online eye tracking [Pei et al., [2024]]. Each of the temporal and spatial
convolutional layers may be factorized as a depthwise separable (DWS) layer [Howard et al., 2017] to
further reduce computational costs. For every temporal kernel (every channel pairing, every layer, and
every network variant), we use « = —0.25 and 8 = —0.25 for the Jacobi polynomial basis functions,
with degrees up to 4, which were determined empirically to be suitable for all of our experimentsﬁ]

See Appendix for details.

As additional notes, the choice of («, 3) does not affect the expressivity of the temporal kernels,
and all choices of («, 3) yield polynomial bases spanning the same space. What it really influences
here is the training dynamics, and a full mathematical justification of why o = 8 = 0.25 yields
superior training dynamics is beyond the scope of this work[] Nevertheless, there is a justification at
an informal level. The choice of « = 8 = —0.25 is an "intermediate" between Legendre polynomials
(o = B = 0) and Chebyshev polynomials (« = = —0.5), which balances the benefits of both.
For instance, Legendre polynomials are more balanced, but slower to represent sharp boundary
transitions; Chebyshev polynomials are better for representing edge-localized patterns, but more
numerically unstable.

Key ancillary design decisions (beyond polynomial kernels) are studied more thoroughly in our
previous work Pei et al.|[2024]:

¢ Strict causality: All operations—including temporal convolutions—are causal, enabling
low-latency online inference.

* Hybrid normalization: After every temporal convolution, we perform a causal Group
Normalization with groups = 4. And after every spatial convolution, we perform a Batch
Normalization. This hybrid strategy is inspired by |Gordon et al.|[2019].

» Lightweight activations: ReL.U after every convolution layer and inside each DWS layer
keeps implementation simple for edge devices and encourages activation sparsity.

For tasks requiring object tracking or detection (see Sections [5.2]and [5.3)), we attach a temporally
smoothed CenterNet detection head to the backbone (see Fig.[2), consisting of a DWS temporal layer,
a 3 x 3 DWS spatial layer, and a final pointwise layer [Zhou et al., 2019]], with ReLU activations
in between. Since our backbone is already spatiotemporal in nature and capable of capturing long-
range temporal correlations, we do not use any additional recurrent heads (e.g. ConvLSTMs) or
temporal-based loss functions [Perot et al., 2020].

80ther choices of o and 3 were also performant, but slightly worse than this particular choice. However, the
degree choice is relatively important. Note that a degree of 10 would make the kernel essentially “free”, which
would actually harm performance, especially in the low-latency regime (see Section[5.T|and Appendix [B.T.Z).
"This requires extensions to theories of neural tangent kernel and dynamic mean field theory etc.



5 Experiments

We conduct experiments on standard computer vision tasks with event-based datasets. For all baseline
experiments, we preprocess the event data into 4d tensors of shape (2, H, W, T'), with the 2 polarity
channels retained. General details of data and training pipelines are given in Appendix [B] With the
exception of the Prophesee GEN4 experiments (Section[5.3)), we run 25 trials for each experiment
and report the mean and standard error (which assumes a normal distribution of noise).

5.1 DVS128 Hand Gesture Recognition

The DVS128 dataset (CC BY 4.0) contains recordings of 10 hand gesture classes performed by
different subjects [Amir et al., [2017]], recorded with a 128 x 128 dynamic vision sensor (DVS)
camera. We use a simple backbone consisting of 5 spatiotemporal blocks. The network architecture
is almost the same as that shown in Fig. 2] with the exception that the detection head is replaced by a
spatial global average pooling layer followed by a simple 2-layer MLP to produce classification logits
(technically a pointwise Conv1D layer during training). The output produces raw predictions at 10 ms
intervals, which already by themselves are surprisingly high-quality. With additional output filtering
on the network predictions, the test accuracy can be pushed to 100% (see Table[I)). In addition,
we compare the PLEIADES network with a counterpart that uses unstructured temporal kernels, or
simply a Conv(1+2)D network [Pei et al.| [2024], and find that PLEIADES performs better with a
smaller number of parameters (due to polynomial compression).

Table 1: The raw 10-class test accuracy of several networks on the DVS128 dataset. Output filtering is
performed only on the networks indicated by an asterisk. PLEIADES is evaluated (mean & standard
error) only after all temporal layers have processed non-zero, valid frames, resulting in an inherent
warm-up latency of 0.44 seconds (see Section[5.I). A 0.15 second majority filter on raw PLEIADES
outputs attains 100% accuracy with minimal compute overhead, at the cost of added latency.

Model Accuracy Parameters MACs/ sec
Conv(1+2)D 99.17 196 K 0.429B
ANN-Rollouts [Kugele et al., [2020] 97.16 500 K 104 B
TrueNorth CNN* [[Amir et al.,[2017] 96.59 18 M

SLAYER [Shrestha and Orchard,[2018] 93.64

PLEIADES 99.59 (0.02) 192K 0.499 B
PLEIADES + filtering* 100.00 (0.00) 192K 0499 B

Prior work lacks a standardized evaluation protocol: some models operate online, whereas others
process entire clips before predicting. We therefore report accuracy—latency trade-off curves for
each PLEIADES variant, yielding multiple Pareto frontiers. Latency is defined as the number of
event frames observed since the sequence starts, multiplied by the bin size. Enforcing non-zero
inputs at every temporal layer imposes an intrinsic delay of latency = L(k — 1) A7 = 450 ms in our
baseline[ﬂ Zero-padding unseen frames removes this warm-up, letting the model predict after only
a few bins at a slight cost in early-time accuracy. If latency is secondary, we can instead post-filter
the outputs—e.g., with a causal majority or exponential filter [Amir et al., 2017]—to gain a few
accuracy points, at the expense of extra delay equal to the filter length. Appendix [B.T]details these
latency—accuracy trade-offs.

We test two mechanisms to get the network to respond faster (Fig. [3} left). (i) Smaller bins: keeping
the temporal kernel length fixed at £ = 10 timebins, we reduce the bin size A7 from 10 ms (baseline)
to 5 ms, halving the effective temporal window. (ii) Causal prefix masking: during training we
randomly drop an initial block of frames, forcing the model to depend on more recent inputs and
shortening its functional response windowﬂ Accuracy-latency traces for both strategies are plotted in
the left panel; implementation details of the masking augmentation appear in Appendix [B.1]

Next, we compare the previous results with keeping the kernel window constant at 100 ms and
changing the bin sizes. Starting from the network trained at A7 = 10 ms, we resample the temporal

8Here, we used 5 layers (L), kernel size (k) of 10, and time step (A7) of 10 ms.
This does not alter theoretical latency but improves accuracy when fewer frames are available; it can,
however, slightly hurt accuracy when the full sequence is provided.
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Figure 3: (Left) Accuracy vs. latency curves for different PLEIADES variants with a changing
temporal window determined as a kernel size of 10 timebins but with different bin sizes on the
DVS128 dataset. A masking augmentation is optionally used to randomly mask out the starting
frames of dataset segments during training in order to stimulate faster responses in the network.
(Right) Accuracy vs. latency curves for different PLEIADES variants with a fixed temporal window
of 100 ms for each temporal layer, but having different bin sizes. The benchmark network is trained
with a kernel size of 10 timebins and a 10 ms step size, and the other variants are resampled without
additional fine-tuning. A network variant trained without PLEIADES structured temporal kernel is
also displayed as a baseline reference (free kernels).

kernels without weight tuning by re-discretizing the polynomial bases (Sec. 3.2)) and re-binning the
events to A7 € {5,20} ms, upsampling and downsampling, respectively (Figright). The number
of timesbins, k, is chosen so that £ A7 = 100 ms for £ = 20 and k£ = 5 timebins, respectively,
preserving the size of the time window. The resulting accuracy—latency curves remain largely
unchanged. For reference, the same plot includes a Conv(1+2)D baseline with unconstrained (free)
non-PLEIADES kernels.

5.2 AIS2024 3ET+ Event-based Eye Tracking

Table 2: The 10-pixel, 5-pixel, and 3-pixel tolerances for the CVPR 2024 AIS eye tracking challenge.
The performances of other models are extracted from [Wang et al., [2024].

Model p10 p3 p3 Parameters
MambaPupil 99.42 97.05 90.73 -

CETM 99.26 96.31 83.83 7.1M
Conv(1+2)D 99.00 97.97 94.58 1.1M

ERVT 98,21 94.94 87.26 150K
PEPNet 97.95 80.67 49.08 640K

PLEIADES + CenterNet 99.58 (0.03) 97.95(0.03) 94.94 (0.04) 277K

The performance of our network on the 3ET+ dataset, introduced in the CVPR AIS 2024 eye-tracking
challenge [Wang et al.| 2024] is investigatedm We adopt the DVS128 hand-gesture backbone,
adjusting the timebin to 5 ms. The 2-layer MLP head is replaced by a CenterNet-style detector and
loss, following [[Pei et al.,[2024], but we predict only pupil centre points, omitting bounding-box size.
See Fig. 2| for the architecture.



Table 3: Performance of PLEIADES with CenterNet detection head versus the baselines in [[Perot:
et al., 2020]] and more recent models. Frame rate (FPS) is derived from the bin size — 50 ms for the
baselines and 10 ms for ours.

Model mAP Parameters MACs/sec FPS
RED [[Perot et al., 2020] 0.43 241 M 20
Gray-RetinaNet [Perot et al., | 2020] 0.43 32.8 M 2060 B 20
S5-ViT-B [Zubic et al.| [2024] 0478 182M 20
GET-T [Peng et al.,[2023]] 0484 21.9M

PLEIADES + CenterNet 0.556 0.576 M 122.5B 100

5.3 Prophesee GEN4 Roadscene Object Detection

The Prophesee GEN4 Dataset is a road-scene object detection dataset collected with a megapixel event
camera [Perot et al.} 2020] The dataset spans around 14 hours of rural/urban driving under day
and night conditions. While seven classes are annotated, we follow the original protocol [Perot et al.}
2020] and report mAP only for cars and pedestrians. Our detector uses a spatiotemporal hourglass
backbone with a 10 ms timebin (A7 = 10 ms) and a CenterNet detection head (Sec.[d); no non-max
suppression (NMS) is applied, as CenterNet’s design and the model’s temporal coherence already
suppress spurious boxes. Architectural and training specifics appear in Appendix [B.2] Remarkably,
our model trains and infers at 100 Hz (10 ms bins) with minimal memory and compute overhead,
avoiding the steep accuracy drop typically reported for high-frequency inference [Zubic et al.| [2024].

6 Limitations

A key limitation of our design is the memory overhead incurred by the finite-window temporal filters:
each layer must buffer the most recent & feature maps, so the cost grows linearly with the kernel
length k£ and multiplicatively with spatial resolution. On high-resolution streams or longer kernels
this cache can dominate the footprint, hindering deployment on edge devices.

Fortunately, the polynomial structure of our temporal kernels offers a principled workaround. Instead
of retaining all k frames, we can maintain a compact set of online basis projections — inner products
between the incoming features and fixed polynomial basis functions — updated recursively at each
time step [Stockel, 2021} |Gu et al.|[2020]]. These running coefficients play the role of hidden states
in recurrent neural networks: to obtain the layer output we need only a point-wise multiplication
between the coefficients and the learned kernel weights, followed by the usual spatial convolution.
Conceptually, this is the forward direction of the convolution theorem — replacing convolution with
a product in an appropriate transform domain.

This reformulation collapses the memory requirement from O(kHW) to O(nHW), where n < k is
the number of basis functions, and aligns our model with recent deep state-space architectures [Gu
et al., 2021bla]. Integrating such recurrent updates into future variants could substantially reduce
memory while retaining the long temporal context that finite-window convolutions provide.

7 Conclusion

We presented PLEIADES, a fully-causal spatiotemporal architecture whose temporal filters are
expressed as linear combinations of orthogonal polynomials. This structural choice gives the model
analytically controllable receptive windows and yields state-of-the-art performance across all event-
based vision benchmarks considered, while remaining markedly robust to time-step resampling—no
additional fine-tuning was required when the bin size was halved or doubled.

0pyblicly available on Kaggle; in the absence of a specific license, Kaggle’s standard terms apply. The
challenge organizers have confirmed that our use is permitted.
Prophesee has allowed using the data in an academic context given proper citation, which we have provided.



Even in its present vanilla CNN instantiation, PLEIADES is exceptionally lean: it stores only the
polynomial coefficients and small circular buffers, resulting in a memory and FLOP footprint well
below contemporary counterparts. Nevertheless, two avenues could unlock further gains:

* Activation-sparsity regularization: Event streams are naturally sparse; injecting interme-
diate loss terms that penalize dense activations could cut energy consumption and latency
without sacrificing accuracy.

» Spiking conversion: The orthogonal-polynomial filters implicitly realize high-order linear
dynamics. Re-interpreting these filters as dynamical synapses would let us swap conventional
ReLUs for analytically tractable spiking units whose responses exceed the expressiveness of
standard leaky integrate-and-fire neurons. Such a reformulation would align PLEIADES
with neuromorphic hardware, marrying convolutional-network training pipelines with the
event-driven efficiency of spiking execution.

Taken together, these properties position PLEIADES as a versatile foundation for future low-latency,
low-power event-based perception systems, spanning both conventional GPUs and emerging neuro-
morphic accelerators.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As outlined in the abstract, we introduced a network constructed with orthog-
onal polynomials adapted for event-based data, as formulated in Sections [3|and 4] The
empirical results given in the abstract are also presented in detail in Section [5]

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section @, we addressed a limitation of the network, which is the memory
cost of maintaining a circular buffer. A solution is proposed for future investigations, which
is to integrate recent deep state-space modeling methods into our network.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: There are two main theoretical components to this work. First, we show the
discretization of our temporal kernels in Eq.[3} which allows for natural temporal resampling
based on the input bin sizes. The derivation is based on the anti-derivative formulation and
is mathematically rigorous. Second, we have the optimal order of contraction as discussed
in Section[3.3]and given a detailed treatment in Appendix[A] The derivation is based on the
assumption that optimality is based on theoretical memory and computational costs, and
does not account for HW-specific characters such as memory-boundness. This potentially
limiting assumption is acknowledged in the main text.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section[5and Appendix [B|provide full experimental details for reproducing
our results. Our code will also be made available upon as supplementary material, and will
be open-sourced upon potential acceptance of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in this study are open sourced. Section[5]and Appendix
[B] provide full experimental details for reproducing our results. Our code will also be
made available upon as supplementary material, and will be open-sourced upon potential
acceptance of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full training and testing details are given in Appendix [B] The splits we use
are also the standard splits for the corresponding datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: With the exception of the Prophesee GEN4 experiment, we run 25 trials for
each experiment, and report the mean and standard error. The Prophesee GEN4 experiment
is computationally expensive, so we can only afford to run one trial. But as with training
large models on large datasets, it is generally expected that the experiment noise would be
rather small.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The GPU Type, training batch sizes (and the corresponding VRAM), and the
total training wall times are all listed in Appendix B}

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have carefully reviewed every item in the Code of Ethics, and
confirmed that our work conforms to them in every aspect.

Guidelines:

16


https://neurips.cc/public/EthicsGuidelines

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. The model that will be
released is a small classification and detection model and is non-generative in nature. It is
very unlikely that the model will be used for malicious purposes.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite and mention the license of all the datasets used in the study.
In addition, when reporting the results of existing models for comparison, we also properly

cite the corresponding work. For unknown licenses, we contacted the owners directly for
their permission to use their assets in our work.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will upload the model architecture and pre-trained weights as supple-
mentary material. We also plan to open-source them upon potential paper acceptance.
Documentation is included via a README file detailing setup and usage. In addition, a
custom license will be included in the open-source release.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs at all in the core method development in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Optimal Contraction Order Memory and Compute

A.1 The Rules of Einsum
The rules of contracting an einsum expression can be summarized as follows:

* At every contraction step, any two operands can be contracted together, as the einsum
operation is associative and commutative.

 For any indices appearing in the two contracted operands but not the output and other
operands, these indices can be summed away for the intermediate contraction results.

Any ordering of contractions (or a contraction path) following these rules is guaranteed to yield
equivalent results.

A simple example is multiplying three matrices together, or D;; = A;; B;;Cy;. In the first stage, we
can first choose to contract A;; and Bjj, which would yield an intermediate result of Mj;;,, where
the index j is contracted away as it does not appear in the output D;;. In the second stage, we then
contract M;; and Cy; to arrive at the output D;.

We can also choose to do the contractions in any other order, and the result will remain the same. As
a more extreme example, we can even perform an outer product first M, = A;;Cy;, noting that we
cannot contract away the j and k indices yet as they appear in I, still. The contractions of j and k
then need to be left to the second stage contraction, D;; = M;;x; Bj,. Intuitively, we feel that this is
a very suboptimal way of doing the multiplication of three matrices, and we can formalize why this is
by looking at the memory and computational complexities of performing a contraction.

A.2 Memory and Compute Requirements of a Contraction

If we assume that we are not performing any kernel fusion, and explicitly materializing and saving
all intermediate tensors for backpropagation, then the extra memory and compute incurred by each
contraction step is as follows:

* The memory needed to store the intermediate result is simply the size of the tensor, or
equivalently the product of the sizes of its indices.

* The compute needed to evaluate the intermediate result is the product of the sizes of all
indices involved in the contraction (repeated indices are counted only once).

Again, we can use the Dy = A;; Bj;,Ci, where we assume that the index sizes to bi, 7, k, and [.
Doing the first stage contraction M;, = A;; B will require ¢k units of extra memory and 4jk units
of compute, and doing the second stage contraction D;; = M;;,C}; will require no extra memory
besides that for storing the output and ¢k! units of compute. This gives us a total extra memory
requirement of ¢k units and a total compute requirement of ¢jk + ¢kl units.

On the other hand, if we perform the outer product M5, = A;;Cy first, this will require 45k units
of extra memory and 7jk!l units of compute. The second stage contraction Dy = M, Cy; will
require ¢jk! units of compute. Therefore, the total memory requirement of this contraction path is
17kl units and the total compute requirement is 2ijkl units, both being significantly worse than the
first contraction path, regardless of the sizes of the tensors.

A more subtle example (the only remaining contraction path) is contracting the operands from back to
front, which we can verify requires a total memory of j/ units and a total compute of jkl + 5[ units.
So this is only more memory optimal than the first contraction path if 5/ < ¢k, and more compute
optimal if jkl + ijl < ijk + ikl, which may not be immediately obvious from inspection as the
optimality now depends on the sizes of the tensors.

Note that it is assumed that every tensor involved in the einsum expression requires gradient from
backpropagation, in the context of neural network training. This is why we identify the size of each
intermediate result as “additional memory”, as they need to be stored as tensors used for gradient
computation. In addition, it is not difficult to see that for einsum operations, the computational costs

2From here on, we will consistently use this abuse of notation where the same letter will be used to denote
both the index and the corresponding dimensional size of that index.
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required for backpropagation are exactly double that of the forward computation. Therefore, we only
need to consider the forward pass of the einsum expression, which is what we have been doing.

Importantly, note that this argument for memory and computational costs of gradient computations is
only true under the assumption of reverse-mode automatic differentiation (backpropagation), which is
what is used in almost all modern machine learning frameworks. In other words, we do not consider
more general forms of automatic differentiation such as the forward-mode variant. Another important
note is that in practice if the operations are memory-bound, then the computational cost estimates
may not be useful for training time estimation.

A.3 Convolution with a Parameterized Temporal Kernel

Recall in the main text that the equation for performing a full convolution with a polynomially
parameterized temporal kernel is

Ydzyt = ucmytfydncMnt’t(ﬁ% (5)

where the convolution operator tensor M (P) based on the discretized polynomial basis functions P
is given by the following Toeplitz matrix for each degree or basis n (assuming that kernel size is 5
with the discretized timestamps being {7o, 71, T2, 73, T4 }):

M(F)n:
[Plro] 0 0 0 0 0 ]
E[Tﬂ E[Tg] 70 0 0 0
Plr] Pln] Pl 0 0 0 (6)
Pr3] Plr] Pln] Plr] 0 0 ,
Plr4] Plrs3] Pl|r] Pln] P[] 0
| 0 .. Pln] Plrs] Pl Pinl Pl

where for a valid-type convolution we omit the first four rows of the matrix.

Note that we need to make two modifications to the memory and compute calculation rules in
Section[A.2]to adapt for the sparse and Toeplitz structure of the convolution matrix M. First is that
the memory required for storing any tensor containing both ¢, ¢’ is guaranteed to be some form of
convolution kernel, so it should only contribute a memory factor of V.- (the kernel size) instead of
NNy . Second is that any contraction of two tensors with one containing ¢ and the other containing
t,t' is guaranteed to be a temporal convolution, so should similarly contribute a compute factor of
Ny N for valid-type convolutions and N;N.- for same-type convolutions. For our implementation,
we monkey patch these modifications into the opt_einsum package used to provide memory and
FLOP estimations of einsum expressions.

Table 4: The memory and compute requirements for each possible contraction path, where we
are using a slight abuse of notation by allowing the index to represent the dimensional size of that
index in the “extra memory” and “total compute” columns. The initial equation cxyt,dnc,nt’t is
always assumed. We assume here that N; = N, for simplicity (equivalent to performing same-type
convolutions).

Contraction Path Extra Memory Total Compute
-> dnxyt,nt’t -> dxyt’ dnayt nayt(de + dr)
-> ncxyt’,dnc -> dxyt’ nczyt nxyt(ct + dc)
-> cxyt,dct’t -> dxyt’ cayt dner + dexytt

Following the prescription given above for calculating the memory and computational requirements
for performing contractions, we summarize the requirements of each contraction path for the temporal
convolution in TableE} We only consider the case for full convolutions, but the case for depthwise
convolutions is analogous.

The first contraction path first contracts the input with the polynomial coefficients, then convolves
the intermediate result with the basis functions. The second contraction path first convolves the
input with the basis functions, then contracts the intermediate result with the polynomial coefficients.
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The third contraction path first generates the temporal kernels from the polynomial coefficients and
basis functions, then convolves them with the input features. In most cases, we see that the last
contraction path is most memory efficient in typical cases, or when ¢ < dn. However, the optimality
for computational efficiency is more subtle and requires a comparison of dn(c + 7), nc(r + d), and
der.

B Details of Experiments

To convert events into frames, we choose the binning window to be 10 ms, unless otherwise specified.
This time step is kept fixed throughout our network, as we do not perform any temporal resampling
through the network. For the DVS128 and AIS2024 eye-tracking experiments, we perform simple
direct binning along with random affine augmentations (with rotation angles up to 10 degrees,
translation factors up to 0.1, and spatial scaling factors up to 1.1). For the Prophesee roadscene
detection, we perform event-volume binning (analogous to bilinear interpolation), with augmentations
consisting of horizontal flips at 0.5 probability and random scaling with factors from 0.9 to 1.1.

Recall that our network performs valid-type causal temporal convolutions which reduces the number
of frames by (kernel size — 1) per temporal convolution. To avoid introducing any implicit temporal
paddings to our network, we prepend extra frames (relative to the labels) to the beginning of the input
segment. The total number of extra frames is then (number of temporal layers) x (kernel size — 1).

For all training runs, we use the AdamW optimizer with a learning rate of 0.001 and weight decay of
0.001 (with PyTorch default keywords), along with the cosine decay learning rate scheduler (updated
every step) with a warmup period of around 0.01 of the total training steps. The runs are performed
with automatic mixed precision (float 16) with the model torch. compile’d. All training jobs are
done on a single NVIDIA A30 GPU.

For the total training epochs and walltimes (on a single A30 GPU):

* DVS128: 100 epochs and around 32 minutes, using a batch size of 64.
* 3ET+: 100 epochs and around 9 minutes, using a batch size of 64.

» Prophesee GEN4: 25 epochs and around 8 hours, using a batch size of 4.

The batch sizes are set such that it nearly saturates the available VRAM on the NVIDIA A30 GPU,
or around 24 GB. With the exception of the Prophesee object detection experiments (Appendix [B.2),
we ran 25 trials for each experiment to report the mean and standard error estimators of the metrics.

B.1 DVS Hand Gesture Recognition

Following the standard benchmarking procedure on this dataset, we only train and evaluate on the
first 1.5 seconds of each trial, and filter out the “other” class where the subject performs random
gestures not falling into the 10 predefined classes.

As mentioned, the network requires at least (number of temporal layers) x (kernel size — 1) + 1
frames of inputs to guarantee that every temporal layer is processing “valid” nonzero input features.
To generate output predictions with less than this number of frames, we can prepend zeros to layer
inputs where needed to match the kernel size. This simulates the behavior of initializing the buffers
of the temporal layers with zeros during online inference.

If the number of input frames is greater than (number of temporal layers) x (kernel size — 1) + 1,
then the network will produce more than one output prediction. If the latency budget allows, we
can apply a majority filter to the classification predictions of the network, such that there is more
confidence in the predictions.

To force the network to respond faster, we apply a custom random temporal masking augmentation
sample-wise with 1/2 probability. The random masking operation works by selecting a frame
uniformly random from the first frame to the middle frame of the segment, then the selected frame
and every frame preceding it is completely set to zero. This means that the network will be artificially
biased to respond to more recent input features during inference, thereby effectively decreasing its
response latency.
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B.1.1 Input Sparsity

We perform 4-bit quantization (with quantization aware training) on the gesture recognition network,
and find that the network can achieve very high sparsity even without applying any regularization
loss, given that it interfaces with event-based data and uses ReLU activations (which is sparsity
promoting).

Table 5: Input sparsity for each layer of the gesture recognition network backbone under 4-bit
quantization.

Layer Input Sparsity

Conv(1+2)D  0.99
Conv(1+42)D  0.94
Conv(1+2)D 0.94
Conv(1+2)D  0.79
Conv(1+2)D  0.68

B.1.2 Effect of Polynomial Degree and Jacobi Parameters

We tested the effect of polynomial degree on the performance of the network at the low-latency regime
of 200 ms, where the network sees less than half the amount of data needed to fill its temporal buffers.
Perhaps counterintuitively, having too high of a polynomial degree actually degraded performance
(and having too low of a degree also underperforms). This highlights the importance of selecting an
appropriate degree: one that is expressive enough to learn meaningful patterns from limited data, yet
not so flexible that it overfits to temporal noise and fails to generalize when the full temporal context
is unavailable.

Table 6: The effect of polynomial degree on the performance, for the DVS128 dataset at a latency of
200 ms, with Jacobi parameters fixed at («, ) = (—0.25, —0.25)

Degree  Accuracy

2 55.4 (0.03)
4 73.2(0.03)
5 67.6 (0.04)
8 60.2 (0.02)
10 52.5(0.02)

free 52.3 (0.02)

As shown in Table the effect of varying the Jacobi parameters («, £3) is relatively minor compared to
the impact of polynomial degree. While (—0.25, —0.25) yields the highest accuracy, the differences
across other parameter settings are within roughly two standard deviations, suggesting that the
influence of these parameters may only be borderline significant.

Table 7: The effect of Jacobi parameters on the performance, for the DVS128 dataset at a latency of
200 ms, with degree fixed at 4.

Jacobi Parameters (o, )  Accuracy

(—0.25,—0.25) 73.2 (0.03)
(—0.25,0) 72.9 (0.02)
(—0.25,0.25) 72.8 (0.03)
(0,—0.25) 72.8 (0.04)
(0,0) 72.7 (0.03)
(0,0.25) 72.6 (0.03)
(0.25,-0.25) 72.9 (0.02)
(0.25,0) 72.8 (0.04)
(0.25,0.25) 72.6 (0.03)
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B.2 Prophesee GEN4 Roadscene Object Detection

Following a recipe similar to the original paper, we remove bounding boxes that are less than 60 pixels
in the diagonal. In addition, we perform event-volume binning which simultaneously performs spatial
resizing from (720, 1280) to (160, 320) and temporal binning of 10 ms. For data augmentations, we
perform horizontal flips at 0.5 probability and random scaling with factors from 0.9 to 1.1.

The CenterNet detection head produces feature frames where each frame is spatially shaped (40, 80).
Each pixel contains 7 + 2 + 2 outputs containing 7 class logits (center point heatmaps), the bounding
box height and width scales, and the bounding box center point . and y. offsets. We perform evalua-
tions directly on these raw predictions, without any output filtering (e.g. no non-max suppression).
The network is trained on the full 7 road-scene classes of the dataset, and the mAP is evaluated on the
cars and pedestrians classes, at confidence thresholds from 0.05 to 0.95 in steps of 0.05 and averaged
using trapezoid integration.

See Table. [g]for details on the model architecture, which resembles an hourglass structure. Unless
otherwise indicated, the temporal kernel size is assumed to be 10, causal and valid-type. The spatial
kernel size is assumed to be 3 x 3, where the spatial stride can be inferred from the output shape of
the layer. DWS denotes both the temporal and spatial layers in the Conv(1+2)D block as depthwise-
separable. The BottleNeck block is similar (but not identical) to the IRB block in MobileNetV2; it
is a residual block with the residual path containing three Conv2D layers with ReLU activations in
between: a depthwise 3 x 3 Conv2D followed by a pointwise Conv2D quadrupling the channels
followed by a pointwise Conv2D quartering the channels.

Before each decoder layer, the input feature is first upsampled spatially by a factor of 2 x 2. It is then
summed with an intermediate output feature from an encoder layer that has the same spatial shape.
To match the temporal shapes, the beginning frames are truncated if necessary. The remaining frames
are projected with a pointwise convolutional layer (a long-range skip connection).

Table 8: The PLEIADES + CenterNet architecture used for the Prophesee dataset.

Layer Output Shape Channels

Input (2,T,160, 320)

Encoder

Conv(1+2)D (32,7 — 9, 80,160) 2 — 16 — 32
BottleNeck 2D (32,7 — 9, 80,160) 32— 32— 128 — 32
DWS Conv(14+2)D (64,7 — 18, 40, 80) 32 — 48 — 64
BottleNeck 2D (64, T — 18,40, 80) 64 — 64 — 256 — 64
DWS Conv(14+2)D (96,7 — 27, 20, 40) 64 — 80 — 96

DWS Conv2D (128, 7 — 27, 10,20) 96 — 128

DWS Conv2D (256, T — 27, 5,10) 128 — 256

Decoder

Upsample (256, T — 27, 10,20)

DWS Conv2D (256, T — 27, 10,20) 256 — 256

Upsample (256, T — 27, 20,40)

DWS Conv2D (256, T — 27, 20,40) 256 — 256

Upsample (256, T — 27, 40, 80)

DWS Conv2D (256, T — 27, 40,80) 256 — 256
CenterNet Head

DWS Conv(1+2)D
pointwise Conv

(128, T — 27, 40,80)
(11,T — 27, 40, 80)

256 — 256 — 128
128 — 11
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B.3 Results on KITTI 2DOD task

See Table [9] for results of PLEIADES on the KITTI 2D object detection task compared to other
standard networks optimized for conventional camera data. Our network architecture is the same
used for the Prophesee GEN4 road-scene object detection task as given in Table[§]

Model mAP Parameters MACs/ sec
RGBD Fusion (YOLOvV2) 0.482 - 349 B
SimCLR (ResNet50) 0.570 26 M 82 B
PLEIADES + CenterNet 0.576 0.57M 18 B

Table 9: Comparison of models in terms of mAP, number of parameters, and MACs per second. Note
that the MACs/sec measure assumes an FPS of 10, which is used in the KITTI recordings.
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