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Abstract

Due to the high costs associated with finetuning001
large language models, various recent works002
propose to adapt them to specific tasks with-003
out any parameter updates through in-context004
learning. Unfortunately, for in-context learn-005
ing there is currently no way to leverage unla-006
beled data, which is often much easier to ob-007
tain in large quantities than labeled examples.008
In this work, we therefore investigate ways to009
make use of unlabeled examples to improve the010
zero-shot performance of pretrained language011
models without any finetuning: We introduce012
Semantic-Oriented Unlabeled Priming (SOUP),013
a method that classifies examples by retrieving014
semantically similar unlabeled examples, as-015
signing labels to them in a zero-shot fashion,016
and then using them for in-context learning. We017
also propose bag-of-contexts priming, a new018
priming strategy that is more suitable for our019
setting and enables the usage of more examples020
than fit into the context window.021

1 Introduction022

In recent years, there has been a trend in NLP to-023

wards larger and larger language models (LMs)024

(Radford et al., 2018, 2019; Raffel et al., 2020;025

Brown et al., 2020; Fedus et al., 2021). Different026

from prior pretrained LMs that are typically fine-027

tuned for specific downstream tasks using labeled028

training datasets (Devlin et al., 2019; Liu et al.,029

2019), recent work proposes to use such large mod-030

els in zero- or few-shot settings without any fine-031

tuning (Brown et al., 2020; Sanh et al., 2021) due032

to the often prohibitive costs associated with train-033

ing, storing and deploying large models (Strubell034

et al., 2019). In particular, Brown et al. (2020) pro-035

pose priming where training examples are simply036

provided as additional context together with test037

examples; this in-context learning does not require038

updating the parameters of the model.039

In prior work on in-context learning, only la-040

beled examples are used for priming (Brown et al.,041

x = Not worth watching.

UD

E(x)

Not worth the time! The movie is [MASK].
p(good) = 0.3

p(bad) = 0.7

Not worth the time! The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.1

p(bad) = 0.9

Do not watch this movie. The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.3

p(bad) = 0.7
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Figure 1: Schematic representation of the steps involved
in SOUP for binary sentiment classification of movie
reviews. (1) Semantic Search: For a given input x, we
retrieve semantically similar, unlabeled examples from a
set UD using a sentence encoder E. (2) Self-Prediction:
We obtain zero-shot predictions for all similar examples
using natural language prompts. (3) Bag-of-Contexts
Priming: We use the retrieved examples along with
their most probable labels one at a time as in-context
examples to obtain predictions for x; the resulting dis-
tributions over possible labels are finally averaged.

2020; Lu et al., 2021; Kumar and Talukdar, 2021; 042

Min et al., 2021; Jiang et al., 2021). But in many 043

settings, these are extremely scarce or even entirely 044

unavailable, while unlabeled examples can easily 045

be accessed. Unfortunately, there is currently no 046

way to leverage unlabeled examples for priming. 047

Other approaches for leveraging unlabeled data 048

such as domain-adaptive pretraining (Gururangan 049

et al., 2020) would again require finetuning. 050

Therefore, we investigate how we can make use 051

of unlabeled examples to improve the performance 052

of large-scale language models without requiring 053

changes to their parameters: We propose a self- 054

supervised method called Semantic-Oriented Unla- 055

beled Priming (SOUP), which uses unlabeled exam- 056

ples for in-context learning. Following the observa- 057

tion that semantically similar examples are better 058
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candidates as in-context examples than dissimilar059

ones (Gao et al., 2021a; Liu et al., 2021), we first060

retrieve the semantically most similar unlabeled061

examples as contexts for a given input; then, we062

query the language model to obtain predictions for063

these unlabeled examples, and finally provide them064

along with their most likely labels as additional065

context. Intuitively, this approach is particularly066

helpful whenever the retrieved examples are easier067

to classify then the actual input of interest.068

Whereas in prior work, the in-context examples069

and test example are usually concatenated to form a070

single input that is provided to the LM, we propose071

to use one in-context example at a time and com-072

pute a weighted average of the so-obtained label073

distributions to obtain a final prediction. Besides re-074

sulting in much better performance, one benefit of075

this methods is that we are no longer constrained by076

the maximum sequence length of the used LM and077

thus, more neighbors can be used for priming than078

with the usual, concatenation-based approach. We079

also investigate an iterative variant of our approach080

where predictions for unlabeled examples are it-081

eratively improved with SOUP. On four English082

text classification datasets, we show that SOUP im-083

proves performance of pretrained LMs.084

2 Related Work085

First proposed by Brown et al. (2020), in-context086

learning has been studied by many recent works087

(Lu et al., 2021; Kumar and Talukdar, 2021; Min088

et al., 2021; Jiang et al., 2021). Concurrent with089

our work, Min et al. (2021) also propose to perform090

priming with individual examples and combine the091

resulting predictions; however, they use a differ-092

ent combination technique and, similar to all prior093

work on in-context learning, only investigate set-094

tings with labeled examples. Our approach is also095

related to various approaches that leverage unla-096

beled data in few- or zero-shot settings (Xie et al.,097

2019; Gururangan et al., 2020; Schick and Schütze,098

2021a), but all of them require finetuning the un-099

derlying language model.100

We make use of different Transformer-based sen-101

tence encoders (Reimers and Gurevych, 2019; Gao102

et al., 2021b) and of textual instructions to im-103

prove model performance, an approach that was104

first proposed by Radford et al. (2019) and has105

since been investigated extensively (Schick and106

Schütze, 2021a,b,c; Gao et al., 2021a, i.a.).107

3 Semantic-Oriented Unlabeled Priming 108

We introduce Semantic-Oriented Unlabeled Prim- 109

ing (SOUP), our approach for in-context learning 110

with unlabeled examples. To this end, let M be a 111

masked language model (Devlin et al., 2019) where 112

for some sequence of tokens t1, . . . , tk that con- 113

tains exactly one mask token, M(t | t1, . . . , tk) 114

denotes the probability that M assigns to t at the 115

masked position.1 Further, let E be a sentence 116

encoder where E(x) denotes the representation as- 117

signed to x by E, and DU be a set of unlabeled 118

examples. We consider a text classification setup 119

where for a given input x, a label y from a set Y 120

has to be predicted. 121

Obtaining predictions for x with SOUP consists 122

of the following steps: 123

1. Semantic Search: We search for unlabeled 124

examples that are semantically most similar 125

to x using the sentence encoder E. 126

2. Self-Prediction: We use M to obtain predic- 127

tions for these neighboring examples. 128

3. Bag-of-Contexts Priming: We use the neigh- 129

bors and their estimated labels as additional 130

context for priming M and compute an av- 131

erage of the resulting label distributions to 132

obtain a final prediction for x. 133

3.1 Semantic Search 134

Similar to prior work (Gao et al., 2021a; Liu et al., 135

2021), the unlabeled examples xu ∈ DU are en- 136

coded to obtain vector representations E(xu); this 137

can be done in advance for the entire set DU . We 138

also compute the representation e(x) of our test ex- 139

ample and use semantic search to find the k nearest 140

neighbors of x according to a specific similarity 141

measure (e.g., cosine similarity). We denote the set 142

of neighbors as Nx = {x1, ..., xk} ⊆ DU . 143

3.2 Self-Prediction for Unlabeled Examples 144

We use M to predict the label distribution for each 145

xi ∈ Nx, which is done similar to prior work by 146

providing a short prompt and assigning meaning- 147

ful names to all labels (e.g., Radford et al., 2019; 148

Schick and Schütze, 2021a,c). We use the same 149

notation as Schick and Schütze (2021a,c) in that 150

we make use of a pattern P that converts inputs x 151

into cloze questions P (x) containing a single mask, 152

1We focus on masked language models, but our approach
can easily be transferred to autoregressive language models.
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and a verbalizer v that maps each label y ∈ Y to153

a single token v(y) representing its meaning. We154

define the probability of y being the correct label155

for x based on M (v(y) | P (x)), the probability156

that M assigns to v(y) at the masked position in157

P (x). We normalize this probability and set158

p(y | x) ∝ M (v(y) | P (x))

M (v(y) | P (ε))
(1)159

with ε denoting an empty sequence following prior160

work (Brown et al., 2020).161

3.3 Priming162

Let N̂x = {(xi, ŷi)}ki=1 be the selected in-context163

neighbors with their predicted labels. Based on164

these semantically similar examples, we want to165

obtain a prediction for x. In the following, let P̂ (xi)166

denote P (xi) with the mask token replaced by ŷi.167

Concatenation Priming Previous work usually168

provides all in-context examples at a time to the169

LM. That is, all examples are concatenated fol-170

lowed by the test example to obtain the input171

c = [P̂ (x1), P̂ (x2), ..., P̂ (xk), P (x)], which is172

provided to the LM to get the final prediction. We173

refer to this variant as CONCAT priming.174

Bag-of-Contexts Priming We propose bag-of-175

contexts (BOC) priming where instead, we only176

use individual examples for priming and prediction177

each time and then compute the average of the178

resulting label distributions as the final prediction.179

The key advantage of this method lies in the fact180

that it allows us to use more examples than fit in181

the context window of the used model.182

For each in-context example xi ∈ N , we con-183

struct a corresponding context ci = [P̂ (xi);P (x)],184

similar to CONCAT with k = 1. For each ci, we185

then use the LM to obtain a distribution qi(y) over186

possible labels y ∈ Y for x, where we employ nor-187

malization analogous to Eq. 1. Finally, we make188

use of a weighting function w(xi) : N → R+ and189

compute190

qf (y) =
1

Z
·

k∑
i=1

w(xi) · qi(y) (2)191

with Z =
∑k

i=1w(xi). We obtain the final predic-192

tion for x as ŷ = argmaxy∈Y qf (y). We experi-193

ment with the following two weighting functions.194

uniform: w(xi) = 1. similarity-based: w(xi) is195

the cosine similarity between xi and x.196

3.4 Iterative SOUP 197

We also experiment with an iterative variant of 198

SOUP where the labels for the unlabeled examples 199

in DU are iteratively refined. To this end, we treat 200

each example xu ∈ DU as a test example: We 201

use SOUP to reclassify xu with DU \ {xu} as the 202

set of unlabeled examples. This means for each 203

example x, we select in-context neighbors from 204

DU \{xu} as priming contexts to allow us to refine 205

the prediction for x. We can repeat this process for 206

multiple iterations. 207

4 Experiments 208

Datasets We evaluate SOUP on four English 209

datasets: IMDb (Maas et al., 2011) and Yelp Re- 210

views (Zhang et al., 2015) for sentiment analy- 211

sis as well as AG’s News and Yahoo Questions 212

(Zhang et al., 2015) for text categorization. For 213

each dataset, we use one of the the patterns and ver- 214

balizers introduced by Schick and Schütze (2021a); 215

further details can be found in Appendix A. For 216

IMDb, the unlabeled in-context examples are se- 217

lected from the training set of SST-2 (Socher et al., 218

2013) following Liu et al. (2021). For all other 219

datasets, the in-context examples are obtained from 220

the respective training sets.2 221

Experimental Setup For our main experiments, 222

we use ALBERT-xlarge-v2 (Lan et al., 2020) as 223

underlying LM and paraphrase-MiniLM-L6-v2 224

(Reimers and Gurevych, 2019) as sentence encoder. 225

As the context window of ALBERT is 512 tokens, 226

we truncate each example to 120 tokens for CON- 227

CAT. To enable a fair comparison between both 228

priming strategies, we also set the maximum to- 229

ken number for BOC to 120. We compare SOUP 230

to zero-shot performance using only the patterns 231

and verbalizers (“prompt only”), similar to Radford 232

et al. (2019) and Schick et al. (2021). We do not 233

compare to other baselines as we are not aware of 234

other approaches that enable leveraging unlabeled 235

data in zero-shot settings without finetuning. For 236

iterative SOUP, we use 3 iterations to improve the 237

labels assigned to unlabeled data. 238

Results As shown in Table 1, when using CON- 239

CAT with k = 3, our method clearly performs 240

worse than the prompt-only baseline. However, us- 241

ing our proposed BOC approach consistently out- 242

2To ensure a resource-friendly evaluation, we restrict both
the unlabeled sets and the test sets to a maximum of 10,000
randomly selected examples.
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k w(xi) AG’s Yahoo IMDb Yelp

Prompt only – – 66.01 48.04 72.67 43.37
SOUP (CONC.) 3 – 43.88 21.96 54.71 29.56

SOUP (BOC)

3
unif. 68.18 45.64 68.30 40.43
sim. 68.18 45.57 68.31 40.43

10
unif. 69.64 49.93 71.03 44.05
sim. 69.74 49.98 71.01 43.93

50
unif. 69.70 52.67 72.97 46.21
sim. 70.00 52.56 72.95 46.20

iSOUP (BOC) 50 unif. 69.88 45.22 73.78 45.79

Table 1: Accuracy with zero-shot prompting, SOUP with
CONCAT and BOC as well as iterative SOUP (iSOUP)
using different numbers of neighbors (k) and both uni-
form (“unif.”) and similarity-based (“sim.”) weighting.

Size Method AG’s Yahoo IMDb Yelp

xlarge Prompt only 66.01 48.04 72.67 43.37
xlarge SOUP 69.70 52.67 72.97 46.21

xxlarge Prompt only 73.51 57.89 76.67 45.84
xxlarge SOUP 74.89 61.82 79.54 41.00

Table 2: Performance of a prompt-only baseline and
SOUP with k = 50 and uniform weighting using differ-
ent model sizes

performs not only priming with CONCAT by a large243

margin, but also leads to consistent improvements244

over our baseline on three out of four datasets for245

k ≥ 10. Moreover, performance grows consis-246

tently with the number of in-context examples, with247

k = 50 resulting in improvements for each dataset248

considered. On average, similarity-based weight-249

ing leads to negligible gains over uniform weight-250

ing. For our iterative variant of SOUP, we therefore251

only experiment with uniform weighting; iterative252

SOUP leads to slight improvements for two tasks,253

but performs much worse than SOUP for Yahoo.254

5 Analysis255

We examine the influence of both increasing the256

language model’s size and replacing the Sentence257

Transformer with different encoders on the per-258

formance of SOUP. We also briefly discuss the259

efficiency of our method.260

Model Size We first focus on the impact of model261

size on the performance of SOUP; to this end, we262

also evaluate our method (with k = 50 and uni-263

form weighting) and the prompt-only baseline us-264

ing ALBERT-xxlarge-v2 (Lan et al., 2020), a model265

that is about four times as large as ALBERT-xlarge-266

v2. As shown in Table 2, for our prompt-only base-267

line performance consistently improves with model268

Sentence Encoder AG’s Yahoo IMDb Yelp

paraphrase-MiniLM-L6-v2 69.70 52.67 72.97 46.21
msmarco-bert-base-dot-v5 69.93 53.04 74.47 45.82
unsup-simcse-roberta-large 69.76 52.40 73.90 45.19

Table 3: SOUP (ALBERT-xlarge-v2, k = 50, uniform
weighting) is robust to choice of sentence encoder.

size for both methods. With exception of ALBERT- 269

xxlarge-v2 on Yelp, for which our method surpris- 270

ingly leads to worse performance, SOUP consis- 271

tently outperforms the baseline method. 272

Sentence Encoder We also investigate the im- 273

pact of the sentence encoder on downstream task 274

performance. As paraphrase-MiniLM-L6-v2 was 275

trained on a mixture of tasks that has some over- 276

lap with the tasks we evaluate on, we additionally 277

consider msmarco-bert-base-dot-v5 (Reimers and 278

Gurevych, 2019), a model that was trained exclu- 279

sively on MS MARCO passages (Bajaj et al., 2018), 280

and unsup-simcse-roberta-large (Gao et al., 2021b), 281

an encoder that was trained in a fully unsupervised 282

fashion. As can be seen in Table 3, the choice 283

of sentence encoder has little influence on perfor- 284

mance, illustrating that performance improvements 285

do not come from the encoder being pretrained on 286

downstream task data. 287

Efficiency One disadvantage of our approach is 288

that the number of required forward passes grows 289

linearly with k. After precomputing encodings and 290

labels for UD, classifying a single example with 291

k = 3 took about 0.6s using a single NVIDIA 292

GeForce GTX 1080Ti; for k = 10 and k = 50, 293

the required times were 1.5s and 6.8s. However, 294

performance can be improved a lot with decoder- 295

only LMs (e.g., Radford et al., 2018, 2019; Brown 296

et al., 2020), as this enables the precomputation of 297

contextualized representations for each xu ∈ UD. 298

6 Conclusion 299

We have presented SOUP, a method for unlabeled 300

priming that classifies inputs by retrieving semanti- 301

cally similar unlabeled examples, classifying these 302

examples in a zero-shot fashion and providing them 303

as additional contexts for in-context learning. Be- 304

yond that, we have proposed a new priming strategy 305

that leads to much better performance and scales to 306

more than just a few examples. We have shown that 307

with sufficiently many retrieved examples, SOUP 308

consistently leads to improved performance. 309
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A Dataset Details490

For each task except IMDb, we use one of the491

patterns and verbalizers introduced by Schick and492

Schütze (2021a). In the following, we describe in493

detail the patterns and verbalizers used.494

IMDb For the IMDb Large Movie Review495

Dataset (Maas et al., 2011), the task is to estimate496

the binary sentiment of a movie review based on497

the review’s text. We use the following pattern and498

verbalizer for an input review a:499

P (a) = a. The movie is [MASK].500

v(0) = bad v(1) = good501

Yelp For the Yelp Reviews Full Star dataset502

(Zhang et al., 2015), the task is to estimate the503

rating that a customer gave to a restaurant on a 1-to504

5-star scale based on their review’s text. We use505

the following pattern for an input text a:506

507

P (a) = a. In summary, the restaurant is [MASK].508

509

As a verbalizer v, we define:510

511

v(1) = terrible v(2) = bad v(3) = okay
v(4) = good v(5) = great

AG’s News AG’s News (Zhang et al., 2015) is a512

task to classify a news article as belonging to one513

of the categories World (1), Sports (2), Business514

(3) or Science/Tech (4). We define the following515

pattern for an input news text a:516

517

P (a) = a. News Category: [MASK].518

519

Intuitively, we use a verbalizer that maps 1–4 to520

“World”, “Sports”, “Business” and “Science”, re-521

spectively.522

Yahoo Yahoo Questions (Zhang et al., 2015) is a523

text classification dataset. Given a question and an524

answer, the text has to be classified to one of ten525

possible categories. We make use of the following526

pattern for a input question a and an answer b:527

528

P (a, b) = a b. Question Category: [MASK].529

530

Our verbalizer maps labels 1–10 to the tokens “So-531

ciety”, “Science”, “Health”, “Education”, “Com-532

puter”, “Sports”, “Business”, “Entertainment”,533

“Relationship” and “Politics”.534
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