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Abstract

It is common practice to reuse models initially trained on different data to increase down-
stream task performance. Especially in the computer vision domain, ImageNet-pretrained
weights have been successfully used for various tasks. In this work, we investigate the impact
of transfer learning for segmentation problems, being pixel-wise classification problems that
can be tackled with encoder-decoder architectures. Given a U-Net architecture, we find that
transfer learning the decoder does not help downstream segmentation tasks, while transfer
learning the encoder is truly beneficial. Overall, the advantageous effect of pretrained mod-
els is strongest in low-data regimes. Our investigation is therefore motivated by a real world
medical image (binary) segmentation problem, where labeled data is scarce and we study
the model performances in such low-data regimes.
We exemplify within our experimentation framework that pretrained weights for a decoder
may yield faster convergence, but they do not improve the overall model performance as one
can obtain equivalent results with randomly initialized decoders. However, we show that it
is more effective to reuse encoder weights trained on a segmentation or reconstruction task
than reusing encoder weights trained on classification tasks. Our findings suggest that model
pretraining on large-scale segmentation datasets can provide encoder weights that are more
suitable for downstream segmentation tasks than an encoder pretrained on the ImageNet
classification task. We also propose a contrastive self-supervised approach with multiple
self-reconstruction tasks, which provides encoders that are suitable for transfer learning in
segmentation problems in the absence of segmentation labels.

1 Introduction

Transfer learning and reusing pretrained weights is common practice when training deep learning models.
Reusing weights from a model that was pretrained on a large scale dataset often has several advantages: faster
training time, reduced costs, ecological footprint and improved performance - especially in low-data regimes.
For computer vision problems, the use of ImageNet-pretrained weights for model initialization has de facto
become standard practice as these encode information related to the visual content of millions of images from
diverse domains. To better leverage the underlying structure in the data, advanced self-supervised learning
methods such as SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020), and MoCo (He et al., 2020) have
been proposed in the last years. Common to all approaches is that they only pretrain an encoder network.
In order to capture fine-grained visual features in the latent representations, the ConRec framework (Dippel
et al., 2021) extends upon SimCLR by incorporating a decoder network and jointly optimizing a contrastive
and a self-reconstruction loss.

For segmentation tasks, encoder-decoder architectures often reuse ImageNet weights as an initialization for
the encoder, whereas the initial weights of the decoder are commonly initialized by drawing from a random
distribution: Minaee et al. (2021) surveyed more than 100 recent image segmentation algorithms, and they
state that "many people use a model trained on ImageNet" as the encoder part of the network, and re-train
their model from those initial weights. In the context of medical image segmentation, it has been observed
that self-supervised pretraining with a reconstruction task has the potential to significantly improve the
model performance on downstream segmentation tasks (Zhou et al., 2019; Haghighi et al., 2020).

1



Under review as submission to TMLR

Scenario 2
Transfer-cls-enc

Scenario 3
Transfer-seg-enc-dec

Scenario 4
Transfer-seg-enc

Pretrained weights from 
classification tasks (e.g. ImageNet)

Pretrained weights from 
segmentation or reconstruction task

No pretraining 
(random weights)

Mediocre results
for downstream 

segmentation problems

Scenario 1
Random-Init

Unsuitable for 
low data regimes

Consistent good results 
for downstream 

segmentation problems

Consistent good results 
for downstream 

segmentation problems

Figure 1: Transfer learning scenarios for segmentation problems. Note that Scenario 2 is commonly applied
in literature and our experimental results show that this is suboptimal.

It is yet not well understood, though, which underlying factors are driving the reported improvements.

This study aims at systematically analyzing the effect of different pretraining and initialization approaches
for encoder-decoder networks on downstream segmentation tasks. Hereby we limit our experimental setup
to encoder-decoder architectures as they are most prominently applied for image segmentation. The com-
peting initialization approaches comprise (a) encoder pretrained on a pretext classification task, (b) entire
network pretrained on a pretext reconstruction or segmentation task, and (c) encoder pretrained on a pretext
reconstruction/segmentation task with randomly initialized decoder – see Fig. 1. Clearly, these approaches
require different levels of annotations, i.e., no labels, class labels, or segmentation masks, which has direct
implications on their practical applicability. A comprehensive quantitative analysis of the different learning
scenarios is provided for image segmentation tasks of varying sizes derived from four distinct data sources. To
simplify and focus our analysis, we limit our experiments to the well-known U-Net architecture (Ronneberger
et al., 2015) which is widely used in medical segmentation tasks.

Our experiments confirm the intuition that it is most beneficial to pretrain on pretext tasks that are of the
same type as the downstream task. Hence, choosing by default an encoder that was simply pretrained on
ImageNet classification as initialization may, in general, be suboptimal for downstream image segmentation
problems. Interestingly, we observe that in our experimental setup, the pretraining of the decoder seems to
be only of minor importance. Thus, it may be of key importance to carefully select encoder weights that are
used for initialization, whereas the decoder branch can be easily learned from scratch on the downstream
task. Next to the quantitative analysis of different transfer learning scenarios for segmentation problems,
we also provide a qualitative analysis that further explains the observed patterns. We compare encoder
representations from different models, and we find that an encoder which is trained with a segmentation
pretext task provides fundamentally different representations than an encoder from a classification pretext
task.

2 Evaluation Environment

Below, we provide a detailed description of the evaluation environment that was used to investigate several
transfer learning scenarios.

2.1 Datasets

We used six benchmark datasets: Flower Segmentation (Nilsback & Zisserman, 2008), Cityscapes (Cordts
et al., 2016), Oxford IIIT Pets (Parkhi et al., 2012) and three subsets of the Pascal VOC dataset (airplanes,
cats, horse) (Everingham et al.) – see also Fig. 2 and Table 1 for further details. As those tasks are rather
easy, we vary the amount of training data and observe the effect during evaluation. We vary the fraction
samples used for training (1%, 5%, 20%) for all datasets and use the remaining samples for evaluation.
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Table 1: Dataset size of our six benchmark datasets.

Dataset Flowers 17 Oxford Pets Cityscape Bus VOC airplane VOC cat VOC horse

#Samples 849 7375 483 178 250 147

(a) Oxford Flowers 17 (b) Cityscape Bus (c) Oxford IIIT Pets

(d) Pascal VOC airplane (e) Pascal VOC cat (f) Pascal VOC horse

Figure 2: Samples from the six segmentation datasets: Flowers, Cityscape, Oxford IIIT Pets and Pascal
VOC airplane, cat, horse with their respective annotations.

2.2 Related work – SimCLR, Reconstruction and ConRec

We want to compare popular self-supervised learning methods such as the SimCLR framework (Chen et al.,
2020a;b), MoCo (He et al., 2020) and BYOL (Richemond et al., 2020) that only train an encoder with methods
that also train a decoder. SimCLR learns representations by learning that views from the same image are
similar and that views from different images are dissimilar. Reconstruction-based methods commonly train
a model to predict the content of artificially masked parts of an image by optimizing a l2 reconstruction
loss (Pathak et al., 2016; Zhou et al., 2019; Dippel et al., 2021). To overcome information redundancy
in images, recent approaches suggest masking a very high portion of random patches in order to create a
self-supervised task for learning expressive visual features (He et al., 2021; Bao et al., 2021; Zhou et al.,
2021b; Bachmann et al., 2022). The ConRec framework (Dippel et al., 2021) combines the contrastive task
of the SimCLR framework with a reconstruction task to initialize the decoder. Classification networks tend
to extract features which are invariant within a certain class while reconstruction networks extract features
capable of capturing fine-grained visual details of a given instance. In order to balance intra-class invariance
and feature richness, the ConRec framework jointly optimizes a contrastive and a reconstruction loss. Several
recent studies have been following a similar approach (Li et al., 2020; Zhou et al., 2021a), to tackle "feature
suppression" of fine-grained details.

The vanilla ConRec model as described in Dippel et al. (2021) has shown promising results for classification
tasks. Segmentation tasks require pixel-level precision and therefore it is necessary to exploit fine-grained
visual details from an image.

In order to tailor the ConRec approach towards segmentation problems and to build more robust and
generalized representations in the decoder, we extent this concept: instead of a single reconstruction task,
we challenge the ConRec model with multiple reconstruction tasks while sharing most of the weights between
the different tasks. The four tasks include the normal reconstruction of the masked image, segmenting the
locations where masks are applied to the image, reverting the image from the color jittered colorspace to the
original color space and highlighting the masked regions. Given one example image, the four target images
for each reconstruction task are shown in Fig. 3. Subfigure (a) shows an example input image and (b) -
(e) show the respective reconstruction targets. (b) depicts the normal reconstruction of the image, (c) also
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includes the projection to the original color space, (d) highlights the regions in the image where a mask can
be found, and (e) fills the masks with black color. The first three blocks of the decoder are shared between
the reconstruction tasks, and the last decoder block is unique to each task.

(a)

(c)

(b)

(d)

(e)

Contrastive Task

Figure 3: Four reconstruction tasks that are performed simultaneously when training the ConRec framework.
Given the input image (a), the ConRec model outputs the images (b)-(e) with its four reconstruction heads.

Table 2: Finetuning results for various pretrained models and scenarios on the Oxford Flowers 17 and
Oxford Pets datasets. The model pretraining was performed on the entire unlabeled dataset. To exemplify
the impact of the pretraining, smaller subsets of the data (1%, 5%, 20%) were used with binary segmentation
labels for finetuning. Displayed values are the dice coefficient on the evaluation set.

Flowers Pets

Scenario Model 1% (8) 5% (42) 20% (170) 1% (74) 5% (368) 20% (1475)

1 (random-init) Random 79.1 ± 1.0 89.4 ± 0.8 94.3 ± 0.0 71.7 ± 5.2 84.2 ± 0.9 88.2 ± 0.3
2 (cls-enc) SimCLR 77.7 ± 0.4 88.8 ± 0.3 94.1 ± 0.1 79.2 ± 1.1 85.1 ± 0.1 88.2 ± 0.4

3 (seg-enc-dec) Reconstruction 84.4 ± 0.6 91.8 ± 0.2 95.0 ± 0.1 80.5 ± 1.5 86.8 ± 0.2 89.6 ± 0.3
3 (seg-enc-dec) ConRec 85.7 ± 1.8 92.2 ± 0.4 95.3 ± 0.1 83.1 ± 0.5 87.5 ± 0.6 90.0 ± 0.1

4 (seg-enc) Reconstruction 84.6 ± 0.2 92.0 ± 0.1 95.0 ± 0.0 81.2 ± 0.1 86.9 ± 0.5 89.5 ± 0.1
4 (seg-enc) ConRec 84.7 ± 0.6 92.1 ± 0.1 95.3 ± 0.1 83.3 ± 0.6 87.2 ± 0.4 89.8 ± 0.2

2.3 Implementation Details

As a preprocessing step, we resize the images with padding to the desired target size. During training, we
randomly flip the image horizontally and take a random crop containing at least 50% of the image while
changing the aspect ratio maximally to ( 3

4 , 4
3 ) of the original image ratio. We use the dice loss as the

objective function. Following the official ConRec implementation1, our U-Net has four encoder and decoder
blocks consisting of two convolutional layers with batch normalization and max pooling/upsampling in the
encoder/decoder. This results in a total of 8.65M parameters for the model. While training for a specific
subclass from the Pascal VOC or Cityscapes dataset, we use all the images where there is at least one pixel
of the target class visible and discard all other images.

3 Do we need a Pretrained Decoder?

We evaluate various model training scenarios in order to assess whether or not a pretrained decoder is advan-
tageous for downstream segmentation tasks. Note that the very same model encoder-decoder architecture

1https://github.com/bayer-science-for-a-better-life/contrastive-reconstruction
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is used for all model training scenarios, we only alter the weight initialization. For pretraining the self-
supervised models, we use the Oxford Flowers 102 and Oxford Pets dataset. For finetuning, we train and
evaluate models for two segmentation datasets (Oxford Flowers 17; Oxford Pets) with different amount of
data (1%, 5% and 20%) used for training. Comprehensive results are listed in Table 2. As expected, transfer
learning helps in general, hence scenario 1 with all weights initialized randomly yields the worst results.

Using ConRec as pretext task outperforms all other methods across the different data regimes and datasets,
highlighting that the multiple reconstruction tasks lead to more general representations which can be gen-
eralized in downstream segmentation tasks. It slightly outperforms the models that were initialized with
the reconstruction pretext task. With 20 % training data (≈170 training samples), the differences in perfor-
mance are marginal, and the dice coefficient is high. This is because the segmentation task is relatively easy
as the objects appear prominent in the image and sufficient training data is available to overrule the model
initialization.

We aim to investigate if the observed performance increases in the low-data regime are the result of using
a pretrained decoder. Therefore, we randomize the decoder of the models that were pretrained with a
reconstruction task (i.e. scenario 4) and compare the resulting performance to the fully initialized model
(i.e. scenario 3). The results show that randomizing the decoder does not have a significant influence on the
final performance. This finding was further validated on a real-world dataset – see Section 4.

There are two potential explanations for this finding: Either the computational graph in a pretrained decoder
is irrelevant for the downstream segmentation task, or even very little number of labeled training samples
are required to restore the data transformations required. Fig. 4a shows the dice coefficient on the test set
for the 5% case over the training time. The ConRec model with the random decoder (i.e. ConRec RD) needs
more training steps but it can finally achieve the same accuracy than the initialized decoder (i.e. ConRec).
Thus, the pretrained decoder is indeed relevant as it yields optimal model performance with less training
steps. However, given a larger number of training steps, the model can reach the same performance level –
even for low-data regimes.

This observation shows that the random decoder is not the driver for the performance gap to the SimCLR
model initialization, indicating that the ConRec model learns representations in the encoder, which are
better suited for segmentation tasks. ConRec’s embeddings might contain more encoded information about
the position of different features that are unnecessary for the contrastive task.
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Figure 4: Validation dice coefficient over the training time for two segmentation downstream tasks with
different model initializations.

4 Implication for Real World Scenario

The results from the previous section indicate that pretraining the decoder has no significant effect on
segmentation transfer. We test this hypothesis on a real world scenario where one model is pretrained on a
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reconstruction task and then finetuned on a downstream segmentation task. Therefore, we reran the official
Model Genesis implementation 2. Zhou et al. (2019) pretrain their U-Net architecture with 3D volumes of
the LUNA lung nodule dataset and then evaluate it on lung nodule segmentation. We reproduce their results
and add an additional run where we initialize the decoder randomly. For the random initialization, we only
finetune the model one time and for the two other variants, we finetune the models three times and report
mean/std dice and IoU performance on the evaluation set.

The results in Table 3 show that there is no significant performance difference measurable between the fully
initialized model and the model with a random decoder. This supports the findings on our benchmark
datasets.

Table 3: Results from lung nodule segmentation with the Model Genesis initialization compared to the same
model with a random initialization. pretrained encoder; pretrained decoder replicates the results reported by
Zhou et al. (2019) (see Fig. 7, NCS).

Initialization Dice coef IoU
random encoder; random decoder 71.54 74.47

pretrained encoder; random decoder 75.20 ± 1.13 76.94 ± 0.50
pretrained encoder; pretrained decoder 75.10 ± 0.48 76.78 ± 0.45

5 How to pretrain the encoder for downstream segmentation tasks?

Before, we could show that there is no need to transfer learn a pretrained decoder. However, comparing the
results for scenario 2 to the results for scenario 4, we find that the encoder trained with SimCLR performs
significantly worse than the encoder trained with ConRec or the Reconstruction task. The SimCLR model
does not even bring any advantage over a random initialization.

5.1 Segmentation and Classification Pretraining

We want to assess if the limited effect of the pretrained decoder is unique to the reconstruction pretext
task or if this also is an observation that occurs when transferring from one segmentation task to another
segmentation task. Therefore, we present a transfer learning segmentation experiment in the following.

As the decoder does not have the primary effect on segmentation transfer learning performance, we want
to investigate if it is enough to train a classification model and use that for segmentation task transfer.
Obtaining classification annotation is often much easier and cheaper than obtaining fine-grained segmen-
tation annotations. Therefore, the insight that pretraining with a classification model also results in good
segmentation performance would save much efforts for real-world problems.

We pretrain our U-Net model on one segmentation task and then finetune the model on a different segmen-
tation task. As a pretraining task, we use the Cityscapes dataset (Cordts et al., 2016) with the challenge to
segment all cars that appear in the image. We maximize the dice coefficient as the objective function. For
pretraining, we extract patches with cars from the dataset with respective ground-truth annotations.

To compare our segmentation pretrained model to a classification model with a comparable training task,
we generate datasets of patches showing a scene of the Cityscapes dataset and containing either a car or no
car in the images. For every image of the train and validation split of the Cityscapes dataset, we decide by
a coin flip if we want to generate a patch with a car or no car. Then, we take a random crop until either no
pixels contain a car label (no car) or at least 20% of the pixels have car labels (car). For model selection,
we do a random 70/30 train/validation split of the patches. Samples of this dataset are provided in Fig. 5.
The model has to predict whether there is a car visible in the patch or not.3 In both pretraining setups,

2https://github.com/MrGiovanni/ModelsGenesis
3After pretraining the model, we used GradCam activations to validate if the model looks for cars in the image to make

classification predictions – see Fig. 5c.
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(a) Car (b) No Car (c) Activations of the car classification model

Figure 5: Car classification dataset generated by cropping images from the Cityscapes dataset where either
a car is present or no car is present on the image.

we used a constant learning rate and optimized the pretraining parameters (learning rate, training epochs,
weight decay) towards the best performance on the validation set. We finetune the car segmentation model
with an initialized decoder (Segmentation) and a random decoder (Segmentation-EncOnly). Furthermore,
we compare these models to the model trained on the car classification task (Classification) and a random
initialization (Random). Table 4 also includes the results of different self-supervised approaches that have
been pretrained on the whole Cityscape dataset, a U-Net model with an ImageNet initialized Resnet18
encoder and multi-class segmentation pretraining on the SceneParse150 dataset (Zhou et al., 2017).

Table 4: Effect of the decoder when finetuning self-supervised models in comparison to finetuning a classi-
fication and a segmentation pretrained model. Displayed values indicate the segmentation accuracy on the
evaluation set [dice coefficient].

.

Scenario Model pretext labels Bus Airplane

1 (random-init) Random 75.0 ± 0.3 65.8 ± 0.5
2 (cls-enc) SimCLR 74.5 ± 0.6 68.3 ± 0.9
2 (cls-enc) Classification cars/noncars 77.6 ± 0.9 68.3 ± 1.2

3 (seg-enc-dec) Reconstruction 76.6 ± 0.6 68.7 ± 0.8
3 (seg-enc-dec) Segmentation cars/non-car 82.3 ± 0.5 71.0 ± 0.7
3 (seg-enc-dec) ConRec 76.9 ± 1.0 70.6 ± 1.7

4 (seg-enc) Reconstruction 76.4 ± 0.2 68.2 ± 0.2
4 (seg-enc) Segmentation cars/non-car 82.0 ± 0.6 70.2 ± 0.2
4 (seg-enc) ConRec 77.3 ± 1.1 70.9 ± 0.8

3 (seg-enc-dec) Segmentation SceneParse150 83.6 ± 0.2 73.2 ± 0.3
4 (seg-enc) Segmentation SceneParse150 83.6 ± 0.1 73.0 ± 0.3
2 (cls-enc) Classification ImageNet 83.5 ± 0.7 71.2 ± 0.2

For evaluation, we consider two segmentation problems: bus segmentation and airplane segmentation, as
introduced above. Table 4 shows the results after finetuning for both datasets and transfer learning scenarios.
The performance gap between the segmentation-pretrained model and random initialization is larger for the
bus segmentation task since the bus segmentation task is similar to the pretraining task (i.e. car classification).
In analogy to our previous experiments, we cannot observe significant performance differences between the
fully initialized model and the model with a random decoder on both datasets. We visualized the dice
coefficients over the training time in Fig. 4b. Similar to the observations for self-supervised models, the
random decoder model needs more training time but then catches up to the performance of the fully initialized
model. The classification model also yields a performance improvement compared to the random initialization
but does not reach the same performance as the segmentation model. This observation indicates that
although the segmentation decoder does not add much value during transfer learning, the representations in
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the encoder transfer better to other segmentation tasks. By comparing the results to the self-supervised model
performances on the bus segmentation dataset, we can conclude that the reconstruction based models perform
similar to the car classification model but are also significantly outperformed by the model with segmentation
pretraining. On the airplane dataset, the ConRec model outperforms the classification and other self-
supervised models and performs on par with the segmentation model. This indicates that segmentation
and classification pretraining has larger benefits for in-domain pretraining, whereas self-supervised models
transfer better to different domains.

The ImageNet initialization of the encoder and the model pretrained on the SceneParse150 dataset outper-
form all of the other models. This can be explained by the larger amount of pretraining data. However, note
that the model pretrained on SceneParse150 is on par on the Bus dataset and outperforms the ImageNet
initialization on the Airplane dataset, although being trained on significantly less pretraining data than the
ImageNet encoder (20k images vs. 1.2M images). This further gives motivation for a large-scale segmentation
pretraining dataset in the order of magnitude as ImageNet.

We perform an additional experiment on the Oxford IIIT Pets dataset (Parkhi et al., 2012) using only the
dog images for pretraining. The segmentation model receives the segmentation masks of all dog images (4978
samples) and the different dog breeds (25 classes) serve as labels in the classification task. This scenario
better reflects the usual multi-class classification pretraining scheme. During finetuning, we use cat and horse
images from Pascal VOC 2012 (Everingham et al., 2010) and compare four model initialization scenarios4 as
shown in Table 5. Similar to the airplane dataset, we use all images from the training set where a cat/horse
appears. This yields 131/68 samples for training and 119/79 samples for evaluation. Finetuning with a
Resnet18 initialized ImageNet encoder and an initialization from pretraining on the SceneParse150 (Zhou
et al., 2017) benchmark is also shown.

Table 5: Finetuning results on the validation set of two Pascal VOC 2012 (Everingham et al., 2010) subsets
with different pretraining scenarios [dice coefficient]. Models were either initialized by a segmentation task
(Pets dog masks, SceneParse150) or a classification task (Pets dog breeds, ImageNet).

Scenario Model pretext data (#Samples) VOC cat VOC horse

1 (random-init) Random 74.2 ± 1.4 65.0 ± 1.3
2 (cls-enc) Classification Oxford Pets, dog breeds (5k) 76.0 ± 0.4 70.1 ± 0.7

3 (seg-enc-dec) Segmentation Oxford Pets, dog masks (5k) 83.2 ± 0.2 79.0 ± 1.0
4 (seg-enc) Segmentation Oxford Pets, dog masks (5k) 82.3 ± 0.2 77.7 ± 0.5

3 (seg-enc-dec) Segmentation SceneParse150 (20k) 78.8 ± 0.8 74.4 ± 0.3
4 (seg-enc) Segmentation SceneParse150 (20k) 79.0 ± 0.1 74.8 ± 0.3
2 (cls-enc) Classification ImageNet (1.2M) 83.2 ± 0.2 75.3 ± 0.4

For both downstream segmentation tasks, a pretrained segmentation model significantly outperforms a ran-
domly initialized model as well as a pretrained classification model. This difference is mainly driven by the
pretrained encoder – see Scenario 2 vs. 3 and 4. We observe a small difference between the performance of
the fully initialized segmentation model and the model with a random decoder. Nevertheless, we observe the
additional performance provided by the pretrained decoder to be small compared to the performance gain
through the pretrained encoder. These results provide additional evidence that a pretrained segmentation
encoder transfers better to downstream segmentation tasks than an encoder pretrained by a classification
task.

The dog segmentation initialization performs on par with the ImageNet initialization on the VOC cat datset
and gives better performance on the VOC horse dataset whereas the SceneParse150 initialization is outper-
formed in both cases. This confirms the intuition that transferring between similar tasks (i.e similar image
domains) leads to better performance.

The performance difference between classification and segmentation pretraining can also be seen visually.
Figure 6 shows segmentation mask predictions after finetuning on the VOC cat dataset. We observe models

4random initialization (1); encoder pretrained with a classification (2) or segmentation (4) task; encoder-decoder pretrained
with a segmentation task (3)
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Figure 6: Segmentation predictions on the VOC cat dataset after finetuning on 131 training samples. The
classification and segmentation model was pretrained on the dog images of the Oxford IIIT Pets dataset
(Parkhi et al., 2012) whereas the self-supervised models were pretrained on the whole dataset.

that were pretrained on classification tasks to be less accurate on fine-grained details on the edge compared to
models pretrained on segmentation/reconstruction tasks. This qualitative analysis underlines the reasoning
that the classification-pretrained encoder is focussed on higher-level image characteristics.

5.2 Encoder Output Representations

With the above-mentioned findings, it is important to further study the representations that emerge when
pretraining with a classification task, a segmentation task and self-supervised tasks. Therefore, we compare
the representations of the models at the encoder output with each other. To compute the similarity be-
tween representations, we use Center Kernel Alignment. As we start training neural network models from
scratch and the layer activations might be of a large dimension, it is a challenging problem to compare the
representations of two models. Centered Kernel Alignment (CKA) is a method that can reliably identify
correspondences between representations in networks trained from different initializations (Kornblith et al.,
2019). CKA yields values between 0 and 1 where a larger value indicates more similarity between the
representations

We consider the Pascal VOC 2012 dataset (Everingham et al., 2010) as test benchmark because it contains
a variety of objects and scenes. We pretrain three different segmentation models on the benchmark, each
having a different segmentation target and one classification model. As segmentation targets, we choose
motorbike, person, and car and only show the images where the different classes are presented to the model.
We provide example images, ground truth annotations and respective model predictions in Figure 7a.

For the classification model, we build a dataset with four different classes and the model has to distinguish
between motorbikes, cars, cats, and airplanes. As this dataset contains the same images as the motorbike
and car segmentation models, the models might develop similar representations during training.

After pretraining these models, we compute latent feature representations for all images from Pascal VOC,
using the encoder output. We flatten the representation of size 8 × 8 × 512 and then compare them pairwise
between the different models with CKA. This yields a similarity matrix which is shown in Fig. 7. Larger
values indicate that the representations are more similar. The results show that the different segmentation
models (Car Segmentation, Person Segmentation, Motorbike Segmentation) have representations that are
more similar to each other compared to the representations from the classification model. This indicates that
although the decoder may have a negligible effect for downstream segmentation tasks, the encoder learns
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(a) Segmentation Tasks (b) Classification Task

Figure 7: Representation similarity matrix between segmentation, classification and self-supervised models
on the Pascal VOC dataset. We compare the representations with Center Kernel Alignment. Larger values
indicate more similarity. (a) shows examples of the three segmentation tasks with respective predictions by
the learned model. (b) displays one sample for each class of the 4-class classification problem.

fundamentally different representations than during a classification pretraining task. One simple explanation
for this observation is that more spatial information is preserved at the encoder output, which is relevant
for the segmentation learning task, but does not have any benefit for making classification decisions.

The self-supervised models SimCLR and ConRec have been pretrained on the training and validation split
of the Pascal VOC 2012 dataset (Everingham et al., 2010) for 150.000 training steps. We can see that the
self-supervised models all learn similar representations in comparison to the embeddings of the other models.

We were hoping to get more insights if the improved performance of ConRec is also highlighted in the
representations as building more similar representations to a downstream task. However, this analysis
does not show that the self-supervised representations are closer to the representations of a downstream
classification or segmentation task. The similarity to the classification and segmentation models is not
significantly different between the three self-supervised models.

6 Discussion

We examined the benefit of using pretrained encoders and decoders for image segmentation tasks. Our
work is particularly focused on a binary segmentation scenario in the presence of a small number of labeled
images. Given a U-Net architecture, we found out that there is little advantage in transferring weights from
pretrained decoders: the convergence time and therefore ecological footprint gets reduced, however, the final
downstream segmentation accuracy is not improved – even in low-data regimes. Only the encoder holds
valuable weights that improve the final performance. Secondly, we compared the benefit of different pretext
tasks, and we propose a contrastive self-supervised approach to pretrain encoders in the absence of labels
(e.g. ConRec). We found that encoders trained on similar segmentation or reconstruction tasks perform
better for downstream segmentation tasks than those trained on classification tasks.

We can conclude that encoders trained on different segmentation tasks are more similar to each other than
to classification tasks, which we also demonstrated with a representation similarity analysis. Further, the
effect of pretraining gets less significant when increasing the size of the finetuning dataset. It will be the
subject of future work to validate these findings on different architectures besides U-Net and to include other
self-supervised pretraining methods such as BYOL (Grill et al., 2020) and MoCo v3 (Chen et al., 2021) into
the analysis. Further, we showed that adding multiple reconstruction tasks to the pretraining can improve
downstream performance in segmentation tasks. Future work should study the contribution of each task in
more detail. Also, our findings indicate that further experiments on large scale segmentation datasets can

10



Under review as submission to TMLR

provide encoder weights that are more suitable for downstream segmentation tasks than the weights from
the ImageNet classification task.
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A ConRec Objective Ablation

To study the effect of the additional decoding tasks in the ConRec pretraining, we run an ablation experiment
on the Oxford Flowers and Oxford Pets dataset with the same setup as in Table 2. Table 6 compares the
vanilla ConRec implementation (Dippel et al., 2021) to our decoding task addition. The results show that
in low data regimes, the additional decoding tasks provide a benefit in downstream task performance. We
suppose that in order to solve multiple decoding tasks, the model has to learn more general representations
that lead to better transferability of the model.
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Table 6: ConRec decoding tasks ablation study. Finetuning results on the Oxford Flowers 17 and Oxford
Pets datasets. Displayed values are the dice coefficient on the evaluation set.

Flowers Pets

Reconstruction Tasks 1% (8) 5% (42) 20% (170) 1% (74) 5% (368) 20% (1475)

Reconstruction Task (Vanilla ConRec) 82.5 ± 0.7 91.3 ± 0.2 94.8 ± 0.1 82.4 ± 0.4 87.1 ± 0.18 89.6 ± 0.1
4 Decoding Tasks (shown in Figure 3) 85.7 ± 1.8 92.2 ± 0.4 95.3 ± 0.1 83.1 ± 0.5 87.5 ± 0.6 90.0 ± 0.1
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