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ABSTRACT

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target do-
main using only unlabeled test samples. Most existing TTA approaches rely on
definite pseudo-labels, inevitably introducing false labels and failing to capture
uncertainty for each test sample. This prevents pseudo-labels from being flexi-
bly refined as the model adapts during training, limiting their potential for per-
formance improvement. To address this, we propose the Progressive Adaptation
with Selective Label Enhancement (PASLE) framework. Instead of definite labels,
PASLE assigns candidate pseudo-label sets to uncertain ones via selective label
enhancement. Specifically, PASLE partitions data into confident/uncertain sub-
sets, assigning one-hot labels to confident samples and candidate sets to uncertain
ones. The model progressively trains on certain/uncertain pseudo-labeled data
while dynamically refining uncertain pseudo-labels, leveraging increasing target
adaptation monitored throughout training. Experiments on various benchmark
datasets validate the effectiveness of the proposed approach.

1 INTRODUCTION

Deep neural networks often experience performance degradation when the training and testing data
are drawn from different distributions. Test-time adaptation (TTA), an emerging paradigm that
adapts a pre-trained model to a different domain using only unlabeled data during testing, aims
to alleviate this problem. As the practicality of TTA, it has been successfully applied across vari-
ous fields, including autonomous driving (Volpi et al.| 2022; |Bahmani et al., [2023), medical image
analysis (He et al.; 2021} Ma et al.}2022)), and speech processing (Lin et al., 2022} Kim et al.,[2022).

Most TTA approaches utilize pseudo-labeling-based methods, which first assign pseudo-labels to
the unlabeled target data and then adapt the pre-trained model to the target domain through train-
ing on those pseudo-labeled samples. Some approaches utilize non-parametric classifiers to gen-
erate pseudo-labels by measuring the distance between samples and prototypical representations
(Iwasawa & Matsuol, 2021)) or leveraging neighboring feature similarities without model adaptation
(Zhang et al.,[2023)). Other methods rely on the consistency between prototype-based pseudo-labels
or nearest-neighbor-based pseudo-labels to guide model updates during adaptation (Jang et al.,2023;
Wang et al.| 2023} Sun et al., 2024)). These approaches aim to improve the robustness and perfor-
mance of test-time adaptation by directly using the definite pseudo-labels.

Due to distribution shifts, most previous approaches inevitably introduce false pseudo-labels by
adopting definite pseudo-labels. These approaches may experience significant performance dete-
rioration. The definite pseudo-labels lose the uncertainty information of each class corresponding
to the test sample, leading to the fact that the unreliable pseudo-labels cannot be flexibly tuned ac-
cording to the model’s increasing adaptation during the learning process. Therefore, despite making
efforts in pseudo-labeling including prototype-based or nearest-neighbor-based methods, previous
approaches usually do not fully unleash the potential of pseudo-labels for improving the performance
of test-time adaptation.

To address this issue, instead of assigning definite pseudo-labels to test samples, we propose a novel
framework named PASLE, i.e., Progressive Adaptation with Selective Label Enhancement. PASLE
selectively assigns one-hot pseudo-labels to confident test samples or assigns candidate pseudo-
labels sets to uncertain test samples in a label enhancement process (Xu et al.}[2019;/2020). Specif-
ically, PASLE partitions test samples into confident and uncertain subsets based on the selective
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label enhancement strategy, where confident samples receive one-hot pseudo-labels, and uncertain
samples are assigned candidate pseudo-label sets. The model is then iteratively trained on certain
pseudo-labeled target data and uncertain pseudo-labeled target data in a progressive manner, while
dynamically refining the candidate pseudo-label sets of uncertain samples by exploiting the model’s
evolving adaptation capability to the target domain, which is monitored during the training process.

* We propose a selective label enhancement strategy, where PASLE partitions test samples into
confident and uncertain subsets based on the model’s predictive confidence scores, with confident
samples receiving one-hot pseudo-labels, and uncertain samples being assigned candidate pseudo-
label sets.

* We introduce a progressive learning framework that trains the model on certain pseudo-labeled
target data and uncertain pseudo-labeled target data in a progressive manner, while dynamically
refining the candidate pseudo-label sets of uncertain samples by exploiting the model’s evolving
adaptation capability to the target domain, which is monitored during the training process.

* We theoretically establish a generalization bound for TTA and assess the effectiveness of pseudo-
labels by quantifying them through pseudo-label error terms.

2 RELATED WORK

Domain shifts often cause machine learning systems to suffer substantial drops in performance.
To address this challenge, numerous techniques have been developed to enhance model robustness
against distribution shifts. Domain generalization (Zhou et al., 2023) attempts to train a model on
data from one or more source domains, enabling it to generalize effectively to unseen target domains.
Domain adaptation (Kouw & Loog| [2021)) relies on transductive learning, where knowledge from a
labeled source domain is transferred to an unlabeled target domain. Test-time adaptation|Liang et al.
(2024) differs by allowing a pre-trained model to adapt to a target domain using only unlabeled test
data. Our research centers on online test-time adaptation, a scenario where test data from the target
domain is presented sequentially, requiring real-time adaptation.

Recent advancements in online TTA have explored various strategies, with some focusing on batch
normalization calibration. For instance,|Wang et al.|(2021) propose updating the batch normalization
(BN) statistics in the pre-trained model by using the estimated statistics from the online test batch.
Gong et al.| (2022) maintain a class-balanced memory bank, leveraging it to update BN statistics
through an exponential moving average. Mirza et al.| (2022) stabilize the BN updates by creating
small batches through the augmentation of each incoming sample. [Zhao et al.|(2023) leverage the
test-time moving averaged statistics to rectify the normalized features.

Several methods place emphasis on entropy minimization, aiming to encourage more confident and
distinct predictions by reducing the uncertainty in the model’s output. |[Zhang et al.| (2022) propose
to minimize the entropy of the model’s average output distribution across different augmentations.
Jing et al.[(2022) introduce a variational model perturbation method that utilizes entropy loss as the
likelihood function. [N1u et al.|(2023)) propose a reliable entropy minimization method by removing
partial noisy samples with large gradients. [Lee et al.| (2024) leverage a confidence metric named
pseudo-label probability difference (PLPD) to select samples for entropy minimization.

Other approaches center around pseudo-labeling or consistency regularization. For example, Iwa-
sawa & Matsuo| (2021) create a pseudo-prototype for each class and classify new samples based on
the distances. |Goyal et al.| (2022) introduce a self-training method that utilizes a specialized soft
label known as the conjugate pseudo label. [Shin et al.|(2022) introduce a selective fusion strategy to
ensemble predictions from multiple modalities. Meanwhile, Yang et al.|(2022) generate soft pseudo
labels by averaging the predictions of neighboring samples stored in a memory bank. [Ddbler et al.
(2023) use symmetric cross-entropy loss to enforce prediction consistency between the teacher and
student model. Similarly, Jang et al| (2023) aim to reduce divergence between predictions from
prototype-based and neighbor-based classifiers. Additionally, [Wang et al.| (2023) propose test-time
self-distillation for feature uniformity and memorized spatial local clustering for feature alignment.
Finally, Sun et al.| (2024) combine prototype-based and nearest-neighbor methods through a proto-
type graph model to enhance pseudo-label generation.
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3 PROPOSED METHOD

3.1 PRELIMINARIES

To begin with, some necessary notations are briefly introduced. Let X = R? denote the ¢-
dimensional instance space, Y = {1,2,...,c} be the label space with ¢ class labels, and A1 be
the c-dimensional probability simplex. A pre-trained predictive model f : X — A°~! with param-
eters @ is initialized to ©° on a dataset from the source domain S, i.e., Ds = {(x;,y:)|1 < i < n}
where x; € X denotes the ¢-dimensional instance, y; € ) denotes the correct label annotated to
x; and each example (x;, y;) is sampled from the distribution pg(a, ). During test-time inference,
the predictive model f(-; ®) streamingly receives R mini-batch datasets from the target domain 7.
At the r-th step, the received dataset is denoted by D}, = {x]|1 < ¢ < m"} where the received
instance ! € X and its unobserved correct label y! are from the misaligned distribution pr(x, y)
with pg(x, y), i.e., pr(x,y) # ps(x,y). The goal of test-time adaptation is to continuously update
the parameters @ of the pre-trained predictive model f to obtain the maximization of the following
cumulative accuracy on R mini-batch datasets from the target domain 7"

Zf:l iy Iy = argmaxey fj(z]; ©")] (1)

Zf:l m”

where O is the updated parameters of the model f at the r-th step, and I[-] is the indicator function.
To achieve this goal, the process of progressive label enhancement in our framework introduces
pseudo-labels through soft labels output by the predictive model to handle the absence of correct
labels during adaptation. The pseudo-label of the testing instance ] is denoted by a logical label

vector 17 = [II'!, 1772 171" € {0,1}¢, and the corresponding soft label is denoted by a vec-

tor di = [d"",d?, ..., d0)T = [fi(xl;©7), fa(xl; @), ..., fo(x};©7)] € [0,1]¢ satisfying

Z;Zl df’j = 1. When 2521 l:’j = 1, the pseudo-label of the testing instance x is a one-hot

pseudo-label. When 1 < Z‘;:l lz’j < ¢, the pseudo-label of the testing instance x; is a candidate
pseudo-label set. Besides, we prepare a buffer B" initialized by B° = () with maximum size K to
save the received instances not used at the r-th step.

Acc(f,T) =

3.2 OVERVIEW

Our framework trains the predictive model with the optimization objective on the split confident
subset with one-hot pseudo-labels and uncertain subset with candidate pseudo-labels, which are
constructed by a selective enhancement strategy using a dynamic threshold. This strategy follows
the derived proposition about uncertainty information. Also, we select and incorporate the received
instances that are not used at the current optimization step into the prepared buffer for subsequent
use. Finally, as the predictive model becomes increasingly aligned with the target domain distribu-
tion, the threshold will decrease to progressively refine the pseudo-labels. In this way, we unleash
the power of pseudo-labels in test-time adaptation and improve the performance of the predictive
model. Theoretically, we demonstrate that our framework can achieve a tighter generalization bound
by incorporating a greater number of target domain instances.

3.3 THE PASLE FRAMEWORK

First of all, we introduce the overall objective £ of our PASLE framework employed to optimize the
predictive model parameters ®" ! at r-th step:

1 1
L= U(f(2;077),0) + —;
Dl 2 D

€Dy

> U(fEer )T, )
z' €Dy,
where ¢(-, ) is the loss function to handle each instance « from the confident subset D, with its
one-hot pseudo-label I while (-, -) is the loss function to handle each instance =’ from the uncertain
subset D, with its candidate pseudo-label I, and | - | represents the cardinality of a set. Practically,
¢(-,-) is instantiated as the cross-entropy loss, which has been widely used in supervised learning
tasks, while ¢/(-, -) is instantiated as the classifier-consistent loss proposed by |Feng et al. (2020):

C(f(@;07), 1) = —log Y 1 f;(x';071), 3)
j=1
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which has been validated to deal with candidate labels effectively.

Note that Eq. (2) model the uncertainty information based on the confident subset Dlg, and uncertain
subset D}, which are split from the received dataset D7, and the buffer dataset 3”~*. The confident
set D7, contains the instances whose correct labels could be determined, while the uncertain set
D, contains the instances whose correct labels could be only determined among some candidate
labels. Hence, we assign the one-hot pseudo-label [ to each instance € DY;, and the candidate
pseudo-label I’ to each instance «’ € D},.

Then, a selective label enhancement strategy is induced by the following proposition to construct
the confident subset D7, and uncertain subset D}, by utilizing soft pseudo-labels, generating the
one-hot pseudo-label [ for each instance € Dj; and candidate pseudo-label I’ for each instance
x' € Dy,

Let ®* be the optimal parameters learned from supervised data from the target domain 7, i.e.,
©* = argmineg E(g,y)pr (2 llargmax;cy fi(z;©) # y)], f(x; ©*) be the class-posterior
probabilities for the instance = on the target domain T, i.e., f;(z; ®*) = pr(y = jlz), p rep-

resent the class the highest score of the soft label d, i.e., p = argmax;cy d;”, and ¢ denote the

class with the second-highest score of the soft label df, i.e., ¢ = arg maxjecy j«, d;”’. We provide
the following proposition.

Proposition 1 Assume that at adaptation step r, the difference between f(-;O") and f(-; ©*) on
the instance x! is bounded by 37(r), i.e., |f;j(x];O") — f;(xl;©*)| < 17(r),Vj € Y. For any
! in the unlabeled data batch DY, if d;’* — d;’ > 7(r), then j cannot be the correct label of .
Furthermore, if ;" — d;*? > 7(r), then p is the correct label of x.

The detailed proof can be found in the Appendix [A] On the one hand, Proposition [I] provides a
condition under which the label with the highest predicted score is guaranteed to be correct, allowing
for the accurate assignment of a pseudo-single label to a part of the unlabeled samples. Hence, we
could split a confident subset D%, from the received dataset D} and the buffer dataset B”~' based
on the soft label of each instance and the threshold 7(r) at the r-th step:

Dy ={zxle c D UB™ 1 dP —d? > 7(r)}. 4)

After splitting the confident subset DY, we generate the one-hot pseudo-label I for each instance
x € DY as follows:

) 1, ifj=pandd® —d? > 7(r),

[ { j=p (r) 5)

0, otherwise.

On the other hand, Proposition 1| provides a condition under which the label with the low predicted
score is guaranteed to be incorrect, allowing for the ambiguous assignment of candidate pseudo-
labels to a part of the unlabeled samples. Hence, we could split an uncertain subset D}, from the
received dataset DY and the buffer dataset B”~! based on the soft label of each instance and the
threshold 7(r) at the r-th step:

Dhy ={a'|e’ € D UB T, 3j €Y, dP —d7 > 1(r)}. (6)

After splitting the uncertain subset D7 ,;, we generate the candidate pseudo-label I for each instance
x’ € DY, based on the corresponding soft label d’ and the threshold 7(r) at the r-th step as follows:
i {O7 ifd’” —'d” > 7(r), 7
1, otherwise.
Besides, for the received instances which are not used in Eq. (2), i.e., (D5 UB™ 1)\ (D}, UD},), we
intend to store them in the new buffer B”. If the number of samples to be stored exceeds the buffer’s
maximum size during the algorithm’s operation, we prioritize retaining the samples with the top- K
largest margins, as these are likely to contribute to the model’s updates earlier. The margin of an
instance x is defined as p(x) = dP — d?. Denote pg the top-K largest margin of the instance
xz € (D} UB 1)\ (D} UD4,) at adaptation step r. Then the sample selection process can be
formulated as follows:

B" =A{z|z € (Dr UB"™")\ (D UD}y), p(x) > pi}, ®)
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Algorithm 1 PASLE Algorithm

Require: The pre-trained predictive model f(-; ©°), total adaption steps R, initial threshold Ty,
end threshold Tenq, threshold descend constant 7g4es, buffer maximum size K
7'(1) < Tstart>
Initialize the buffer B° as empty;
forr=1,2,...Rdo
Obtain the confident subset D; and uncertain subset D}, according to Eq. (@) and Eq. (6);
Generate the one-hot pseudo-label I for each instance « € D7, using Eq. (5) and the candidate
pseudo-label I’ for each instance ' € D7, using Eq. (7);
Optimize the predictive model parameters ®” ! to ®" based on Eq. ;
Update the buffer B7~" to B" following Eq. (8);
8:  Adjust the threshold according to Eq. (9);
9: end for
Ensure: The predictive model f(-; ©).

AR

2

where the buffer’s maximum capacity K is restricted to a quarter of the target domain batch size in
practice, considering resource consumption.

Finally, since the model becomes increasingly aligned with the target domain distribution as adap-
tation progresses, the gap between the scoring function f(-; ®") and the class-posterior probability
f(-;©*) is supposed to gradually decrease. Hence, to improve the reliability of pseudo-labels, the
threshold 7(r) is manually reduced over time. In practice, 7(r) is initialized at a starting value Ty
when » = 1 and is gradually decreased by a constant value 74 each step. This process continues
until 7(r) reaches a predefined lower bound 7epq. The adjustment of 7(r) can be formulated as:

7(r) = max{7(r — 1) — Tdes, Tend } - 9)

In this way, our PASLE framework successfully leverages the uncertainty information and flexibly
tunes pseudo-labels according to the model’s increasing adaptation, thereby unleashing the potential
of pseudo-labels and improving the performance of test-time adaptation. The algorithmic descrip-
tion of PASLE is presented in Algorithm [I]

3.4 THEORETICAL ANALYSIS

3.4.1 A GENERALIZATION BOUND FOR TTA

We theoretically establish a generalization bound for TTA that by incorporating a greater number of
target domain samples with effective supervision, a tighter generalization bound can be achieved.

Suppose that at the -th step of adaptation, the classifier h receives m” samples. Given the possibility
of overlap between the source domain and the target domain, we assume (1 — §)m" samples are
drawn from S and the remaining Sm” samples are drawn from 7". The goal of the classifier is to find
a hypothesis that minimizes the target error er(h). We focus on classifiers that minimize a convex
combination of the empirical errors from the source and target domains (Ben-David et al., [2010),
defined as:

€a(h) = aér(h) + (1 — a)és(h), (10)

where « € [0,1]. The corresponding weighted combination of the true source and target errors is
denoted by ¢, (h).

To quantify the distributional difference between the source domain and target domain, we use the
disparity discrepancy introduced by [Zhang et al|(2019).

Definition 1 Given a hypothesis space H and a specific classifier h € H, the Disparity Discrepancy
induced by h/ € H is defined by

d’h?‘l(sa T) £ sup (diSpT (h/7 h) - diSpS (h/7 h))
h'eH

= sup (Erl[W # h] — EsL[W' # h)).
h'eH

11
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Based on the above assumptions and definition, we derive the following theorem.

Theorem 1 Let H be a hypothesis space of VC dimension d. Let S and T be unlabeled sample
sets of size m' each, drawn from S and T respectively. A batch of samples of size m" is generated
by random sampling at the r-th step of adaptation. Given the possibility of overlap between the
source domain and the target domain, we assume (1 — S)m” samples are drawn from S and the
remaining Bm” samples are drawn from T, which are then labeled with the true labeling function.
For simplicity in theoretical analysis, we allocate the loss weight proportionally to the number of
samples from each domain, specifically setting o and 3 to be equal. If h € H is the empirical
minimizer of é,(h) on this batch and h, = minyey er(h) is the target error minimizer, then for
any ¢ > 0, with probability at least 1 — 26,

2dlog(2(m” + 1)) + 2log ()

m'l‘
/ - (12)
~ ~ 2d log €% log =
+2(1— B) | dnwu(S,T) + 21| o AL 49 [ 085 4 )],

m’ 2m/’

er(h) < er (hy) + 4\/

where \ = errg (h*) + errr (h*) and h* £ arg min {errg(h) + errp(h)}.

heH
The proof of Theorem [I]is provided in Appendix [B] Theorem [T| provides a generalization bound
on the target domain for the empirical minimizer on the given batch. Suppose we also have some
target domain samples annotated with effective supervisory information, provided alongside the
well-annotated current data batch, to guide the model’s adaptation. In that case, the empirical min-
imizer’s generalization bound on the target domain becomes tighter. Since the growth rate of the

upper bound’s second term is O(4/ M%), it decreases as more samples are incorporated into train-

ing. Moreover, as the number of target domain samples increases, 5 will also increase, resulting in
a reduction of the third term in the upper bound.

3.4.2 EFFECTIVENESS QUANTIFICATION OF PSEUDO-LABEL FOR TTA

In the following theorem, we assess the effectiveness of pseudo-labels by quantifying them through
pseudo-label error terms for TTA.

Assume that during test-time inference, the predictive model streamingly receives R mini-batch
data from the target domain 7", accumulating a dataset DIT?‘ over R mini-batches, with a total sample
size of N, For a target domain sample x, let its Bayes class-probability distribution be denoted
asp =[P(y1|x),P(y2|x),...,P(ye | )], and its supervision information provided by the
algorithm be denoted as q (here it refers to the label distribution). We have the following theorem.

Theorem 2 Suppose the loss function ¢ is bounded by M, i.e., M = SUPgex, feF,y, €y L f(x),y).
Fix a hypothesis class F of predictors f : X + RC, with induced class H C [0,1]* of functions
h(x) = £(f (z;),q). Suppose H has uniform covering number Niys. Then for any 6 € (0,1), with
probability at least 1 — 0,

M M
log i +log 2 13)

R(f) = R(f) < Mv/e- Ellg —pl2) + O | || V() —7 L

where Myr = Ning (ﬁ, H, 2NR), and V ( f) is the empirical variance of the loss values.

The proof of Theorem 2] is provided in Appendix [C] Theorem [2] demonstrates that as the target
domain samples’ label distribution g provided by the algorithm becomes closer to the Bayes class-
probability distribution p, the gap between the empirical risk and the expected risk on the accu-
mulated dataset D will decrease. The effectiveness of the supervision information can be quan-
tified by the degree of closeness between its corresponding label distribution and the Bayes class-
probability distribution and the pseudo-label error terms is E [||g — p||2]. Our algorithm provides
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Table 1: Classification accuracy of each comparing approach on domain generalization benchmarks.

Methods BackBone PACS VLCS OfficeHome DomainNet Avg.
ERM 79.37 75.14 62.43 35.76 63.18
BN 83.08 68.79 62.29 34.95 62.28
TENT 83.23 69.28 62.51 35.37 62.60
PL 85.66 74.68 62.71 35.24 64.57
SHOT-IM 83.02 70.80 63.91 35.92 63.41
T3A ResNet-18 81.70 75.83 63.90 36.31 64.44
TAST 84.31 71.69 63.96 35.71 63.92
TAST-BN 86.35 75.17 62.43 35.82 64.94
TsDp 87.88 75.47 63.42 35.86 65.66
PROGRAM 83.57 71.64 63.35 35.97 63.63
DEYO 86.26 74.91 63.30 35.37 64.96
PASLE 88.16 77.91 63.99 36.89 66.74
ERM 85.84 76.06 67.84 43.16 68.23
BN 86.00 67.76 66.82 41.50 65.52
TENT 86.51 68.41 67.27 42.38 66.14
PL 85.66 73.80 67.31 42.38 67.29
SHOT-IM 85.27 68.49 67.89 43.41 66.27
T3A ResNet-50 86.54 76.59 68.85 44.00 69.00
TAST 86.94 67.32 68.70 42.84 66.45
TAST-BN 89.47 75.59 67.97 43.03 69.02
TsD 91.13 74.77 68.97 42.44 69.33
PROGRAM 86.16 68.85 68.03 43.34 66.60
DEYO 88.23 71.59 68.08 42.47 67.59
PASLE 91.36 78.70 69.37 44.91 71.09

one-hot pseudo-labels when it is more certain about the samples, and a candidate pseudo-label set
when it is uncertain. These actions can make the corresponding pseudo-label’s label distribution
closer to the Bayes class-probability distribution, thereby making the empirical risk more closely
aligned with the expected risk, and thus better guiding the model towards adaptation to the target
domain.

4 EXPERIMENTS

4.1 DATASETS

We employ four domain generalization datasets including PACS (Li et al.l [2017), VLCS (Torralba
& Efros, 2011), Of ficeHome (Venkateswara et al.,[2017), and DomainNet (Peng et al.,|2019) to
evaluate the proposed approach. DomainNet is a large-scale dataset with 586,575 images across
345 classes, covering six domains: clipart, infograph, painting, quickdraw, real, and sketch. For
source training, we designate one domain as the target and use the remaining domains as source
domains. We allocated 20% of the data from the source domains for validation purposes.

Additionally, we employ two image corruption datasets: CIFAR-10-C and CIFAR-100-C
(Hendrycks & Dietterichl 2019). Both datasets introduce 15 types of common image corruptions
(e.g., Gaussian noise, motion blur) to the test sets of CIFAR-10 and CIFAR-100 (Krizhevsky
et al.} |2009). We use the training sets of CIFAR-10 and CIFAR-100 as source domains, and the
highest level of corruption in CIFAR-10-C and CIFAR-100-C as target domains. The validation
set partition follows the same approach as that used for the domain generalization datasets.
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Table 2: Classification accuracy of each comparing approach on image corruption benchmarks.

Methods CIFAR-10-C CIFAR-100-C
ERrRM 20.66 5.84
BN 75.33 43.88
TENT 75.41 43.93
PL 75.70 44.24
SHOT-IM 75.85 44.36
T3A 23.52 6.74
TAST 74.13 39.21
TAST-BN 74.56 31.84
TSD 75.14 44.19
PROGRAM 75.00 44.06
DEYO 75.74 44.28
PASLE 76.67 45.32

4.2 BASELINES

We compare the performance of PASLE with ten online TTA approaches.

ERM (Vapnikl [1998)): A standard approach that directly outputs the model’s predictions without
adaptation.

BN (Schneider et al.l 2020): A BN calibration approach that replaces the activation statistics
estimated by BN layers on the training set with the statistics of the target domain images.

TENT (Wang et al.,2021)): An entropy minimization approach that optimizes channel-wise affine
transformations by reducing the entropy of model predictions on target domain data.

PL (Lee et al..[2013): A pseudo-labeling approach that fine-tunes a pre-trained classifier by lever-
aging confident pseudo-labels derived from the model’s predictions.

SHOT-IM (Liang et al), [2020): An information maximization approach that refines the source
encoding module by maximizing the mutual information between intermediate feature represen-
tations and the classifier’s outputs.

T3A (Iwasawa & Matsuol 2021): A pseudo-labeling approach that predicts test data labels by
measuring the distances between the test samples and pseudo-prototypes.

TAST (Jang et al., [2023)): A pseudo-labeling approach that updates the model by matching the
nearest neighbor-based pseudo label and a prototype-based class distribution for the test data.

TAST-BN (Jang et al.| [2023): A pseudo-labeling approach which is a modified version of TAST
and refines the model by adjusting the parameters of the BN layers.

TsD (Wang et al., 2023): A pseudo-labeling approach that employs a dynamic memory bank to
compute class prototypes and generate pseudo-labels for refining the model.

PROGRAM (Sun et al., [2024): A pseudo-labeling approach that leverages a graph structure that
connects prototypes with test samples, allowing information to flow between them and enhancing
the generation of pseudo-labels.

DEYO (Lee et al.,[2024): An entropy minimization approach that updates the model by minimiz-
ing the model output’s entropy of samples with low entropy and high PLPD value concurrently.

We evaluate all methods on domain generalization benchmarks using ResNet-18 and ResNet-50
models (He et al.l 2016)), both equipped with batch normalization (loffe & Szegedy, |2015). For
image corruption benchmarks, we employ ResNet-18 as the backbone model.

For source training, the models are trained using the Adam optimizer with a learning rate of 5¢ >
for domain generalization benchmarks and 1e~? for image corruption benchmarks. All weights are
initialized from ImageNet-1K (Russakovsky et al.| 2015) pre-trained models. We select the final
pre-trained model with the highest validation accuracy.
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Figure 1: Sample utilization during testing.

During testing, we also utilize the Adam optimizer to update all trainable layers without the need for
a specific selection. The batch size for the online target domain data is set to 128. The learning rate
is selected from the range between 1e 3 and 1e 5. The value of Ty is determined by the number of
classes in each dataset: for example, VLCS contains 5 classes, while DomainNet has 345 classes,
leading to different 7y, values for each dataset. The threshold gap, represented as |Tgart — Tend|s
is consistently set at 0.1. Furthermore, Ty is uniformly set to 1e~2 for all datasets, except for the
large-scale dataset DomainNet, where it is adjusted to le~*. It is essential to highlight that all
hyperparameters for the TTA setting are finalized prior to accessing any test samples. We meticu-
lously select the most suitable hyperparameters for each algorithm based on their performance on
the training domain validation datasets (Gulrajani & Lopez-Paz, 2021} [Wang et al., 2023).

4.3 EXPERIMENTAL RESULTS

We conduct 3 trials with different random seeds, reporting both the mean and standard deviation of
the metrics, with full results detailed in Appendix [E} Each method’s classification accuracy across
datasets’ target domains is summarized in Table [[]and Table[2] The best performance is shown in
boldface and the second best result is underlined. It is impressive to observe that:

* PASLE achieves the best performance across all benchmark datasets and network architectures,
outperforming all the compared approaches.

* PASLE consistently enhances the performance of the classifier on domain generalization bench-
marks, achieving an average improvement of 5.63% for ResNet-18 and 4.19% for ResNet-50.

* PASLE outperforms the second-best methods on image corruption benchmarks, with an average
performance gain of 1.08% on CIFAR-10-C and 2.16% on CIFAR-100-C.

* Especially, we find that PASLE significantly improves the performance of the pre-trained classifier
on the DomainNet benchmark, which is a large-scale dataset, indicating that PASLE holds strong
potential for real-world applications.

4.4 FURTHER ANALYSIS

To demonstrate the effectiveness of the candidate pseudo-labels in PASLE, we conduct an abla-
tion study using a vanilla variant, PASLE-NC. In PASLE-NC, all samples annotated with candidate
pseudo-labels are excluded from model updates. As shown in Table 3] PASLE outperforms PASLE-
NC on all target domains of the Of £ i ceHome dataset with ResNet-18, highlighting the importance
of candidate pseudo-labels in further improving performance during the testing phase.

Furthermore, Figure [T] shows the sample utilization during the testing process for both PASLE and
PASLE-NC on the clipart domain of Of ficeHome dataset. It is evident that PASLE utilizes more
effectively labeled samples than PASLE-NC as testing progresses, which further explains PASLE’s
better test-time adaptation performance.

Besides, we perform a parameter sensitivity analysis to examine the impact of two hyperparameters
Tstart and Tepg On our algorithm using the shot noise corruption of CIFAR-10-C dataset. Ty and
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Figure 2: The parameter sensitivity analysis for PASLE.

Tend are assigned various values as illustrated in Figure with 7ges being set to Tt specifi-
cally for the purpose of sensitivity analysis. Clearly, the performance of PASLE remains relatively
stable across a broad range of each hyperparameter. This robustness is highly desirable, as the
PASLE framework consistently delivers reliable test-time adaptation performance.

Figure 2(b)| presents the average accuracy of various methods across different batch sizes on shot
noise corruption of CIFAR-10-C dataset. As depicted in the figure, our approach consistently
outperforms the other methods under varying batch sizes. This robust performance makes PASLE
well-suited for deployment in practical scenarios, where the batch size of real-world data streams

can fluctuate significantly.

More analysis of PASLE can be found in appendix

5 CONCLUSION

In this paper, we focus on test-time adaptation and introduce a novel framework, PASLE, which
selectively assigns one-hot pseudo-labels to confident test samples and candidate pseudo-label sets to
uncertain test samples through a label enhancement process. The model is then progressively trained
on both certain and uncertain pseudo-labeled target data. Throughout this process, the candidate
pseudo-label sets for uncertain samples are dynamically refined by leveraging the model’s evolving
adaptation to the target domain, which is continuously monitored during training. Experiments on
various benchmark datasets demonstrate the effectiveness and robustness of the proposed approach.

REFERENCES

Sherwin Bahmani, Oliver Hahn, Eduard Zamfir, Nikita Araslanov, Daniel Cremers, and Stefan Roth.
Semantic self-adaptation: Enhancing generalization with a single sample. Trans. Mach. Learn.
Res. (TMLR), 2023.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Mach. Learn. (MLJ), 79(1-2):151—
175, 2010.

George Bennett. Probability inequalities for the sum of independent random variables. Journal of
the American Statistical Association, 57(297):33-45, 1962.

Mario Dobler, Robert A. Marsden, and Bin Yang. Robust mean teacher for continual and gradual

test-time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7704-7714, 2023.

10



Under review as a conference paper at ICLR 2025

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Prov-
ably consistent partial-label learning. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 10948-10960, 2020.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. NOTE:
robust continual test-time adaptation against temporal correlation. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 35, pp. 27253-27266, 2022.

Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J. Zico Kolter. Test time adaptation via conju-
gate pseudo-labels. In Advances in Neural Information Processing Systems (NeurIPS), volume 35,
pp. 6204-6218, 2022.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In 9th International
Conference on Learning Representations (ICLR), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016.

Yufan He, Aaron Carass, Lianrui Zuo, Blake E. Dewey, and Jerry L. Prince. Autoencoder based
self-supervised test-time adaptation for medical image analysis. Medical Image Anal., 72:102136,
2021.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In 7th International Conference on Learning Representations
(ICLR), 2019.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), volume 37, pp. 448-456, 2015.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 34, pp. 2427-2440, 2021.

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with
nearest neighbor information. In The Eleventh International Conference on Learning Represen-
tations (ICLR), 2023.

Mengmeng Jing, Xiantong Zhen, Jingjing Li, and Cees Snoek. Variational model perturbation
for source-free domain adaptation. In Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pp. 17173-17187, 2022.

Jangho Kim, Juntae Lee, Simyung Chang, and Nojun Kwak. Variational on-the-fly personalization.
In International Conference on Machine Learning (ICML), volume 162, pp. 11134-11147, 2022.

Wouter M. Kouw and Marco Loog. A review of domain adaptation without target labels. IEEE
Trans. Pattern Anal. Mach. Intell. (TPAMI), 43(3):766-785, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp- 896, 2013.

Jonghyun Lee, Dahuin Jung, Sachyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
factors. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In IEEE International Conference on Computer Vision (ICCV), pp. 5543-5551,
2017.

11



Under review as a conference paper at ICLR 2025

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In Proceedings of the 37th International
Conference on Machine Learning (ICML), volume 119, pp. 6028-6039, 2020.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
bution shifts. Int. J. Comput. Vis. (IJCV), pp. 1-34, 2024.

Guan-Ting Lin, Shang-Wen Li, and Hung-yi Lee. Listen, adapt, better WER: source-free single-
utterance test-time adaptation for automatic speech recognition. In Hanseok Ko and John H. L.
Hansen (eds.), 23rd Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 2198-2202, 2022.

Wenao Ma, Cheng Chen, Shuang Zheng, Jing Qin, Huimao Zhang, and Qi Dou. Test-time adaptation
with calibration of medical image classification nets for label distribution shift. In Medical Image
Computing and Computer Assisted Intervention (MICCAI), volume 13433, pp. 313-323, 2022.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance penal-
ization. In Proceedings of the 22nd Conference on Learning Theory (COLT), 2009.

Muhammad Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must
go on: Dynamic unsupervised domain adaptation by normalization. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14745-14755, 2022.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT Press, 2012.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 14061415, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV), 115(3):
211-252, 2015.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 11539-11551,
2020.

Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So
Kweon, and Kuk-Jin Yoon. MM-TTA: multi-modal test-time adaptation for 3d semantic seg-
mentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
16907-16916, 2022.

Haopeng Sun, Lumin Xu, Sheng Jin, Ping Luo, Chen Qian, and Wentao Liu. PROGRAM: prototype
graph model based pseudo-label learning for test-time adaptation. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In The 24th IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1521-1528, 2011.

Vladimir Vapnik. Statistical learning theory. John Wiley & Sons google schola, 2:831-842, 1998.
Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep

hashing network for unsupervised domain adaptation. In /IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5385-5394, 2017.

12



Under review as a conference paper at ICLR 2025

Riccardo Volpi, Pau de Jorge, Diane Larlus, and Gabriela Csurka. On the road to online adaptation
for semantic image segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 19162-19173, 2022.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In 9¢h International Conference on Learning
Representations (ICLR), 2021.

Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang, and Rui Li. Feature alignment and uniformity
for test time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 20050-20060, 2023.

Ning Xu, Jiaqi Lv, and Xin Geng. Partial label learning via label enhancement. In The Thirty-Third
AAAI Conference on Artificial Intelligence (AAAI), pp. 5557-5564, 2019.

Ning Xu, Jun Shu, Yun-Peng Liu, and Xin Geng. Variational label enhancement. In Proceedings of
the 37th International Conference on Machine Learning (ICML), volume 119, pp. 10597-10606,
2020.

Hongzheng Yang, Cheng Chen, Meirui Jiang, Quande Liu, Jianfeng Cao, Pheng-Ann Heng, and
Qi Dou. DLTTA: dynamic learning rate for test-time adaptation on cross-domain medical images.
IEEE Trans. Medical Imaging (TMI), 41(12):3575-3586, 2022.

Marvin Zhang, Sergey Levine, and Chelsea Finn. MEMO: test time robustness via adaptation and
augmentation. In Advances in Neural Information Processing Systems (NeurIPS), volume 35, pp.
38629-38642, 2022.

Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tie-
niu Tan. Adanpc: Exploring non-parametric classifier for test-time adaptation. In International
Conference on Machine Learning (ICML), volume 202, pp. 41647-41676, 2023.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael I. Jordan. Bridging theory and algorithm
for domain adaptation. In Proceedings of the 36th International Conference on Machine Learning
(ICML), volume 97, pp. 7404-7413, 2019.

Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: Degradation-free fully test-time adaptation. In
The Eleventh International Conference on Learning Representations (ICLR), 2023.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 45(4):4396-4415, 2023.

13



Under review as a conference paper at ICLR 2025

A PROOFS OF PROPOSITION 1

According to the assumption of Proposition E], we have the following bounds for f,(x]; ®") and
fi(@i; Om):

Fo(@:0%) = (1) < fo(a7:07) < fy(al:©°) + r(r), (14)
(@} ©°) — 5r(r) < fi(a}: ) < fylel; ©4) + 570, (15)

Subtract inequality [I5]from inequality [T4] we can deduce that:
&7 —di? = fo(@];07) = fi(x};0") < fy(a};©%) - f;(x};©%) + 7(r). (16)

Now, if d"? — d}* > 7(r), then it follows that:
7(r) < fp(x;;©7) = (27 ©7) + 7(r), (17)

which simplifies to:

fi(zi; ©%) < fu(z]; ©F) (18)

Therefore, j cannot be the true label of x].

If d;’ — d? > 7(r), then ¢ cannot be the true label of x}. Moreover, for any j € Y \ {p,q}, it
follows that d;” — d;”’ > 7(r), since d;”’ < d*?. As aresult, none of the labels in Y\{p} can be
the true label of . Therefore, given d;"” — d;"? > 7(r), p must be the true label of ]. The proof

is completed.

B PROOFS OF THEOREM 1

Suppose that at the r-th step of adaptation, the classifier i receives m” samples. Given that the
source domain and target domain may overlap, we assume (1 — §)m” samples are drawn from S
and the remaining Sm" samples are drawn from 7'. The goal of the classifier is to find a hypothesis
that minimizes the target error ey (h). We focus on classifiers that minimize a convex combination
of the empirical errors from the source and target domains (Ben-David et al.|[2010), defined as:

éa(h) = aér(h) + (1 - a)és(h), (19)

where « € [0, 1]. The corresponding weighted combination of the true source and target errors is
denoted by €, (h).

To quantify the distributional difference between the two domains, we use the disparity discrepancy
introduced by [Zhang et al.|(2019).

Definition 1 Given a hypothesis space H and a specific classifier h € H, the Disparity Discrepancy
induced by h' € H is defined by

dn3(S,T) = sup (dispy (B', h) — dispg (B', h))
h'eH (20)
— sup (BrT[1 # h] — ESI[K # h)).
h'eH

In domain adaptation theory (Ben-David et al.l 2010), the symmetric difference hypothesis space is
commonly defined as follows:

Definition 2 Define HAH 2 {h | h = hy ® hy, hy, ha € H} as the symmetric difference hypothe-
sis space of H, where ® stands for the XOR operator.

We begin by establishing an upper bound on the difference between the target error e (h) and the
weighted error €, (h).
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Lemma 1 Suppose es(h) < erp(h). For any classifier h, we have:
lea(h) —er(h)] < (1 — ) [dnu(S,T) + A, (21)
where \ = errg (h*) + erry (h*) and h* = arg min {errg(h) + errp(h)}.
het

Proof.
lealh) — er(h)] = (1— a) [es(h) — er(h)|
< (1- ) [(EgL 0" £ ) — EsL[h* £ A]) + (e (h*) + ex (h*))]
< (1) | sup (dispy (W, 1) = disps (. ) + A 22
= (1—a)[dnn(S,T)+ Al

Then we introduce an upper bound on the difference between the empirical and expected disparity
discrepancy.

Lemma 2 Denote S and T the empirical distributions of datasets with m and n instances sampled
from S and T, respectively. For any § > 0 and binary classifier h € H, with probability 1 — 24,

log 2 log 2
9B | o, f(HAH)+ || 23
m 2n

sup (dhﬂ(s, T) — dna(S, f?)) < 200, s (HAH) + . (23)

heH

Proof.

dh,?‘l(sv T) - dh,?—l (ga f)
= sup (dispp (k', h) — dispg (k', h)) — sup (disps (h”,h) — dispg (h", h))
h'eH

h'"eH
< sup (dispy (', h) — dispg (', h) —dispz (', h) + dispg (W, 1)) 24
h'eH
< sup (dispT (B’ h) — disps (h’,h)) + Sup (dispg (h”, h) — dispg (h”JL))
h'eH h'’'e
Take supremum over h € H, we have:
sup (dn(S.T) = dn1u(5. 7))
heH
< sup |dispp (h', h) — dispz (', h)| + sup |dispg (R, h) — dispg (R”, h)|
h,h' € h,h/"EH
= sup |Epl[h/ #h] —EzI[h' #h]|+ sup [EsI[h' # h]—Egl[h’ # h]|
hh'EH hh'EH
= sup [Erlly# 1) ~Egllg# 1|+ sup [Eslly’ # 1]~ Eglly' # 1] 25)
gEHAH
= sup |Erg—Ezg| + sup |Esg — Ag|
gEHAH

[lo log 2
< MR, s(HAH) + 2g 5y om, T(HAH) + Oan 5 |

The following lemma provides a probabilistic bound on the difference between the empirical and
true error rates of the classifier h.

Lemma 3 A batch of samples of size m is generated by taking Sm samples from T and (1 — B)m
samples from S, and then labeling them with the true labeling function g(x). Then we can have:

. —2me?
Pr [|€a(h) — Ea(h)| 2 6] S 2eXp (W) . (26)
Tt
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Proof. Letzq, . ..,z represent random variables corresponding to the Sm samples € T, taking
values:
o
= [h(@) —g(z)]. 27)
B
Similarly, for the remaining (1 — 8)m samples « € S, let g, 41, - - . , Ty, be random variables that
take on the values:
l1-a
13 M@ — 9@l (28)

The empirical weighted error €, (h) can be expressed as:

éa(h) = aér(h) + (1 - a)és(h)

=g 3 Ihe) —g(@)] + (1= ) =g 3 @) —g(a)| = o Yo w

zeT xzeS i=1

Applying the linearity of expectation, we have:

1 o -«
Efea(h)] = — ( Bm - Ler(h) + (1 = B)m - h
ealt)] = - (B Ger(h) + (1= Bhm - 1 =Ges) 0
= aer(h) + (1 — a)es(h) = eq(h).
Itis important to note that 1, ..., Zgm € [0, 5] and Zgpi1, ..., T € [0, 1:—%‘} Thus, Hoeffding’s

Inequality can be applied as follows:

— m2€2
Pr(léa(h) — ea(h)| > €] < 2exp (Z’Zl r2ange 2 (:m—))

= 2exp 5 —2m*e 5 | =2exp <—2meQ> )
ZIORIEEAE)

Building on the above definition and lemma, we derive the following theorem:

Theorem 1 Let H be a hypothesis space of VC dimension d. Let S and T be unlabeled sample
sets of size m' each, drawn from S and T respectively. A batch of samples of size m" is generated
by random sampling at the r-th step of adaptation. Given the possibility of overlap between the
source domain and the target domain, we assume (1 — 8)m” samples are drawn from S and the
remaining Bm” samples are drawn from T, which are then labeled with the true labeling function.
For simplicity in theoretical analysis, we allocate the loss weight proportionally to the number of
samples from each domain, specifically setting o and 3 to be equal. If h € H is the empirical
minimizer of €, (h) on this batch and h’, = minpey ex(h) is the target error minimizer, then for
any 6 > 0, with probability at least 1 — 26,

2dlog(2(m” + 1)) + 2log ()

GT(il) S €T (h;«) + 4\/

m’l”
, - (32)
PP 2dlog &% log %
+2(1 =) | dnn(S,T) +2\/ —~ 4 +2\/ St +Al,
Proof. According to Lemmal[I] we have:
er(h) < €a(h) + (1= o) (dn,x(5,T) + ). (33)
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By applying Lemma[3] we deduce that:

+ (1 =) (dnn(S,T) + A)

. (1—a)? \/2dlog mr+1))+210g(§)
1-8

+ (1 —a) (dp,n(S,T)+ )

(1—a)? \/Zdlog mr+1))+210g(%)
1-3

(1-a)? \/2dlog(2(m’ +1)) +2log ()

<eo(hy)+4 + (1= ) (dnn(S,T)+ A).

1-p
(34)
Based on Lemma[2] we obtain:
A . [a?  (1—a)? |2dlog(2(m" + 1)) + 2log ()
ET(h)SET(hT)+4 F—i_ 1_/3 \/ mr
~ o~ log 5 logg
+2(1 =) | dnw(8.T) + 2R s (HAH) + || 5 0 + 2000 p(HAH) + [ 5 20 + A
(35)
According to Lemma@and Mohri et al.| (2012), it follows that:
. a2 1—a)2 [2dlo m’ + 1)) + 2log (4
(h) <er(hp)+4 er( ) \/ & ) g(6>
B 1-5
(36)

If we allocate the loss weight according to the number of samples, that is, setting &« = 3, we can
conclude:

er(h) < er (h3) + 4\/ 2dlog(2(m’ + 1)) + 21og (5)

m’l’

, : (37)
~ o~ 2dlog €2 log £
+2(1—0) | dpu(S,T)+ \/ - id 2\/ me Al

This completes the proof.

C PROOFS OF THEOREM 2

First, let Ry (f) = E [fzv( f)] Then, following the results in Maurer & Pontil (2009), which
provides a uniform convergence form of Bennett’s inequality (Bennett, |1962)), we can derive:

R

- ~ log Mf;’
Ry (f) = Rv(f) <O [\/V(f)-

log Mur
NE * NE

(38)

Moreover, the following holds:

C

Re(f) = Rv ()] = [E[Rv (0] ~E[Ri (0] < Ella = plla- | 32 (F @) em). (39)

j=1
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Table 4: Running time of different methods on Table 5: Classification accuracy of PASLE under

the clipart domain of DomainNet dataset. broader parameter range on CIFAR-10-C dataset.

Methods Time (s) Tstart Tend  ACC
ERM 19.54 0.9 0.8 77.90
BN 21.03 0.8 0.7 7797
TENT 57.23 0.7 0.6 77.96
PL 77.94 0.6 0.5 77.99
SHOT-IM 77.02 0.5 04 77.89
T3A 46.57 0.4 03 77.84
TAST 86.89 0.3 02 77.84
TAST-BN 128.46 0.2 0.1 77.79
TsSD 105.55

PROGRAM  113.58

DEYO 92.49

PASLE 99.28

Table 6: Classification accuracy of PASLE and its variants (PASLE-NB and PASLE-NR) on the Of-
ficeHome dataset. The best performance is shown in boldface.

Methods A C P R

PASLE 57.25+0.75 51.30+£0.41 73.31+1.04 74.10+0.20
PASLE-NB  56.98+0.82 51.14+0.44 73.14+0.87 73.00+0.25
PASLE-NR  57.02+£0.76  51.11+0.39 73.09£1.21 72.984+0.33

Thus, we have

Ry(f) — R(f) < My/c-E[|lq —pl2]. (40)
Finally, combining Eq[38]and Eq[0]completes the proof.

D MORE FURTHER ANALYSIS

Running Time Analysis. To evaluate the computational cost, experiments were carried out on the
clipart domain of the DomainNet dataset, using ResNet-18 as the backbone with a batch size of
128 on an NVIDIA TITAN Xp GPU. The reported runtime excludes data loading time, ensuring
fairness by using torch.cuda.synchronize() to accurately measure the computational overhead. The
results are shown in Table[d] Our method has a similar time complexity to the baseline PL in pseudo-
label generation. The reason why it is a bit slower than PL is that our sample utilization rate is high,
and as a result, better performance has been achieved.

Ablation Study of Modules in PASLE. We additionally conducted ablation studies using two sim-
plified variants of our framework: PASLE-NBand PASLE-NR. In PASLE-NB, the buffer is removed
from the framework, while in PASLE-NR, the strategy of threshold reduction is excluded. For this
study, we utilized the Of £i ceHome dataset and employed ResNet-18 as the backbone. The results
are shown in Table [6] highlighting that the buffer mechanism and threshold reduction strategy, as
pluggable modules in our framework, further improve its performance.

Performance over a Broader Parameter Range. We conducted a parameter sensitivity analysis
experiment on the CIFAR-10-C dataset under shot noise with a broader range of hyperparameters.
The value of 74,,+ Was selected from a wider range, specifically between 0.2 and 0.9. The threshold
gap represented as |Tszqrt —Tend|, Was fixed at 0.1. For testing purposes, 745 was set to TS“‘"IQTE““ . The
results are summarized in the table below. The results indicate that the algorithm achieves optimal
performance when 7 is within the range of 0.5 to 0.8. Within a reasonable range of 7, the algorithm
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Table 7: Classification accuracy of PASLE with different candidate label selection strategies on
OfficeHome dataset. The best performance is shown in boldface.

Methods A C P R

PASLE 57.25+0.75 51.30+0.41 73.31£1.04 74.10+0.20
PASLE-TB  57.07£0.63 51.13+£0.45 73.11+£0.94 73.924+0.34
PASLE-KB  56.31£0.59 50.694+0.35 72.82+0.69 73.56+0.21

Test Accuracy(%)
@ @
(3]
Test Accuracy(%)

o
S

030
% 0.35 0.05

P 0.75
Starg . 080 045 Starg

(a) The sensitivity of Tyt and Tend on Of £iceHome. (b) The sensitivity of Tyar and Teng On DomainNet.

Figure 3: The parameter sensitivity of 7y, and 7.pg for PASLE.

also delivers comparable results. However, when 7 is set too low (e.g., within the range of 0.1 to
0.2), many samples with incorrect supervision are introduced, leading to a decline in performance.

Different Candidate Label Generation Methods. We further explored two approaches for gen-
erating candidate labels. The first is a threshold-based approach (PASLE-TB), where a threshold is
set, and all classes with prediction probabilities exceeding this threshold are selected as candidate
labels. This method generates both one-hot pseudo-labels and candidate pseudo-label sets. The sec-
ond approach is top-k based (PASLE-KB), where prediction probabilities are sorted in descending
order, and the top-k classes are chosen as candidate labels. Unlike the first method, this approach
only produces candidate pseudo-label sets. The threshold and k are dynamically adjusted during the
adaptation process. Experiments were conducted on the Of £iceHome dataset using ResNet-18 as
the backbone, and the results are presented in Tablem It can be observed that PASLE-TB achieves
performance comparable to PASLE, while PASLE-KB, which lacks sample selection and directly
uses the top-£ predicted classes of all samples as candidate labels, performs significantly worse than

PASLE.

More Parameter Sensitivity Analysis Results We additionally conducted sensitivity analyses on
Tstart and T¢pq using the clipart domain of the Of fi ceHome dataset and the clipart domain of the
DomainNet dataset as target domains. We also compared the performance of our method and the
baseline methods under varying batch sizes, using the sketch domain of DomainNet and the shot
noise corruption in CIFAR-100~-C as target domains. The results are shown in Figure[3|and Figure
[] It can be observed that PASLE is robust to hyperparameter selection and consistently outperforms
other methods across different batch sizes.

E FULL EXPERIMENTAL RESULTS
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Figure 4: The parameter sensitivity of batch size for PASLE.

Table 8: Full results on the PACS dataset.

128

256

(b) The sensitivity of batch size on DomainNet.

Methods BackBone A C P S Avg.
ERM 78.73£1.69 74.84+0.54 95.03+0.31 68.87£3.36  79.37
BN 82.03£0.55 81.09+£0.45 96.08+0.33 73.12+0.44  83.08
TENT 82.194+0.59 81.274£0.47 95.85+£0.33 73.62+0.68  83.23
PL 85.29+1.19 83.72£0.97 95.99+0.42 77.65+2.51  85.66
SHOT-IM 84.75+£0.66 81.83£1.27 96.33+0.78 69.18+£0.55  83.02
T3A ResNet-18 80.75+1.45 78.16£0.61 95.89+0.55 72.01+2.99  81.70
TAST 83.324+0.88 82.44£0.92 96.27+0.54 75.19+0.89  84.31
TAST-BN 87.09+£0.32 83.89+1.37 96.69+£0.39 77.74£1.45  86.35
TsD 87.81+0.64 87.09£0.50 96.71+£0.57 79.89+0.32  87.88
PROGRAM 84.724+0.55 80.36£0.60 96.05+0.39 73.14+0.40  83.57
DEYO 85.84+1.10 83.39+£0.56 96.13+£0.48 79.67+£0.80  86.26
PASLE 88.194+1.42 87.09£0.24 96.83+0.48 80.51+1.28  88.16
ERM 85.84+0.78 79.78+£2.15 96.47+0.37 81.27+2.12  85.84
BN 86.73£0.82 84.13£1.98 96.79+0.07 76.36£1.53  86.00
TENT 87.00+0.92 84.51£1.89 96.89+0.10 77.65£1.53  86.51
PL 88.80+0.88 82.94£4.90 95.35+2.32 75.53+5.04  85.66
SHOT-IM 85.68£1.56 83.52+0.47 95.05+0.63 76.83+£1.93  85.27
T3A ResNet-50 86.51+0.41 81.67£1.64 96.85+0.18 81.12+2.03  86.54
TAST 87.84+£0.53 84.56+£2.21 97.35+£0.19 78.00£1.13  86.94
TAST-BN 89.94+0.31 86.68+£1.01 97.49+0.48 83.77£1.77  89.47
TsD 91.06+0.56 90.67+0.68 97.70£0.15 85.09+£1.21  91.13
PROGRAM 87.21£1.30 84.09+£1.86 96.89+0.06 76.44+1.64  86.16
DEYO 88.36+£0.94 85.24+£1.61 97.05+0.12 82.26+0.54  88.23
PASLE 91.57+0.48 89.88+1.53 97.74£0.28 86.25+0.78  91.36
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Table 9: Full results on the VLCS dataset.

Methods BackBone v L C S Avg.
ErM 95.66+1.31 63.09£1.59 69.17+0.88 72.62+3.70 75.14
BN 82.71+2.46 58.83+1.55 62.20+0.86 71.424+2.13 68.79
TENT 83.30+2.36 59.26+1.57 62.77+1.02 71.804+1.91 69.28
PL 92.324+1.63 63.87£1.41 69.47+0.97 73.05+£1.42 74.68
SHOT-IM 88.06+3.50 58.58+1.62 63.50+1.94 73.061+2.02 70.80
T3A ResNet-18 98.494+1.27 64.02+£1.60 68.90+0.82 71.92+4.00 75.83
TAST 94.7442.04 56.63+£2.07 63.97+£0.62 71.41+£2.61 71.69
TAST-BN 97.34+0.84 65.02+1.57 65.71+0.87 72.61£5.40 75.17
TsD 96.30+0.47 65.47+0.14 67.84+0.53 72.25+2.88 75.47
PROGRAM 95.87+1.45 58.71£0.81 60.12+1.43 71.85+2.47 71.64
DEYO 95.16+1.35 63.93+0.37 67.20+£0.97 73.33+£1.80 74.91
PASLE 96.04+1.53 66.48+0.51 72.64+0.45 76.48+0.29 77.91
ErM 97.15+0.43 63.08+0.65 70.63+0.76 73.37+1.14 76.06
BN 77.904+4.52 56.664+2.09 63.36+1.14 73.11+0.37 67.76
TENT 79.154+4.67 57.054+£2.06 63.924+1.09 73.50+0.18 68.41
PL 91.31£3.18 61.60+3.90 70.97+0.05 71.32+2.66 73.80
SHOT-IM 80.60+3.95 55.78+2.63 63.51+1.94 74.06+0.73 68.49
T3A ResNet-50 98.18+0.11 64.13+£1.10 72.04+£2.37 71.99+0.81 76.59
TAST 81.70+4.20 52.10+£0.42 62.294+1.45 73.20+1.04 67.32
TAST-BN 96.77+1.42 61.33+0.06 68.96+4.14 75.30+0.19 75.59
TsD 93.924+1.28 58.03£1.04 69.65+2.52 77.49+0.99 74.77
PROGRAM 85.05+4.15 58.42+0.40 60.124+1.43 71.824+1.50 68.85
DEYO 84.38+1.70 60.92+1.97 67.20+0.97 73.85+0.21 71.59
PASLE 96.01£0.89 66.20£1.98 76.01£0.91 76.59+0.88 78.70
Table 10: Full results on the OfficeHome dataset.
Methods BackBone A C P R Avg.
ErRM 55.76+0.80 48.66+0.43 71.46+0.67 73.84+0.23 62.43
BN 54.96+0.58 49.74+0.37 70.95+0.91 73.50+0.43 62.29
TENT 55.134£0.65 50.00£0.21 71.27+0.89 73.63+0.43 62.51
PL 55.094+0.36 50.74+0.19 71.17+1.25 73.83+0.39 62.71
SHOT-IM 56.75+1.12 52.03+£0.57 72.77+0.05 74.10+0.33 63.91
T3A ResNet-18 56.5241.12 50.62+£0.67 73.45+0.71 74.99+0.33 63.90
TAST 55.75+0.89 51.714+0.49 73.93+0.95 74.46+0.34 63.96
TAST-BN 55.284+0.65 50.49+0.64 71.89+1.46 72.07+0.44 62.43
TsD 57.274£0.71 50.60+£1.59 72.24+0.85 73.55+0.21 63.42
PROGRAM 56.69+1.45 50.94+0.51 71.80+0.40 73.98+0.47 63.35
DEYO 56.50+0.30 50.80+0.15 71.97+1.02 73.92+0.41 63.30
PASLE 57.2540.75 51.30£0.41 73.31£1.04 74.10+0.20 63.99
ERM 63.04+0.48 53.88+0.18 76.55+0.41 77.89+0.19 67.84
BN 62.00+0.81 53.45+£0.47 75.08+£0.66 76.76+0.74 66.82
TENT 62.444+0.72 54.11+£0.48 75.68+0.67 76.84+0.57 67.27
PL 63.324+0.39 54.73+0.99 73.89+1.22 77.30+0.46 67.31
SHOT-IM 62.95+1.15 54.56+£0.44 76.37+0.95 77.66+0.29 67.89
T3A ResNet-50 63.264+0.23 55.30+£0.32 78.13+0.44 78.72+0.45 68.85
TAST 63.424+0.59 55.61£0.59 78.01+0.81 77.74+0.46 68.70
TAST-BN 62.76+0.62 55.01£0.43 77.01£0.85 77.11+0.74 67.97
TsD 64.324+0.41 56.91+£0.97 77.19+0.67 77.46+0.45 68.97
PROGRAM 63.36+0.87 54.27+0.23 77.24+0.69 77.24+0.49 68.03
DEYO 63.774£0.23 54.90£1.10 76.36+£0.51 77.28+0.56 68.08
PASLE 65.47+0.83 56.08+0.82 78.11+0.65 77.83+0.30 69.37
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Table 11: Full results on the DomainNet dataset.

Methods BackBone clipart infograph painting  quickdraw real sketch Avg
ERM 50.48+0.21 15.31+0.15 41.86+0.12 11.66+£0.49 51.71+£0.29 43.53+0.02  35.76
BN 50.74+0.09 11.38+0.03 40.76£0.12 11.29£0.39 51.78+0.19 43.72+0.26  34.95
TENT 51.13+0.07 12.52+0.19 41.91+0.14 10.57£0.38 51.31+0.25 44.76+0.17  35.37
PL 50.88+0.06 12.87+0.70 41.22+0.10 10.84£0.74 51.62+0.29 44.01+0.25 35.24
SHOT-IM 51.02+0.07 12.75+0.39 41.41+£0.13 13.71£0.32 52.26+0.15 44.38+0.23 35.92
T3A ResNet-18 50.34+0.26 15.11£0.20 40.35+0.12 16.24£0.23 53.13£0.30 42.68+0.17  36.31
TAST 50.31+0.16 12.64£0.09 40.66+0.05 14.59+0.51 53.58+0.15 42.49+0.26  35.71
TAST-BN 50.44+0.27 13.21+0.13 40.97+0.12 14.72+£0.49 52.39+0.41 43.194+0.28  35.82
TsD 50.74+0.11 13.58+0.07 42.93+£0.24 11.78+£0.34 51.95+0.21 44.20+0.20  35.86
PROGRAM 51.07+0.16 13.27£0.26 41.52+0.12 13.40£0.41 52.31+0.28 44.2740.25 35.97
DEYO 50.86+0.05 13.19+0.29 41.23+0.12 11.19£0.50 51.81+£0.21 43.96+0.23 35.37
PASLE 51.76+0.39 14.98+0.28 43.06+0.15 13.67£0.26 52.69+0.18 45.154+0.27  36.89
ERM 61.00+£0.24 20.81+£0.19 49.58+0.06 13.57£0.26 61.95+0.16 52.07+0.36  43.16
BN 60.58+0.23 15.11+0.17 48.64+0.08 11.92+0.20 61.06£0.16 51.70+0.16  41.50
TENT 61.64+0.15 17.41£0.01 50.40+0.17 10.11£0.58 61.40+£0.14 53.304+0.08  42.38
PL 61.04+0.22 17.90£0.20 49.90+0.06 11.57£0.15 61.26+0.04 52.61+0.19  42.38
SHOT-IM 61.29+0.21 17.56+0.14 49.81+0.10 16.50£0.52 62.52+0.10 52.79+0.22  43.41
T3A ResNet-50 61.05+0.23 20.94+£0.14 48.71£0.08 18.55£0.39 63.194£0.08 51.57+0.27  44.00
TAST ) 60.654+0.22 17.93£0.19 49.03+0.19 15.17£0.28 62.62+0.12 51.64+0.07 42.84
TAST-BN 61.03+0.32 18.04+0.22 49.65+0.19 14.75£0.41 62.71£0.07 51.974+0.09  43.03
TsD 60.76+0.24 17.89+0.17 49.82+0.65 12.21£0.26 61.66+0.17 52.274+0.18  42.44
PROGRAM 61.15+0.26 18.08+0.04 49.85+0.06 15.53£0.40 62.14+0.04 53.30+0.20  43.34
DEYO 61.04+0.22 18.17+0.11 49.84+0.05 11.99+0.23 61.25+£0.02 52.50+0.21 42.47
PASLE 62.46+0.39 20.67+0.12 51.74+0.16 16.73£0.51 63.76+£0.09 54.11+0.26  44.91
Table 12: Full results on the CIFAR-10-C dataset.
Methods shot ~motn snow pixel gauss defoc  brit fog ~ zoom frost glass impul contr jpeg  elast  Avg.
ERM 2493 1940 26.12 21.62 2452 1959 2841 1348 1953 19.13 1831 1834 10.93 2493 20.59 20.66
BN 76.79 7593 78.17 80.13 7733 79.13 83.08 70.64 79.25 76.05 6849 6580 6282 80.16 76.16 75.33
TENT 76.80 76.11 7823 80.07 77.29 79.12 83.13 70.80 7931 7621 6857 66.03 63.19 8024 76.04 7541
PL 7707 7645 7825 8042 7759 7956 8320 7126 79.77 7650 68.74 6622 6395 8021 76.34 75.70
SHOT-IM 7720 76.67 7843 80.54 77.63 79.77 8335 7135 79.90 7642 6885 66.60 6446 8024 76.30 7585
T3A 2997 2027 2993 26.04 2930 19.81 34.00 13.64 20.02 21.03 21.28 2191 1594 2833 2129 23.52
TAST 7527 75.16 77.07 7899 76.02 78.05 8210 69.39 78.01 7547 66.74 6442 6255 78.11 7464 74.13
TAST-BN 7582 74.84 7728 7935 7656 7829 8330 69.34 7864 7517 6774 6473 62.17 7945 7569 74.56
TsbD 76.54 7558 7828 7996 77.18 7879 83.16 7032 7884 76.03 68.01 66.06 62.10 80.09 76.18 75.14
PROGRAM  76.73 7622 77.87 79.98 77.10 78.83 8321 69.86 7874 76.01 6788 6540 61.21 79.95 76.06 75.00
DEYO 77.02 7689 78.41 80.52 77.42 79.79 83.25 71.28 79.90 7641 6850 66.18 64.04 8036 7620 7574
PASLE 78.03 77.40 79.08 81.16 7822 80.81 83.83 7231 80.81 7728 69.34 67.07 67.17 80.75 76.77 76.67
Table 13: Full results on the CIFAR-100-C dataset.

shot motn snow pixel gauss defoc  brit fog  zoom frost glass impul contr jpeg elast Avg.
ERM 788 386 830 695 795 407 11.02 163 395 589 513 545 1.08 854 589 584
BN 44.17 4623 4498 50.01 4427 4836 50.36 37.55 48.89 44.02 3878 3457 31.69 4878 4557 43.88
TENT 44.19 4623 4502 4997 4434 4855 5047 37.53 48.89 44.07 3881 3457 31.68 4891 4565 4393
PL 4457 47.05 4509 50.11 4436 4927 50.58 37.32 49.49 4435 3929 3494 3222 4901 4592 4424
SHOT-IM 44.51 4723 4520 5034 4481 4922 5076 3793 4925 4433 39.16 3490 33.05 49.04 4560 4436
T3A 824 528 9.4 819 859 504 1294 223 550 618 623 597 108 949 698 6.74
TAST 39.65 4229 4035 4483 39.86 43.72 45.00 33.13 4337 39.13 35.68 3145 2591 4323 4050 3921
TAST-BN 3275 3392 3296 3582 3285 3532 3734 27.15 3544 33.10 27.77 2479 20.60 3559 3222 31.84
TSD 4454 46.55 4532 5047 4476 4892 5097 3738 49.46 4425 39.05 34.62 31.36 4926 4595 44.19
PROGRAM  44.19 46.63 44.97 4991 44.63 4876 5036 37.76 4874 4437 3887 3478 3242 4878 45.67 44.06
DEYO 44.68 47.21 45.00 50.19 4456 49.06 5057 37.88 4939 4441 3936 3498 32.13 4892 4582 4428
PASLE 45.88 4844 4628 5143 4560 50.05 5192 39.12 5042 4517 39.94 36.00 32.87 50.05 46.63 4532
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