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ABSTRACT

Deep learning systems often struggle with processing long sequences, where com-
putational complexity can become a bottleneck. Current methods for automated
dementia detection using speech frequently rely on static, time-agnostic features
or aggregated linguistic content, lacking the flexibility to model the subtle, pro-
gressive deterioration inherent in speech production. These approaches often miss
the dynamic temporal patterns that are critical early indicators of cognitive de-
cline. In this paper, we introduce TAI-Speech, a Temporal Aware Iterative frame-
work that dynamically models spontaneous speech for dementia detection. The
flexibility of our method is demonstrated through two key innovations: 1) Op-
tical Flow-inspired Iterative Refinement: By treating spectrograms as sequential
frames, this component uses a convolutional GRU to capture the fine-grained,
frame-to-frame evolution of acoustic features. 2) Cross-Attention Based Prosodic
Alignment: This component dynamically aligns spectral features with prosodic
patterns, such as pitch and pauses, to create a richer representation of speech
production deficits linked to functional decline (IADL). TAI-Speech adaptively
models the temporal evolution of each utterance, enhancing the detection of cog-
nitive markers. Experimental results on the DementiaBank dataset show that TAI-
Speech achieves a strong AUC of 0.839 and 80.6% accuracy, outperforming text-
based baselines without relying on ASR. Our work provides a more flexible and
robust solution for automated cognitive assessment, operating directly on the dy-
namics of raw audio.

1 INTRODUCTION

Dementia is a progressive neurodegenerative syndrome currently affecting an estimated 55 million
people worldwide, with prevalence projected to rise sharply by 2050. It is marked by gradual decline
in memory, language, and executive function, and Alzheimer’s disease remains the most common
subtype (Ortiz-Perez et al. (2023),Pan et al. (2025),Agbavor & Liang (2022),Galanakis et al. (2025)).
Early detection is critical for timely intervention and improved quality of life (Ortiz-Perez et al.
(2023),Gkoumas et al. (2024)). Among the most promising non-invasive biomarkers are speech and
language changes, which often appear during preclinical stages (Gkoumas et al. (2024),Agbavor &
Liang (2022),Pan et al. (2025),Li et al. (2025),Kannojia et al. (2025),Yeung et al. (2021)).

Speech deterioration is closely tied to functional decline measured by Instrumental Activities of
Daily Living (IADLs) abilities such as financial management, medication adherence, and complex
communication (Fieo et al. (2014),Laurentiev et al. (2024),Fieo & Stern (2018)). Extended IADL
(x-IADL) scales correlate strongly with language function, processing speed, and visuospatial ability
(Fieo et al. (2014)). Despite extensive work analyzing speech or IADLs separately, current methods
rarely model their temporal interdependence, even though language decline, commonly character-
ized as slowed speech, lexical retrieval failures, and reduced syntactic complexity, often precedes
measurable IADL impairment (Yeung et al. (2021),Chen & Li (2024)).

We hypothesize that gradual, fine-grained deterioration of speech is a precursor to IADL impair-
ment and can be captured by an architecture inspired by optical-flow estimation. Both problems
require tracking continuous temporal changes via correspondence analysis and iterative refinement
(Alfarano et al. (2024),Teed & Deng (2021)). Analogous to how optical flow estimates motion be-
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tween video frames, our approach models the temporal evolution of spectrogram frames, allowing
precise characterization of pauses, pitch variability, and other subtle acoustic patterns.

We present TAI-Speech, a deep learning framework that treats speech as a dynamic sequence of
spectrogram frames. Our model adapts the Recurrent All-Pairs Field Transform (RAFT) paradigm
(Alfarano et al. (2024),Teed & Deng (2021),Sui et al. (2022)) to audio analysis. A convolutional
GRU serves as a recurrent update module that iteratively refines latent representations, while cross-
attention aligns acoustic and prosodic cues. A Transformer encoder aggregates these temporally
enriched features for utterance-level prediction. Unlike optical flow, we do not estimate motion
vectors but leverage RAFT’s iterative refinement to construct a temporally aware embedding of
the speech signal. Evaluated on the DementiaBank Pitt corpus, TAI-Speech outperforms strong
linguistic baselines, demonstrating that temporally sensitive modeling substantially improves early
dementia detection. While our conceptual framework highlights functional deterioration in IADLs,
the current empirical evidence derives solely from speech-based classification; thus, the IADL con-
nection remains theoretical.

2 RELATED WORK

2.1 COMPUTATIONAL APPROACHES TO SPEECH BASED DEMENTIA DETECTION

Speech analysis has emerged as a non-invasive, cost-effective modality for early dementia diag-
nosis and monitoring (Ortiz-Perez et al. (2023); Agbavor & Liang (2022); Braun et al. (2024)).
A cornerstone resource is the DementiaBank Pitt Corpus, which records subjects describing the
“Cookie Theft” picture see Figure 1 to elicit lexical retrieval challenges and discourse impairments.
Its derivatives, ADReSS and ADReSSo provide balanced demographics and higher acoustic qual-
ity, supporting tasks such as Alzheimer’s disease classification, MMSE regression, and cognitive-
decline prediction, with ADReSSo emphasizing speech-only input and ASR-generated transcripts
(Luz et al. (2021)).

Feature extraction spans acoustic (log-Mel spectrograms, MFCCs, energy contours, pauses, hes-
itations) and linguistic (vocabulary richness, syntactic complexity, POS distributions, disfluency
metrics) domains (Ortiz-Perez et al. (2023); Braun et al. (2024); Ilias & Askounis (2023); Woszczyk
et al. (2024)). Deep models dominate: CNNs for audio, RNN/LSTM and Transformer variants (e.g.,
BERT, RoBERTa, DeiT, GPT-3) for both acoustic and text representations (Pan et al. (2025); Braun
et al. (2024); Meilán et al. (2014); König et al. (2018); Gong et al. (2021)). Self-supervised models
such as wav2vec 2.0 capture rich acoustic embeddings with strong downstream performance (Pan
et al. (2025); Braun et al. (2024)).

Multimodal fusion strategies integrate modalities through early feature concatenation, late decision-
level aggregation, and cross-attention mechanisms that dynamically weight each modality. Although
ASR errors can introduce noise, transcripts with relatively high Word Error Rates (WER) often
perform on par with or better than manual transcriptions for dementia classification, suggesting that
salient cognitive cues persist in noisy outputs (Pan et al. (2025); Shon et al. (2023)).

2.2 CORRELATING SPEECH WITH FUNCTIONAL DECLINE

Loss of independence in Instrumental Activities of Daily Living (IADLs) is a defining clinical
marker of dementia (Fieo et al. (2014); Liepelt-Scarfone et al. (2013)). Modern, technology-
mediated IADLs—such as online financial tasks or text messaging—offer even greater sensitivity
for early Alzheimer’s detection (Benge et al. (2024)). Numerous studies report strong links between
speech abilities and functional status: language deficits often precede measurable IADL impairment
( Gkoumas et al. (2024); Yeung et al. (2021)).

Automated speech and language analysis captures these associations objectively. Word-finding dif-
ficulty correlates with increased pause frequency and specific acoustic signatures (e.g., MFCC pat-
terns), while incoherence and perseveration manifest as degraded discourse structure and repeated
utterances measurable via cosine similarity. Reduced lexical diversity, simplified grammar, and
malformed verb phrases signal syntactic and semantic breakdown (Yeung et al. (2021)). Beyond
structured tasks, NLP methods applied to unstructured clinical narratives in EHRs extract indica-
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Figure 1: Cookie Theft picture

tors of IADL/ADL impairment, enabling scalable integration of functional status into research and
clinical decision support (Laurentiev et al. (2024); Penfold et al. (2022)).

2.3 ITERATIVE REFINEMENT IN OPTICAL FLOW

Optical flow research has advanced from classical variational formulations to deep iterative refine-
ment. RAFT achieves state-of-the-art accuracy by maintaining high-resolution flow fields and lever-
aging multi-scale correlation volumes with a convolutional GRU for recurrent updates ( Teed &
Deng (2021); Sui et al. (2022)). Follow-on architectures such as IRR and LiteFlowNet refine cost
volumes through shared-weight cascades and optimized objectives like RCELoss (Alfarano et al.
(2024); Hui et al. (2018)). These iterative principles, high-resolution correlation, recurrent updates,
and context preservation inform broader temporal modeling strategies and motivate cross-domain
applications beyond computer vision ( Alfarano et al. (2024); Meßmer et al. (2025)).

2.4 THEORETICAL FRAME FOR TEMPORAL ANALYSIS

Speech is a fundamentally temporal information modality, where the state at a given moment is in-
trinsically linked to its context. Temporal aspects in audio, such as hesitation and pauses, speaking
rate, and word duration, serve as significant indicators of cognitive decline Xu et al. (2023). Demen-
tia recordings exhibit prolonged utterances and characteristic pause patterns, with manual transcripts
often marking these events explicitly (Ortiz-Perez et al. (2023),Pan et al. (2025),Braun et al. (2024)).
Acoustic representations such as log-Mel spectrograms, MFCCs, and eGeMAPS capture short-term
spectral and physiological voice dynamics (GOrtiz-Perez et al. (2023),Gong et al. (2021),Corvitto
et al. (2024), Luz et al. (2021)).
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Longitudinal analysis tracks language change across sessions via embedding similarity and related
metrics ( Gkoumas et al. (2024),Braun et al. (2024)). Linguistic deficits, empty speech, circumlocu-
tion, repetition, poor grammar are temporal manifestations of cognitive decline (Chen & Li (2024)).
Extra-linguistic cues such as keystroke pauses in written text further complement audio evidence
(Gkoumas et al. (2024)).

Context-aware large language models can exploit preceding audio or text to predict next-sentence
semantics or topic flow, enhancing downstream temporal reasoning (Shon et al. (2023),Bai et al.
(2024)). Related techniques in audio-visual segmentation similarly rely on temporal consistency,
where optical flow provides low-level motion signals for tasks like emotion recognition and lip-
reading (Alfarano et al. (2024),Torabi & Nilchi (2014)). Temporal Enhancement Modules (TEM)
extend these ideas by exchanging learnable context tokens across frames to strengthen inter-frame
coherence (Geng & Gu (2025)).

3 METHODOLOGY

3.1 TASK AND DATASET

We evaluate our approach on spontaneous picture description, a standardized neurocognitive
paradigm used to probe semantic memory and episodic retrieval (Mueller et al. (2018)). Partici-
pants describe the Cookie Theft line drawing (Lanzi et al. (2023)), producing naturalistic speech
that reveals lexical retrieval difficulty, hesitations, and discourse-level impairments.

Experiments use the DementiaBank Pitt Corpus, the largest publicly available speech dataset
for cognitive-impairment assessment. We focus on the clinically validated subsets comprising
222 recordings from 89 healthy controls (HC) and 255 recordings from 168 participants with
Alzheimer’s disease (AD), for a total of 477 audio samples. All recordings are accompanied by
diagnostic annotations and are sampled at 16 kHz.

3.2 MODEL ARCHITECTURE

Our goal is to capture temporal markers of functional decline, particularly those linked to Instru-
mental Activities of Daily Living directly from raw speech. TAI-Speech integrates prosodic en-
codings, convolutional spectral processing, iterative temporal refinement, and sequence-level aggre-
gation (Figure 2). The model is trained end-to-end with a joint objective combining cross-entropy
classification and a temporal smoothness regularizer to enforce stability across successive frames.

3.3 FEATURE ENCODINGS

Raw speech x(t) is first resampled and transformed using the short-time Fourier transform (STFT).
A log-Mel spectrogram is computed:

S(m,n) = log
(∑

k

|X(k, n)|2Hm(k)
)
, (1)

where X(k, n) is the STFT coefficient at frequency k and frame n, and Hm is the m-th Mel filter.

Prosodic correlates relevant to IADL are explicitly extracted: (i) normalized pitch track p̃(n), and
(ii) pause probability q(n) estimated from voice activity detection. These auxiliary encodings are
fused into a joint representation:

z(n) = ϕ
(
Wf [p̃(n), q(n)] + bf

)
, (2)

where Wf and bf are trainable parameters and ϕ(·) is a non-linear activation.
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Figure 2: Architecture Model

3.4 TEMPORAL REFINEMENT MODULES

3.4.1 CROSS-ATTENTION CONTEXTUALIZATION

The spectral encoder produces local embeddings h(l). To integrate prosodic factors, a cross-modal
attention module computes:

Attn(Q,K, V ) = softmax
(QK⊤
√
d

)
V, (3)

where queries Q are derived from spectro-temporal features, while keys and values come from z(n).
This aligns acoustic features with temporal dynamics of pitch and pause, providing contextualized
embeddings.

3.4.2 ITERATIVE UPDATE BLOCK

To refine temporal representations, we employ a multi-scale ConvGRU. At each time step t, the
hidden state Ht is updated by:

rt = σ(Wr ∗ xt + Ur ∗Ht−1), (4)
ut = σ(Wu ∗ xt + Uu ∗Ht−1), (5)

H̃t = tanh(W ∗ xt + U ∗ (rt ⊙Ht−1)), (6)

Ht = ut ⊙Ht−1 + (1− ut)⊙ H̃t, (7)

where ∗ denotes convolution and ⊙ elementwise multiplication. This iterative block progressively
corrects and stabilizes features across multiple scales, reflecting temporal organization in speech.

3.5 SEQUENCE AGGREGATION AND CLASSIFICATION

Downsampled embeddings {h1, . . . , hT } are passed into a Transformer encoder augmented with a
classification token ucls. The self-attention mechanism models higher-order dependencies:

U = Transformer([ucls, h1, . . . , hT ]). (8)

The final classification is computed as:

ŷ = softmax(Wcu
′
cls + bc), (9)
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Algorithm 1: TAI-Speech: Temporal–Acoustic–IADL Speech Classification
Input: Raw waveform x(t),;
ground-truth label y
Output: Predicted probability ŷ
# Preprocessing
Resample x(t) and compute log-Mel spectrogram S(m,n) = log

∑
k |X(k, n)|2Hm(k)

Extract normalized pitch p̃(n) and pause probability q(n)
Fuse prosodic vector z(n) = ϕ(Wf [p̃(n), q(n)] + bf )
# Spectral Encoding
h(l)← Hierarchical convolutional encoder on S(m,n)
# Cross-Attention Contextualization
h′(l)← Attn(Q,K, V ) with Q = h(l),;
K,V = z(n)
# Iterative Temporal Refinement
for t = 1 to T do

rt = σ(Wr ∗ xt + Ur ∗Ht−1)
ut = σ(Wu ∗ xt + Uu ∗Ht−1)

H̃t = tanh(W ∗ xt + U ∗ (rt ⊙Ht−1))

Ht = ut ⊙Ht−1 + (1− ut)⊙ H̃t

# Sequence Aggregation and Classification
U ← Transformer([ucls, h

′
1, . . . , h

′
T ])

ŷ ← softmax(Wcu
′
cls + bc)

# Training Loss

L = λclsLCE(ŷ, y) + λtemp
1

T−1

∑T
t=2 ∥ht − ht−1∥22

return ŷ

where u′
cls is the contextualized embedding.

The training objective combines cross-entropy loss with a temporal consistency regularizer:

L = λclsLCE(ŷ, y) + λtemp
1

T − 1

T∑
t=2

∥ht − ht−1∥22, (10)

encouraging stability in temporal encodings while preserving discriminative capacity.

4 EXPERIMENTAL SETUP

4.1 EVALUATION PROTOCOL

In order to guarantee a rigorous and unbiased evaluation of the proposed approach, we adopt a strat-
ified five-fold cross-validation (5-fold CV) protocol. This strategy preserves the original class dis-
tribution within each fold, a critical consideration when working with imbalanced clinical datasets.
The primary evaluation metric is the Area Under the Curve (AUC), which provides a robust mea-
sure of discriminative capability between dementia and healthy control groups. In addition, we
report secondary performance indicators, namely accuracy, precision, recall, and F1-score, thereby
offering a comprehensive assessment across multiple dimensions of classification performance.

4.2 BASELINE SYSTEM

For comparative analysis, we adopted a strong literature-based baseline and evaluated against sev-
eral Transformer-style architectures that constitute current state-of-the-art approaches for cognitive-
impairment detection.
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4.3 PROPOSED SYSTEM

Algorithm Algorithm 1 presents the overall procedure of our proposed method. The TAI-Speech
framework refines acoustic representations of spontaneous speech to detect dementia-related func-
tional decline. The procedure can be summarized in three stages:

• Acoustic Feature Encoding: Raw audio x(t) is converted into log-Mel spectrogram
frames S(m,n). A hierarchical convolutional encoder extracts local spectral representa-
tions as initial feature maps.

• Iterative Temporal Refinement: Hidden states Ht are updated with a multi-scale Con-
vGRU to capture long-range temporal context. The prosodic characteristics, the normal-
ized pitch p̃(n) and the probability of pause q(n), are fused using a cross-modal attention
layer for richer temporal contextualization.

• Sequence Aggregation and Classification: Refined embeddings are downsampled and
passed through a Transformer encoder with a learnable classification token ucls. A final
linear layer with softmax outputs the dementia vs. control prediction. Training employs
a cross-entropy loss plus a temporal-smoothness regularizer to encourage frame-to-frame
consistency.

4.4 TRAINING DETAILS

To ensure comparability across systems, all models are trained under a unified hyperparameter con-
figuration. Training uses the AdamW optimizer with a batch size of four, a maximum of 200 epochs,
and an initial learning rate of of 1× 10−5. Early stopping halts training if the validation AUC fails
to improve for 10 consecutive epochs, reducing the risk of overfitting to the limited clinical dataset.
Cross-entropy loss serves as the objective function, and a WeightedRandomSampler balances class
representation within each batch. All experiments are executed on a shared NVIDIA RTX A4000
GPU with 32 GB of memory to support efficient large-model training and stable batch processing.

5 RESULTS AND DISCUSSION

This section presents the performance of our proposed architecture, contextualizes the findings by
comparing them against established baseline models, and discusses the broader implications of our
results, with a specific focus on how the model’s design relates to the detection of functional decline.

5.1 QUANTITATIVE PERFORMANCE ANALYSIS

The proposed model was rigorously evaluated using a 5-fold cross-validation protocol. The primary
metric for assessing the model’s ability to discriminate between dementia and healthy control classes
was the Area Under the Curve (AUC), with Accuracy (ACC), Recall (REC), and F1-score also
reported for a comprehensive analysis.

As summarized in Table 1, our proposed architecture achieved a high level of discriminative perfor-
mance, yielding an test AUC of 0.839. The model obtained an accuracy of 80.55%, recall of 0.890,
and an F1-score of 0.813.

Table 1: The Result (%) of our Model
System AUC ACC REC F1-score

Our Model 83.9 0.81 0.890 0.813

For evaluation, we benchmarked our system against previously reported baseline models, as well as
Transformer-based acoustic approaches that analyze transcribed speech.

The TAI-Speech architecture achieved an AUC of 0.839, an accuracy of 80.55%, a recall of 89.0%,
and an F1-score of 0.813. These results represent a significant improvement over purely linguistic
baselines. When benchmarked against state-of-the-art systems in table 2, our model demonstrates
good performance across all evaluation metrics. The 8% improvement in AUC over Braun et al.

7
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Table 2: Performance comparison between the proposed model
System Modality AUC (%) Acc (%) Recall F1-score

Pan et al. (2019) Lingustic – 70.83 0.71 0.70
Pan et al. (2025) Multimodal – 82.56 0.83 0.83

Braun et al. (2024) Multimodal 77.2 – – –
Ours Acoustic-Temporal 83.9 80.55 0.89 0.83

(2024).’s pause-infused text model (77.2%) and competitive performance against Pan et al. (2025)
attention-based multimodal system (82.56% accuracy) underscore the efficacy of our temporatsively
on acoustic signals without requiring error-prone ASR transcription or linguistic feature extraction.

While systems incorporating ASR features achieve the highest AUC and accuracy, our purely acous-
tic model obtains the highest recall. It is notable that TAI-Speech achieves this level of performance
without relying on a linguistic pipeline. This suggests that the temporal dynamics encoded within
the acoustic signal contain sufficient information for effective dementia classification. This single-
modality approach may offer advantages in robustness and simplicity, as it avoids potential cascad-
ing errors from ASR systems, which can struggle with the atypical speech patterns often present in
clinical populations. The results indicate that direct modeling of speech dynamics is a viable and
powerful alternative to multimodal approaches that require transcription.

5.2 DISCUSSION

The performance of TAI-Speech can be attributed to its architectural design, which adapts principles
from optical flow to model speech as a continuous, evolving signal. This approach facilitates the
capture of micro-temporal variations in speech that are often associated with cognitive decline. The
iterative refinement mechanism, inspired by the RAFT architecture, allows the model to progres-
sively build a representation of speech dynamics across multiple time scales.

The model’s convolutional GRU-based update module may be effective at capturing hesitation pat-
terns, variable speech rates, and prosodic irregularities characteristic of speech produced by individ-
uals with dementia. In contrast to approaches that analyze the final linguistic product, our model
is designed to capture patterns in the speech production process itself. While semantic errors and
vocabulary limitations are important markers captured by linguistic models, they represent the end-
point of a cognitive process. Our method, by modeling the temporal trajectory of speech, aims to
detect subtle perturbations that may precede overt linguistic deterioration.

Although direct IADL measurements were not incorporated into this study, the established link
between speech production deficits and functional decline provides an interpretive context for our
results. The model’s sensitivity to temporal speech features aligns with known correlations between
communication difficulties and IADL impairment. For example, word-finding difficulties, which
manifest acoustically as increased pause frequency and duration, can affect functional tasks that
require verbal communication. The cross-attention mechanism aligns spectral embeddings with
prosodic dynamics like pitch and pauses, which may encode information about the cognitive effort
involved in speech planning and execution. The degradation of these processes, as captured by our
model, may serve as an indicator of the executive dysfunction that can lead to IADL impairment.

LIMITATIONS AND FUTURE DIRECTIONS

Despite promising results, this study has several limitations. The findings are based on a constrained
dataset from a single linguistic and cultural context, which may limit their generalizability. The
cross-sectional nature of the data also precludes any assessment of the model’s sensitivity to lon-
gitudinal disease progression. Furthermore, the absence of direct IADL measurements restricts the
empirical validation of our model’s relevance to functional decline. The model’s performance on
mild cognitive impairment (MCI) also remains an open question for future investigation.

Future work should aim to validate these findings on larger, more diverse, and longitudinal corpora.
Incorporating patient IADL scores as an explicit modeling target could provide a more direct method
for detecting functional decline. Exploring multimodal fusion, which would combine the temporal
acoustic features from TAI-Speech with semantic embeddings from large language models, may

8
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also lead to improved robustness and performance. Finally, longitudinal studies are necessary to
determine if changes in the model’s output correlate with cognitive trajectories over time, potentially
enabling the use of personalized baselines for early detection.

6 CONCLUSION

In this work, we introduced TAI-Speech, a novel architecture for dementia detection that models
the temporal dynamics of speech. By adapting the principle of iterative refinement from the field of
optical flow, our model analyzes the evolution of acoustic-prosodic features over the course of an
utterance. On the DementiaBank Pitt corpus, TAI-Speech achieved an AUC of 0.839, demonstrating
performance that is competitive with state-of-the-art multimodal systems without requiring linguistic
transcription. This result validates temporal modeling as an effective approach for this task. While
the link between the captured speech dynamics and functional impairment is theoretically grounded,
future work is required to empirically validate this connection using datasets that include clinical
IADL assessments.
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Clinical characteristics with an impact on adl functions of pd patients with cognitive impairment
indicative of dementia. PLOS ONE, 8(12):e82902, 2013. doi: 10.1371/journal.pone.0082902.

S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney. Detecting cognitive decline using
speech only: The adresso challenge. In Proceedings of the Annual Conference of the International
Speech Communication Association (INTERSPEECH), volume 6, pp. 4211–4215, 2021.

J. J. G. Meilán, F. Martı́nez-Sánchez, J. Carro, D. E. López, L. Millian-Morell, and J. M. Arana.
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