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ABSTRACT

We introduce Visual Caption Restoration (VCR), a novel vision-language task that
challenges models to accurately restore partially obscured texts using pixel-level
hints within images. This task stems from the observation that text embedded in
images intrinsically differs from common visual elements and natural language
due to the need to align the modalities of vision, text, and text embedded in
images. While numerous works have integrated text embedded in images into
visual question-answering tasks, approaches to these tasks generally rely on optical
character recognition or masked language modeling, thus reducing the task to
mainly text-based processing. However, text-based processing becomes ineffective
in VCR as accurate text restoration depends on the combined information from
provided images, context, and subtle cues from the tiny exposed areas of masked
texts. We develop a pipeline to generate synthetic images for the VCR task using
image-caption pairs, with adjustable caption visibility to control the task difficulty.
With this pipeline, we construct a dataset for VCR called VCR-WIKI using images
with captions from Wikipedia, comprising 2.11M English and 346K Chinese
entities in both easy and hard configurations. Our results reveal that current vision
language models significantly lag behind human performance in the VCR task, and
merely fine-tuning the models on our dataset does not lead to notable improvements.
We release VCR-WIKI and the data construction code to facilitate future research.

1 INTRODUCTION

Embedded text (!")

Visual image (#$)

"What is the text including the covered text in 
the image? Please just guess the covered 
text without output the explanations."

String text (%")

Figure 1: An example of the VCR
task.

Recent advances in large language models, such as ChatGPT
(Ouyang et al., 2022; OpenAI et al., 2023) and Llama (Touvron
et al., 2023), have spurred significant interest and progress in
the field of vision-language models. With models like GPT-
4V (OpenAI et al., 2023) and LLaVA (Liu et al., 2023a; 2024a;
2023b) blending textual and visual information, the intersection
of computer vision and natural language processing has become a
vibrant research frontier. These integrated models aim to leverage
the potential of vision and language modalities to understand and
interpret multimedia content more effectively.

Amidst this evolving landscape, we introduce VCR, a novel
vision-language task designed to challenge existing models
uniquely. VCR challenges these models to restore obscured
texts within images, which demands an intricate synthesis of
text, vision, and text embedded in the image. The VCR task is
grounded in two key insights: (1) text embedded within images,
with its characteristics different from common visual elements, represents a distinct modality that
requires careful alignment of vision, textual data, and the structure of written texts, and (2) neuro-
science findings that suggest that humans are proficient in recognizing partially occluded objects
through sophisticated visual and cognitive processes (Thinés et al., 2013; Pessoa et al., 1998; van
Lier & Gerbino, 2015; Fyall et al., 2017; Li et al., 2023a). By leveraging these insights, VCR seeks to
explore how well vision-language models can handle texts embedded within images, aligning visual
elements and natural language to mimic human-like multimodal understanding and recognition.

The Visual Question Answering (VQA) task (Antol et al., 2015; Wang et al., 2018; Mishra et al.,
2019b; Singh et al., 2019) has been a popular benchmark in assessing how well models align and
interpret visual and linguistic information. Traditional VQA approaches, however, predominantly
focus on direct queries about visible elements in images and do not address the nuanced relationship
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between textual content embedded within the image and the overall image context. This gap
underscores the limited capabilities of current models in processing integrated visual-textual data,
particularly when the textual component, which plays a critical role, is partially obscured or altered.

To address these limitations, our VCR task builds on the premise that effective text restoration from
images requires an integrated understanding beyond the capabilities of current VQA benchmarks.
For example, in extreme cases, models rely on existing Optical Character Recognition (OCR) system
to extract text from documents (Singh et al., 2019; Borisyuk et al., 2018). The extracted text is then
used as context for generating answers without a true semantic alignment between the text and the
visual elements of the document. This approach, while effective in simple scenarios, falls short in
more complex settings where text is intricately woven into the visual narrative of the image.

To develop the VCR task, in this work, we introduce a pipeline for generating synthetic images
that allows for manipulation of the visibility of the textual components of the image. This not only
enhances the challenge posed by the task but also provides a scalable way to adjust task difficulty.
The resulting dataset, VCR-WIKI, comprises 2.11M English data and 346K Chinese data sourced
from Wikipedia, featuring captions in both languages across ‘easy’ and ‘hard’ difficulty levels. Our
evaluations indicate that existing vision-language models significantly underperform compared to
human benchmarks, underscoring the need for novel model architectures and training paradigms
specifically geared towards this complex intermodal alignment.

By releasing VCR-WIKI and the accompanying dataset construction code, we aim to stimulate
further research in this area, encouraging the development of models that can more adeptly navigate
the nuanced landscape of the restoration of text embedded in images. This effort aligns with the
broader goal of advancing vision-language models to achieve a deeper, more intuitive understanding
of multimedia content, bridging the gap between human and machine perception. The code in fully
anonymous is available at https://anonymous.4open.science/r/VCR anonymous/.

Contributions The main contributions of this paper are:

C1 Introduce the VCR task to challenge vision-language models to restore occluded texts in
images.

C2 Develop a pipeline for generating synthetic images with embedded text that allows for
adjusting the visibility of such text, thus providing a rich testing environment for VCR.

C3 Create and release VCR-WIKI, a dataset with multilingual captions from Wikipedia images,
designed to benchmark vision-language models (VLMs) on text restoration tasks.

C4 Conduct empirical evaluations that show significant gaps between current models and
human performance on the VCR task. This highlights the effectiveness of VCR for assessing
advancements in VLMs and underscores the necessity for innovative model architectures
and training techniques.

2 VCR TASK DESCRIPTION

In this section, we compare the VCR task with other existing tasks and aim to answer the following
questions:

Q1 What is the difference between VCR and other visual reconstruction tasks?

Q2 Why should we care about VCR?

For better clarity, we define text embedded in image (TEI) as text incorporated within the image.
The term visual image (VI) pertains to the portion of the image that excludes the text embedded in
the image. The string text (ST) is not part of the image itself but is associated with it as a distinct
textual element. It is usually the question prompt in the form of natural language, for example,
‘What are the covered texts in the image? Please only guess the covered texts without outputting an
explanation.’. Consequently, an element of a VCR task can be expressed as (ST, (V I, TEI)), where
ST is represented as a string and both V I and TEI are presented in image form. This notation does
not imply that V I and TEI can be physically separated into two distinct image components. Instead,
this definition is adopted merely to facilitate a clearer explanation of the concepts involved. Please
refer to Figure 3 for an illustration of V I , TEI , and ST .
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A1 Existing tasks that are similar to VCR are the tasks of VQA and OCR. VQA takes as input images
and a natural language question and generates a free-form response. As the ground-truth response
is not unique, evaluating VQA poses a major challenge. In contrast to VQA, OCR is a task where
the ground-truth responses are unique: OCR takes as input complete characters in image form and
outputs a string representing the characters in the image, without considering the image context.
Models pretrained with OCR are able to retrieve texts embedded in the input image, even if they are
incomplete or vague. However, as the vagueness or occlusion of the textual components of the image
increases, retrieving the original text without considering the remaining nontextual image context
becomes harder, and OCR is no longer a good approach. VCR bridges the gap between OCR and
VQA: it reconstructs the unique text found in the image while also considering the visual context of
the rest of the image.

Figure 2 is an example VCR task in hard mode, and Figure 1 shows an example VCR task in the easy
mode. Although humans can still fill the blanks easily in the hard mode, it is nearly impossible for
models with only OCR capabilities to recover the covered texts without using the context. This is
because the pixel-level hints of single characters no longer correspond to a unique solution.

A2 The proposed VCR task is significant in two aspects.

The first aspect of importance stems from discoveries in neuroscience about human cognitive abilities
to recognize partially occluded objects (Fyall et al., 2017; Li et al., 2023a). Although existing models
can recognize objects and texts in images, they often struggle with the complexity of occluded
objects due to significant information loss in the images. In contrast, humans excel at filling in
missing information using a combination of low-level visual processing and high-level cognitive
functions, such as those managed by the prefrontal cortex. This cortical area is known to handle
complex cognitive processes such as decision-making and memory retention, which are essential for
integrating fragmented visual input into coherent objects. We believe that the occlusion restoration
task serves as a probe that can effectively distinguish low-level recognition and high-level cognition
involving reasoning. In addition, understanding these neural mechanisms can inspire new algorithms
capable of mimicking human-like perception and interpretation in dynamic, real-world conditions
where occlusion is common.

Figure 2: How humans would possibly solve a VCR task.

The second aspect underscores the
unique challenge presented by the
VCR task, distinguishing it signif-
icantly from existing benchmarks,
such as traditional VQA or the oc-
cluded object restoration task. By oc-
cluding texts instead of common vi-
sual objects, VCR targets the mod-
els’ text-image alignment capability,
which is one of the major challenges
for vision-language models. VCR
mandates that models align textual
and visual information in a manner
that replicates human-like understand-
ing involving the utilization of both
textual and visual clues. This task requires a deep integration of visual (V I), embedded textual
(TEI), and contextual interpretation across modalities, pushing beyond simple text extraction as
performed in OCR tasks. In OCR, the focus is primarily on recognizing visible characters, often
without the need to understand their contextual relevance within the image narrative. In contrast,
VCR introduces complexity by requiring the model to use available partial texts and the visual context
collaboratively to reconstruct the obscured content accurately. This not only tests the model’s ability
to process TEI-V I modalities effectively but also challenges it to maintain internal consistency,
akin to human cognitive processes where context and visual clues guide understanding and response.
Besides, the difficulty of the task can be adjusted by altering the extent of text occlusion, offering a
scalable and flexible framework for systematically enhancing model capabilities in text-visual align-
ment and semantic comprehension. This rigorous testing ground will help evolve vision-language
models to better grasp the nuanced interplay between text and imagery. We show an example of how
humans would solve the VCR task in the “hard” difficulty in Figure 2.
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Text embedded in image 
(𝑻𝑻𝑻𝑻𝑻𝑻)

Visual image (𝑽𝑽𝑽𝑽)

"What are the covered texts in the 
image? Please restore the 
covered texts without outputting 
the explanations."

String text (𝑺𝑺𝑺𝑺)

国鉄80系電車…

Wikipedia Images + 
Captions

Step 1:
Data Filtering

Language 
Safety 

High-Quality
Image-Caption Pairs

Ginger is… Republic Air…

Republic Air…

…… Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Step 2: Text Processing

Original Text Find eligible 𝒏𝒏-grams

(Republic Airport is a regional)
(Airport is a regional airport)
(is a Regional airport in East)

……

Find 𝒏𝒏-grams to mask
Keep masking below 50%

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Filter instances without 
masked 𝒏𝒏-grams

Remove texts where all 
𝑛𝑛-grams contain:
 Punctuations
 Digits
 Person, organization, 

location, date, time…

Step 3: Create 𝑻𝑻𝑻𝑻𝑻𝑻

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Easy (less obscured)

Republic Airport is a 
regional airport in East 
Farmingdale, New York, 
located one mile east of 
Farmingdale village limits.

Hard (more obscured)
……

Figure 3: Illustration of the dataset creation pipeline for VCR-WIKI. visual image (V I), text
embedded in image (TEI) and string text (ST ) in an example of the English Hard configuration
of VCR-WIKI. The solid line-enclosed contents (V I and TEI) are part of the image, whereas the
dotted line-enclosed content (ST ) is given separately from the image.

3 DATASET CREATION

The VCR task requires aligning visual images (V I) with text embedded in images (TEI). Therefore,
the dataset creation process relies on a set of highly correlated image-text pairs. We utilize the primary
images and their corresponding captions from Wikipedia as the data source1 to create VCR-WIKI, a
Wikipedia-based VCR dataset. The pipeline for creating VCR-WIKI is shown in Figure 3. Before
constructing the dataset, we first filter out instances with sensitive content, including NSFW and
crime-related terms, to mitigate AI risk and biases.

The VCR-WIKI dataset is formatted as a VQA task, where each instance includes an image, a
question, and a ground-truth answer. The images are synthesized from text-image pairs by stacking
the image (V I) with its corresponding text description (TEI) vertically, mimicking the format of a
captioned image. This stacked image is referred to as a stacked V I +TEI image. Each V I +TEI
image is resized to a width of 300 pixels. To avoid excessive image height, we truncate TEI to a
maximum of five lines. We filter the dataset to exclude instances with V I +TEI images exceeding
900 pixels in height to avoid drastic resolution changes during data pre-processing.

We use spaCy to randomly select 5-grams in the caption for masking. To ensure the restoration process
is doable by a human without too much domain knowledge, the 5-grams do not contain numbers,
person names, religious or political groups, facilities, organizations, locations, dates, and times
labeled by spaCy. The total masked token does not exceed 50% of the tokens in the caption. We pick
5-grams for masking as it balances linguistic complexity and task feasibility, capturing meaningful
grammatical structures while avoiding dataset reduction or overly simplified tasks observed with
longer or shorter spans. We exclude instances that do not have any maskable 5-grams. The selected
5-grams are partially obscured by a white rectangle that reveals only the upper and lower parts of the
text, with the proportion of coverage varying according to task difficulty. Furthermore, to assess the
impact of V I on model performance, we create an ablation for each image, maintaining the resolution
of the V I +TEI image, but retaining only the TEI part in the center of the image.

The VCR task involves a predefined question that prompts the model to produce the obscured text in
the image. The ground-truth answer corresponds to the caption displayed in the uncovered portion
of the stacked image. Due to the extensive availability of VLMs and a significant user base in
both English and Chinese, we have chosen to develop the dataset in these two languages. For each
language, we meticulously select the height of the masking rectangle to create two task variants:
(1) an easy version, where the task is easy for native speakers but open-source OCR models almost
always fail, and (2) a hard version, where the revealed part consists of only one to two pixels for the
majority of letters or characters, yet the restoration task remains feasible for native speakers.

Because of the anonymous, policy, our dataset will be available in the camera-ready version. The
VCR codebase provides options to mask complete sentences, specific PoS tags, and letter heights
based on optional whitelists or blacklists of words, offering full flexibility for customizing the task.

1Datasource: https://huggingface.co/datasets/wikimedia/wit_base.
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3.1 DATASET FORMAT AND STATISTICS

Table 1: Basic statistics of the dataset. Note that each language’s Easy and Hard configurations share
the same statistics. We report the mean, standard deviation, and the 5th and 95th percentile (η.5 and
η.95) for the stacked image height and the number of obscured text spans. Unit is in pixels.

# Train # Val # Test V I +TEI Image Height # Obscured Text Spans

Mean SD η.5 η.95 Mean SD η.5 η.95

English 2095733 5000 5000 375.52 106.01 253 564 1.62 0.63 1 3
Chinese 336448 5000 5000 360.44 102.76 239 562 2.06 0.94 1 4

The VCR dataset comprises four configurations: English Easy, English Hard, Chinese Easy and
Chinese Hard. Each configuration can be further divided into training, validation, and test splits. The
validation and test splits contain 5,000 entities each. The training set for English configurations and
Chinese configurations contains 2, 095, 733 and 336, 448 instances, respectively, which can be used
for model continuous pretraining. We include more detailed statistics of the dataset in Table 1.

4 EXPERIMENTS

In this section, we report the experiment results of existing state-of-the-art vision-language models
on our proposed VCR tasks. The fine-tuning and evaluation of open-source models are conducted on
a mix of NVIDIA A100 80G and L40S 48G GPUs in an internal cluster.

4.1 MODELS

Closed-source Models. We evaluate several most advanced proprietary models with their provided
APIs. The evaluated models include GPT-4o (gpt-4o-2024-0513), GPT-4 Turbo (gpt-4-turbo-2024-04-
09), GPT-4V (gpt-4-1106-vision-preview) (Ouyang et al., 2022; OpenAI et al., 2023), Claude 3 Opus
(claude-3-opus-20240229), Claude 3.5 Sonnet (claude-3-5-sonnet-20240620) (Anthropic, 2024),
Gemini 1.5 pro (gemini-1.5-pro-001) (Team et al., 2024a), Reka Core (reka-core-20240501) (Team
et al., 2024b), and Qwen-VL-Max (tested in May 2024) (Bai et al., 2023).

Open-source Models. We evaluate open-source models with the best performance on the Open-
VLM Leaderboard2 and state-of-the-art Chinese VLM models. The evaluated models include
Cambrian-1 (Tong et al., 2024), CogVLM2-19B (Hong et al., 2024), DeepSeek-VL-7B-Chat (Lu
et al., 2024), DocOwl-1.5-Omni (Hu et al., 2024a), Idefics3-8B (Laurençon et al., 2024), InternLM-
XComposer2-VL-7B (Dong et al., 2024a), InternLM-XComposer2.5-VL (Zhang et al., 2024),
InternLM-XComposer2-VL-4K (Dong et al., 2024b), Llama-3.2 (Dubey et al., 2024), MiniCPM-
V2.5 (Hu et al., 2024b), Monkey (Liu et al., 2024b; Li et al., 2023b), Pixtral (Mistral, 2024),
Qwen-VL-Chat (Bai et al., 2023), Qwen2-VL (Wang et al., 2024), and Yi-VL (01.AI et al., 2024).
Out of these models, Cambrian-1, Idefics3 and Llama-3.2 are English-only models, and CogVLM2-
Llama3-19B-Chat has its Chinese variant, CogVLM2-Llama3-19B-Chinese-Chat. Please refer to
Table 6 for the model specifications.

Finetuned Models. To test whether VLMs can learn to conduct VCR via fine-tuning, we select
three models from the open-sourced models: CogVLM2-Llama3-19B-Chat, MiniCPM-Llama3-V2.5,
and Qwen2-VL-7B-Instruct, and fine-tune them on a subset of VCR’s training set.

More specifically, we fine-tune CogVLM2-Llama3-19B-Chat, MiniCPM-Llama3-V2.5, and Qwen2-
VL-7B-Instruct in the English Hard configuration, and CogVLM2-Llama3-19B-Chinese-Chat,
MiniCPM-Llama3-V2.5, and Qwen2-VL-7B-Instruct on the Chinese Hard configuration. The models
are finetuned using LoRA (Hu et al., 2022) with r = 8 and α = 32. We adopt the schedule-free

2We selected the highest-performing open-source models with fewer than 40 billion parameters from
the OpenVLM Leaderboard as of May 23, 2024 and their later versions. Details are available at https:
//huggingface.co/spaces/opencompass/open_vlm_leaderboard.
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AdamW optimizer (Defazio et al., 2024) with a learning rate 2e− 4. The effective batch size is 64.
Each model is trained on the first 16,000 examples of the training set for 1 epoch. All fine-tuning
experiments are performed on a single node with 4 NVIDIA L40S 48G GPUs.

4.2 METRICS

We measure the quality of the model’s restoration of each masked n-gram (where n = 5 in our
setting, as specified in Section 3). Due to the variability of different models’ outputs, for each masked
n-gram m ∈ Vn

e , where Ve is the vocabulary of the evaluation tokenizer3, we extract the most similar
n-gram m̂ ∈ Vn

e with the least edit distance in the model’s generation.

We report the two metrics below in our experiment section to measure the restoration quality:
Exact Match (EM ) ≡ EM(m, m̂) = I(m = m̂), which measures whether the restored n-gram
m̂ totally matches the ground-truth m; and Jaccard Index (J) ≡ |S(m)∩S(m̂)|

|S(m)∪S(m̂)| , which measures the
similarity of m̂ and m as bag-of-words.

4.3 RELATIONSHIP TO OTHER BENCHMARKS.

We evaluated 38 Vision-Language Models (VLMs) across 23 different benchmarks, using the VLM
performance scores as features of each benchmark to compute a correlation matrix. Based on this
matrix, in Figure 4, we applied K-Means clustering and visualized the results in 2D by plotting the first
two principal components derived from the correlation matrix rows for each benchmark. Additionally,

Figure 4: Projection of benchmarks onto the first two
principal components derived from the correlation ma-
trix of VLM performance scores. Each point represents
a benchmark, and proximity indicates higher similarity
based on model performance correlation.

we provide a heatmap of the correlation ma-
trix in Appendix B.

VCRZH, EASY and VCRZH, HARD were ex-
cluded from these processes due to the lim-
ited availability of VLMs that support Chi-
nese. According to Figure 4, VCREN, EASY
shows a tentative similarity to ChartQA and
TextVQA, as all three benchmarks evalu-
ate the ability to extract and reason about
text from natural images and documents.
However, VCREN, EASY does not exhibit sig-
nificant similarity to the other benchmarks.
Meanwhile, VCREN, HARD stands apart from
all other benchmarks. We attribute this to
the fact that VCREN, HARD emphasizes cap-
tion recovery with minimal pixel-level in-
formation, a skill not tested by any of the
other benchmarks. Therefore, we assert that
the VCR series benchmarks assess unique
aspects of VLMs that are not covered by any
of the other benchmarks in our evaluation.

4.4 EXPERIMENTAL RESULTS

Table 2 presents the exact match scores and Jaccard indices for our evaluations. Additionally, Figure 5
illustrates a comparative analysis of our fine-tuned models against their base counterparts across all
four VCR settings. We also provide experiment results on smaller test sets of VCR-WIKI for faster
benchmarking. Please refer to Table 4 and 5 in the Appendix.

The VCR task and the VCR-WIKI dataset are specifically designed to advance the development
of future VLMs. In this section, we conduct a detailed analysis of the performance of current
state-of-the-art (SOTA) models on the VCR task, highlighting key insights through comparative
evaluations.

3We utilize spaCy’s en core web sm’s and zh core web sm’s tokenizer for English and Chinese evalu-
ation, respectively.
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VCR Remains a Challenging Task for SOTA VLMs. Despite high-performing models like
Qwen2-VL excelling in VCREN, EASY and VCREN, HARD settings, most recent models struggle signifi-
cantly, especially under harder settings where metrics approach zero. This highlights not only the
inherent difficulty of the VCR task but also that subpar performance on VCR-WIKI stems from a
lack of reasoning capabilities or sufficient text-image alignment rather than unfamiliarity with the
underlying text, as many VLMs are pretrained on similar data. These results emphasize the need for
advancements in VLM designs to achieve robust performance across all settings.

Enhanced OCR Capabilities Do Not Necessarily Translate to Improved VCR Performance.
Our analysis reveals that models proficient in OCR, such as InternLM-XComposer2-VL, and those
excelling in image document understanding, like DocOwl 1.5 and Monkey, demonstrate subpar
performance across most VCR settings. This discrepancy suggests that while these models can
accurately recognize text within images, they lack the advanced reasoning capabilities required to
effectively interpret and utilize this information within the context of the VCR task. This finding also
highlights a fundamental distinction between OCR tasks and the more complex VCR task.

Language-Specific Performance: Need for Enhanced Multilingual Capabilities. A significant
performance degradation is observed when models are evaluated on Chinese configurations, despite
assertions of basic English-Chinese bilingual capabilities. This decline is particularly surprising
given the logographic nature of Chinese characters, which theoretically offer higher recognizability
compared to alphabetic scripts (Wu et al., 2024; Zhao et al., 2022). These results indicate a critical
need for targeted improvements in multilingual support to ensure consistent performance across
different languages.

Model Size Does Not Guarantee Superior Performance. Comparative analysis between Llama-
3.2-11B and Llama-3.2-90B models reveals that both exhibit similar performance levels on the
VCREN, EASY and VCREN, HARD settings. This observation suggests that merely increasing model
size does not inherently enhance VCR performance. Instead, advancements in the cognitive abilities
of models, achieved through improved training strategies, reasoning frameworks, or architectural
innovations, are essential for meaningful performance gains in VCR tasks.

Model Resolution Is Not Directly Correlated with Performance Enhancement. InternLM-
XComposer2-VL-4K, despite its higher resolution, demonstrates significantly lower performance on
the VCREN, EASY setting compared to its lower-resolution counterparts. This decline may result from
more aggressive image partitioning strategies that disrupt the spatial continuity of text or from more
intensive pixel or token compression techniques that lead to the loss of crucial local details. Both
factors are critical for the accurate interpretation required in VCR tasks.

Inclusion of V I Input Images Negatively Impacts Performance. The addition of V I generally
results in negative performance changes (∆ < 0), indicating that the image information is not being
effectively leveraged by the models. This negative impact may stem from the importance of key
information locations, which could be compromised by image partitioning strategies that fail to
preserve spatial relationships essential for accurate reasoning.

Model Design Influences Performance Gains from VCR-WIKI Finetuning. Finetuning on
the VCR-WIKI dataset yields varying performance improvements across different model designs.
Specifically: 1) CogVLM2 demonstrates substantial performance enhancements across all four
settings after finetuning, indicating that its overall design may be well-aligned with the image-
text reasoning demands of VCR, though further empirical validation is needed to substantiate this
hypothesis. 2) MiniCPM-V2.5 shows only marginal performance increases from an already low
baseline, particularly in the VCRZH, EASY and VCRZH, HARD settings. This limited improvement
indicates potential design limitations that hinder its ability to effectively address the complexities
of the VCR task. 3) Qwen2-VL-7B maintains relatively high performance both before and after
finetuning, implying that the model is sufficiently pre-trained on relevant tasks to perform well on the
VCR task without extensive additional training.

We hope that through controlled variables, the VCR-WIKI dataset delivers fully comparable results
across languages, difficulty levels, image inclusion, and fine-tuning stages. Each comparison is
intended to guide specific and targeted improvements in VLM development.
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Table 2: Performance of vision language models on the VCR task in English (EN) and Chinese
(ZH), for easy and hard modes. We label the best result of each setting with bold fonts, and the
best open-source model with underline. A superscript of * marks that the model was released after
the initial public release of the VCR-WIKI dataset (June 10, 2024). Subscripts show bootstrapped
standard deviation.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.13 77.00.5 -15 77.670.32 88.410.39 -10.74
Claude 3.5 Sonnet - 63.851.71 72.81.56 -8.94 74.651.33 83.481.14 -8.83
Gemini 1.5 Pro - 62.731.66 82.981.3 -20.25 77.711.21 91.560.76 -13.85
GPT-4 Turbo - 78.740.13 81.940.25 -3.2 88.540.24 92.180.3 -3.65
GPT-4o - 91.550.29 94.560.13 -3.01 96.440.11 97.760.06 -1.32
GPT-4V - 52.040.24 37.860.22 14.17 65.360.39 54.130.41 11.23
Qwen-VL-Max - 76.80.5 85.530.19 -8.74 85.710.28 91.450.29 -5.74
Reka Core - 66.461.64 78.511.42 -12.05 84.230.86 90.450.7 -6.22

Open

Cambrian-1* 34B 79.690.43 81.280.43 -1.59 89.270.28 92.540.19 -3.27
CogVLM2 19B 83.250.07 78.290.04 4.96 89.750.1 88.070.08 1.68
DeepSeek-VL 1.3B 23.040.05 31.090.12 -8.04 46.840.07 52.360.06 -5.52
DeepSeek-VL 7B 38.010.12 45.940.1 -7.93 60.020.15 64.720.04 -4.7
DocOwl-1.5-Omni 8B 0.840.01 1.550.02 -0.71 13.340.03 14.620.04 -1.28
Idefics3* 8B 25.990.48 31.430.51 -5.44 47.220.42 54.000.39 -6.78
InternLM-XComposer2-VL 7B 46.640.1 46.40.11 0.24 70.990.1 72.140.07 -1.14
InternLM-XComposer2-VL-4K 7B 5.320.24 3.710.21 1.60 22.140.28 18.780.25 3.37
InternLM-XComposer2.5-VL* 7B 41.350.55 25.370.51 15.97 63.040.42 49.950.41 13.09
InternVL-V2* 40B 84.670.40 87.710.37 -3.04 92.640.22 95.100.16 -2.47
Llama-3.2* 11B 79.850.45 67.530.53 12.32 90.580.22 81.110.33 9.47
Llama-3.2* 90B 80.540.43 71.050.51 9.48 89.810.26 84.220.30 5.59
MiniCPM-V2.5 8B 31.810.08 40.050.09 -8.25 53.240.1 63.20.1 -9.96
Monkey 7B 50.660.1 56.20.08 -5.54 67.60.09 72.820.08 -5.22
Pixtral* 12B 18.410.42 11.600.36 6.81 41.250.37 31.600.33 9.65
Qwen-VL 7B 49.710.17 52.150.15 -2.44 69.940.07 72.280.08 -2.34
Qwen2-VL* 7B 89.700.34 93.440.26 -3.74 93.840.24 97.470.12 -3.62
Yi-VL 34B 0.820.03 1.610.04 -0.79 5.590.04 7.720.03 -2.13
Yi-VL 6B 0.750.01 1.650.01 -0.9 5.540.02 7.760.03 -2.22

Hard

Closed

Claude 3 Opus - 37.80.28 50.00.33 -12.2 57.680.8 70.160.64 -12.48
Claude 3.5 Sonnet - 41.741.69 44.721.78 -2.98 56.151.46 58.541.6 -2.4
Gemini 1.5 Pro - 28.071.58 38.761.68 -10.68 51.91.22 59.621.27 -7.72
GPT-4 Turbo - 45.150.28 48.640.57 -3.5 65.720.25 67.860.2 -2.14
GPT-4o - 73.20.16 82.430.17 -9.22 86.170.21 92.010.2 -5.84
GPT-4V - 25.830.44 14.950.3 10.87 44.630.48 30.080.67 14.56
Qwen-VL-Max - 41.650.32 52.720.2 -11.07 61.180.35 70.190.37 -9.01
Reka Core - 6.710.89 11.181.15 -4.47 25.840.95 35.831.05 -9.99

Open

Cambrian-1* 34B 27.200.48 29.680.50 -2.48 50.040.40 55.660.39 -5.62
CogVLM2 19B 37.980.18 17.680.06 20.3 59.990.05 39.690.03 20.3
DeepSeek-VL 1.3B 0.160.01 0.390.02 -0.23 11.890.02 11.470.03 0.42
DeepSeek-VL 7B 1.00.02 1.750.03 -0.75 15.90.08 17.20.04 -1.3
DocOwl-1.5-Omni 8B 0.040.0 0.020.0 0.01 7.760.01 7.740.02 0.03
Idefics3* 8B 0.600.08 0.370.07 0.23 10.370.15 9.590.13 0.79
InternLM-XComposer2-VL 7B 0.70.01 0.920.01 -0.22 12.510.02 13.230.02 -0.72
InternLM-XComposer2-VL-4K 7B 0.210.05 0.180.05 0.02 9.520.12 9.520.12 -0.00
InternLM-XComposer2.5-VL* 7B 0.930.11 1.110.11 -0.18 13.820.16 14.720.18 -0.89
InternVL-V2* 40B 13.100.37 19.160.44 -6.06 33.640.36 41.350.39 -7.71
Llama-3.2* 11B 14.090.40 6.920.27 7.17 35.260.36 26.350.29 8.90
Llama-3.2* 90B 14.910.40 13.060.37 1.85 35.440.35 34.440.35 1.00
MiniCPM-V2.5 8B 1.410.03 1.960.02 -0.55 11.940.02 13.370.04 -1.43
Monkey 7B 1.960.04 2.430.03 -0.48 14.020.03 14.110.03 -0.09
Pixtral* 12B 0.440.08 0.640.09 -0.20 10.990.13 11.450.15 -0.46
Qwen-VL 7B 2.00.03 2.320.03 -0.32 15.040.05 14.270.05 0.77
Qwen2-VL* 7B 74.320.47 75.200.49 -0.88 85.470.30 87.630.27 -2.15
Yi-VL 34B 0.070.0 0.050.0 0.02 4.310.02 5.890.02 -1.58
Yi-VL 6B 0.060.0 0.040.0 0.02 4.460.02 5.910.01 -1.46

Chinese

Easy

Closed

Claude 3 Opus - 0.90.3 1.00.31 -0.1 11.50.48 10.00.49 1.49
Claude 3.5 Sonnet - 1.00.31 0.80.28 0.2 7.540.54 7.50.51 0.03
Gemini 1.5 Pro - 1.10.32 0.50.22 0.6 11.10.56 11.470.48 -0.37
GPT-4o - 14.871.14 22.461.35 -7.58 39.050.99 48.241.09 -9.19
GPT-4 Turbo - 0.20.14 0.10.1 0.1 8.420.36 6.970.29 1.45
Qwen-VL-Max - 6.340.08 9.920.09 -3.58 13.450.41 22.860.46 -9.42
Reka Core - 0.00.0 0.00.0 0 3.430.26 3.150.2 0.28

Open

CogVLM2-Chinese 19B 33.240.04 30.70.07 2.54 57.570.06 53.660.04 3.91
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.560.01 3.170.02 3.4
DeepSeek-VL 7B 0.00.0 0.00.0 0 4.080.01 6.840.01 -2.76
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.140.01 3.380.01 -2.23
InternLM-XComposer2-VL 7B 0.270.01 0.230.01 0.04 12.320.02 12.280.03 0.04
InternLM-XComposer2-VL-4K 7B 0.460.07 0.460.07 0.00 12.310.14 13.370.14 -1.05
InternLM-XComposer2.5-VL* 7B 0.460.07 0.580.08 -0.12 12.970.16 14.990.17 -2.01
InternVL-V2* 40B 22.090.41 17.260.39 4.84 47.620.34 37.930.35 9.69
MiniCPM-V2.5 8B 4.10.02 5.050.08 -0.95 18.030.07 22.940.04 -4.9
Monkey 7B 0.620.01 1.440.01 -0.82 8.340.06 10.950.03 -2.61
Qwen-VL 7B 0.040.01 0.00.0 0.04 1.50.01 0.340.01 1.15
Qwen2-VL* 7B 59.940.49 67.480.47 -7.54 76.950.32 82.630.28 -5.67
Yi-VL 34B 0.00.0 0.00.0 0 4.440.01 1.80.01 2.64
Yi-VL 6B 0.00.0 0.00.0 0 4.370.01 1.760.0 2.6

Hard

Closed

Claude 3 Opus - 0.30.18 0.10.1 0.2 9.220.38 8.090.33 1.13
Claude 3.5 Sonnet - 0.20.15 0.00.0 0.2 4.00.33 2.370.23 1.63
Gemini 1.5 Pro - 0.70.26 0.50.23 0.2 11.820.51 11.750.44 0.07
GPT-4o - 2.20.47 1.80.4 0.4 22.720.67 22.890.65 -0.17
GPT-4 Turbo - 0.00.0 0.20.13 -0.2 8.580.3 6.870.28 1.72
Qwen-VL-Max - 0.890.06 1.380.1 -0.49 5.40.19 12.290.18 -6.89
Reka Core - 0.00.0 0.00.0 0 3.350.23 2.970.2 0.38

Open

CogVLM2-Chinese 19B 1.340.03 2.670.02 -1.32 17.350.03 19.510.03 -2.16
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.460.01 3.220.02 3.24
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.110.01 7.210.01 -2.1
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.370.01 4.070.02 -2.7
InternLM-XComposer2-VL 7B 0.070.01 0.090.0 -0.02 8.970.02 8.510.01 0.46
InternLM-XComposer2-VL-4K 7B 0.050.02 0.050.02 0.00 7.670.10 7.720.10 -0.04
InternLM-XComposer2.5-VL* 7B 0.110.04 0.120.04 -0.01 10.950.11 11.430.12 -0.48
InternVL-V2* 40B 0.480.07 0.740.08 -0.26 12.570.14 13.310.15 -0.74
MiniCPM-V2.5 8B 0.090.0 0.080.0 0.01 7.390.02 7.890.01 -0.5
Monkey 7B 0.120.01 0.070.0 0.05 6.360.01 6.680.03 -0.32
Qwen-VL 7B 0.010.0 0.010.0 0 1.170.01 0.120.0 1.06
Qwen2-VL* 7B 18.330.37 27.580.44 -9.26 43.550.34 54.240.34 -10.69
Yi-VL 34B 0.00.0 0.00.0 0 4.120.0 1.810.01 2.31
Yi-VL 6B 0.00.0 0.00.0 0 4.00.01 1.880.01 2.12
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Figure 5: Exact Match performance on VCR before and after LoRA fine-tuning for selected models.
The results demonstrate varying degrees of improvement across different tasks and models, highlight-
ing the heterogeneous responses to fine-tuning.

4.5 HUMAN EVALUATION

We recruited 7 volunteers to perform human evaluation on a subset of the samples from our datasets.
Two out of the seven evaluators are native English speakers, while five are native Chinese speakers
who are also fluent in English4. All volunteers have earned postgraduate degrees, majoring in one
of the following fields: biology, statistics, computer science, and economics. The evaluations were
conducted on a voluntary basis, and participants received no rewards.

We gave the volunteers the following instructions: (1) We asked the volunteers to focus on the puzzles.
Each example in the hard collection may require 30 seconds to 2 minutes of focused attention, and
(2) we asked the volunteers to utilize the context rather than directly brute-force the puzzle.

Every sample is solved by at least 3 volunteers. In English, we release the exact match score in
2 splits: all errors counted (All), and only counting errors not related to dates and person names
(Filtered).

The human evaluation results are shown in Table 3. Although current SOTA models suffer from the
challenge, fluent speakers can easily achieve more than 90 percent accuracy across difficulties. Please
refer to Table 4 to compare all models with human evaluation results using the same test cases.

Table 3: Human evaluation results on the VCR task in terms of exact matches. N is the number of
puzzles in each language.

VCREN, EASY (N = 169) VCREN, HARD (N = 169) VCRZH, EASY (N = 188) VCRZH, HARD (N = 188)
Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

All 96.65 0.34 91.12 1.18 98.58 0.31 91.84 0.81
Filtered 98.62 0.34 97.63 2.13 99.47 0.00 96.63 1.11

5 RELATED WORK

Visual Question Answering (VQA). Several datasets have been proposed for visual question
answering VQA Antol et al. (2015); Zhang et al. (2016); Goyal et al. (2017); Mishra et al. (2019b).
FVQA Wang et al. (2018) and OK-VQAMarino et al. (2019) are datasets about knowledge-based
visual question answering and contains questions that necessitate the usage of external knowledge
resources. CLEVR Johnson et al. (2017) is a synthetic VQA dataset that mainly focuses on visual
reasoning abilities. Recognizing the need to develop VQA models that can understand text, Text-VQA
Singh et al. (2019); Biten et al. (2019); Mishra et al. (2019a); Wang et al. (2020) aims to read and
reason about texts embedded within images in the context of image-question answering. Several
datasets Singh et al. (2019); Biten et al. (2019); Mishra et al. (2019a) have been developed for the
Text-VQA task, such as the TextVQA dataset Singh et al. (2019) and the ST-VQA dataset Biten et al.

4The TOEFL scores of the non-native English-speaking participants range from 102/120 to 112/120.
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(2019) on natural images, the OCR-VQA dataset Mishra et al. (2019b) on book or movie covers, the
InfographicVQA Mathew et al. (2022) dataset on infographics, and the DocVQA dataset Mathew
et al. (2021) on document images.

Vision Language Model. Vision-language models are designed for tasks that involve understanding
and generating content from images and text Sun et al. (2023); Liu et al. (2023b); Laurençon et al.
(2023; 2024). For example, models have been developed to combine Llama3 with advanced vision-
language processing capabilities to handle complex multimodal tasks Yu et al. (2024); Xu et al.
(2024); Hu et al. (2023); Yu et al. (2023); Wang et al. (2023b); Dong et al. (2024a). Qwen-VL Bai
et al. (2023) enhances visual-linguistic representations for more accurate contextual interpretations,
while OpenGVLab-InternVL-Chat Chen et al. (2023; 2024b) merges the InternVL framework with
interactive chat capabilities. These studies typically employ a multimodal encoder (Radford et al.,
2021; Zhai et al., 2023; Wu et al., 2022) to process multimodal data, which is then mapped to the
same input space of the language model. General-purpose models such as the GPT-4 series models
(Ouyang et al., 2022; OpenAI et al., 2023), the Claude series models (Anthropic, 2024), the Gemini
series models (Team et al., 2024a) and the Reka series models (Team et al., 2024b) have also been
adapted for vision-language tasks, demonstrating strong performance in multimodal tasks. Finally,
DocLLM Wang et al. (2023a) specializes in document understanding by integrating visual and
textual data to enhance the interpretation and generation of document-related content. These models
collectively represent significant advancements in vision-language integration, contributing unique
capabilities and enhancements to the understanding and generation of multimodal information.

Optical Character Recognition (OCR). OCR Nagy (2000) and its subproblems Howe (2013);
Smith (1995); Shafait et al. (2008); Frinken et al. (2011) have been well-studied in the literature in the
constrained setting. However, classical OCR methods often cannot perform well on images captured
in the wild in an unconstrained setting. Many new methods have been developed for advancing
scene-text recognition on camera-captured images Bissacco et al. (2013); Gupta et al. (2016); Huang
et al. (2014); Jaderberg et al. (2014); Wang et al. (2012); Shi et al. (2017); Zhou et al. (2017); Lee &
Osindero (2016). In addition to the detection and recognition of OCR tasks, visual question answering
has emerged as an important downstream task in the OCR literature. With the development of Text-
VQA, new methods for improving the reading abilities in VQA utilizing OCR have been proposed.
For example, LoRRA Singh et al. (2019) extends a VQA model Pythia Jiang et al. (2018) with an
OCR module to better handle Text-VQA tasks. TAP Yang et al. (2021) incorporates scene texts that
are generated from OCR engines during pretraining to further improve Text-VQA capabilities.

6 CONCLUSION

In this work, we introduced the VCR task, a novel vision-language challenge aimed at promoting the
integration of visual and textual modalities, including text embedded in both natural language tokens
and image formats and highly obscured text embedded in the image. We developed a specialized
pipeline to create a dataset tailored to this task, utilizing correlated image-text pairs. This task stands
out from existing methods by requiring a more profound integration of visual cues and partially
obscured text, highlighting its uniqueness and importance in the field.

We conducted extensive evaluations of state-of-the-art vision-language models (VLMs) in both
English and Chinese. The results demonstrated significant room for improvement, suggesting that
current models have not yet fully exploited the capabilities necessary for VCR. We selected models
representing both the highest and average performance tiers for additional fine-tuning with our dataset.
Although fine-tuning exhibited potential for enhancing VCR capabilities, it did not consistently result
in significant improvements, indicating the complexity and challenges of adapting models to this task.

By introducing the VCR task and its specialized dataset, we aim to advance research in vision-
language interaction. The unique challenges of VCR seek to improve model development and
training, extending the limits of multimodal AI. VCR provides a controllable testbed for fine-grained
analysis of model behavior across languages, difficulty levels, image inclusion, and fine-tuning
stages. We invite the community to utilize our dataset and develop innovative strategies to boost the
performance of vision-language models.
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A ADDITIONAL EVALUATION RESULTS ON FIRST 100 AND 500 TEST CASES
Table 4: Results of various open-source and closed-source vision language models on the VCR
task using the first 100 test cases. FT = finetuned on 16,000 samples from the VCR-WIKI training
set. The best results among the finetuned models are underlined while the best results among the
models without finetuning are highlighted in bold. Subscripts are standard deviations obtained from
Bootstrap.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.76 82.00.63 -20 78.060.24 91.120.13 -13.06
Claude 3.5 Sonnet - 70.413.46 75.153.36 -4.73 78.12.85 86.52.18 -8.4
Gemini 1.5 Pro - 71.013.4 86.982.67 -15.98 82.892.27 94.211.32 -11.32
GPT-4 Turbo - 78.470.22 86.60.79 -8.13 88.080.25 94.150.2 -6.07
GPT-4o - 90.910.36 95.690.23 -4.78 96.770.16 98.450.06 -1.68
GPT-4V - 25.360.5 18.180.54 7.18 35.640.22 28.490.23 7.15
Qwen-VL-Max - 82.30.19 88.040.43 -5.74 89.730.32 92.550.17 -2.82
Reka Core - 65.683.78 78.113.19 -12.43 83.142.04 90.431.49 -7.29

Open

Cambrian-1 34B 78.113.16 82.842.86 -4.73 87.881.97 93.121.26 -5.24
CogVLM2 19B 86.390.66 84.620.92 1.78 91.390.11 91.630.11 -0.24
CogVLM2-FT 19B 94.080.2 94.670.26 -0.59 98.030.07 98.220.03 -0.2
DeepSeek-VL 1.3B 19.530.69 26.041.47 -6.51 43.730.18 48.030.16 -4.3
DeepSeek-VL 7B 36.091.36 44.970.79 -8.88 57.810.18 61.830.33 -4.01
DocOwl-1.5-Omni 8B 0.590.14 1.180.14 -0.59 12.690.04 13.30.06 -0.61
Idefics3 8B 26.633.35 32.543.63 -5.92 48.832.95 55.112.78 -6.29
InternLM-XComposer2-VL 7B 47.930.69 47.340.57 0.59 73.880.22 74.580.16 -0.7
InternLM-XComposer2-VL-4K 7B 4.141.54 3.551.49 0.59 21.911.81 21.851.86 0.06
InternLM-XComposer2.5-VL 7B 45.563.83 28.993.50 16.57 67.702.79 54.252.70 13.45
InternVL-V2 40B 86.392.56 86.982.60 -0.59 93.511.40 94.351.24 -0.84
Llama-3.2 11B 79.882.96 68.643.75 11.24 90.881.56 82.912.11 7.97
Llama-3.2 90B 79.293.14 71.013.36 8.28 87.812.00 83.172.30 4.64
MiniCPM-V2.5 8B 30.180.66 36.090.34 -5.92 53.10.18 59.060.14 -5.96
MiniCPM-V2.5-FT 8B 39.050.69 46.750.59 -7.69 63.050.28 69.890.33 -6.84
Monkey 7B 46.750.44 48.520.41 -1.78 67.820.22 68.590.13 -0.76
Pixtral 12B 14.792.65 13.022.62 1.78 39.002.49 33.162.53 5.84
Qwen-VL 7B 47.340.44 46.750.57 0.59 69.020.35 69.190.37 -0.17
Qwen2-VL 7B 90.532.25 96.451.39 -5.92 94.281.54 98.820.49 -4.54
Yi-VL 34B 1.780.16 1.180.11 0.59 6.210.06 7.50.08 -1.3
Yi-VL 6B 2.370.13 1.780.22 0.59 6.240.07 8.050.11 -1.81

Hard

Closed

Claude 3 Opus - 34.01.12 51.00.5 -17 57.020.24 70.320.15 -13.31
Claude 3.5 Sonnet - 46.753.58 43.23.83 3.55 57.743.33 54.133.51 3.61
Gemini 1.5 Pro - 33.733.69 43.793.74 -10.06 57.092.67 62.342.76 -5.25
GPT-4 Turbo - 53.110.46 57.420.5 -4.31 71.750.19 73.820.24 -2.07
GPT-4o - 74.160.31 84.690.31 -10.53 86.990.09 93.190.07 -6.21
GPT-4V - 28.710.49 16.270.73 12.44 49.890.15 33.640.16 16.25
Qwen-VL-Max - 40.670.38 55.020.46 -14.35 61.80.19 72.460.15 -10.66
Reka Core - 7.12.01 10.652.38 -3.55 25.491.99 36.782.19 -11.29

Open

Cambrian-1 34B 27.813.29 29.593.54 -1.78 51.392.79 54.002.76 -2.61
CogVLM2 19B 44.970.83 21.30.47 23.67 65.390.2 43.860.27 21.53
CogVLM2-FT 19B 75.740.72 67.460.64 8.28 90.60.13 84.260.08 6.34
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 11.170.03 10.880.06 0.29
DeepSeek-VL 7B 0.590.09 1.780.17 -1.18 16.710.11 18.090.13 -1.38
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 7.890.05 8.280.05 -0.4
Idefics3 8B 1.180.87 0.590.61 0.59 11.621.20 10.281.00 1.34
InternLM-XComposer2-VL 7B 0.00.0 0.590.09 -0.59 12.690.08 14.050.11 -1.35
InternLM-XComposer2-VL-4K 7B 0.000.00 0.590.59 -0.59 9.670.90 8.830.95 0.84
InternLM-XComposer2.5-VL 7B 0.590.58 1.781.01 -1.18 14.091.04 16.571.25 -2.48
InternVL-V2 40B 12.432.54 16.572.89 -4.14 33.742.40 39.512.69 -5.76
Llama-3.2 11B 10.652.33 7.692.04 2.96 33.502.28 26.802.03 6.70
Llama-3.2 90B 13.022.59 15.382.75 -2.37 36.802.36 39.852.52 -3.06
MiniCPM-V2.5 8B 1.180.12 1.780.12 -0.59 12.020.12 12.410.07 -0.39
MiniCPM-V2.5-FT 8B 10.060.43 13.020.54 -2.96 34.670.2 36.430.19 -1.76
Monkey 7B 1.180.22 3.550.18 -2.37 12.660.21 15.970.08 -3.31
Pixtral 12B 0.000.00 0.590.61 -0.59 9.900.79 12.561.09 -2.66
Qwen-VL 7B 1.780.21 2.960.12 -1.18 15.70.14 15.060.19 0.63
Qwen2-VL 7B 75.743.32 73.963.55 1.78 85.912.17 85.832.04 0.08
Yi-VL 34B 0.590.09 0.00.0 0.59 4.390.07 5.490.08 -1.1
Yi-VL 6B 0.590.13 0.00.0 0.59 5.120.03 5.50.06 -0.38

Chinese

Easy

Closed

Claude 3 Opus - 0.530.51 0.530.55 0 11.341.07 9.140.93 2.2
Claude 3.5 Sonnet - 1.60.91 2.131.05 -0.53 8.071.29 9.91.48 -1.84
Gemini 1.5 Pro - 0.530.56 0.00.0 0.53 12.941.26 12.771.17 0.16
GPT-4o - 14.892.51 21.812.98 -6.91 38.572.46 48.292.43 -9.72
GPT-4 Turbo - 0.530.55 0.00.0 0.53 11.091.05 7.510.65 3.58
Qwen-VL-Max - 5.930.19 8.70.37 -2.77 13.530.11 18.50.1 -4.97
Reka Core - 0.00.0 0.00.0 0 3.040.53 2.420.45 0.61

Open

CogVLM2-Chinese 19B 34.570.66 34.041.01 0.53 58.780.13 57.260.12 1.52
CogVLM2-Chinese-FT 19B 66.490.74 67.550.73 -1.06 79.480.17 81.780.09 -2.3
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.690.07 2.920.02 3.78
DeepSeek-VL 7B 0.00.0 0.00.0 0 3.990.07 6.710.02 -2.72
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.230.04 2.970.02 -1.75
InternLM-XComposer2-VL 7B 1.060.09 0.530.07 0.53 13.10.03 13.260.03 -0.16
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 13.491.01 14.560.98 -1.08
InternLM-XComposer2.5-VL 7B 0.000.00 1.600.91 -1.60 11.940.88 16.121.24 -4.18
InternVL-V2 40B 26.063.17 19.152.88 6.91 48.982.61 41.252.57 7.72
MiniCPM-V2.5 8B 4.790.16 7.450.35 -2.66 20.580.11 25.380.13 -4.81
MiniCPM-V2.5-FT 8B 6.910.33 7.980.4 -1.06 30.80.07 31.460.52 -0.66
Monkey 7B 1.060.12 0.530.06 0.53 9.230.08 12.290.13 -3.06
Qwen-VL 7B 0.00.0 0.00.0 0 1.410.02 0.660.03 0.76
Qwen2-VL 7B 67.553.34 73.403.21 -5.85 84.631.80 87.121.76 -2.49
Yi-VL 34B 0.00.0 0.00.0 0 4.530.03 1.840.05 2.69
Yi-VL 6B 0.00.0 0.00.0 0 4.730.02 1.550.02 3.18

Hard

Closed

Claude 3 Opus - 1.060.77 0.530.54 0.53 9.231.04 7.770.83 1.45
Claude 3.5 Sonnet - 0.530.51 0.00.0 0.53 4.110.84 3.320.71 0.79
Gemini 1.5 Pro - 1.060.71 1.060.77 0 11.581.14 13.341.2 -1.76
GPT-4o - 2.661.16 1.60.92 1.06 23.691.65 23.691.48 0
GPT-4 Turbo - 0.00.0 0.530.53 -0.53 8.510.7 8.020.78 0.49
Qwen-VL-Max - 1.190.12 1.980.09 -0.79 6.190.1 11.090.11 -4.9
Reka Core - 0.00.0 0.00.0 0 3.220.51 3.620.57 -0.4

Open

CogVLM2-Chinese 19B 3.190.19 3.190.32 0 18.330.14 21.380.09 -3.05
CogVLM2-Chinese-FT 19B 46.810.32 46.280.49 0.53 66.850.39 69.790.12 -2.95
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.50.03 4.160.03 2.34
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.220.04 7.450.06 -2.23
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.350.02 3.570.04 -2.23
InternLM-XComposer2-VL 7B 0.00.0 0.00.0 0 8.170.03 7.990.03 0.18
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 7.730.68 8.120.79 -0.39
InternLM-XComposer2.5-VL 7B 0.000.00 0.000.00 0.00 10.870.82 10.540.84 0.32
InternVL-V2 40B 0.530.50 1.060.72 -0.53 12.261.01 13.581.20 -1.32
MiniCPM-V2.5 8B 0.530.07 0.530.07 0 7.280.06 7.710.06 -0.43
MiniCPM-V2.5-FT 8B 1.060.08 2.130.19 -1.06 18.460.1 16.420.22 2.03
Monkey 7B 0.00.0 0.00.0 0 6.150.11 6.620.11 -0.47
Qwen-VL 7B 0.00.0 0.00.0 0 1.10.04 0.060.01 1.04
Qwen2-VL 7B 17.552.81 27.663.21 -10.11 43.872.48 51.992.61 -8.12
Yi-VL 34B 0.00.0 0.00.0 0 4.170.04 2.020.04 2.15
Yi-VL 6B 0.00.0 0.00.0 0 4.150.06 2.380.04 1.77
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Table 5: Results of various open-source and closed-source vision language models on the VCR
task using the first 500 test cases. FT = finetuned on 16,000 samples from the VCR-WIKI training
set. The best results among the finetuned models are underlined while the best results among the
models without finetuning are highlighted in bold. Subscripts are standard deviations obtained from
Bootstrap.

Language Mode Open/closed
source Model name Model size Exact match (%) ↑ Jaccard index (%) ↑

V I + TEI TEI ∆ V I + TEI TEI ∆

English

Easy

Closed

Claude 3 Opus - 62.00.13 77.00.5 -15 77.670.32 88.410.39 -10.74
Claude 3.5 Sonnet - 63.851.71 72.81.56 -8.94 74.651.33 83.481.14 -8.83
Gemini 1.5 Pro - 62.731.66 82.981.3 -20.25 77.711.21 91.560.76 -13.85
GPT-4 Turbo - 78.740.13 81.940.25 -3.2 88.540.24 92.180.3 -3.65
GPT-4o - 91.550.29 94.560.13 -3.01 96.440.11 97.760.06 -1.32
GPT-4V - 52.040.24 37.860.22 14.17 65.360.39 54.130.41 11.23
Qwen-VL-Max - 76.80.5 85.530.19 -8.74 85.710.28 91.450.29 -5.74
Reka Core - 66.461.64 78.511.42 -12.05 84.230.86 90.450.7 -6.22

Open

Cambrian-1 34B 76.891.52 80.251.36 -3.35 87.660.90 92.420.60 -4.76
CogVLM2 19B 83.110.28 79.630.33 3.48 89.430.27 88.650.26 0.79
CogVLM2-FT 19B 92.80.06 92.670.13 0.12 97.510.24 97.450.07 0.06
DeepSeek-VL 1.3B 21.860.17 30.680.3 -8.82 45.40.33 52.020.73 -6.62
DeepSeek-VL 7B 37.760.42 45.470.21 -7.7 59.070.43 64.260.57 -5.2
DocOwl-1.5-Omni 8B 0.620.06 1.860.06 -1.24 12.650.3 14.090.12 -1.44
Idefics3 8B 26.711.57 29.811.55 -3.11 46.911.40 51.841.30 -4.93
InternLM-XComposer2-VL 7B 46.090.35 46.340.25 -0.25 71.110.2 71.760.67 -0.65
InternLM-XComposer2-VL-4K 7B 5.220.80 3.230.63 1.99 22.700.89 18.670.79 4.03
InternLM-XComposer2.5-VL 7B 42.481.73 25.841.53 16.65 63.031.32 50.751.21 12.28
InternVL-V2 40B 84.841.21 87.081.19 -2.24 93.130.69 94.830.50 -1.71
Llama-3.2 11B 79.251.40 66.461.63 12.80 89.980.77 80.911.06 9.08
Llama-3.2 90B 80.871.37 71.551.54 9.32 89.630.85 84.340.98 5.29
MiniCPM-V2.5 8B 32.80.16 36.770.25 -3.98 52.560.25 60.890.19 -8.32
MiniCPM-V2.5-FT 8B 42.360.3 45.340.35 -2.98 65.390.6 67.850.43 -2.46
Monkey 7B 47.20.2 54.160.41 -6.96 65.70.4 71.170.72 -5.47
Pixtral 12B 16.651.31 11.801.13 4.84 39.811.16 31.471.11 8.34
Qwen-VL 7B 45.470.35 52.170.33 -6.71 66.810.74 71.730.59 -4.93
Qwen2-VL 7B 90.061.07 94.530.82 -4.47 93.770.76 97.800.34 -4.03
Yi-VL 34B 0.870.06 1.240.04 -0.37 5.610.28 7.630.42 -2.02
Yi-VL 6B 1.120.03 1.370.14 -0.25 5.930.16 7.330.23 -1.39

Hard

Closed

Claude 3 Opus - 37.80.28 50.00.33 -12.2 57.680.8 70.160.64 -12.48
Claude 3.5 Sonnet - 41.741.69 44.721.78 -2.98 56.151.46 58.541.6 -2.4
Gemini 1.5 Pro - 28.071.58 38.761.68 -10.68 51.91.22 59.621.27 -7.72
GPT-4 Turbo - 45.150.28 48.640.57 -3.5 65.720.25 67.860.2 -2.14
GPT-4o - 73.20.16 82.430.17 -9.22 86.170.21 92.010.2 -5.84
GPT-4V - 25.830.44 14.950.3 10.87 44.630.48 30.080.67 14.56
Qwen-VL-Max - 41.650.32 52.720.2 -11.07 61.180.35 70.190.37 -9.01
Reka Core - 6.710.89 11.181.15 -4.47 25.840.95 35.831.05 -9.99

Open

Cambrian-1 34B 27.201.59 30.191.55 -2.98 49.961.36 55.931.23 -5.97
CogVLM2 19B 41.740.25 16.770.22 24.97 62.560.33 38.410.44 24.15
CogVLM2-FT 19B 75.90.13 65.220.18 10.68 89.750.14 82.710.27 7.04
DeepSeek-VL 1.3B 0.370.02 0.120.01 0.25 11.420.09 11.410.22 0.01
DeepSeek-VL 7B 0.750.02 1.610.1 -0.87 15.80.29 17.180.41 -1.38
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 7.340.06 7.610.16 -0.27
Idefics3 8B 0.750.30 0.500.25 0.25 10.440.49 9.170.43 1.27
InternLM-XComposer2-VL 7B 0.50.04 0.370.05 0.12 12.380.13 13.220.11 -0.83
InternLM-XComposer2-VL-4K 7B 0.000.00 0.120.12 -0.12 9.550.38 9.180.38 0.37
InternLM-XComposer2.5-VL 7B 0.750.31 1.240.39 -0.50 13.670.51 14.920.56 -1.25
InternVL-V2 40B 14.161.22 18.511.36 -4.35 35.011.18 41.021.22 -6.02
Llama-3.2 11B 13.911.25 7.330.94 6.58 35.781.14 26.140.94 9.64
Llama-3.2 90B 15.161.28 12.171.13 2.98 37.571.13 35.141.04 2.43
MiniCPM-V2.5 8B 1.740.08 1.610.08 0.12 11.550.24 11.690.38 -0.15
MiniCPM-V2.5-FT 8B 11.430.11 14.290.16 -2.86 35.130.19 36.650.68 -1.52
Monkey 7B 1.370.05 2.240.15 -0.87 13.160.18 14.450.24 -1.29
Pixtral 12B 0.250.19 0.620.28 -0.37 10.040.41 11.210.45 -1.17
Qwen-VL 7B 1.610.03 1.740.03 -0.12 15.280.13 14.430.54 0.85
Qwen2-VL 7B 76.271.49 75.651.45 0.62 86.561.00 86.770.93 -0.22
Yi-VL 34B 0.120.01 0.00.0 0.12 4.310.08 5.450.13 -1.14
Yi-VL 6B 0.120.02 0.00.0 0.12 4.490.05 5.70.12 -1.21

Chinese

Easy

Closed

Claude 3 Opus - 0.90.3 1.00.31 -0.1 11.50.48 10.00.49 1.49
Claude 3.5 Sonnet - 1.00.31 0.80.28 0.2 7.540.54 7.50.51 0.03
Gemini 1.5 Pro - 1.10.32 0.50.22 0.6 11.10.56 11.470.48 -0.37
GPT-4o - 14.871.14 22.461.35 -7.58 39.050.99 48.241.09 -9.19
GPT-4 Turbo - 0.20.14 0.10.1 0.1 8.420.36 6.970.29 1.45
Qwen-VL-Max - 6.340.08 9.920.09 -3.58 13.450.41 22.860.46 -9.42
Reka Core - 0.00.0 0.00.0 0 3.430.26 3.150.2 0.28

Open

CogVLM2-Chinese 19B 33.630.15 31.440.19 2.2 57.970.56 54.050.54 3.92
CogVLM2-Chinese-FT 19B 63.970.55 62.670.17 1.3 79.710.41 79.220.47 0.49
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.10.1 3.250.05 2.85
DeepSeek-VL 7B 0.00.0 0.00.0 0 4.280.07 7.30.05 -3.02
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.190.05 3.830.06 -2.63
InternLM-XComposer2-VL 7B 0.60.05 0.20.04 0.4 12.340.25 12.520.14 -0.18
InternLM-XComposer2-VL-4K 7B 0.200.14 0.100.10 0.10 11.930.42 13.680.41 -1.74
InternLM-XComposer2.5-VL 7B 0.300.17 0.400.20 -0.10 12.760.42 14.990.43 -2.23
InternVL-V2 40B 22.751.36 16.671.14 6.09 49.511.06 39.461.10 10.05
MiniCPM-V2.5 8B 4.590.11 4.890.09 -0.3 18.120.33 22.280.18 -4.17
MiniCPM-V2.5-FT 8B 7.290.14 7.090.12 0.2 29.360.39 30.670.38 -1.31
Monkey 7B 0.20.01 1.40.05 -1.2 7.890.3 10.260.24 -2.37
Qwen-VL 7B 0.00.0 0.00.0 0 1.250.03 0.430.06 0.82
Qwen2-VL 7B 61.081.52 68.161.46 -7.09 78.380.96 83.480.84 -5.10
Yi-VL 34B 0.00.0 0.00.0 0 4.690.09 1.710.06 2.98
Yi-VL 6B 0.00.0 0.00.0 0 4.280.06 1.660.04 2.62

Hard

Closed

Claude 3 Opus - 0.30.18 0.10.1 0.2 9.220.38 8.090.33 1.13
Claude 3.5 Sonnet - 0.20.15 0.00.0 0.2 4.00.33 2.370.23 1.63
Gemini 1.5 Pro - 0.70.26 0.50.23 0.2 11.820.51 11.750.44 0.07
GPT-4o - 2.20.47 1.80.4 0.4 22.720.67 22.890.65 -0.17
GPT-4 Turbo - 0.00.0 0.20.13 -0.2 8.580.3 6.870.28 1.72
Qwen-VL-Max - 0.890.06 1.380.1 -0.49 5.40.19 12.290.18 -6.89
Reka Core - 0.00.0 0.00.0 0 3.350.23 2.970.2 0.38

Open

CogVLM2-Chinese 19B 1.20.07 2.30.09 -1.1 16.830.22 19.860.23 -3.04
CogVLM2-Chinese-FT 19B 42.510.32 45.910.23 -3.39 65.790.24 69.460.46 -3.68
DeepSeek-VL 1.3B 0.00.0 0.00.0 0 6.870.09 3.530.07 3.33
DeepSeek-VL 7B 0.00.0 0.00.0 0 5.490.07 7.570.05 -2.08
DocOwl-1.5-Omni 8B 0.00.0 0.00.0 0 1.680.04 4.420.07 -2.73
InternLM-XComposer2-VL 7B 0.00.0 0.00.0 0 8.360.09 7.920.09 0.44
InternLM-XComposer2-VL-4K 7B 0.000.00 0.000.00 0.00 7.490.31 7.250.30 0.25
InternLM-XComposer2.5-VL 7B 0.000.00 0.000.00 0.00 10.830.31 10.810.31 0.02
InternVL-V2 40B 0.400.20 0.900.29 -0.50 12.300.42 13.800.48 -1.50
MiniCPM-V2.5 8B 0.20.03 0.20.01 0 7.230.18 7.60.13 -0.37
MiniCPM-V2.5-FT 8B 1.20.03 1.40.06 -0.2 18.010.35 15.250.25 2.76
Monkey 7B 0.00.0 0.00.0 0 5.690.15 6.30.13 -0.61
Qwen-VL 7B 0.00.0 0.00.0 0 1.10.07 0.150.01 0.94
Qwen2-VL 7B 18.761.22 26.751.40 -7.98 43.841.10 53.561.09 -9.72
Yi-VL 34B 0.00.0 0.00.0 0 4.490.09 1.730.1 2.76
Yi-VL 6B 0.00.0 0.00.0 0 3.950.05 2.080.09 1.87
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B MORE RELATIONSHIP BETWEEN VCR AND OTHER BENCHMARKS

The heatmap shown in Figure 6 provides a detailed view of the pairwise correlation between 23
different benchmarks used to evaluate 38 VLMs. The scores of these models on each benchmark were
utilized to compute this correlation matrix. The color intensity and numerical values represent the
degree of correlation, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation),
with warmer colors indicating higher positive correlations and cooler colors indicating weaker or
negative correlations.

We observe that VCREN, HARD is markedly different from other benchmarks in the evaluation set.
It demonstrates minimal and even sometimes negative correlation with other benchmarks. This
suggests that the skill set required for VCREN, HARD is largely unrelated to those tested by other
popular tasks emphasizing more straightforward image-to-text associations or OCR capabilities.
Specifically, VCREN, HARD challenges models with tasks that involve high-level reasoning and mini-
mal reliance on pixel-level information, focusing instead on understanding context, commonsense
reasoning, and visual narrative interpretation. These features are less critical in other benchmarks,
which explains the weak correlation across tasks. VCREN, EASY exhibits a slightly stronger correlation
with a few other benchmarks but remains moderately independent of most others. Like VCREN, HARD,
VCREN, EASY also evaluates visual commonsense reasoning, but with less stringent requirements,
offering models more cues and simpler connections between visual elements and textual understand-
ing. This leads to moderate overlap with benchmarks like TextVQA, which similarly focus on text
understanding in a visual context, but VCREN, EASY still emphasizes a higher level of interpretative
reasoning than standard text-based vision benchmarks.

Figure 6: The heat map of benchmarks displays the correlation between the metric scores of 38
models for each benchmark pair.
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C INFORMATION OF MODELS EVALUATED

We provide the specifications of the evaluated models and a link to each model’s weights in Table 6.

Table 6: Model specifications

Model name Model size Open-sourced

Claude 3 Opus -
Claude 3.5 Sonnet -
Gemini 1.5 Pro -
GPT-4 Turbo -
GPT-4o -
GPT-4V -
Qwen-VL-Max -
Reka Core -

Cambrian-1 5 34B ✓
CogVLM2 6 19B ✓
CogVLM2-Chinese 7 19B ✓
DeepSeek-VL 8 1.3B ✓
DeepSeek-VL 9 7B ✓
DocOwl-1.5-Omni10 8B ✓
Idefics3 11 8B ✓
InternLM-XComposer2-VL 12 7B ✓
InternLM-XComposer2-VL-4KHD 13 7B ✓
InternVL-V2 14 40B ✓
Llama-3.2-Vision 15 11B ✓
Llama-3.2-Vision 16 90B ✓
MiniCPM-V2.5 17 8B ✓
Monkey18 7B ✓
Pixtral 19 12B ✓
Qwen-VL 20 7B ✓
Qwen2-VL 21 7B ✓
Yi-VL22 34B ✓
Yi-VL23 6B ✓

5https://huggingface.co/nyu-visionx/cambrian-34b
6https://huggingface.co/THUDM/CogVLM2-Llama3-chat-19B
7https://huggingface.co/THUDM/cogvlm2-llama3-Chinese-chat-19B
8https://huggingface.co/deepseek-ai/deepseek-vl-1.3b-chat
9https://huggingface.co/deepseek-ai/deepseek-vl-7b-chat

10https://huggingface.co/mPLUG/DocOwl1.5-Omni
11https://huggingface.co/HuggingFaceM4/Idefics3-8B
12https://huggingface.co/internlm/internlm-xcomposer2-vl-7b
13https://huggingface.co/internlm/internlm-xcomposer2-4khd-7b
14https://huggingface.co/OpenGVLab/InternVL2-40B
15https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
16https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct
17https://huggingface.co/OpenBMB/MiniCPM-Llama3-V-2 5
18https://huggingface.co/echo840/Monkey-Chat
19https://huggingface.co/mistralai/Pixtral-12B-2409
20https://huggingface.co/Qwen/Qwen-VL-Chat
21https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
22https://huggingface.co/01-ai/Yi-VL-34B
23https://huggingface.co/01-ai/Yi-VL-6B
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D POTENTIAL QA

What could be the possible reason that CogVLM performs well in VCR-WIKI series bench-
marks? Many models we tested (DocOwl-1.5, Monkey, MiniCPM-V2.5, InternLM series, InternVL
series) follow a similar inference pipeline to adapt to high-resolution application scenarios:

1. An algorithm divides the input image into segments.

2. Each segment is encoded into tokens using a CILP-based image encoder.

3. A filtering mechanism (algorithm/resampler/abstractor) processes the visual tokens.

4. The filtered tokens are concatenated with language tokens and input to the LLM.

If, in step 3, pixel-level hints embedded in text within the image (TEL) are disregarded, the model
cannot correctly answer the question. Consequently, some of these models may perform better
on benchmarks emphasizing global features but struggle on the VCR-WIKI series benchmarks,
particularly in the hard partitions. For example, while InternVL2-40B performs best on VCREN, EASY,
it does not perform well on VCREN, HARD. As noted in the paper, the easy partition of the benchmark
primarily verifies that the VCR task is feasible for the models. In contrast, the hard partition explores
the boundaries of VCR capability for both models and human test-takers (who require more time and
focus to solve the puzzles in the hard partition).

The CogVLM2 and Cambrian-1 series, by contrast, do not include step 3 in their inference pipelines.
Instead, their image encoders operate at mid-to-high resolutions (1K level), and they resize the input
image to match the supported resolution rather than dividing it into segments. The image encoder
resolution for CogVLM2 is 1344×1344, while Cambrian-1 employs four image encoders, the largest
supporting a resolution of 1024 × 1024. This approach may encounter challenges with extremely
shaped input images (e.g., 8192×1024), but for VCR-WIKI, where images are mostly near-square (on
average 300 × 360 for VCRZH, EASY/VCRZH, HARD and 300 × 375 for VCREN, EASY/VCREN, HARD),
high-resolution support is not necessary. For instance, InternLM-XComposer2-VL outperforms
InternLM-XComposer2-VL-4KHD on this benchmark.

What could be the potential way to improve models’ capability on VCR? To suggest potential
avenues for improving VLM performance on VCR, we propose the following:

1. Include VCR in VLM Pretraining: Just as OCR parsing tasks are often included in pre-
training to improve OCR performance, researchers could consider incorporating VCR tasks
during pretraining. We will codebase to facilitate this process, making it as straightforward
as data augmentation.

2. Architectural Exploration: CogVLM2 is the best-performing model on average across
the four partitions, and we believe this is largely due to its vision expert architecture.
We contacted the CogVLM2 team and learned that GLM-4 and CogVLM2 share the
same training data, yet there is a significant performance gap between them on the VCR
benchmarks.

3. Chain-of-Thought (CoT) Methods: Researchers could explore multi-modality pipelines
based on CoT techniques to improve existing VLMs on VCR tasks Chen et al. (2024a);
Zhang et al. (2023). Although a model might not initially focus on the correct visual area
(e.g., pixel-level hints in the TEI), CoT-based techniques could help refine its focus over
successive rounds.

How is the Transferability of VCR-WIKI Finetuning? In Table 7, we show the transferability of
VCR-WIKI by finetuning multiple models on different finetuning datasets’ training sets and testing
their performance on a series of benchmarks.

The analysis of our experimental results highlights the strong transferability of the proposed VCR-
WIKI dataset across various benchmarks. Notably, models fine-tuned on VCR-WIKI demonstrate
significant performance improvements not only within the VCR-WIKI benchmarks themselves, but
also across different language settings. For example, fine-tuning CogVLM2 on VCREN, HARD leads
to a substantial increase in performance on the VCRZH, EASY benchmark, elevating the score from
9.15 to 42.55. Similarly, fine-tuning the Chinese version of CogVLM2 on VCRZH, HARD enhances its
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performance on both the VCREN, EASY and VCREN, HARD benchmarks, with scores rising from 79.9 to
87.57 and from 25.13 to 44.97, respectively. These enhancements indicate that the VCR-wiki dataset
facilitates the learning of effective transferable features even when the fine-tuning and evaluation
involve different languages.

Additionally, the consistent achievement of the highest scores within each model’s finetuning vari-
ations underscores the robustness of VCR-WIKI in improving model performance across diverse
evaluation metrics. This evidence collectively demonstrates that VCR-WIKI serves as a versatile and
powerful resource for enhancing model generalization and performance across multiple tasks and
linguistic contexts.

Table 7: Performance Comparison of Base Models.

Base Model MiniCPM-V2.5 MiniCPM-V2.5 MiniCPM-V2.5 MiniCPM-V2.5 CogVLM2 CogVLM2 CogVLM2 CogVLM2-Ch. CogVLM2-Ch. CogVLM2-Ch.

Finetuning dataset None OKVQA-Train VCREN, HARD VCRZH, HARD None OKVQA-Train VCREN, HARD None OKVQA-Train VCRZH, HARD

OKVQA 77.43 72.20 77.09 76.38 75.35 71.86 75.45 74.16 70.57 74.14
VCREN, EASY 31.81 19.53 40.96 28.40 83.25 79.29 93.27 79.90 30.18 87.57
VCREN, HARD 1.41 0.00 13.86 5.33 37.98 27.22 77.44 25.13 3.55 44.97
VCRZH, EASY 4.10 2.12 2.66 7.44 9.15 16.49 42.55 33.24 16.49 61.69
VCRZH, HARD 0.09 0.53 1.06 1.53 0.08 0.00 1.60 1.34 0.00 42.11

MMstar 50.20 51.73 50.40 50.27 50.50 51.07 50.20 52.73 50.87 54.33
MMBench DEV EN 74.54 74.46 74.54 74.30 72.70 73.53 72.60 77.32 77.09 76.78

MME 2024.6 1996.7 1923.65 1977.13 1869.5 1860.56 1882.21 2040.7 1898.42 1939.8
MMMU VAL 45.89 47.78 46.11 46.56 42.60 38.67 38.67 42.44 41.56 45.00

AI2D test 78.04 77.85 77.62 77.91 73.40 74.97 73.61 72.64 70.98 71.31
OCR BENCH 71.70 71.60 71.50 71.30 75.40 72.80 79.80 77.30 75.20 79.60

MMVet 53.12 45.78 51.10 52.66 57.80 45.00 59.31 56.38 39.77 56.88
MathVista MINI 54.50 53.70 52.80 52.70 38.60 38.30 35.40 37.80 37.60 40.20

ChartQA 71.80 72.12 71.92 72.52 72.80 80.40 79.56 63.16 58.92 65.84
OCRVQA 61.85 62.70 61.36 61.59 64.90 65.56 66.11 32.65 34.41 33.24
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E CASE STUDY

This case study aims to assess the real-world applicability of models fine-tuned on VCR-WIKI for
recognizing occluded text, a challenging task with significant practical implications. The setting
involves evaluating the performance of three state-of-the-art models—MiniCPM-V2.5 8B, CogVLM2
19B, and Qwen2-VL 7B—on a curated dataset of eleven photographs featuring occluded text from
real-world scenarios, such as street maps and collected images. Since no standard benchmark exists
for real-world occluded text recognition, this dataset serves as a proxy to measure the efficacy of VCR
fine-tuning in improving performance. We show whether the model completely recovers the occluded
or distorted texts in the image with ✓ (correct) or (partially correct or incorrect). This evaluation
provides insight into how VCR fine-tuning translates to practical challenges and complements the
quantitative analyses presented in the main paper.

Figure 7: Ground-truth:
BANK OF AMERICA TWO

BRYANT PARK

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 8: Ground-truth:
METROPOLITAN

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 9: Ground-truth:
NOT IN SERVICE

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 10: Ground-truth:
NO CYCLING

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B:
• Qwen2-VL-7B-ft: ✓

Figure 11: Ground-truth:
SHIPPING FAX SERVICE

PASSPORT PHOTOS
COMPUTER RENTALS

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 12: Ground-truth:
Home of Peapack Private

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓
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Figure 13: Ground-truth:
DELICACY BREAKFAST LUNCH

CATERING

• MiniCPM: ✓
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 14: Ground-truth:
INSPECT UPON RECEIPT...

DO NOT SIGN...
VISIBLE DAMAGE?

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 15: Ground-truth:
AMOUNT TIP TOTAL APPROVED

AMERICAN EXPRESS AID
THANK YOU / MERCI

CUSTOMER COPY

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 16: Ground-truth:
INSPECT UPON RECEIPT...

DO NOT SIGN...
VISIBLE DAMAGE?

• MiniCPM:
• MiniCPM-ft:
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓

Figure 17: Ground-truth:
AMOUNT TIP TOTAL APPROVED

AMERICAN EXPRESS AID
THANK YOU / MERCI

CUSTOMER COPY

• MiniCPM:
• MiniCPM-ft: ✓
• CogVLM2: ✓
• CogVLM2-ft: ✓
• Qwen2-VL-7B: ✓
• Qwen2-VL-7B-ft: ✓
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