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Abstract—Mobile robots are becoming an integral part of
everyday life. These systems typically rely on generating maps of
the environment and using them for navigation. While significant
progress has been made in improving the localization and
navigation of mobile robots, their vulnerability to adversarial
environment changes remains largely unexplored. This paper in-
vestigates the adversarial robustness of robot navigation systems
and introduces attacks designed to manipulate the navigation
environment with minimal modifications. Our proposed attack
leverages vision-language models and pre-existing maps to iden-
tify objects whose repositioning could cause navigation errors.
We also propose a defense mechanism to monitor the confidence
of self-localization to detect changes in the environment and
bypass attacked areas. Evaluations show that our attacks reduce
the navigation success rate from 100% to 8.0% in simulation
and from 100% to 40.0% in the real world, while our defense
mechanism increases the navigation success rate to 75.3% in
simulation and 86.7% in the real world.

I. INTRODUCTION

Mobile robots are increasingly deployed in everyday set-
tings and rely on maps for navigation, where failures can have
serious consequences. While mobile robots are significantly
more affordable than self-driving cars, their limited sensors
make them more vulnerable to adversarial attacks. Therefore,
studying the robustness of mobile robots’ navigation systems
is essential to ensuring their safe and reliable operation in
diverse environments.

Despite advances in localization and navigation of mobile
robots [26, 27, 41, 33], their vulnerability to adversarial
manipulation remains largely unexplored. Adversarial attacks
have been widely studied in fields such as computer vi-
sion [30, 12, 38, 43, 42], e.g., introducing imperceptible
noise to an image. In the domain of mobile robotic sys-
tems, adversarial attacks primarily target sensors and decision-
making mechanisms crucial for navigation and localization.
Previous work has manipulated sensor inputs to mislead robot
perception and cause navigation failures [13, 3, 6, 24, 5].
By comparison, we are interested in stealthy attacks through
physically manipulating the navigation environment, such as
slightly moving a trash can or a desk.

In this paper, we investigate the adversarial robustness of
the default navigation systems of Robot Operating System
(ROS) [21], as demonstrated on two mobile robot platforms.
We propose Adversarial Attacks on Robot Navigation Systems
(AARONS), a framework that attacks the robot’s navigation
system by identifying objects in its environment whose repo-
sitioning (e.g., moving or rotating) could induce navigation
errors. AARONS exploits the robot’s reliance on aligning
sensory data with a pre-built map for localization. By subtly
altering the environment on the path, it is possible to create a
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a. Administration Building lobby. b. Engineering Building corridor.

Fig. 1. Illustrative example environments: The robot, originally
heading to location A (marked green), is misdirected to location B
(red) after AARONS subtly moves the desk (marked in orange).

mismatch between the robot’s perception and its map, leading
to localization errors and potential navigation failure.

However, this approach is inefficient as the number of
object-operation combinations grows. To improve efficiency,
we leverage off-the-shelf vision-language models (VLMs) [1,
25, 32] to automatically identify objects whose repositioning
could lead to navigation errors. Results show that AARONS can
accurately pinpoint objects whose repositioning likely disrupts
the robot’s localization. AARONS demonstrates that attackers
can quickly determine effective attack strategies using VLMs.
Figure 1 gives two example environments.

We evaluated AARONS in simulation (supermarket and
lobby) and in a matching real-world lobby environment. Our
experimental results show that AARONS significantly reduces
the robot’s navigation success rate from 100% to 8.0% in
simulation and from 100% to 40.0% in the real world. We
have also proposed a defense mechanism that enables robots
to monitor the confidence of self-localization to detect en-
vironmental changes and bypass attacked areas. Our defense
strategy increases the navigation success rate to 72.7% in
simulation and 86.7% in the real world.

II. RELATED WORK

Cyberattacks on mobile robots: Most attacks on mobile
robots are cyber methods targeting software vulnerabilities or
sensor-level deception [35, 8]. For instance, falsified sensor
inputs [6], manipulated landing markers [15], or GPS spoof-
ing [14] can mislead UAVs. Vulnerabilities in visual servoing
systems [13] also may mislead a robot to an unintended loca-
tion. In autonomous driving, adversarial LiDAR perturbations
and optical attacks can cause object detection and naviga-
tion failures [5, 24]. Denial of Service (DoS) attacks have
been shown to induce physical effects in rescue robots [29].
However, these works exploit cyber vulnerabilities rather than
physical environmental changes to disrupt navigation.
Physical attacks on mobile robots: Physical adversarial
attacks have gained attention for their real-world applicabil-
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Fig. 2. Overview of an attack causing navigation errors in a mobile robot by altering its environment. The green box (left) shows normal
navigation where the robot reaches its goal. The red dashed box (middle) depicts the attack scenario with environmental changes disrupting
navigation. The blue dotted box (right) presents the defense mechanism that helps the robot recover and complete its task.

ity [30], which target environmental features such as textures,
objects, or lighting, to mislead perception or decision systems.
While prior work has explored attacks on autonomous driving
models using physical modifications [4], research on physical
attacks against mobile robots remains limited. Recent stud-
ies have examined adversarial perturbations targeting motion
planning algorithms [2, 31], whereas our work focuses on
map-based navigation systems in indoor robots. A closely
related study involves dynamic trajectory obstruction by an
attacking robot [17], while our method, AARONS, uses static,
one-time changes to highlight inherent vulnerabilities in robot
navigation.
Defense mechanisms for mobile robots: Existing defenses
for mobile robots primarily address cyber threats such as actu-
ator and sensor anomalies [11, 16], jamming [34], and mitigat-
ing system vulnerabilities via encryption [39] or AI/blockchain
solutions [23]. Safety modules have been introduced to con-
strain LLM-driven agents [36, 19, 28], and multi-robot coor-
dination has been studied under adversarial disruptions [18].
However, these methods do not address physical attacks via
environmental modifications. Improvements in LiDAR-based
localization [37, 7] and uncertainty-aware techniques [20]
mainly target dynamic but non-adversarial changes.

III. AARONS: ATTACKS ON ROBOT NAVIGATION

The target of AARONS is autonomous mobile robots that
navigate using pre-built maps and real-time sensor data. These
robots rely on path planning and localization techniques to
determine their position and orientation. The objective of the
attacker is to induce navigation failures by subtly altering
the environment such as by moving or rotating objects near
the robot’s path. We assume that the attacker has physical
access to the environment, allowing them to move or rotate
semi-dynamic objects [40], but has no access to the robot
itself or its internal hardware or software. The attacker is
also assumed to have access to an occupancy-grid map of
the environment. While AARONS was evaluated using the

default navigation package of ROS, it does not assume specific
navigation algorithms or systems.

The robot’s navigation system is vulnerable due to its
reliance on aligning sensory data with a pre-built map. Even
minor environmental changes, such as slightly moving or
rotating nearby objects, can disrupt this alignment, causing
localization errors and trajectory deviations. Our adversarial
attacks exploit this vulnerability by subtly moving or rotating
objects along the navigation path.

A. Selection of Target Objects

We initially developed a brute-force program that perturbs
objects along the robot’s path to identify scenarios leading to
navigation failure. However, this is computationally expensive
due to the exponential growth of object-operation combina-
tions. To address this, we leverage VLMs to automatically
identify objects whose repositioning may trigger navigation
errors, with minimal human intervention. We explore three
prompting strategies: zero-shot, chain-of-thought (CoT), and
few-shot. In few-shot, the VLM is given K examples of
successful attacks, each consisting of a map, a predefined
navigation path, and disruptive objects. These examples help
the model learn to associate the environmental layout and
navigation path with target objects. The structure of the few-
shot prompt is shown in Figure 3.

To ensure robustness and consistency in the selection pro-
cess, we run the VLM n = 10 times for each scenario and
use majority voting to select the most frequently recommended
objects as final targets.

B. Attack Execution

To create stealthy attacks, we make the modifications small:
objects are rotated by no more than 30 degrees, and objects
are moved within a maximum range of 1 meter. AARONS
applies all possible object-operation combinations, including
the ‘move’ and ‘rotate’ operations, to the target objects during
the simulation. Based on the simulation results, it will then de-
termine effective attack strategies for real-world environments.



Prompt:You are tasked with identifying target objects whose 
repositioning could get the robot lost as early as possible in 
navigation. A map with a blue path representing the robot's 
planned trajectory will be provided. You are following the blue 
path step by step, and figure out a stage where you don't have 
landmarks for localization. After that, those that show up first will 
be critical for localization. First, I will give you few examples.

Describe 
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Examples:
Example 1: [Uploaded map with trajectory]
Output: objects 5 and 6 are the two objects that we should move 
to get the robot lost as early as possible in navigation.
Example 2: …
… 
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Task: [Uploaded map with trajectory]
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Fig. 3. Few-shot prompt structure.
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Fig. 4. A successful attack in a simulated supermarket environment.

Figure 4 illustrates a successful adversarial attack in a simu-
lated supermarket. In this attack, two shelves along the robot’s
path were slightly moved, and one of them was also rotated.
As a result, the robot deviated from its intended trajectory and
arrived at an incorrect location, while mistakenly perceiving
that it had reached the target destination. Such errors can
have life-threatening consequences in real-world scenarios. For
instance, a robot guide could misdirect a blind person toward
a hazardous drop-off, or a healthcare robot might deliver
medication to a patient in a wrong room in hospitals.

C. Detection and Defense

The blue dotted box in Figure 2 shows our detection and
defense mechanisms. While AARONS does not assume specific
localization or navigation algorithms, our defense approach
assumes the robot using particle filters for localization.

Algorithm 1 provides the full pseudocode. The detection
module monitors particle distributions at 20Hz (Lines 2-3)
and uses DBSCAN [9] to quantify dispersion (Line 4). A
concentrated particle cloud indicates confident localization,
whereas significant dispersion, e.g., the formation of multiple
clusters beyond a threshold τ , signals potential attack and
triggers an alert (Lines 5-6).

Upon detection, the robot deviates from its original path
to bypass the attacked area. The system selects the closest
recovery position from a pool of recovery positions (Lines
13-14), and temporarily navigates there before regenerating a
path to the final goal (Lines 15-18). This two-step strategy
allows the robot to bypass the attacked area without a full

Algorithm 1 Detection and Defense for AARONS

Require: Real-time particle states P , Navigation map M , Threshold
τ , Initial destination Dinitial, Recovery position pool R

Ensure: Detection result D, Defense path Pathnew

1: Detection Phase:
2: while Robot is navigating do
3: Monitor particle distribution P
4: Cluster P using DBSCAN
5: if Number of clusters > τ then
6: D ← Attack Detected
7: Break
8: else
9: D ← No Attack

10: end if
11: end while
12: Defense Phase:
13: if D == Attack Detected then
14: Select nearest recovery position Rnearest from R
15: Re-plan path: Pathnew ← Navigate to Rnearest

16: Navigate to Rnearest and stop
17: Re-plan path: Pathfinal ← Navigate to Dinitial

18: Navigate to Dinitial

19: end if

environmental reevaluation.

IV. EXPERIMENTAL RESULTS

We conducted experiments in both simulation and real-
world to evaluate our attack strategies, detection, and de-
fense methods, using ROS. Simulation was performed with
Gazebo and RViz for environment control and visualization.
In real-world tests, sensing, decision-making, and control were
handled through ROS, with GMapping and AMCL used for
mapping and localization. We use the default ROS navigation
packages 1, which combine global path planning (e.g., A*
and Dijkstra) with local planners (e.g., DWA [10] and Elastic
Bands [22]). While more advanced systems exist, our goal is
to show that even the most widely used navigation systems
remain vulnerable.

a) Real World Experiments: We conducted real-world
experiments in the lobby of an Administration Building (Fig-
ure 5(c)), using a TurtleBot 2 equipped with 2D LiDAR and
a laptop running ROS (Figure 1(a)). The robot’s task was to
travel from the entrance to the left elevator (A in the figure),
with and without attacks. Each setting was repeated 15 times
using default ROS localization and navigation.

Without attacks, the robot succeeded in all 15 runs (100%).
With a small perturbation (moving and rotating a table), the
success rate dropped to 40% (6/15). A t-test confirmed the
significance of this drop (t = 4.58, p < 0.0001, mean diff =
0.60).

With our detection and defense enabled, the robot succeeded
in 15/15 trials under normal conditions (100%), including one
false positive where the robot still reached the goal. Under
attack, the success rate improved to 86.7% (13/15). One
attack was undetected, resulting in failure. A t-test showed a

1http://wiki.ros.org/navigation



a. Supermarket b. Administration building lobby c. Administration building lobby (Real world)
Fig. 5. Experiment environments.

Fig. 6. Navigation success rate with and without attacks in simulation.

significant improvement with defense (t = 2.93, p = 0.0067,
mean diff = −0.47).

To assess generalizability, we applied the attack to a
Segway-based robot in a building corridor. As shown in
Figure 1(b), a slight change in table position caused the robot
to misdeliver the medicine to the wrong room.

b) Simulated Environments: We evaluated our methods
in two Gazebo-simulated environments (shown in Figure 5(a
and b)): a structured supermarket with narrow aisles and
an open-layout lobby based on a real-world map. These
environments represent different navigation challenges.

Five navigation tasks were performed (three in the su-
permarket, two in the lobby), each under four experimental
conditions with 30 trials, totaling 600 trials. Figure 6 shows
that without attacks, the robot completed all tasks successfully.
Under attack, success rates dropped sharply to 3.3%–13.3%
(avg. 8.0%). Paired t-tests confirmed statistically significant
performance degradation (p < 0.0001).

Our detection mechanism achieved high accuracy (Table I),
with an average true positive rate of 98.0% and true negative
rate of 91.3%. False positives did not hinder task comple-
tion. Upon attack detection, our defense mechanism improved
navigation success rates to 64.5%–93.9% (Table I). Overall,
as shown in Figure 6, detection and defense raised average
success from 8.0% to 75.3%, demonstrating strong mitigation
performance.

c) Object selection with different VLMs: We evaluated
five VLMs in their accuracy of object selection for envi-
ronment modification. The VLMs include Gemini 2.5 Pro,
Gemini 2.0 Flash, GPT-4o-mini-high, GPT-4o, and Grok 3.
The prompting strategies include zero-shot, CoT, and few-shot.
Each data point is an average of fifteen trials, including five
trials for each of the three navigation tasks. Table II shows the
results. The accuracy is 100% and 93% for objects identified
by GPT o4-mini-high and Gemini 2.5, respectively, with all

Scenario Detection
No Attack (TN)

Detection
With Attack (TP) Defense

SM-1 86.7% 100% 70.6%
SM-2 96.7% 100% 64.5%
SM-3 90.0% 100% 93.9%
Lobby-1 83.3% 96.7% 85.3%
Lobby-2 100% 93.3% 75.0%

Average 91.3% 98.0% 77.9%

TABLE I
DETECTION AND DEFENSE SUCCESS RATE.

VLM Zero-shot CoT Few-shot

GPT o4-mini-high 100% 100% 100%
Gemini 2.5 Pro 93% 93% 93%
GPT-4o 60% 73% 87%
Gemini 2.0 Flash 40% 20% 7%
Grok 3 0% 27% 0%

TABLE II
COMPARITHION OF VLMS

three prompt strategies. For GPT-4o, the accuracy is 87% with
few-shot prompt, but lower with zero-shot and CoT. Gemini
2.0 Flash and Grok 3 have low performance.

V. CONCLUSION

In this paper, we studied the adversarial robustness of
mobile robot navigation systems and demonstrated how subtle
environmental modifications can result in navigation failures.
We have also developed detection and defense mechanisms
to mitigate attacks. AARONS is the first VLM-based physical
attack on mobile robot navigation systems through making
changes to the robot’s working environments. Our experi-
ments, conducted in both simulated and real-world environ-
ments, demonstrate the effectiveness of our attacks as well as
our detection and defense mechanisms.
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