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Abstract
We study how two fundamental properties of natural data—hierarchical compositionality and Zipf-
distributed features—affect the scaling of test performance with the number of training examples.
Using synthetic datasets generated by probabilistic context-free grammars, we derive learning
curves for classification and next-token prediction tasks in the data-limited regime. For classifi-
cation, we show that introducing a Zipf distribution over production rules leads to a power-law
learning curve with an exponent controlled by the Zipf distribution. By contrast, in next-token
prediction, the exponent is determined by the hierarchical structure alone and is unaffected by Zipf
statistics. These results are supported empirically by experiments with convolutional and trans-
former models, and highlight how different aspects of the data structure shape neural scaling laws.

1. Introduction

Scaling laws have emerged as a unifying framework for understanding generalisation in large deep
learning models [9, 17]. In particular, the learning curve, which quantifies the decay of test error
with the number of training examples P , often follows a power-law: ϵ(P ) ∼ P−α. While such scal-
ing is well-understood in linear [10, 16] and kernel-based models [1–3, 5, 8, 13, 14, 19], its origin
in deep feature-learning networks remains poorly understood. Here we ask: what properties of the
data control α in the data-limited regime, and how do they interact with the architecture? In par-
ticular, we focus on two features common to real-world data: hierarchical structure and power-law
feature statistics. To this end, we consider synthetic datasets generated by the Random Hierarchy
Model (RHM) [6]—an ensemble of hierarchically compositional generative processes correspond-
ing to simple context-free grammars. The RHM models the hierarchical structure of data via a tree
of production rules that recursively expand hidden symbols into sequences of hidden symbols at the
next level of the hierarchy, and eventually visible tokens. The probabilities of these rules control the
distribution of the fundamental features of the data, such as tokens and combinations thereof: when
the rule probabilities follow Zipf’s law, these distributions also follow a power law, mirroring the
statistics of words in natural language corpora.

2. The Random Hierarchy Model with Zipf-distributed rules

Generally, Probabilistic Context-Free Grammars (PCFGs) consist of a vocabulary of hidden (non-
terminal) symbols, a vocabulary of observable (terminal) symbols and production rules that quan-
tify the probability that one hidden symbol generates tuples of either hidden or observable sym-
bols. PCFGs provide a natural formalism for describing hierarchical structures found in the syn-
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tax [11, 18] and semantics [12] of natural language, and images [20]. Here, for the sake of analytical
tractability, we consider a restricted class of PCFGs, where production rules are sampled uniformly
at random, compatibly with the following constraints:

C1. (Fixed tree topology) All grammars share a common tree structure: a fixed regular tree of
arity s and depth L. This tree serves as the shared backbone for all the generated data, which
consists of sequences of d= sL symbols. Because of the fixed topology constraint, exact
inference on data generated by the RHM can be performed using the Belief Propagation (BP)
algorithm [15].

C2. (Unambiguity) Production rules are chosen so that no two distinct hidden symbols are al-
lowed to generate the same sequence of children. This constraint ensures that the observable
datum uniquely determines the hidden structure of its derivation.

C3. (Vocabulary size v) Hidden symbols are split into L vocabularies Vℓ, with ℓ=0, . . . , L − 1
and VL≡V denoting the vocabulary of observable symbols. All vocabularies have the same
cardinality v.

C4. (m production rules per symbol) Each hidden symbol is associated with m distinct and
equiprobable production rules that yield symbols of the next level. Each rule can be picked
with probability f

(ℓ)
k , with k=1, . . . ,m and

∑
k f

(ℓ)
k =1 for all ℓ.

To mimick the power-law distribution of word frequencies [7], we set the production rule distribu-
tion to be uniform in all but one layer ℓ, where it follows a Zipf law [10, 16], f (ℓ)

k ∝ k−(1+a).
A given instance of the RHM corresponds to a probability distribution over sequences of tokens

and the whole tree of hidden symbols. We consider both classification tasks, whose objective is the
conditional probability of the root symbol (label) given the leaves (visible tokens),

P {X1 = x1, . . . , Xd = xd|Y = y} (1)

and next-token prediction tasks, where the target is the conditional probability of the last observable
token given the others,

P {Xd = xd|X1 = x1, . . . , Xd−1 = xd−1} . (2)

3. Correlation-based learning theory

The statistics of the sequences generated by the RHM carry a signature of the hierarchical structure
of the generative process. In particular, as shown in [5, 6], the correlations between tuples of visible
tokens generated by the same hidden variable and other symbols in the tree are equal for all the
tuples generated by the same hidden variable. As a result, these correlations serve as the primary
cues a learner can exploit to reconstruct the hidden structure of the data. For classification tasks, for
instance, the hidden variables can be inferred from the correlations between the root label Y and
s-tuples of contiguous input tokens Xj =(X(j−1)s+1, . . . , Xjs)

Cj(y,µ) := P
{
Y = y;X(j−1)s+1 = µ1, . . . , Xjs = µs

}
− P {Y = y}P {Xj = µ} . (3)
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Due to the unambiguity of the production rules, each s-tuple µ is generated by a unique nonterminal
symbol at the level above. As a result, the correlations Cj(y,µ) are equal for all tuples µ gener-
ated by the same hidden variable. In other words, tuples with identical ancestry exhibit identical
correlations. This observation implies that, given enough data to estimate the correlations reliably,
a learner can cluster tuples by their generating nonterminal symbol, effectively inverting the corre-
sponding production rules. Once the first level of hidden variables is recovered, the same strategy
can be applied recursively to higher levels, enabling a bottom-up reconstruction of the entire tree.
Motivated by this property, we adopt the following assumption:

Assumption 1. A production rule can be used by the learner once the correlations it
induces on observable variables can be resolved from the training data.

In the case of the RHM, Assumption 1 corresponds to requiring that the variance of the empirical
correlations due to sampling noise is small compared to the variance between correlations associated
with distinct production rules. The latter quantifies how distinguishable different production rules
are in expectation, and can be estimated as the variance of the correlation function over the RHM
ensemble,

〈
Cj(y,µ)

2
〉

RHM.
We then introduce a second assumption to translate the set of learned production rules into

generalisation performance:

Assumption 2. The learner achieves the same performance as the optimal predictor
conditioned on the subset of available production rules.

In other words, once a production rule becomes accessible via its associated correlations, we assume
the learner can exploit it as if it were directly observing the associated hidden variable. We estimate
the resulting performance as the average over the RHM ensemble of the performance of the optimal
conditioned predictor.

4. Classification: Zipf’s law controls the exponent

In the presence of Zipf-distributed level-1 production rules, the probability of observing a given
tuple µ is proportional to the probability of the unique production rule that generates it. Denoting the
rank of this rule with k(µ), the probability is fk(µ). As a consequence, the correlations Cj(y, µ) are
themselves proportional to the rule probability fk, implying that the variance of these correlations
over the RHM ensemble scales as f2

k . The remaining factor, depending on the higher hidden levels
of the data structure, can be determined with the techniques developed in [6] for the uniform RHM.
The variance due to sampling noise, instead, is proportional to the average occurrence of the tuple
µ in the training data, scaling as fk/P if P denotes the size of the training set.

Following Assumption 1 and balancing the two variances, we get that the sample complexity
required for learning the production rules with rank k is P ∗

k = vmL−1/(fk). To estimate the learning
curve we follow Assumption 2, which implies that, when P >P ∗

k , the model can correctly classify
data consisting of tuples with probability higher than fk. In other words, the model classifies the
input correctly if and only if all the sL−1 input patches are resolvable. The resulting test error reads

ε(P ) = 1−


 ∑

k|P ∗
k<P

fk




sL−1

, (4)
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Figure 1: Left: Learning curves of 3-layers CNNs trained on RHM data with L=2, s=2, v=m=25 and Zipf
exponent a indicated in caption. Solid lines are the empirical learning curves whereas dotted lines are predictions from
Eq. (4). The dashed line represents the scaling law ϵ ∼ P−a/(1+a). Right: As in the left panel, but v=m=100. Here a
is fixed and the layer where production rules are Zipf-distributed changes. The black dotted line represents the asymptotic
scaling law ϵ ∼ P−a/(1+a).

which, when P ≫ P ∗
1 ≃ vmL−1, yields the asymptotic scaling P−a/(1+a). This result agrees with

that of [10, 16] and is confirmed empirically in Figure 1, showing the learning curves of deep CNNs
trained on RHM classification.

4.1. Next-token prediction: hierarchy controls the scaling

In next-token prediction, the relevant correlations are those between tuples of visible tokens and the
last token Xd,

Cj(µ, ν) := P {Xj = µ, Xd = ν} − P {Xj = µ}P {Xd = ν} .

In the uniform case, the correlations’ variance decays with the tree distance ℓ between Xj and

Xd as
〈
C2
j

〉
∝ m−2ℓ. The variance due to sampling, instead, is independent of ℓ and inversely

proportional to the dataset size P , resulting in a sequence of sample complexities Pℓ ∝ m2ℓ for
inferring all production rules withing the depth-ℓ sub-tree above the last token Xd. When P ≫ Pℓ,
the model outputs the sℓ-gram approximation of the last-token probability,

P
{
Xd = xd|Xd−(sℓ−1) = xd−(sℓ−1), . . . , Xd−1 = xd−1

}
. (5)

Combining the scaling of Pℓ with ℓ with that of the average cross-entropy losses of the sℓ-grams,
Lℓ ∝ (m/vs−1)ℓ, yields the scaling law [4]

L(P ) ∼ P− log (m/vs−1)/(2 logm), (6)

where ∼ implies that P -independent factors are neglected.
In the case of next-token prediction, as for classification tasks, the Zipf distribution induces

a proportional dependence of the correlation magnitude on the probability of the corresponding
production rule. However, this dependence does not alter the scaling of the correlations with the
tree distance ℓ. Moreover, although the nonuniform rule probabilities affect the specific values of
the sℓ-gram cross-entropies—modifying the asymptotic loss—they do not change the rate at which
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1Figure 2: Left: Average cross-entropies of the sℓ-grams versus ℓ, for RHM datasets with s=2, v=32, m=8, with
the colour denoting the Zipf exponent. The points are obtained by averaging the cross-entropies over 32 independent
realisations of the RHM. The cross-entropies of the uniform production rules case are shown in blue for comparison. For
all a’s, the cross-entropies Lℓ decay with ℓ towards some a-dependent value L∞(a). However, the approach to L∞(a) is
independent of a and follows the behaviour of the test loss bound derived in [4] in the uniform case (black dashed line).
Right: Empirical scaling laws of depth-4 transformers trained on RHM next-token prediction with L=4, s=2, v=32,
m=8 and varying a. The limit a → ∞ corresponds to having only one production rule per level-1 nonterminal symbol.
The red dashed line is a guide to the eye for the asymptotic decay of Equation 6.

these entropies decay with ℓ. This property is illustrated in the left panel of Figure 2, displaying the
approach of theLℓ’s, computed exactly for fixed realisations of the RHM via belief propagation and
averaged over independent realisations, to the limiting residual cross-entropy L∞(a). As a result,
the local details of the learning curve, such as the plateau heights and transition sharpness, may
vary, but the global scaling law with respect to the number of training examples remains unchanged
from the uniform RHM case.

5. Discussion and outlook

We studied how the scaling laws of deep networks trained in a feature-learning and data-limited
regime are affected by two ubiquitous properties of natural data: hierarchical compositionality and
Zipfian distribution of features. Remarkably, the effects of these two structural properties on learn-
ing greatly differ between classification and next token prediction tasks.

In particular, the remarkable independence of the next-token prediction scaling law from the
production rule probabilities suggests the hierarchical structure of the data—rather than the statistics
of individual features—as a prime candidate for explaining the emergence of scaling behaviour in
modern machine learning.
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