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Abstract

Multimodal Large Language Models (MLLMs) have shown
impressive performance in vision and text tasks. However,
hallucination remains a major challenge, especially in fields
like healthcare where details are critical. In this work, we
show how MLLMs may be enhanced to support Visual RAG
(V-RAG), a retrieval-augmented generation framework that
incorporates both text and visual data from retrieved images.
On the MIMIC-CXR chest X-ray report generation and Mul-
ticare medical image caption generation datasets, we show
that Visual RAG improves the accuracy of entity probing,
which asks whether a medical entities is grounded by an
image. We show that the improvements extend both to fre-
quent and rare entities, the latter of which may have less pos-
itive training data. Downstream, we apply V-RAG with en-
tity probing to correct hallucinations and generate more clini-
cally accurate X-ray reports, obtaining a higher RadGraph-F1
score.

1 Introduction
Recent advances in Multimodal Large Language Models
(MLLMs) (OpenAI 2023; Liu et al. 2023a) have demon-
strated impressive capabilities in complex vision-and-text
tasks, showing significant potential in specialized domains.
In healthcare, the development of Medical MLLMs (Med-
MLLMs) (Li et al. 2023a; Wu et al. 2023) can support clini-
cal decision-making processes, with the potential to enhance
physician efficiency and improve patient health outcomes.
However, numerous studies have demonstrated that MLLMs
are prone to hallucination (Li et al. 2023b; Bai et al. 2024;
Huang et al. 2024). The hallucination tendency of MLLM’s
has been demonstrated on Med-MLLM’s as well (Wu, Kim,
and Wu 2024). This is particularly concerning in the health-
care scenario, as depicted in Figure 1, where even a few
wrong tokens in text can lead to significant misinterpreta-
tions, affecting medical diagnoses, treatment plans, and pa-
tient outcomes (Pal and Sankarasubbu 2024).

Retrieval-Augmented Generation (RAG) (Lewis et al.
2020) has become a prominent approach to mitigate the
hallucination problem in Large Language Models (LLMs)
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Figure 1: (Up) Hallucination issue of Med-MLLM. (Down)
Framework of V-RAG to improve Med-MLLM.

by grounding text generation in retrieved knowledge rele-
vant to a given query. Besides grounding, RAG potentially
supplements the knowledge in a model’s parameters with
knowledge present in a corpus, enabling open book ques-
tion answering to exceed closed book performance. Several
prior works (Sarto et al. 2024; Liu et al. 2024; Zhou et al.
2024) have explored text-based RAG in MLLMs. This ap-
proach assumes that using text documents associated with
images similar to the query image can effectively augment
the model, treating the retrieved images as perfectly inter-
changeable with the query image. However, this assumption
is not always accurate. In this work, we study Visual-RAG
(V-RAG), which considers not only the associated text from
retrieved similar images but also the similar images them-
selves to provide more accurate responses to the given in-
struction. By incorporating both modalities, V-RAG allows
the model to determine what is truly important from the re-
trieved content, enhancing its ability to deliver more contex-
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Figure 2: Entity probing asks entity-based questions to an
MLLM and compares predictions against answers grounded
in an LLM’s interpretation of a reference caption.

tually relevant answers, as illustrated in Figure 1.
With certain multi-image-trained Med-MLLMs, we see

that V-RAG improves a detailed understanding of an image
beyond what is possible with text-based RAG techniques.
We demonstrate this through entity probing. Entity probing
presents an image to an MLLM and asks yes/no questions
about disease entities, and compares predictions against an-
swers grounded in an LLM’s interpretation of a reference
report or caption (Figure 2). Entity probing gives us a clin-
ical perspective on text generations across medical domains
which is not captured by natural language generation metrics
such as ROUGE, while avoiding sensitivity to entity phras-
ing. We show that V-RAG, as an inference technique applied
to carefully selected Med-MLLMs trained on multi-image
datasets, enhances understanding more effectively than orig-
inal Med-MLLMs and previous text-based RAG systems.

To improve the model’s multimodal understanding when
presented with rich retrievals, we design a general fine-
tuning technique to boost Med-MLLM capabilities in V-
RAG. This approach strengthens image-text comprehension
and enables effective learning from similar resources re-
trieved during multimodal queries. It benefits not only Med-
MLLMs trained on multi-image dataset but also single-
image-trained models to leverage multi-image inputs in
V-RAG, thereby improving performance. This frees re-
searchers from relying on specific pre-trained models that
may not be aligned with their task in order to use V-RAG,
allowing V-RAG to be applied to any model and dataset of
interest. Our key contributions are summarized as follows:

• We analyze hallucinations in MLLMs on chest X-ray re-
port generation and medical image captioning datasets
through entity probing, showing that V-RAG mitigates
hallucinations more effectively than baseline RAG tech-
niques. These benefits extend to both frequent and rare
entities.

• To enhance Med-MLLMs’ multimodal comprehension
with V-RAG, we introduce general image-text fine-
tuning tasks to boost model performance and improve
their understanding when multimodal retrievals are pre-
sented. These tasks enable an MLLM originally trained
with single images to become capable of V-RAG using

multiple retrieved images.

• We show that entity probing with V-RAG can be used
to revise chest X-ray reports to contain fewer hallucina-
tions and have better detailed accuracy, as measured by
RadGraph-F1 score.

2 Related Work
Medical Multimodal Large Language Models. Substan-
tial advancements have been made in adapting MLLMs
to medical imaging (Zhang et al. 2023b; Wu et al. 2023;
Moor et al. 2023; Lee et al. 2023). The primary focus has
been on training these models for radiology tasks using
medical images (like X-rays, MRIs, and CT scans) along
with their textual descriptions/reports. Li et al. (2023a) used
GPT-4 to generate instruction-following data for fine-tuning,
improving MLLMs’ conversational ability for open-ended
biomedical image inquiries. Chen et al. (2024) developed
a foundation model for chest X-Ray interpretation with an
image-text bridger to align modalities. However, we found
that these medical multimodal foundation models still suffer
from hallucinations. We aim to mitigate this issue in Med-
MLLMs through a visual-based Retrieval-Augmented Gen-
eration (RAG) approach, enabling these models to generate
factually accurate answers.

Retrieval-Augmented Generation (RAG). RAG (Lewis
et al. 2020) mitigates hallucination in LLMs by retrieving
and integrating domain-specific knowledge from external
databases, enhancing text generation with accurate, aligned
information and effectively addressing this challenge (Guu
et al. 2020; Siriwardhana et al. 2022; Shahul et al. 2023).
Despite RAG’s popularity, very few studies have applied
RAG to MLLMs. Prior studies primarily enhance image
captioning by reranking labels of retrieved images (Liu et al.
2024; Qu et al. 2024a) or directly incorporating texts from
these images into prompts to improve generation (Liu et al.
2023c; Sarto et al. 2024; Zhou et al. 2024). In health-
care, researchers have developed domain-specific retrieval
pipelines (Sun et al. 2024) and explored the optimal number
of retrievals (Xia et al. 2024) to ensure the factuality of Med-
MLLMs. All these previous works retrieve similar images
based on the query image but consider only the text/label as-
sociated with the retrieved images. Thus these methods as-
sume that the retrieved images are perfectly interchangeable
with the query image, which is not always the case.

A more effective approach might involve comparing the
query image with retrieved images and their reports, allow-
ing the model to identify what is truly relevant for genera-
tion. This is the “V-RAG” method of our paper. Qu et al.
(2024b) attempted a similar approach with “Coarse (I+T),”
though it performed worse than using only associated texts
(“Coarse (T)” in their Table 6), which they noted was likely
due to limited multi-image reasoning in the MLLMs they
considered. We address this by analyzing MLLMs trained
for multi-image reasoning, and also by introducing an archi-
tecture and fine-tuning method to make single-image-trained
MLLMs “V-RAG-capable,” enabling them to benefit from
this approach.



Figure 3: Fine-tuning tasks to make Med-MLLM V-RAG-capable by (a) improving image-and-text association abilities, (b)
focusing on specific images, and (c) making decisions using extracted similar data.

3 V-RAG with Existing multi-image-trained
Med-MLLMs

Figure 1 illustrates the V-RAG framework. This section de-
tails each component and explains how we enhance model
performance during V-RAG.

3.1 Multimodal Retrieval
We aim to retrieve images and corresponding textual de-
scriptions that match the features of target medical images.
These references, rich in visual and textual medical details,
guide response generation for the medical image. To extract
embeddings, we employ BiomedCLIP (Zhang et al. 2023a),
which provides robust representations across a diverse range
of biomedical image types. For a given medical image Ximg ,
we extract its image embedding Eimg ∈ Rd, with d repre-
senting the dimension (i.e., 512 for BiomedCLIP), and store
it in memory M for retrieval.

To facilitate efficient search operations during the
inference phase, we construct the memory M using
FAISS (Douze et al. 2024), a vector storage and retrieval
system that utilizes GPU computation. Instead of exact
kNN search, we employ an approximate kNN search us-
ing the Hierarchical Navigable Small World (HNSW) al-
gorithm (Malkov and Yashunin 2016) to identify the top-
k nearest neighbors, effectively retrieving the images in M
most similar to a given query image.

3.2 Inference with V-RAG
In the inference stage, we first encode the query image
Xq to obtain its corresponding image embedding. We then
retrieve the top-k images in M; the retrieved set of similar
images and their reports are represented as (I1, ...Ik) and
(R1, ..., Rk). We then use the retrievals to guide the genera-
tion of Med-MLLM for the query image by appending each
reference before the question, following this prompt guid-
ance: “...This is the i-th similar image
and its report for your reference.
[Reference]i... Answer the question with
only the word yes or no. Do not provide
explanations. According to the last
query image and the reference images
and reports, [Question] [Query Image]”,
where [References]i is structured as [(Ii, Ri)].

3.3 Enhancing Med-MLLMs for V-RAG
Some MLLMs may lack the training to distinguish infor-
mation from multiple images. To address this, we intro-

duce three fine-tuning tasks to enhance image-text associa-
tion in the V-RAG process. Given a dataset of images paired
with captions or reports, we define the original dataset as
S = (imgi,Pi,Ai)|Ni=1, where imgi denotes the i-th image,
Pi and Ai represent the prompt and the answer, respectively,
and N is the total number of samples. We then construct
fine-tuning tasks on this dataset with our designed objectives
as follows.

Image-text awareness task. We aim to enhance Med-
MLLM’s image-and-text association ability by training the
model to identify the relevant image corresponding to pro-
vided text from multiple images. To achieve this, we con-
struct a multi-image dataset, Mposition, from dataset S, to
ask the model to identify the position of the image related
to the given text, as depicted in Figure 3(a). First, we ran-
domly select K images (where K ranges from 1 to 5 in
our case) and form the image collection (imgi1 , ...,imgiK ).
Next, we choose an integer j from [1,K] and retrieve the
textual document Rij , corresponding to imgij . We then col-
lect Mposition using {(imgi1 ,imgi2 , ...,imgiK ,P

′

ij
,A

′

ij
)}.

Here, P
′

ij
is a newly formulated prompt designed to ask

a position-based question in addition to the original ques-
tion Pij , associating Aij with the provided images. For
example, “What image from 1 to K does this
Aij correspond to? Pij ”. A

′

ij
is the answer indicat-

ing the position of imgij among the provided images, for
example, “The j-th image.”

Image-focus task. In this task (Figure 3(b)), we aim to
direct Med-MLLM to focus on one specific image from
a set of multiple images and subsequently perform text
generation based on that image, thereby improving perfor-
mance by minimizing distractions from other visual inputs.
To achieve this, we create another dataset, Mfocus, also
from image dataset S. We start by randomly selecting K
images from S to form the collection (imgi1 , ...,imgiK ),
and then choose an integer j from [1,K]. We then collect
{(imgi1 , ...,imgiK ,P

′′

ij
,Aij )} to form Mfocus, where P

′′

ij
is

a new prompt designed to help the model focus on our spec-
ified image, imgij , and pose the original question Pij for
that image. For example in Figure 3(b), the new prompt P

′′

ij

is “Focus on the j-th image, Pij.”, where Pij is
the original prompt that asks for a finding/report to be gen-
erated from a given image.

Strategies to make easier learning tasks. Various condi-
tions may be applied to the random selection of images for



both image-text awareness and image-focus tasks. For ex-
ample, when the image dataset S consists of images imgi

with radiology reports Ai, we require that the selected report
Aij for the focus image contains at least one CheXpert (Irvin
et al. 2019) label that is distinct from those in the other re-
ports {Aim}|Km=1,m ̸=j . This strategy simplifies the learning
task by ensuring that there are no alternative images to which
the report could apply equally well. For easier and more di-
verse datasets, such a strategy may not be necessary.

Learning from extracted similar information task. We
aim to assist Med-MLLM in decision-making by using
extracted similar information during V-RAG. To do so, we
simulate the V-RAG scenario and construct a multi-image
dataset, Mvrag. Given a query image imgq in the validation
set, we search for the top-K similar images (imgq1 , ... ,
imgqK ) from memory M, pairing them with their corre-
sponding documents (Aq1 , ..., AqK ). We then conduct Mvrag

using {(imgq1 ,Aq1 , ...,imgqK ,AqK ),imgq,P
′′′

q ,Aq}.
Here, Aq is the answer for query image and P

′′′

q is a new
prompt designed to supply related information alongside
the original question Pq . Taking disease entity probing as
example (in Figure 3(c)), P

′′′

q can be “Based on the
query image, and the similar images and
their reports: (imgq1 ,Aq1 , ...,imgqK ,AqK ), Pq ,”
and Pq is “Does the patient have [disease
entity]?”

4 Experiment
4.1 Experimental Setups
We selected RadFM (Wu et al. 2023), an existing multi-
image-trained Med-MLLM, as our base model to evaluate
the effectiveness of V-RAG and our proposed fine-tuning
tasks on multi-image-trained models. To assess the capabil-
ity of making single-image-trained MLLMs V-RAG capa-
ble, we utilized LLaVA (Liu et al. 2023b) as the backbone
model. We employed LoRA (Hu et al. 2021) to fine-tune
both LLaVA and RadFM on our designed tasks, applying a
learning rate of 5e-5 for all fine-tuning tasks.

4.2 Baselines
We compare our method with the original Med-MLLM,
RadFM, which does not include retrievals, with other base-
lines that do. RAT (Sarto et al. 2024) and Img2Loc (Zhou
et al. 2024) are identical methods which incorporate text
associated with retrieved similar images into the prompt.
RAR (Liu et al. 2024) also incorporates the text associated
with retrieved similar images, but it re-ranks those texts us-
ing the MLLM before generation. We set k = 5 as the num-
ber of retrievals for every RAG-based method.

4.3 Datasets and Evaluation Metrics
Entity Probing We utilize two medical vision-language
datasets: MIMIC-CXR (Johnson et al. 2019), con-
taining chest X-ray images for radiology, and Multi-
CaRe (Nievas Offidani and Delrieux 2024), offering a
variety of images across medical specialties. We follow
the official data split for MIMIC-CXR and randomly split

MultiCaRe into train, validation, and test sets with a ratio
of 8:1:1. To construct VQA pairs for disease entity probing,
we employ a biomedical named entity recognition (NER)
model 1 (Zhang et al. 2021) to extract all disease entities
from the dataset’s reports. We input these reports into
LLMs (in our case, Llama-2 7B) to create closed-ended QA
data with yes or no answers. For example, we ask “Does
the patient have [disease entity] based
on the report: [Report]?”, with answers for-
matted as Yes/No, simplifying error analysis. The use of
LLMs allows for interpreting complex semantic structures
within the text to accurately deduce potential answers. For
instance, given the [Report]: “An upper GI series on
post-operative day 5 showing the duodenum ruling out
stenosis.” and [disease entity]: “stenosis”, the
LLM correctly answers “No.” By sampling segments from
a medical report, we generate a sequence of concise, closed-
ended questions paired with LLM-generated answers. The
VQA dataset is then formed by associating these disease
probing QA pairs with the original medical images.

For example, in MIMIC-CXR, we exclude entities in the
“INDICATION” section of the report, as these reflect patient
history or the reason for conducting the evaluation rather
than X-ray findings. Across both datasets, we found that less
frequent entities are often already covered by more frequent
ones (e.g., “right lower lobe atelectasis” as a
particular kind of “atelectasis”). Therefore, we map
each entity to its shortest terminal subphrase occurring as an
entity in the training set, to reduce redundancy and clarify
entity frequency. For each test set of MIMIC-CXR and Mul-
tiCaRe, we parse 9,411 and 21,653 VQA pairs, respectively,
with 385 and 10,434 distinct entities. We use Precision, Re-
call, and F1 Score as the primary metrics to evaluate answer
correctness in disease entity probing.

Report generation We apply disease entity probing with
V-RAG to mitigate hallucinations in generated text through
a rewrite strategy. After a Med-MLLM generates an initial
report of findings for an X-ray, the NER model extracts all
disease entities from the generated report and from the re-
ports of the k most similar images. For each entity, the query
image is probed using the Med-MLLM with V-RAG.

The originally generated report and entity probing
results are input to a text-only LLM (Llama 3.1 70B chat),
with the prompt: Consider the following
chest X-ray report from a junior
radiologist: -----begin report-----
[REPORT] -----end report----- A senior
radiologist has inspected the X-ray
image and answered the following
questions: -----begin questions----
[QUESTIONS AND ANSWERS] -----end
questions----- Please rewrite the
junior radiologist’s report to reflect
the senior radiologist’s answers. We mea-
sure RadGraph-F1 scores (Delbrouck et al. 2024) of the
findings of the original and revised reports.

1Stanza i2b2: https://stanfordnlp.github.io/stanza/biomed.html



Method MIMIC-CXR MultiCaRe
Precision Recall F1 Precision Recall F1

RadFM 0.921 0.206 0.381 0.972 0.290 0.432
+ RAR 0.871 0.397 0.535 0.962 0.536 0.664

+ RAT / Img2Loc 0.760 0.943 0.711 0.961 0.915 0.901
+ V-RAG 0.770 0.920 0.721 0.960 0.952 0.920

+ V-RAG (fine-tuned) 0.790 0.921 0.751 0.961 0.999 0.940

Table 1: Overall entity probing performance for different methods across two datasets. V-RAG’s superiority shows the value of
using complete retrieval information, both text and images. The improved performance of our fine-tuned V-RAG demonstrates
enhanced image-text association abilities in Med-MLLM during V-RAG.

Retrieval Modality MIMIC-CXR MultiCaReImage Text
0.381 0.432

✓ 0.705 0.735
✓ 0.711 0.901

✓ ✓ 0.721 0.920

Table 2: Ablation study on RAG with different retrieval
modalities. Improved F1 scores across both datasets shows
the importance of integrating both image and text from re-
trievals to make informed decisions in V-RAG.

5 Evaluation Results
5.1 Overall performance for existing

multi-image-trained Med-MLLMs
We first evaluate V-RAG’s performance for existing Med-
MLLM that originally trained on multi-image datasets. Ta-
ble 1 shows entity probing results comparing our method to
baselines. Across both datasets, V-RAG outperforms text-
only RAG baselines in F1 scores. This improves the model’s
ability to extract relevant information for decision-making.
Furthermore, with our proposed fine-tuning tasks, V-RAG
(fine-tuned) achieves superior F1 scores over both baselines
and the un-fine-tuned version. This shows that we have sig-
nificantly enhanced Med-MLLM’s capabilities by equipping
it with robust image-text association skills.

5.2 Ablation study
We now conduct ablation studies to better understand our
proposed method across various configurations.

Multimodal retrieval. Table 2 shows the F1 scores of
RAG (top-5) across different retrieval modalities. We ob-
serve that providing only similar images without text makes
it challenging for Med-MLLM to extract entity information
from visuals, though it offers marginal improvements over
Med-MLLM without RAG. Adding text for similar images
significantly enhances performance, highlighting the rich in-
formation provided by texts in entity probing. By integrating
both modalities, V-RAG effectively links retrieved texts and
images, enabling more comprehensive decision-making and
achieving the best performance. This underscores the impor-
tance of multimodal retrieval in V-RAG, rather than relying
solely on text as most existing MLLM baselines.

Fine-tuning tasks for V-RAG. To enhance V-RAG’s per-
formance, we proposed three fine-tuning tasks for Med-
MLLM, each with 6,000 instances. In Table 3, we exam-

Fine-tuning Tasks MIMIC-CXR MultiCaRePosition Focus V-RAG
0.721 0.920

✓ 0.729 0.933
✓ ✓ 0.741 0.935

✓ ✓ 0.748 0.937
✓ ✓ ✓ 0.751 0.940

Table 3: Ablation study of V-RAG using RadFM trained on
various fine-tuning tasks. The F1 gains achieved through our
three proposed tasks show improved image-text association
abilities for existing multi-image-trained Med-MLLMs.

ine how different combinations of these tasks impact perfor-
mance. Initially, using only the Mvrag dataset, we enable
Med-MLLM to learn from extracted similar information,
yielding performance gains that enhance the model’s under-
standing of downstream V-RAG tasks. Adding the image-
text association tasks Mposition and Mfocus provides further
gains, with Mposition offering more benefits due to the com-
plexity of Mfocus, which involves generating a full medical
report and is more challenging to learn with limited data.

5.3 Analysis of entities across frequency levels

In addition to analyzing the overall entities in the test set, we
conducted an analysis to see how they differ in appearance.
We categorized the entities from the test set into the most
frequent 50 and the less frequent ones, analyzing their per-
formance separately. Rare entities were almost exclusively
found in positive contexts, which created a label imbalance.
To address this, we balanced the test sets for rare entities by
adding additional negative probing questions for each entity
until the number of positive examples equaled the number
of negative examples. Negative examples were paired with
a randomly chosen image, and we verified using Llama-2
that the associated report did not suggest the presence of the
entity. We tested 1,000 samples for both frequent and rare
entities across two datasets. Figure 4 shows the F1 scores
for each test set. Our V-RAG method outperforms both the
original method and the RAG baselines in both settings. The
improvement of V-RAG over other methods in the rare en-
tity setting demonstrates the practical utility of our approach,
emphasizing its effectiveness in utilizing information from
multiple modalities to answer queries that neither the origi-
nal model nor text-based RAG methods could address.



Figure 4: F1 performance of each method on disease entities
with different frequencies. The superior performance of our
method, particularly in probing rare entities, demonstrates
its effectiveness and applicability in real-world scenarios.

Model MIMIC-CXR
Precision Recall F1

LLaVAS 0.953 0.475 0.604
LLaVA{Mvrag} 0.914 0.867 0.852

LLaVA{Mfocus+Mvrag} 0.908 0.903 0.859
LLaVA{Mposition+Mvrag} 0.908 0.910 0.862

LLaVA{Mposition+Mfocus+Mvrag} 0.897 0.944 0.870

Table 4: Entity probing results for single-image-trained
MLLM and MLLM enhanced with our proposed fine-tuning
tasks. The superiority indicates that our tasks effectively
make a MLLM V-RAG-capable.

5.4 Can we make a single-image-trained MLLM
V-RAG-capable?

After observing the performance gains of V-RAG and
our fine-tuning methods on multi-image pre-trained Med-
MLLMs, we now explore whether single-image-trained
MLLMs can also be enabled to perform V-RAG. We ex-
tract all single image-text pairs from the MIMIC-CXR train-
ing set to create the single-image dataset S, resulting in
100,098 samples. We then fine-tune LLaVA-v1.5-7B with
Vicuna backbone (Liu et al. 2023a) on S using LoRA for
one epoch, resulting in a single-image Med-MLLM denoted
as LLaVAS . From the single-image dataset S, we extract
10k samples for each fine-tuning task in Section 3, creating
the multi-image datasets Mposition, Mfocus, and Mvrag. We
then fine-tune LLaVAS on these tasks, producing the model
LLaVA{task}.

To evaluate our idea, we conducted entity probing on the
MIMIC-CXR test set. For the single-image model LLaVAS ,
we input a single test image to probe for a disease entity.

Reports RadGraph F1
Simple Partial Complete

Original .163 .145 .102
Revised .194 .172 .118

Table 5: Revising reports with V-RAG entity probing results.

For the multi-image model LLaVA{task}, we implemented
V-RAG to assess its performance and determine if it can be
effectively V-RAG capable with our designed tasks. We set
the context length of LLaVA to be 4096 and consider the
top-3 retrievals for LLaVA{task} when performing V-RAG.

Table 4 shows the entity probing performance of single-
image-trained MLLM and MLLM with multi-image capa-
bilities resulting from our proposed fine-tuning tasks. For
the single-image model LLaVAS , we input a single test im-
age and tasked the model with probing for a disease en-
tity based on the given image. For the multi-image model
LLaVA{task}, we perform V-RAG to assess its performance.
We set the context length of LLaVA to be 4096 and consider
the top-3 retrievals for LLaVA{task} when performing V-
RAG. Results demonstrate that, with the support of our de-
signed fine-tuning tasks, we enable the single-image-trained
MLLM to effectively perform V-RAG.

5.5 Improving generated reports
We have shown that disease entity probing provides a valu-
able clinical perspective on model outputs. However, since
entity probing is typically not the final task for an MLLM,
it is essential to demonstrate the utility of V-RAG in report
generation. We find that our strategy using Llama 3.1 70B
Chat to rewrite the generated reports using the V-RAG entity
probing results yields 19% relative improvements in the sim-
ple and partial RadGraph-F1, compared to the original find-
ings, as shown in Table 5. These results highlight the practi-
cal benefits of V-RAG-enhanced entity probing, demonstrat-
ing its value not only in probing accuracy but also in improv-
ing the accuracy of generated medical reports.

6 Conclusion
When faced with a long report generation task, Medical
Multimodal Large Language Models may exhibit biases and
hallucinate details. We have introduced an entity probing
method to examine these details, and shown that V-RAG im-
proves entity probing accuracy for both frequent and rare
entities. The lack of multi-image support in mainstream
models has been a barrier to the adoption of V-RAG, lead-
ing almost all prior work to work only with the text cor-
responding to similar images. Our special image-and-text
fine-tuning tasks pave the way for multi-image-trained and
single-image-trained models to become capable or more
powerful at V-RAG, and we have shown that the use of
both retrieved text and retrieved images benefits entity prob-
ing performance. Downstream, revision using entity prob-
ing with V-RAG can increase a report’s accuracy on clinical
details, improving the RadGraph-F1 score of a generated re-
port. Our research contributes towards more medically trust-
worthy MLLMs for healthcare applications.
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