
Neural Microfacet Fields for Inverse Rendering

Alexander Mai
UC San Diego

atm008@ucsd.edu

Dor Verbin
Google Research

dorverbin@google.com

Falko Kuester
UC San Diego

fkuester@ucsd.edu

Sara Fridovich-Keil
UC Berkeley

sfk@eecs.berkeley.edu

�
��
�

�
��
��
��
��
��
�

���������
 ����
	������
�� �������������
�

Figure 1: Our method (top) recovers materials, geometry, and illumination that closely resemble the ground truth (bottom),
optimizing directly from calibrated images of a scene. Here we show results on the materials scene from NeRF [27]: a
rendered novel view (left), surface normals (middle), and environment map illumination (right). Insets show high-fidelity
reflections, including interreflections, as well as accurate geometry, even in concave regions.

Abstract
We present Neural Microfacet Fields, a method for re-

covering materials, geometry, and environment illumination
from images of a scene. Our method uses a microfacet re-
flectance model within a volumetric setting by treating each
sample along the ray as a (potentially non-opaque) surface.
Using surface-based Monte Carlo rendering in a volumetric
setting enables our method to perform inverse rendering ef-
ficiently by combining decades of research in surface-based
light transport with recent advances in volume rendering
for view synthesis. Our approach outperforms prior work
in inverse rendering, capturing high fidelity geometry and
high frequency illumination details; its novel view synthesis
results are on par with state-of-the-art methods that do not
recover illumination or materials.

1. Introduction

Simultaneous recovery of the light sources illuminating
a scene and the materials and geometry of objects inside it,
given a collection of images, is a fundamental problem in
computer vision and graphics. This decomposition enables
editing and downstream usage of a scene: rendering it from
novel viewpoints, and arbitrarily changing the scene’s illu-
mination, geometry, and material properties. This disentan-
glement is especially useful for creating 3D assets that can
be inserted into other environments and realistically ren-
dered under novel lighting conditions.

Recent methods for novel view synthesis based on neu-
ral radiance fields [27] have been highly successful at de-
composing scenes into their geometry and appearance com-
ponents, enabling rendering from new, unobserved view-

1

ar
X

iv
:2

30
3.

17
80

6v
3

 [
cs

.C
V

]
 1

5
O

ct
 2

02
3

points. However, the geometry and appearance recovered
are often of limited use in manipulating either materials or
illumination, since they model each point as a direction-
dependent emitter rather than as reflecting the incident illu-
mination. To tackle the task of further decomposing appear-
ance into illumination and materials, we return to a physical
model of light-material interaction, which models a surface
as a distribution of microfacets that reflect light rather than
emitting it. By explicitly modeling this interaction during
optimization, our method can recover both material proper-
ties and the scene’s illumination.

Our method uses a Monte Carlo rendering approach
with a hybrid surface-volume representation, where the
scene is parameterized as a 3D field of microfacets: the
scene’s geometry is represented as a volume density, but
its materials are parameterized using a spatially varying
Bidirectional Reflectance Distribution Function (BRDF).
The volumetric representation of geometry has been shown
to be effective for optimization [27, 44], and treating each
point in space as a microfaceted surface allows us to use
ideas stemming from decades of prior work on material
parameterization and efficient surface-based rendering.
Despite its volumetric parameterization, we verify exper-
imentally that our model shrinks into a surface around
opaque objects, with all contributions to the color of a ray
coming from the vicinity of its intersection with the object.

To summarize, our method (1) combines aspects of
volume-based and surface-based rendering for effective op-
timization, enabling reconstructing high-fidelity scene ge-
ometry, materials, and lighting from a set of calibrated im-
ages; (2) uses an optimizable microfacet material model
rendered using Monte Carlo integration with multi-bounce
raytracing, allowing for realistic interreflections on noncon-
vex objects; and (3) is efficient: it optimizes a scene from
scratch in ∼3 hours on a single NVIDIA GTX 3090.

2. Related work
Our work lies in the rich field of inverse rendering, in

which the goal is to reconstruct the geometry, material prop-
erties, and illumination that gave rise to a set of observed
images. This task is a severely underconstrained inverse
problem, with challenges ranging from lack of differentia-
bility [22] to the computational cost-variance tradeoff of the
forward rendering process [17].

Recent progress in inverse rendering, and in particular
in view synthesis, has been driven by modeling scenes as
radiance fields [27, 3, 4], which can produce photorealistic
models of a scene based on calibrated images.

Inverse rendering. Inverse rendering techniques can be
categorized based on the combination of unknowns recov-
ered and assumptions made. Common assumptions in-
clude far field illumination, isotropic BRDFs, and no in-

terreflections or self-occlusions. Early work by Ramamoor-
thi and Hanrahan [33] handled unknown lighting, texture,
and BRDF by using spherical harmonic representations of
both BRDF and lighting, which allowed recovering ma-
terials and low frequency lighting components. More re-
cent methods used differentiable rendering of known geom-
etry, first through differentiable rasterization [24, 23, 9] and
later through differentiable ray tracing [22, 2, 31]. Later
methods built on differentiable ray tracing, making use of
Signed Distance Fields (SDFs) to also reconstruct geome-
try [46, 29, 17].

Following the success of NeRF [27], volumetric ren-
dering has emerged as a useful tool for inverse rendering.
Some methods based on volume rendering assume known
lighting and only recover geometry and materials [37, 5, 1],
while others solve for both lighting and materials, but as-
sume known geometry [25, 49] or geometry without self-
occlusions [7, 6]. Some methods simultaneously recover
illumination, geometry, and materials, but assume that illu-
mination comes from a single point light source [16, 45].
However, to the best of our knowledge none of these exist-
ing volumetric inverse rendering methods are able to cap-
ture high frequency lighting (and appearance of specular
objects) from just the input images themselves.

An additional challenge is in handling multi-bounce il-
lumination, or interreflections, in which light from a source
bounces off multiple objects before reaching the cam-
era. In this case, computational tradeoffs are unavoid-
able due to the exponential growth of rays with the num-
ber of such bounces. Park et al. [31] model interreflec-
tions assuming known geometry, but do not model mate-
rials, which is equivalent to treating all objects as perfect
mirrors. Other methods use neural networks to cache visi-
bility fields [37, 49] or radiance transfer fields [25, 16]. Our
method handles interreflections by casting additional rays
through the scene, using efficient Monte Carlo sampling.

Volumetric view synthesis. We base our representation
of geometry on recent advances in volumetric view synthe-
sis, following NeRF [27]. Specifically, we retain the idea of
using differentiable volumetric rendering to model geom-
etry, using a voxel-based representation of the underlying
density field [14, 28, 8].

Of particular relevance to our work are prior methods
such as [41, 15] that are specifically designed for high-
fidelity appearance of glossy objects. In general, most radi-
ance field models fail at rendering high-frequency appear-
ance caused by reflections from shiny materials under nat-
ural illumination, instead rendering blurry appearance [47].
To enable our method to handle these highly specular ma-
terials, and to improve the normal vectors estimated by our
method, which are key to the rendered appearance, we uti-
lize regularizers from Ref-NeRF [41].

3. Preliminaries
Our method combines aspects of volumetric and surface-

based rendering; we begin with a brief introduction to each
before describing our method in Section 4.

3.1. Volume Rendering

The core idea in emission-absorption volume rendering
is that light accumulates along rays, with “particles” along
the ray both emitting and absorbing light. The color mea-
sured by a camera pixel corresponding to a ray with origin
pc and direction −ω̂o is:

L(pc, ω̂o) =

∫ ∞

0

T (t)σ(⃗r(t))Lo(⃗r(t), ω̂o)dt, (1)

where T (t) = exp

(
−
∫ t

0

σ(⃗r(t′))dt′
)
, (2)

where r⃗(t) = pc − tω̂o is a camera ray, σ(p) is the den-
sity at point p in the volume, T denotes transmittance along
the ray, and Lo is the outgoing radiance. This formula is
often approximated numerically using quadrature, follow-
ing [26]:

L(pc, ω̂o) ≈
N−1∑
j=0

wjLo(⃗r(tj), ω̂o), (3)

where wj = Tj

(
1− exp(−σ(⃗r(tj))(tj+1 − tj))

)
, (4)

and Tj = exp

(
−

j−1∑
k=0

σ(⃗r(tk))(tk+1 − tk)

)
. (5)

In this volume rendering paradigm, multiple 3D points can
contribute to the color of a ray, with nearer and denser points
contributing most.

3.2. Surface Rendering

In surface rendering, and assuming fully-opaque sur-
faces, the color of a ray is determined solely by the light
reflected by the first surface it encounters. Consider that the
ray r⃗ from camera position pc in direction −ω̂o intersects
its first surface at a 3D position p. The ray color is then:

L(pc, ω̂o) =

∫
S2
f(p, ω̂o, ω̂i)Li(p, ω̂i)(n̂(p) · ω̂i)

+dω̂i,

(6)
where ω̂i is the direction of incident light, n̂(p) is the sur-
face normal at p, f is the BRDF describing the material of
the surface at p, Li is the incident radiance, and (n̂(p)·ω̂i)

+

is a truncated cosine lobe (i.e. its negative values are clipped
to zero) facing outward from the surface. Note that this
equation is recursive: Li inside the integral may be the out-
going radiance Lo coming from a different scene point. The
integral in Equation 6 is also typically approximated by dis-
crete (and often random) sampling, and is the subject of a
rich body of work [11, 40].

4. Method

We present Neural Microfacet Fields to tackle the prob-
lem of inverse rendering by combining volume and surface
rendering, as shown in Figure 2. Our method takes as input
a collection of images (100 in our experiments) with known
cameras, and outputs the volumetric density and normals,
materials (BRDFs), and far-field illumination (environment
map) of the scene. We assume that all light sources are in-
finitely far away from the scene, though light may interact
locally with multiple bounces through the scene.

In this section, we describe our representation of a
scene and the rendering pipeline we use to map this
representation into pixel values. Section 4.1 introduces the
main idea of our method, to build intuition before diving
into the details. Section 4.2 describes our representation of
the scene geometry, including density and normal vectors.
Section 4.3 describes our representation of materials and
how they reflect light via the BRDF. Section 4.4 introduces
our parameterization of illumination, which is based on
a far-field environment map equipped with an efficient
integrator for faster evaluations of the rendering integral.
Finally, Section 4.5 describes the way we combine these
different components to render pixel values in the scene.

4.1. Main Idea

The key to our method is a novel combination of the vol-
ume rendering and surface rendering paradigms: we model
a density field as in volume rendering, and we model out-
going radiance at every point in space using surface-based
light transport (approximated using Monte Carlo ray sam-
pling). Volume rendering with a density field lends it-
self well to optimization: initializing geometry as a semi-
transparent cloud creates useful gradients (see Figure 3),
and allows for changes in geometry and topology. Using
surface-based rendering allows modeling the interaction of
light and materials, and enables recovering these materials.

We combine these paradigms by modeling a microfacet
field, in which each point in space is endowed with a volume
density and a local micro-surface. Light accumulates along
rays according to the volume rendering integral of Equa-
tion 1, but the outgoing light of each 3D point is determined
by surface rendering as in Equation 6, using rays sampled
according to its local micro-surface. This combination of
volume-based and surface-based representation and render-
ing, shown in Figure 2, enables us to optimize through a
severely underconstrained inverse problem, recovering ge-
ometry, materials, and illumination simultaneously.

4.2. Geometry Parameterization

We represent geometry using a low-rank tensor data
structure based on TensoRF [8], with small modifications
described in Appendix C. Our model stores both density

������������������
�����������������

�
��������
����
�������
	���
�����
������

���������������������
�������
��������������	���

�

Figure 2: To render the color of a ray cast through the scene, we (a) evaluate density at each sample and compute each
sample’s volume rendering quadrature weight wi, then (b) query the material properties and surface normal (flipped if it does
not face the camera) at each sample point, which are used to (c) compute the color of each sample by using Monte Carlo
integration of the surface rendering integral, where the number of samples used is proportional to the quadrature weight wi.
This sample color is then accumulated along the ray using the quadrature weight to get the final ray color.

σ and a spatially-varying feature that is decoded into the
material’s BRDF at every point in space. We initialize our
model at low resolution and gradually upsample it during
optimization (see Appendix C for details).

Similar to prior work [37, 41], we use the negative nor-
malized gradient of the density field as a field of “volumet-
ric normals.” However, like [20], we found that numerically
computing spatial gradients of the density field using finite
differences rather than using analytic gradients leads to nor-
mal vectors that we can use directly, without using features
predicted by a separate MLP. Additionally, these numerical
gradients can be efficiently computed using 2D and 1D con-
volution using TensorRF’s low-rank density decomposition
(see Appendix C). These accurate normals are then used for
rendering the appearance at a volumetric microfacet, as will
be discussed in Sections 4.3 and 4.5.

Our volumetric normals are regularized using the orien-
tation loss Ro introduced by Ref-NeRF [41]:

Ro =
∑
j

wj max(0,−n̂(pj) · ω̂o)
2, (7)

where ω̂o is the view direction facing towards the camera,
and n̂(pj) is the normal vector at the jth point along the
ray. The orientation loss Ro penalizes normals that face
away from the camera yet contribute to the color of the ray
(as quantified by weights wj).

Because our volumetric normals are derived from the
density field, this regularizer has a direct effect on the recon-
structed geometry: it decreases the weight of backwards-
facing normals by decreasing their density or increasing the
density between them and the cameras, thereby promoting

hard surfaces and improving reconstruction. Note that un-
like Ref-NeRF, we do not use “predicted normals” for sur-
face rendering, as our Gaussian-smoothed derivative filter
achieves similar effect.

4.3. Material Representation

We write our spatially varying BRDF model f as a com-
bination of diffuse and specular components:

f(ω̂o, ω̂i) =
ρ

π
(1− Fr(ĥ)) + Fr(ĥ)fs(ω̂o, ω̂i), (8)

where ρ is the RGB albedo, ĥ = ω̂o+ω̂i

∥ω̂o+ω̂i∥ is the half vec-

tor, Fr(ĥ) is the Fresnel term, fs(ω̂o, ω̂i) is the specular
component of the BRDF for outgoing view direction ω̂o

and incident light direction ω̂i. The spatial dependence of
these terms on the point p is omitted for brevity. We use the
Schlick approximation [35] for the Fresnel term:

Fr(ĥ) = F0(p) + (1− F0(p))(1− ĥ · ω̂o)
5, (9)

where F0(p) ∈ [0, 1]3 is the spatially varying reflectance at
the normal incidence at the point p, and we base our specu-
lar BRDF on the Cook-Torrance BRDF [38], using:

fs(ω̂o, ω̂i) =
D(ĥ;α, n̂, ω̂o)G1(ω̂o, ĥ)g(ω̂i, ω̂o)

4 (n̂ · ω̂o) (n̂ · ω̂i)
, (10)

where D is a Trowbridge-Reitz distribution [39] (popu-
larized by the GGX BRDF model [42]), G1 is the Smith
shadow masking function for the Trowbridge-Reitz distri-
bution, and g is a shallow multilayer perceptron (MLP)

��
��
��
��

��
��

��
��
��
��

����
��� ����

�� ����
	�� ����
���

�

���
 ���� ���� ��� �����

Figure 3: Snapshots of the toaster scene during optimization. The second row shows a cross section of the weights along
each ray taken along the dotted line. Early in training the object geometry is cloudy and the environment map is uniform, but
as training proceeds the object develops a sharp surface and the environment map converges.

with a sigmoid nonlinearity at its output. The distribution
D models the roughness α of the material, and it is used
for importance sampling, as described in Section 4.5). The
MLP g captures other material properties not included in its
explicit components.

The parameters for each of the diffuse and specular
BRDF components are stored as features x in the Ten-
soRF representation (alongside density σ), allowing them
to vary in space. We compute the roughness α, albedo ρ
and reflectance at the normal incidence F0 by applying a
single linear layer with sigmoid activation to the spatially-
localized features x. Details about the architecture of the
MLP g and its input encoding can be found in Appendix B.

We can approximately evaluate the rendering equation
integral in Equation 6 more efficiently by assuming all mi-
crofacets at a point p have the same irradiance E(p):

∫
S2
f(p, ω̂o, ω̂i)Li(p, ω̂i)(n̂(p) · ω̂i)

+dω̂i (11)

≈
∫
S2
Fr(ĥ)fs(p, ω̂o, ω̂i)Li(p, ω̂i)(n̂(p) · ω̂i)

+dω̂i

+
ρ(p)

π
E(p)

∫
S2
(1− Fr(ĥ))dω̂i. (12)

The irradiance E(p), defined as:

E(p) =

∫
S2
Li(p, ω̂i)(n̂(p) · ω̂i)

+dω̂i, (13)

can then be easily evaluated using an irradiance environ-
ment map approximated by low-degree spherical harmon-
ics, as done by Ramamoorthi and Hanrahan [32]. At every
optimization step, we obtain the current irradiance environ-
ment map by integrating the environment map with spher-
ical harmonic functions up to degree 2, and combining the
result with the coefficients of a clamped cosine lobe point-
ing in direction n̂(p) to obtain the irradiance E(p) [32].
Equation 12 can then be importance sampled according to
D and integrated using Monte Carlo sampling of incoming
light.

We sample half vectors ĥ from the distribution of visible
normals Dω̂o

[18], which is defined as:

Dω̂o
(ĥ) =

G1(ω̂o, ĥ)|ω̂o · ĥ|D(ĥ)

|ω̂o · n̂|
. (14)

However, to perform Monte Carlo integration of the render-
ing equation, we need to convert from half vector space to
the space of incoming light, which requires multiplying by
the determinant of the Jacobian of the reflection equation
ω̂i = 2(ω̂o · ĥ)ĥ − ω̂o, which is 4(ω̂o · ĥ) [42]. Multi-
plying by the ω̂i · n̂ term from Equation 6 as well as the

Jacobian and Equation 14 results in the following Monte
Carlo estimate:

L(p, ω̂o) ≈
1

N

N∑
n=1

Fr(ĥ
n)g(x, ω̂o, ω̂

n
i)Li(p, ω̂

n
i)

+ (1− Fr(ĥ
n))

ρ(p)

π
E(p), (15)

where ĥn ∼Dω̂o
(· ;α(p), n̂(p), ω̂o),

and ω̂n
i =2(ω̂o · ĥn)ĥn − ω̂o.

4.4. Illumination

We model far field illumination using an environment
map, represented using an equirectangular image with
dimensions H × W × 3, with H = 512 and W = 1024.
We map the optimizable parameters in our environment
map parameterization into high dynamic range RGB values
by applying an elementwise exponential function.

We use the term primary to denote a ray originating at
the camera, and secondary to denote a ray bounced from
a surface to evaluate its reflected light (whether that light
arrives directly from the environment map, or from another
scene point).

To minimize sampling noise, instead of using a single
environment map element per secondary ray, we use the
mean value over an axis-aligned rectangle in spherical co-
ordinates, with the solid angle covered by the rectangle ad-
justed to match the sampling distribution D at that point.
Concretely, to query the environment map at a given in-
cident light direction, we first compute its corresponding
spherical coordinates (θ, ϕ), where θ and ϕ are the polar and
azimuthal angles respectively. We then compute the mean
value of the environment map over a (spherical) rectangle
centered at (θ, ϕ), whose size ∆θ×∆ϕ we constrain to have
aspect ratio ∆θ

∆ϕ = sin θ. To choose the solid angle of the
rectangle, ∆θ ·∆ϕ, we modify the method from [10], which
is based on Nyquist’s sampling theorem (see Appendix A).
We compute these mean values efficiently using integral im-
ages, also known as summed-area tables [13].

4.5. Rendering

In this section, we describe how the model components
representing geometry (Section 4.2), materials (Sec-
tion 4.3), and illumination (Section 4.4) are combined to
render the color of a pixel. For each primary ray, we choose
a set of sample points following the rejection-sampling
strategy of [21, 28] to prioritize points near object surfaces.
We query our geometry representation [8] for the density
σj at each point, and use Equation 4 to estimate the
contribution weight wj of each point to the final ray color.

To compute the color for each of these points, we com-
pute the irradiance from the environment map and apply

Equation 15 to obtain L(pj , ω̂o), as described in Sec-
tion 4.3.

For each primary ray sample with weight wj , we allo-
cate N = ⌊wjM⌋ secondary rays, where M = 128 is an
upper bound on the total number of secondary rays for each
primary ray (since

∑
j wj ≤ 1). The secondary rays are

sampled according to the Trowbridge-Reitz distribution us-
ing the normal vector n̂(pj) and roughness value αj at the
current sample.

When computing the incoming light Li(p, ω̂
n
i), we save

memory by randomly selecting a fixed number R of sec-
ondary rays to interreflect through the scene while others in-
dex straight into the environment map. We importance sam-
ple these R secondary rays according to the largest chan-
nel of the weighted RGB multiplier wj · g(xj , ω̂i, ω̂o). In
practice, we find that adding a small amount of random
noise to the weighted RGB multiplier before choosing the R
largest values improves performance by slightly increasing
the variation of the selected rays.

The remaining N − R secondary rays with lower con-
tribution are rendered more cheaply by evaluating the envi-
ronment map directly rather than considering further inter-
actions with the scene, as described in Section 4.4.

This combined sample color value L(pj , ω̂o) is then
weighted by wj , and the resulting colors are summed along
the primary ray samples to produce pixel values. Finally,
the resulting pixel values are tonemapped to sRGB color
and clipped to [0, 1].

Dynamic batching. We apply the dynamic batch size
strategy from NeRFAcc [21] to the TensoRF [8] sampler,
which controls the number of samples per batch using the
number of primary rays per batch. Since the number of
secondary rays scales with the number of primary rays, we
bound the maximal number of primary rays to avoid cast-
ing too many secondary rays. We use the same method to
control R, the number of secondary bounces that retrace
through the scene. During test time, we shuffle the image to
match the training distribution, then unshuffle the image to
get the result.

We train using photometric loss and the normal penalty
loss of Equation 7. Further details of our optimization and
sampling methods can be found in Appendix C.

5. Experiments

We evaluate our method using two synthetic datasets:
the Blender dataset from NeRF [27], and the Shiny Blender
dataset from Ref-NeRF [41]. Both datasets contain objects
rendered against a white background; the Shiny Blender
dataset focuses on shiny materials with high-frequency re-
flections whereas the Blender dataset contains a mixture of
specular, glossy, and Lambertian materials.

We evaluate standard metrics PSNR, SSIM [43], and
LPIPS [48] on the novel view synthesis task for each
dataset. To quantify the quality of our reconstructed geom-
etry, we also evaluate the Mean Angular Error (MAE◦) of
the normal vectors. MAE◦ is evaluated over the same test
set of novel views; for each view we take the dot product
between the ground truth and predicted normals, multiply
the arccos of this angle by the ground truth opacity of the
pixel, and take the mean over all pixels. This gives us an
error of 90◦ if the predicted normals are missing (i.e. if the
pixel is mistakenly predicted as transparent). We summa-
rize these quantitative metrics in Table 1, with per-scene
results in Appendix D.

We provide qualitative comparisons of our reconstructed
environment maps with prior inverse rendering approaches
in Figures 5 and 6, and additional results in Appendix D.
We also demonstrate two applications of our scene decom-
position in Figure 4. For Figure 4 (a), we render the geom-
etry and spatially varying BRDF recovered from the mate-
rials scene with the environment map optimized from the
helmet scene, showing convincing new reflections while re-
taining the original object shape and material properties.
For Figure 4 (b), we take this a step further by training the
toaster and car scenes with the same neural material de-
coder, which enabled us to compose the two scenes under
the environment map recovered from the toaster scene.

To quantitatively measure the quality of our method’s
disentanglement, we evaluate it similarly to NeRFac-
tor [49]. Since our method is specifically designed to handle
more specular objects, we modify the Shiny Blender dataset
from Ref-NeRF [41] by rendering the images in HDR under
both the original lighting and an unseen lighting condition.
We then optimize each method on each of the scenes with
original lighting, then render the estimated geometry and
materials using the unseen lighting condition. For comput-
ing quality metrics, we find the (ambiguous) per-channel
scaling factor by minimizing the mean squared error. The
scaled image is then evaluated against the ground truth relit
image using PSNR, SSIM, and LPIPS.

The results are presented in Table 2, showing that our
method is able to relight shiny objects with significantly in-
creased accuracy when compared to state of the art inverse
rendering methods such as NVDiffRec and NVDiffRecMC.

Table 1 also shows quantitative ablation studies on our
model. If we do not use integral images for the far field il-
lumination (“no integral image”), the sparse gradient on the
environment map prevents the model from learning to use
it to explain reflections. Using the derivative of the linear
interpolation of the density instead of smoothed numerical
derivatives (“analytical grad”), results in more holes in the
geometry, limiting performance. If we do not utilize mul-
tiple ray bounces for interreflections (“single bounce”), all
metrics are slightly worse, with most of the errors arising in

↓

Materials BRDF

↓

Helmet Lighting Combined Rendering (a)

Combined Rendering (b)

Figure 4: Rendering with different illumination. (a)
shows the geometry and BRDF (shown integrated against
uniform white lighting) recovered from the materials scene,
rendered with the environment map recovered from the hel-
met scene. (b) shows the geometry and BRDF recovered
from the toaster and car scene composed under the envi-
ronment map recovered from the toaster scene.

regions with strong interreflections. Finally, replacing the
neural network with the identity function (“no neural”), re-
sults in slightly worse performance, especially in regions
with strong interreflections.

6. Discussion and Limitations

We introduced a novel and successful approach for the
task of inverse rendering, using calibrated images alone to
decompose a scene into its geometry, far-field illumination,
and material properties. Our approach uses a combination
of volumetric and surface-based rendering, in which we en-

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 5: Results on the car scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 6: Results on the helmet scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

dow each point in space with both a density and a local
microsurface, so that it can both occlude and reflect light
from its environment. We verified experimentally that our
method, which enjoys both the optimization landscape of

volume rendering, as well as the richness and efficiency of
surface-based Monte Carlo rendering, provides superior re-
sults relative to prior work.

However, our method is not without limitations. First,

Blender Shiny Blender
PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓

PhySG1 18.54 .847 .182 29.17 26.21 .921 .121 8.46
NVDiffRec1 28.79 .939 .068 11.788 29.90 .945 .114 31.885
NVDiffRecMC1 25.81 .904 .111 9.003 28.20 .902 .175 28.682
Ref-NeRF2 33.99 .966 .038 23.22 35.96 .967 .059 18.38
Ours, no integral image 28.47 .920 .069 27.988 27.33 .869 .170 34.118
Ours, analytical derivative 28.94 .926 .064 13.976 29.22 .900 .140 24.295
Ours, single bounce 30.68 .944 .045 6.216 34.39 .962 .053 17.647
Ours, no neural 29.40 .933 .057 7.325 33.00 .955 .063 19.190
Ours 30.71 .940 .053 6.061 34.56 .963 .053 17.497

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 1: Results on the Blender dataset from NeRF [27]. and Shiny Blender dataset from Ref-NeRF [41]. We compute
PSNR, SSIM, and LPIPS on the novel view synthesis task, and MAE◦ on the normals. Our method outperforms all prior
methods except Ref-NeRF on view synthesis, and produces the most accurate geometric normals.

PSNR ↑ toaster coffee helmet ball teapot car mean
NVDiffRec1 12.56 20.30 17.73 13.21 33.00 19.84 19.44
NVDiffRecMC1 14.55 23.39 20.44 13.23 32.51 20.09 20.70
Ours 20.05 24.21 25.69 23.50 34.37 23.19 25.17
LPIPS ↓ toaster coffee helmet ball teapot car mean
NVDiffRec1 .378 .208 .229 .467 .027 .113 .237
NVDiffRecMC1 .290 .177 .217 .423 .024 .105 .206
Ours .170 .142 .129 .191 .017 .063 .119
SSIM ↑ toaster coffee helmet ball teapot car mean
NVDiffRec1 .624 .870 .824 .626 .985 .853 .797
NVDiffRecMC1 .741 .913 .861 .761 .986 .869 .855
Ours .864 .910 .918 .897 .987 .917 .916

1 requires object masks during training. Red is best, followed by
orange, then yellow.

Table 2: Relighting on the Shiny Blender dataset from
Ref-NeRF [35].

although it can handle non-convex geometry, it assumes far
field illumination and thus performs poorly when this as-
sumption is not satisfied. This issue is most clear in the
coffee scene in the Shiny Blender dataset, which has near-
field light sources. It also does not handle interreflections
very well, since the number of secondary bounces is limited,
and due to our acceleration scheme of often directly query-
ing the environment map, as explained in Section 4.5. Our
model also does not handle refractive media, which is most
clear in the drums and ship scenes in the Blender dataset.
Our diffuse lighting model also assumes far field illumina-
tion, and thus fails to fully isolate shadows from the albedo,
most obvious in the lego scene in the Blender dataset. These
scenes are visualized in Appendix D. Another limitation
of our model’s BRDF parameterization is that it struggles
to represent anisotropic materials. Finally, our method ex-
hibits some speckle noise in its renderings, particularly near
bright spots, which may be alleviated by using a denoiser as
was used in [17]. We believe these limitations would make
for interesting future work, as well as applying our method
to other field representations and larger scenes captured in
the wild.

7. Acknowledgements

We would like to thank Tzu-Mao Li for his advice, es-
pecially regarding the BRDF formulation, as well as his
La Jolla renderer, which we used as a reference. AM is
supported by ALERTCalifornia, developing technology to
stay ahead of disasters, and the National Science Founda-
tion under award #CNS-1338192, MRI: Development of
Advanced Visualization Instrumentation for the Collabora-
tive Exploration of Big Data, and Kinsella Expedition Fund.
This material is partially based upon work supported by the
National Science Foundation under Award No. 2303178 to
SFK.

References
[1] Meghna Asthana, William Smith, and Patrik Huber. Neural

apparent brdf fields for multiview photometric stereo. In Pro-
ceedings of the 19th ACM SIGGRAPH European Conference
on Visual Media Production, pages 1–10, 2022. 2

[2] Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and
Matthias Nießner. Inverse path tracing for joint material and
lighting estimation. In Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 2019. 2

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 5835–5844. IEEE,
2021. 2

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 5460–5469.
IEEE, 2022. 2

[5] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. Neural re-

flectance fields for appearance acquisition. arXiv preprint
arXiv:2008.03824, 2020. 2

[6] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance
decomposition from image collections. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12684–12694, 2021. 2

[7] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan Barron, and Hendrik Lensch. Neural-pil:
Neural pre-integrated lighting for reflectance decomposi-
tion. Advances in Neural Information Processing Systems,
34:10691–10704, 2021. 2

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2, 3, 6

[9] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in neural information processing
systems, 32, 2019. 2

[10] Mark Colbert and Jaroslav Krivanek. Gpu-based importance
sampling. GPU Gems, 3:459–476, 2007. 6, 12

[11] Robert L Cook and Kenneth E. Torrance. A reflectance
model for computer graphics. ACM Transactions on Graph-
ics (ToG), 1(1):7–24, 1982. 3

[12] Roy Cranley and Thomas NL Patterson. Randomization of
number theoretic methods for multiple integration. SIAM
Journal on Numerical Analysis, 13(6):904–914, 1976. 12

[13] Franklin C Crow. Summed-area tables for texture mapping.
In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, pages 207–212, 1984. 6

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages
5491–5500. IEEE, 2022. 2

[15] Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong
Chen. Ref-NeuS: Ambiguity-reduced neural implicit surface
learning for multi-view reconstruction with reflection, 2023.
2

[16] Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas
Funkhouser. Object-centric neural scene rendering. arXiv
preprint arXiv:2012.08503, 2020. 2

[17] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, Light, and Material Decomposition from Im-
ages using Monte Carlo Rendering and Denoising.
arXiv:2206.03380, 2022. 2, 8, 9, 15, 16, 17, 18, 19, 20,
21

[18] Eric Heitz. Sampling the ggx distribution of visible normals.
Journal of Computer Graphics Techniques (JCGT), 7(4):1–
13, 2018. 5

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 12

[20] Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng
Huang, Panos Achlioptas, and Sergey Tulyakov. NeROIC:
Neural rendering of objects from online image collections.
ACM Transactions on Graphics (TOG), 41(4):1–12, 2022. 4

[21] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf acceleration toolbox. arXiv preprint
arXiv:2210.04847, 2022. 6

[22] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Trans. Graph., 37(6), dec 2018. 2

[23] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), October 2019. 2

[24] Matthew M Loper and Michael J Black. Opendr: An
approximate differentiable renderer. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part VII 13, pages
154–169. Springer, 2014. 2

[25] Linjie Lyu, Ayush Tewari, Thomas Leimkühler, Marc Haber-
mann, and Christian Theobalt. Neural radiance transfer fields
for relightable novel-view synthesis with global illumination.
arXiv preprint arXiv:2207.13607, 2022. 2

[26] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 1(2):99–108, 1995. 3

[27] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 6, 9, 14

[28] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2, 6

[29] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Mueller, and Sanja
Fidler. Extracting Triangular 3D Models, Materials, and
Lighting From Images. arXiv:2111.12503, 2021. 2, 8, 15,
16, 17, 18, 19, 20, 21

[30] Art B Owen. Randomly permuted (t, m, s)-nets and (t, s)-
sequences. In Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing: Proceedings of a conference at the
University of Nevada, Las Vegas, Nevada, USA, June 23–25,
1994, pages 299–317. Springer, 1995. 12

[31] Jeong Joon Park, Aleksander Holynski, and Steven M Seitz.
Seeing the world in a bag of chips. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1417–1427, 2020. 2

[32] Ravi Ramamoorthi and Pat Hanrahan. An efficient represen-
tation for irradiance environment maps. In Proceedings of
the 28th annual conference on Computer graphics and inter-
active techniques, pages 497–500, 2001. 5

[33] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing
framework for inverse rendering. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, pages 117–128, 2001. 2

[34] Szymon M Rusinkiewicz. A new change of variables for
efficient brdf representation. In Eurographics Workshop on
Rendering Techniques, pages 11–22. Springer, 1998. 12

[35] Christophe Schlick. An inexpensive brdf model for
physically-based rendering. In Computer graphics forum,
volume 13, pages 233–246. Wiley Online Library, 1994. 4

[36] Ilya Meerovich Sobol. On the distribution of points in a
cube and the approximate calculation of integrals. Journal
of Computational Mathematics and Mathematical Physics,
7(4):784–802, 1967. 12

[37] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7495–7504, 2021. 2, 4

[38] Kenneth E Torrance and Ephraim M Sparrow. Theory
for off-specular reflection from roughened surfaces. Josa,
57(9):1105–1114, 1967. 4

[39] TS Trowbridge and Karl P Reitz. Average irregularity rep-
resentation of a rough surface for ray reflection. JOSA,
65(5):531–536, 1975. 4

[40] Eric Veach. Robust Monte Carlo methods for light transport
simulation. Stanford University, 1998. 3

[41] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5481–5490. IEEE, 2022. 2,
4, 6, 7, 9, 12, 14

[42] Bruce Walter, Stephen R Marschner, Hongsong Li, and Ken-
neth E Torrance. Microfacet models for refraction through
rough surfaces. In Proceedings of the 18th Eurographics
conference on Rendering Techniques, pages 195–206, 2007.
4, 5

[43] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[44] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 4805–4815,
2021. 2

[45] Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron:
Inverse rendering by optimizing neural sdfs and materials
from photometric images. In IEEE Conf. Comput. Vis. Pat-
tern Recog., 2022. 2

[46] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. Physg: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5453–5462, 2021. 2

[47] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

[48] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 7

[49] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics
(TOG), 40(6):1–18, 2021. 2, 7

A. Rectangle Size Derivation
As mentioned in Section 4.4 of the main paper, a ray that

reaches the environment map is assigned a color taken as
the average color over an axis-aligned rectangle in spheri-
cal coordinates, where the shape of the rectangle depends on
the ray’s direction and the material’s roughness at the ray’s
origin. We modify the derivation of the area of the rectan-
gle from GPU Gems [10]. Let N be the number of samples,
p(ω̂i) be the probability density function of a given sample
direction ω̂i for viewing direction ω̂o, and let H and W be
the height and width of the environment map (i.e. its polar
and azimuthal resolutions). The density d(ω̂i) of environ-
ment map pixels at a given direction must be inversely pro-
portional to the Jacobian’s determinant, sin θi, and it must
also satisfy:

HW =

∫ 2π

0

∫ π

0

d(ω̂i) sin θidθidϕi, (16)

and therefore:

d(ω̂i) =
HW

2π2 sin θi
. (17)

The number of pixels per sample, which is the area of the
rectangle, is then the total solid angle per sample, Np(ω̂i)
multiplied by the number of pixels per solid angle:

∆θ ·∆ϕ =
Np(ω̂i)

d(ω̂i)
, (18)

where ∆θ is the polar size of the rectangle, and ∆ϕ is its
azimuthal size, i.e. the rectangle is ∆θ×∆ϕ, in equirectan-
gular coordinates.

As mentioned in Section 4.4 of the main paper, the aspect
ratio of the rectangle is set to:

∆θ

∆ϕ
= sin θi, (19)

which yields:

∆θ =

√
2π2

N

HW
p(ω̂i) · sin θi, (20)

∆ϕ =

√
2π2

N

HW
p(ω̂i). (21)

B. BSDF Neural Network Parameterization
Once we have sampled the incoming light directions ω̂i

and their respective values L(p, ω̂i), we transform them
into the local shading frame to calculate the value of the
neural shading network h. We parameterize the neural net-
work with 2 hidden layers of width 64 as h(p, ω̂o, ω̂i, n̂),
where p is the position, ω̂o, ω̂i are the outgoing and incom-
ing light directions, respectively, and n̂ is the normal. How-
ever, rather than feeding ω̂o and ω̂i to the network directly,

we follow the schema laid out by Rusinkiewicz [34] and pa-
rameterize the input using the halfway vector ĥ and differ-
ence vector d̂ within the local shading frame F (n̂), which
takes the world space to a frame of reference in which the
normal vector points upwards:

T = [0, 0, 1]
⊤ × n̂ (22)

F (n̂) =
[
T, n̂× T, n̂

]⊤
(23)

ĥ = F (n̂)
ω̂i + ω̂o

∥ω̂i + ω̂o∥2
(24)

d̂ = F (ĥ)ω̂i (25)

where × is the cross product. Finally, we encode these two
directions using spherical harmonics up to degree 4 (as done
in Ref-NeRF [41] for encoding view directions), concate-
nate the feature vector x from the field at point p, and pass
this as input to the network h.

C. Optimization and Architecture

To calculate the normal vectors of the density field, we
apply a finite difference kernel, convolved with a 3×3 Gaus-
sian smoothing kernel with σ = 1, then linearly interpo-
late between samples to get the resulting gradient in the 3D
volume. We supervise our method using photometric loss,
along with the orientation loss of Equation 7. Like TensoRF,
we use a learning rate of 0.02 for the rank 1 and 2 tensor
components, and a learning rate of 10−3 for everything else.
We use Adam [19] with β1 = 0.9, β2 = 0.99, ε = 10−15.
Similar to Ref-NeRF [41], we use log-linear learning rate
decay with a total decay of dw = 10−3 and a warmup of
Nw = 100 steps and a decay multiplier of mw = 0.1 over
NT = 3 · 104 total iterations. This gives us the following
formula for the learning rate multiplier for some iteration i:

[
mw + (1−mw) sin

π

2
clip

(
i

Nw
, 0, 1

)]
ei/NT log(dw)

(26)
We initialize the environment map to a constant value

of 0.5. Finally, we upsample the resolution of Ten-
soRF from 323 up to 3003 cube-root-linearly at steps
500, 1000, 2000, 3000, 4000, 5500, 7000, and don’t shrink
the volume to fit the model.

To further reduce the variance of the estimated value of
the rendering equation (see Equation 15), we use quasi-
random sampling sequences. Specifically, we use a Sobol
sequence [36] with Owens scrambling [30], which gives the
procedural sequence necessary for assigning an arbitrary
number of secondary ray samples to each primary ray sam-
ple. We then apply Cranley-Patterson rotation [12] to avoid
needing to redraw samples.

D. Additional Results
Tables 2-5 contain full per-scene metrics for our method

as well as ablations and baselines. Visual comparisons are
also provided in Figures 7-17.

PSNR ↑ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 35.83 18.59 24.40 27.24 23.71 27.51 21.87 17.10 18.02 19.16 24.49 15.25 14.35 18.06
NVDiffRec1 40.13 24.10 27.13 30.77 30.58 26.66 32.03 29.07 25.03 30.72 33.05 31.18 24.53 24.68
NVDiffRecMC1 37.91 21.93 25.84 28.89 29.06 25.57 28.13 26.46 25.64 29.03 30.56 25.32 22.78 18.59
Ref-NeRF2 47.90 25.70 30.82 47.46 34.21 29.68 35.83 36.25 35.41 36.76 37.72 33.91 25.79 30.28
Ours, no integral image 42.61 18.36 25.32 21.70 31.15 24.82 30.35 30.16 25.62 30.03 33.34 28.44 24.04 25.78
Ours, analytical derivative 43.57 21.57 27.72 22.75 31.08 28.61 30.49 30.23 28.70 31.19 33.55 27.83 24.15 25.40
Ours, single bounce 45.23 26.91 30.13 38.38 31.39 34.32 32.57 32.83 30.92 32.49 35.07 29.24 24.99 27.32
Ours, no neural 45.21 25.73 29.03 37.41 30.99 29.63 30.62 31.00 29.37 31.29 33.88 28.10 24.52 26.44
Ours 45.29 27.52 30.28 38.41 31.47 34.38 32.27 32.98 31.19 32.41 35.23 29.24 24.96 27.37

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 3: PSNR Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

SSIM ↑ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 .990 .805 .910 .947 .922 .953 .890 .812 .837 .904 .894 .861 .823 .756
NVDiffRec1 .993 .898 .938 .949 .959 .931 .969 .949 .923 .977 .973 .970 .916 .833
NVDiffRecMC1 .990 .842 .913 .849 .942 .877 .932 .909 .911 .961 .945 .937 .906 .732
Ref-NeRF2 .998 .922 .955 .995 .974 .958 .984 .981 .983 .992 .984 .983 .937 .880
Ours, no integral image .994 .734 .895 .753 .959 .880 .946 .946 .896 .962 .954 .953 .905 .794
Ours, analytical derivative .995 .798 .925 .790 .959 .930 .948 .943 .936 .972 .958 .950 .910 .787
Ours, single bounce .996 .909 .951 .983 .962 .971 .964 .966 .957 .978 .969 .959 .922 .835
Ours, no neural .996 .903 .945 .980 .959 .947 .949 .952 .945 .972 .960 .954 .916 .816
Ours .996 .917 .951 .983 .960 .969 .956 .963 .959 .977 .964 .952 .917 .828

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 4: SSIM Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

LPIPS ↓ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 .022 .194 .091 .179 .150 .089 .122 .208 .182 .108 .163 .144 .188 .343
NVDiffRec1 .022 .180 .057 .194 .097 .134 .027 .037 .104 .033 .038 .030 .070 .208
NVDiffRecMC1 .029 .243 .086 .346 .131 .215 .080 .075 .096 .057 .089 .076 .096 .319
Ref-NeRF2 .004 .095 .041 .059 .078 .075 .017 .018 .022 .007 .022 .019 .059 .139
Ours, no integral image .013 .285 .077 .399 .065 .180 .055 .031 .074 .042 .051 .039 .077 .180
Ours, analytical derivative .011 .235 .053 .353 .071 .118 .052 .031 .048 .028 .047 .043 .075 .190
Ours, single bounce .008 .114 .033 .047 .063 .050 .032 .018 .026 .020 .034 .033 .065 .135
Ours, no neural .008 .115 .039 .058 .071 .090 .053 .026 .036 .027 .045 .036 .070 .161
Ours .010 .104 .034 .046 .069 .055 .044 .024 .026 .022 .046 .044 .068 .149

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 5: LPIPS Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

MAE◦ ↓ teapot toaster car ball coffee helmet chair lego materials mic hotdog ficus drums ship
PhySG1 6.634 9.749 8.844 0.700 22.514 2.324 18.569 40.244 18.986 26.053 28.572 35.974 21.696 43.265
NVDiffRec1 3.874 14.336 15.286 5.584 11.132 20.513 25.023 42.978 26.969 26.571 29.115 38.647 26.512 39.262
NVDiffRecMC1 5.928 11.905 8.357 1.313 18.385 8.131 23.469 42.706 9.132 26.184 26.470 34.324 25.219 41.952
Ref-NeRF2 9.234 42.870 14.927 1.548 12.240 29.484 19.852 24.469 9.531 24.938 13.211 41.052 27.853 31.707
Ours, no integral image 10.078 39.779 28.744 45.998 14.776 28.550 20.594 26.712 27.462 29.956 15.188 36.543 32.118 37.464
Ours, analytical derivative 6.400 21.403 10.685 21.145 15.425 8.800 17.801 26.852 8.960 19.426 14.138 35.505 27.333 36.423
Ours, single bounce 6.343 7.133 7.746 0.722 12.950 2.401 14.285 26.082 8.315 20.004 10.263 37.498 22.358 29.771
Ours, no neural 4.508 10.288 8.388 0.703 14.745 5.320 17.503 28.290 9.549 20.181 13.356 35.298 24.651 30.326
Ours 5.672 6.660 7.742 0.723 13.173 2.395 14.330 25.918 8.101 20.144 10.043 37.405 21.524 30.152

1 requires object masks during training. 2 view synthesis method, not inverse rendering. Red is best, followed by orange, then yellow.

Table 6: MAE Results on the Shiny Blender dataset from Ref-NeRF [41] and Blender dataset from NeRF [27].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 7: Results on the ball scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 8: Results on the coffee scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 9: Results on the teapot scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 10: Results on the toaster scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 11: Results on the materials scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 12: Results on the drums scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 13: Results on the ficus scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 14: Results on the hotdog scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 15: Results on the mic scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 16: Results on the ship scene, compared to NVDiffRec [29] and NVDiffRecMC [17]. Since our method, NVDiffRec,
and NVDiffRecMC do not model refraction, they are not able to handle the water well.

N
ov

el
V

ie
w

N
or

m
al

s
E

nv
ir

on
m

en
t

Ground Truth Ours NVDiffRec NVDiffRecMC

Figure 17: Results on the lego scene, compared to NVDiffRec [29] and NVDiffRecMC [17].

