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ABSTRACT

Semantic associations such as the link between “bird” and “flew” are foundational
for language modeling as they enable models to go beyond memorization and in-
stead generalize and generate coherent text. Understanding how these associations
are learned and represented in language models is essential for connecting deep
learning with linguistic theory and developing a mechanistic foundation for large
language models. In this work, we analyze how these associations emerge from
natural language data in attention-based language models through the lens of train-
ing dynamics. By leveraging a leading-term approximation of the gradients, we
develop closed-form expressions for the weights at early stages of training that ex-
plain how semantic associations first take shape. Through our analysis, we reveal
that each set of weights of the transformer has closed-form expressions as simple
compositions of three basis functions–bigram, token-interchangeability, and con-
text mappings–reflecting the statistics in the text corpus and uncover how each
component of the transformer captures the semantic association based on these
compositions. Experiments on real-world LLMs demonstrate that our theoretical
weight characterizations closely match the learned weights, and qualitative anal-
yses further guide us on how our theorem shines light on interpreting the learned
association in transformers.

1 INTRODUCTION

Large language models (LLMs) based on self-attention have shown strong capabilities in capturing
both factual knowledge and qualitative aspects of the human world (Grattafiori et al., 2024; Yang
et al., 2025; Team et al., 2024; Achiam et al., 2023). This progress has sparked growing interest in
understanding why these models work so well and, in particular, what kinds of internal structures
emerge during training (Engels et al., 2024; Li et al., 2023a; Meng et al., 2022; Cunningham et al.,
2023). Among these structures, semantic associations are especially foundational to language mod-
eling (Harris, 1954; Firth, 1957; Miller & Charles, 1991), as they enable models to connect words
and concepts in ways that support generalization and coherent text generation. While recent studies
have identified specific mechanisms such as induction heads (Olsson et al., 2022), linear seman-
tic relations (Nanda et al., 2023), and topic clustering (Li et al., 2023b), we still lack a principled
account of how semantic associations arise during the training of attention-based transformers.

By semantic associations, we mean the statistical and functional relationships between tokens that
encode meaning—for example, the link between “bird” and “flew”, the interchangeability of “car”
and “truck” in adjectival contexts, or the coupling of “country” and “capital”. These associations
have long been recognized in linguistics under the lens of distributional semantics (Harris, 1954). In
modern transformers, such associations are not explicitly programmed but instead emerge through
gradient-based optimization over large corpora. Understanding how these structures crystallize dur-
ing training is therefore essential not only for connecting deep learning with linguistic theory but
also for developing a mechanistic foundation of representation learning in large language models.

In this work, we develop a theory for the emergence of semantic associations in attention-based
language models trained on natural language data, through the lens of training dynamics. A formal
analysis of training dynamics is attractive as it allows us to rigorously discuss how modern language
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Figure 1: To understand the emergence of associative features, we analyze the training dynamics
of Transformer by focusing on the gradient leading terms for weights, allowing us to identify inter-
pretable basis functions that characterize each weight by their compositions. Empirical validation
confirms that our weight characterizations match the actual ones learned in practical transformers.

models learn features and capabilities. Unfortunately, the training dynamics of transformers are
highly complex, which has led prior work to adopt unrealistic assumptions that diverge from prac-
tice: (1) synthetic structured language (Li et al., 2023b; Yang et al., 2024), (2) simplified model ar-
chitectures without, e.g., positional encoding or residual connections (Tian et al., 2023; Huang et al.,
2025), and (3) non-standard training, such as sequential component-wise training or partially frozen
weights (Bietti et al., 2023; Li et al., 2023b). While these theoretical analyses provide valuable in-
sights, their departures from realistic conditions raise concerns about generalizability to LLMs used
in practice. In contrast, we ground our study in realistic settings by focusing on naturalistic text
distributions and standard attention-based transformers with positional encoding, optimized with a
standard training procedure (Brown et al., 2020). This is essential to minimize the gap between our
theory and practical use.

Our key technical innovation is to analyze transformer training dynamics through the leading term
of an expansion of the gradients for each set of weights. In particular, transformers are known to
acquire many core behaviors early in training–including semantic relations–and persist through con-
vergence (Olsson et al., 2022; Elhage et al., 2021; Nanda et al., 2023). This makes the early phase
not only empirically important but also analytically tractable. During this stage, gradient updates ad-
mit a closed-form approximation: the leading terms dominate parameter updates before higher-order
corrections accumulate. Leveraging this, we show that the learned weight matrices (including the
output matrix, value matrices, query-key matrices) can be expressed as simple compositions of three
basis functions: a bigram mapping, which captures next token dependencies; an interchangeability
mapping, which reflects functional similarity across tokens (e.g., synonyms or shared grammatical
roles); and a context mapping, which encodes longer-range prefix–suffix co-occurrence.

Through experiments on a natural language dataset, we verify that the learned weights in an
attention-based transformer model closely match our theoretical closed-form expressions, and fur-
ther demonstrate that this holds even beyond the early stage. We also show rich qualitative examples
of how each weight component of the transformer captures the actual word-wise semantic asso-
ciations characterized by our theorem. Furthermore, we verify that our theoretically characterized
features are correlated with the behavior of real-world language model. Figure 1 depicts an overview
of our analysis, and we summarize our contributions as follows:

1. We present the first explicit characterization of weights in attention–based transformers
trained on real-world text corpora under the next-token prediction loss;

2. We interpret the features learned in weights as compositions of bi-gram, interchangeability,
and context mappings, and then show how these basis functions capture semantic associa-
tion across words;

3. We finally validate our theoretical interpretation on both self-attention models and practical
LLM, demonstrating the generality and relevance of our theorems.
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2 RELATED WORKS

Understanding feature emergence of Transformer. Many works have considered the training
dynamics of transformers under controlled settings to interpret their feature learning (Tian et al.,
2023; Bietti et al., 2023; Nichani et al., 2024; Kim & Suzuki, 2024). A line of them investigates how
low-level associative features, such as bigram structure (Bietti et al., 2023), cyclic structure (Huang
et al., 2025), and co-occurrence (Tian et al., 2023; Yang et al., 2024), are learned from data. There
are also multiple works that analyze how high-level capabilities, such as chain-of-thought (Kim &
Suzuki, 2025), topic clustering (Li et al., 2023b; Jiang et al., 2024), reasoning or memorization (Yao
et al., 2025), and in-context learning capability (Nichani et al., 2024; Bietti et al., 2023; Wang
et al., 2024a; Kim & Suzuki, 2024; Edelman et al., 2024), are obtained during training. Although
insightful, they often assume structured or abstract language data (Li et al., 2023b; Nichani et al.,
2024; Yang et al., 2024), unrealistic model architecture (Tian et al., 2023; Cui et al., 2024; Troiani
et al., 2025), and adjusted training strategies far from practice (Bietti et al., 2023; Kim & Suzuki,
2024; Huang et al., 2025), which depart from reality. In contrast, our theoretical analysis is grounded
in natural language data, realistic architecture, and a standard training strategy. As a result, our
theory substantially reduces the gap between formal analysis and practical use, which is further
corroborated by our empirical validations.

Understanding feature learning beyond Transformer. Recent work has also explored how mod-
els learn data-dependent features through dynamics for non-transformer models as well (Dandi
et al., 2023; Ba et al., 2022; Mousavi-Hosseini et al., 2023). However, this line of work similarly
considers abstractions of language, such as Gaussian data (Ba et al., 2022), single or multi-index
models (Damian et al., 2024; Dandi et al., 2023), or spiked models (Wang et al., 2024b; Mousavi-
Hosseini et al., 2023), and considers measures of data complexity with Hermite expansions (Bietti
et al., 2022; Damian et al., 2024; Lee et al., 2024). On the contrary, we adopt a realistic theoretical
setup to analyze features in transformers, which remains the dominant architecture in practice.

3 PRELIMINARY

3.1 PROBLEM STATEMENT

Semantic associations are foundational for language models: they enable models to go beyond mem-
orizing sequences and instead generalize across contexts (Hinton, 1984), infer latent structure (Wu
et al., 2018), and generate coherent text. Despite their importance, the mechanisms by which trans-
formers acquire these associations during training remain poorly understood. Towards a mechanistic
and theory-grounded interpretation of LLMs in a more realistic setup, we pose the question:

How do semantic associations emerge during the training of attention-based
language models on natural language data?

It is worth noting that we focus here on general natural language data, rather than synthetically
structured or abstractive language, which has been considered in previous works (Yang et al., 2024;
Nichani et al., 2024; Huang et al., 2025). This is essential to minimize the gap between our theory
and practical use, since real-world text is highly diverse and is not restricted to a specific structure.
In addition, prior studies (Olsson et al., 2022; Elhage et al., 2021; Nanda et al., 2023) have shown
that critical semantic and reasoning abilities, such as induction heads and linear semantic relations,
can already emerge in the early stage and be preserved through convergence. This makes the early
stage of training a natural and necessary focus for theoretical analysis, which we now develop.

3.2 MODEL ARCHITECTURE

Prior works have analyzed the training dynamics of attention-based models under simplifying as-
sumptions, such as restricting attention to low rank (Cui et al., 2024), removing causal mask-
ing (Tian et al., 2023; Yang et al., 2024), without positional encodings (Bietti et al., 2023) or residual
streams (Huang et al., 2025). In line with Nichani et al. (2024), we study an attention-based architec-
ture that retains these components: positional encodings, causal masking, and residual streams. To
further align with practice, we employ a relative positional encoding scheme, as in T5 (Raffel et al.,
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2020), rather than augmenting embeddings with absolute position vectors. We begin by introducing
the necessary notation before formally defining the transformer computation.

Let V = {e1, ..., ej , ..., e|V|} denote the set of vocabulary. For an input sequence of length T , we
represent the input as a matrix X ∈ RT×|V|, where each row of X is the one-hot encoding of the
t-th token in the sequence. In an L-layer transformer, the parameters associated with self-attention
are given by {W(l),P(l),V(l)}Ll=1 together with WO, where W(l) ∈ R|V|×|V| is the key–query
matrix of layer l, V(l) ∈ R|V|×|V| is the value matrix, P(l) ∈ RT×T is the learned relative positional
encoding, and WO ∈ R|V|×|V| is the output matrix. The model with input X is defined as follows.
Definition 3.1 (Attention-Based Transformer). Given an input matrix X ∈ RT×|V|, the L-layer
attention-based transformer with parameters Θ = {W(l),P(l),V(l)}Ll=1 ∪ {WO} is defined as

FΘ(X) = h(L)WO, (1)
where hL is defined by the recurrence relation, i.e.,

h(l) = h(l−1) + S(Mask(h(l−1)W(l)h(l−1)⊤ + DM(P(l))))h(l−1)V(l) and h(0) = X, (2)
here S(·) represents the softmax function, DM(v) maps the ith element of v to the (−i+1)th subdi-
agonal, and Mask(·) denotes the operator of attention mask. This architecture is in line with Nichani
et al. (2024), and recent work shows that self-attention–only models can match the performance of
architectures with MLP layers (Wang et al., 2025).

3.3 TRAINING SETUP

Learning objective. To align with standard language modeling practice and ensure comparability
with prior works (Huang et al., 2025; Nichani et al., 2024), we adopt the standard cross-entropy
objective: given N input matrices X1, ...,XN with sequence length T and corresponding output
matrices Y1, ...,YN , where Yi ∈ RT×|V|, the objective function is defined as

L(Θ) =
−1

NT

N∑
i=1

T∑
t=1

logS(Fθ(Xi)
[t])Y

[t]⊤
i , (3)

where M[t] denotes the t-th row of a matrix M and Y
[t]
i corresponds to the one-hot embedding for

the t+ 1-th token of the sequence corresponding to Xi.

Gradient descent. We analyze the evolution of the parameters under full-batch gradient descent
with a constant learning rate η. Under gradient descent, the parameters are updated as follows:

Θ(t) = Θ(t− 1)− η∇ΘL(Θ). (4)
Due to the nonlinear complexities of the gradient, deriving an exact form for even one of the weight
matrices after t steps is challenging. We address these challenges by considering a leading-order
approximation technique, allowing for a closed-form expression of the gradients and weights while
yielding a close approximation of the full gradient.

4 THEORETICAL ANALYSIS

In Section 4.1, we provide theorems demonstrating that the weights of attention-based transformers
remain close to their gradient leading terms for O(1/η) steps under both zero and Gaussian initial-
izations. Then, Section 4.2 uncovers how three basis functions, which are crucial to express token
associations and language structure, are encapsulated in those gradient leading terms, and how these
three functions are compounded to shape the desiderata of the transformers’ weight matrices.

4.1 MAIN THEOREMS

Under the setup described in Sec. 3, we obtain the following results for attention-based transformers.
Theorem 4.1. (Informal) Given an attention-based transformer (Def. 3.1) under sufficiently small
Gaussian initialization, with L ≤

√
T/4, after s gradient descent steps with learning rate η ≥ 1

T , if
s ≤ η−1 min( 5

8
√
T
, 1
12L ), then for all layers l = 1, . . . , L,∥∥WO − sηB̄

∥∥
F
≤ 3s2η2, (5)
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Figure 2: Illustration of theoretical results. We characterize weight matrices of the attention-only
transformer as compositions of three basis functions: bigram mapping, interchangeability mapping,
and context mappings. We illustrate how these mappings are composed across weight matrices to
learn semantic associations between a given query token and its surrounding text.∥∥∥∥V(l) −

(
s

2

)
η2Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 12s3η3, (6)∥∥∥∥W(l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4Q̄

∥∥∥∥
F

≤ 13s5η5T, (7)∥∥∥∥P(l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4∆

∥∥∥∥
F

≤ 13s5η5T, (8)

where ∥ · ∥F is the Frobenius norm, B̄ corresponds to a bigram statistic, Φ̄ corresponds to a context
co-occurrence statistic, Q̄ corresponds to a token-to-token correlation based on a composition of B̄
and Φ̄, and ∆ corresponds to a relative position correlation based on the same feature as Q̄.

The above Theorem shows that any finite-depth L-layer attention-based transformer (Def. 3.1) has
the same characterization for its weights uniformly across all layers under a zero-initialization (The-
orem D.9) and a small Gaussian initialization (Theorem 4.1), suggesting that all layers of the model
capture common associative features from natural language as a starting point before evolving differ-
ently as training progresses (Figure 6). As seen in Figure 2, compositions of these features form the
leading terms of the output matrix (B̄), value matrix (Φ̄B̄⊤), and query-key matrix (Q̄). We walk
through these matrices in Section 4.2.1 and how they form the weights of the model in Section 4.2.2.
The formal theorem and proofs are in Appendix D.

4.2 INTERPRETATION OF THEOREMS

In the previous section, we showed that the model parameters can be approximated by key corpus
statistics B̄, Φ̄, Q̄ and ∆. Now, we discuss the definitions of these statistics by first introducing
three basis functions and explaining how their composition characterizes the model’s behavior.

4.2.1 THREE BASIS FUNCTIONS SHAPING ASSOCIATIVE FEATURES

(1) Bigram mapping B̄. The (i, j)-th element in B̄ij corresponds to a correlation between token
ei and token ej based on how likely ei is to be directly followed by ej as a bigram. More precisely,

B̄ij = Pt(ei)Pt(ej |ei)− Pt(ei)/|V|, (9)
where Pt(ei) is the relative frequency of ei over all tokens in the dataset X1, ...,XN and Pt(ej |ei)
is the relative frequency of ej given that the previous token was ei. The product between Pt(ei)
and Pt(ej |ei) forms an estimate of the likelihood of ei followed by ej appearing as a bigram and
the second term −Pt(ei)/|V| simply acts as a centering term such that each row sums to 0.

(2) Interchangeability mapping ΣB̄. We study ΣB̄ = B̄⊤B̄, the correlation matrix of B̄, which
captures correlations between pairs of tokens based on a frequency-weighted similarity of their
previous-token distributions. From Eq. (9), the (i, j)-th element of ΣB̄ can be represented as

Pt(ei)Pt(ej)︸ ︷︷ ︸
Frequency weighting

|V|∑
k=1

Pt(e
←
k |ei)Pt(e

←
k |ej)︸ ︷︷ ︸

Previous token similarity

. (10)

5
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In essence, Eq. (10) shows that ΣB̄ captures a symmetric relationship between tokens based on
how similar of a function or role they play across different contexts. Specifically, in Eq. (10), we
can see that the corresponding row, which acts as a feature for token ei captures its associations
with interchangeable tokens captured by the previous token similarity factor and frequent tokens
captured by the frequency weights. Similarities in previous token distributions are an indicator
of functional similarities or interchangeability, as this captures structural patterns such as nouns
being preceded by articles or adjectives and objects being preceded by common descriptors. This
interchangeability map, ΣB̄, acts a building block of characterizations for the weights W(l) and
P(l) as illustrated in Figure 2. We depict a simple example of a word-wise correlation captured by
ΣB̄ in Figure 1.

(3) Context mapping Φ̄. The (i, j)-th element of Φ̄ corresponds to a correlation between token
ei and ej based on how likely ej is to appear as a prefix of ei. This can be written as

1

T

T∑
k=1

1

k

k∑
m=1

Pt(the k + 1 -th token is ei, the m -th token is ej)− µj , (11)

the pond contains fish

7
24

4

Figure 3: An example of Φ̄ with
arrows pointing to prefix tokens
for “fish” with context summary
scores on edges. Larger values in-
dicate the token appears more fre-
quently in the context of “fish”.

where µj centers the columns of Φ̄ to be 0. Considering each
row as an embedding for a token ei, which represents an av-
erage of the tokens that appear in its context, i.e., smoothed
context.

More precisely, the strength of the association from token ei
to ej is determined by the average probability that ej appears
in the context of ei over possible positions of ei and ej . This
matrix can be interpreted as assigning a representation to a to-
ken based on a summary of the possible contexts that token
ei appears in. This allows for learning associations between
words that capture richer semantic relationships than bigram
features. For example, we could expect to see correlations be-
tween animal and habitat, country and capital, or emotions and facial expressions (See Figure 3).
This context mapping Φ̄ is a core building block of the gradients for the query-key attention W(l)

and value V(l) matrices as shown in Figure 2.

4.2.2 COMPOSITION OF BASIS FUNCTIONS FOR SEMANTIC ASSOCIATION

We now show how these three basis functions, bigram mapping B̄, interchangeability mapping ΣB̄,
and context mapping Φ̄, are compounded to characterize four classes of weight matrices of the
transformer.

(1) Output matrix WO. As shown in Eq. (5), B̄ is the leading term of WO, and thus the mapping
from embedding vectors to output predictions can be understood by examining the matrix product
eiB̄ for a token embedding ei. The j-th element of the resulting output vector is B̄ij , and each B̄ij

includes a factor of Pt(ei). This implies that tokens are scored according to how frequently they
occur in the average next-token distribution of ei, and explain how models at early stages effectively
learn bigram-like patterns.

(2) Value matrix V(l). The leading term of the value matrix V(l) can be expressed as Φ̄⊤B̄⊤ as
noted in Eq. (6), which acts as a composition of a context summary and bigram mapping. Because
Φ̄⊤ captures longer-term dependencies and B̄⊤ captures only bigram statistics, the resulting em-
bedding from V(1) still endows the original token representations with semantic properties similar
to those of Φ̄⊤ as seen in Figure 2.

(3) Attention matrix W(l). Theorem 4.1 characterizes the attention weight (a shared query-key
matrix) as Q̄, which is constructed as a composition of ΣB̄, Φ̄, the input matrix Xi, the output ma-
trix Yi, etc. We note that this compound feature captures a token-to-token correlation determined
by how predictive one token is of the other’s next-token distribution based on the context and inter-
changeability mappings. We walk through an overview of the construction of Q̄ in three steps (See
Appendix A for details).

6
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1. Input-output matching scoring in context. As a preliminary step, we first define a composed
feature ΣB̄Φ̄ by multiplying the interchangeability mapping ΣB̄ with the transpose of the
context mapping Φ̄. This composition utilizes local interchangeability to map a token to a
class of similar tokens and utilizes the context mapping to capture longer-range semantic
correlations shared by the set of similar tokens. Using this feature, for each sample, we
assign scores between each input and output token.

2. Masking and centering. The auto-regressive constraint is enforced by masking future to-
kens, keeping only scores from input tokens that precede the output token. Then, the re-
sulting scores for each output token are centered and normalized based on its position.

3. Next-to-query shift and averaging. The scores between each input and output token are
then shifted so that the same score is assigned instead to be between the input token and the
token directly preceding the output token. Then, the scores are averaged across all samples.

(4) Positional encoding P(l). The closed-form characterization ∆ of the positional encoding P(l)

follows a very similar composition to Q̄, with the main difference being that the correlations are
mapped to positional differences rather than to the vocabulary-space differences (See Lemma D.1).

4.2.3 HOW THE WEIGHTS COOPERATE

To illustrate how the weights work together and provide further context on the role of each of the
weights as functions, we consider the leading-term computation of a single-layer attention-based
model. Dropping constant factors to focus on the interactions between features, the leading terms of
the entire model computation can be written as(

S
(
Mask

(
XQ̄X⊤ + DM(∆)

))
XΦ̄⊤B̄⊤ +X

)
B̄. (12)

We can further decompose this into XWO and the computation from the self-attention block is:

S
(
Mask

(
XQ̄X⊤ + DM(∆)

))
XΦ̄⊤ΣB̄. (13)

Q̄ and ∆ capture correlations between two tokens or two positions based on how predictive the first
token/position is of the next-token distribution of the second token/position according to (Φ̄⊤ΣB̄)

⊤.
Notice that the attended tokens are mapped to the output space by Φ̄⊤ΣB̄, the same feature that
determines the correlations for attention. As a result, the self-attention block effectively attends to
tokens that, under the value and output matrix projection, lead to better next-token prediction. Thus,
we find that while the residual stream XiWO provides an average prediction of the next token, Q̄
enables the model to refine this prediction by selectively focusing on tokens most indicative of the
next-token given its current parameters, those capturing corpus association statistics.

Implication. By considering an end-to-end analysis of the model under simultaneous train-
ing of layers and by decomposing the weights, we obtain a clear interpretation of how differ-
ent components collaborate to form semantic representations and can rigorously contextual-
ize the function of each component in the full computation of attention-based transformers.
While these features only yield small changes in the actual text output, they provide impor-
tant insight into how the model’s behavior develops during training. For example, if early
training already associates fish with pond (as in Figure 3), we expect such relationships to
be a useful anchor for later training, allowing the model to complete more complex sen-
tences, e.g., “A pond in the garden was filled with colorful fish that sparkled in the sunlight”,
coherently with learned semantic associations.

5 EXPERIMENTS

5.1 3-LAYER ATTENTION-BASED TRANSFORMER

We begin with an experimental setting designed to closely mirror our theory, enabling direct veri-
fication of results and analysis of the semantic relationships embedded in the learned weights. For
clearer interpretability, we use the TinyStories dataset (Eldan & Li, 2023), truncated to the 3,000
most frequently occurring words, which also defines the model’s vocabulary. A 3-layer self-attention
model defined in Definition 3.1 is then trained with sequence length T = 200.

7
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Table 1: Minimum cosine similari-
ties between theoretical and actually
learned weights across all epochs. Re-
sults from a 3-layer attention-based
model trained on TinyStories (small η).

Weights Min. Cosine

Attention 0.999496
Value 0.999169

Output 0.998486
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Figure 4: Cosine similarity between theoreti-
cal and learned weights. Results from a 3-layer
transformer model trained on TinyStories.

Verification of theory. To verify Theorem 4.1, we measure the cosine similarity between the learned
weights and their corresponding leading terms at checkpoints over the first 100 epochs of SGD
using a batch size of 2048 for computational tractability with a learning rate of 0.005. We also
consider the cosine similarity between the learned weights and their leading terms when using a
larger learning rate of 0.05 to understand how features evolve at later stages with respect to the
leading term gradients. We provide results for both settings in Table 1 and Figure 4. The results show
that the learned weights maintain strong agreement with the theoretical predictions: even after 30
epochs, all weights achieve a cosine similarity of at least 0.9. Moreover, all parameter matrices have
a cosine similarity above 0.7 even after 100 epochs where the loss had dropped from 8.00 to 5.35.
These findings suggest that the features predicted by the theorem not only characterize the model
dynamics during the early stage, but also remain informative well beyond it. We provide results for
a BPE tokenization and for a causal analysis in Appendix B, and we elaborate experimental details
for the TinyStories experiments in Appendix C.
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(a) Examples for B̄
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ran
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took

(b) Examples for ΣB̄

fish

fish
big
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water
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garden
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pretty
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field

birds

bird
tree
up

park
nest

flowers
tweety

sky
flew

(c) Examples for Φ̄

Figure 5: Selected tokens from the top 30 correlated tokens under different basis features from
TinyStories. The characterized features actually capture both grammatical and semantic structures.

Semantic structure. To validate our interpretation of associative features, we collect for each
token the top 30 most correlated tokens under each of the basis functions: the bigram mapping
(B̄), interchangeability mapping (ΣB̄), and context matrix (Φ̄), constructed from the TinyStories
corpus. We provide examples of tokens where the expected semantic relationships can be observed
in Figure 5. Under B̄, we see that the word “red” is correlated with common objects such as “truck”
that would be described by the word “red”. Under Φ̄, we can see that the word “fish” is correlated
with common settings where fish would appear such as “pond” or “lake”.

5.2 TRANSFORMERS IN PRACTICE

Setup. To evaluate how well our theoretical results extend to practical LLMs, we analyze token
relationships learned from OpenWebText (Gokaslan et al., 2019), a real-world large-scale dataset
with text from millions of webpages, in Pythia-1.4B (Biderman et al., 2023) and compare them with
our theoretical predictions, examining how these relationships evolve across layers on datasets and
models reflecting real-world complexities. We choose the Pythia model family, as they are open-
sourced and uniquely provide access to intermediate checkpoints, enabling fine-grained analysis of
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training dynamics and interpretability (Marks et al., 2024; Gallego-Feliciano et al., 2025). Unlike
our theoretical setting, Pythia includes additional components such as MLP and multi-head attention,
making it impossible to directly read off average token correlations from the weights. In order to
interpret the layer-wise representations in terms of token-token correlations, we perform the analysis
through the following steps:

1. We pass in each token ei as the input to the transformer.

2. For each token and from each layer l, we collect the following embeddings: the input to
layer l hi,l,pre, the output of layer l hi,l,post, and the output of layer l without the MLP
component hi,l,attn.1

3. The embeddings hi,l,pre form the rows of El,pre ∈ R|V|×d which represents a mapping
from the input embeddings of layer l to tokens. Similarly, the embeddings hi,l,post and
hi,l,attn form the rows of El,post ∈ R|V|×d and El,attn ∈ R|V|×d respectively.

Attention correlations. To analyze the correlations captured by the attention weights at each layer,
we compute the product of the key and query mappings for each head and average these products,
which we will call Al,emb ∈ Rd×d. We then multiply the mapping El,pre on both sides of Al,emb to
convert the average attention mapping into a token-basis attention weight matrix Al,tok. Finally, we
consider token correlations captured by Al,tok by using its covariance matrix, which we compare
with the covariance matrix of Q̄, the leading-order attention mapping term from our theorem.

Embedding correlations. To analyze the correlations captured by the value mapping and the
MLP, we consider the token-token correlations captured by the output of each layer. Utilizing the
covariance matrix of El,post allows for direct comparison with the covariance matrix of the leading
value matrix term Φ̄⊤B̄⊤, since the matrices themselves have different dimensions. Furthermore,
this enables us to control for shifts in the embedding space.

Comparison methodology. We compute the leading term matrices using 100K samples from
OpenWebText. To control for differences in model architecture, we normalize each row of the
leading term weights to have unit norm. Then, we compute cosine similarities between the corre-
sponding covariance matrices across layers and across checkpoints. We perform the same analysis
on the FineWeb (Penedo et al., 2024) dataset and provide results in Appendix B. More details on the
experimental setup are in Appendix C.

1 2 4 8 16 32 64 12
8

25
6

51
2

Training Step

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

La
ye

r N
um

be
r

Attention Mapping Cosine Similarity

1 2 4 8 16 32 64 12
8

25
6

51
2

Training Step

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

La
ye

r N
um

be
r

No MLP Embedding Cosine Similarity

1 2 4 8 16 32 64 12
8

25
6

51
2

Training Step

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

La
ye

r N
um

be
r

Embedding Mapping Cosine Similarity

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e 

Si
m

ila
rit

y
Cosine Similarity Across Checkpoints

Figure 6: Cosine similarity between covariance matrices for Pythia-1.4B attention weights and em-
beddings and the corresponding leading term features based on OpenWebText.

Results. We provide a visualization of results in Figure 6, where we can see that, at the early stage
of training, there is very strong agreement between the Pythia embeddings and our leading-term
features. We can see that for the embedding mapping, the token representations strongly match
our theoretical analysis across all layers, and similarly for the attention weights, excluding only
the first layer. We can see that as the model continues training, the weights gradually drift from
fixed associative features to represent richer knowledge beyond association, starting with the earlier
layers. However, it still maintains these features to a large extent for relatively longer steps. This
suggests that our analysis on attention-based models generalizes with the addition of multi-head
attention or MLP and act as a starting point for a finer-grained analysis of full training dynamics.

1We remind the reader of each layer’s structure in the Pythia model. The input is normalized and then passed
into the attention block and the MLP block in parallel. Then the outputs of each are added to the original input.
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MLP ablation. We perform an ablation at each layer by performing the embedding correlation
analysis using El,attn, which is based on only the output of the attention block and excludes the
MLP component. The results for this analysis can be seen in the middle plot of Figure 6. We
can see that the correlations captured by embeddings with and without the MLP are similar except
at the first layer. This suggests that at the first layer, the MLP maps tokens to embeddings with
structures similar to that of the leading-order value matrix term and maintains a similar structure at
later layers. Based on these initial results, one possible hypothesis is that the MLP at early stages
functions similarly to the leading-term value mapping.

Individual attention heads. In order to capture a fine-grained understanding of the attention
block, we perform the analysis on attention correlations using individual attention heads. We per-
form this analysis at an early (Layer 2), middle (Layer 13), and late layer (Layer 24) to also under-
stand how heads may evolve differently at different stages of the model. In Figure 7, we find that
different layers evolve differently with respect to the gradient leading-term for attention mappings.
The earlier layers learn the leading-term features at a slower rate, as seen by the high similarity
(red) appearing at later steps, especially for layer 2. We can also see that layer 13 exhibits faster
specialization of attention heads than the other layers, as seen by the high variance in each column
at later steps for layer 13. This provides insight into the rate of specialization of attention heads and
suggests that intermediate layers are where specialization initially occurs.
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Figure 7: Cosine similarity between covariance matrices for Pythia-1.4B individual attention head
weights and the corresponding leading term features based on OpenWebText.

6 CONCLUSION

We present new theoretical results on the emergence of semantic associations in self-attention mod-
els learned from a natural language dataset. Our gradient leading term analysis for each model
weight illuminate how the core basis functions that shape the associative features, i.e., bigram map-
ping, interchangeability mapping, and context mapping, develop from the training corpus. We show
that transformer weights have closed-form expressions as compositions of those basis functions
to represent semantic associations across natural language tokens. The extensive analyses on the
weight matrices’ characterizations grounded by empirical supports from toy transformers and real-
world LLMs contribute to the theoretical foundations of representation learning in transformers
while also opening pathways for interpretability research: discovering common factors that allow
weight matrices across components to be decomposed into simple functions of those shared factors;
leveraging theory to formulate broad hypotheses about how concepts arise in models, extending
beyond individual mechanisms or specific behaviors.

ETHICS STATEMENT

We provide a novel theorem that characterizes the roles of weights in the transformer model, which
is a de facto standard building block of modern LLMs. We try to uphold high standards of scien-
tific excellence by making minimal assumptions for theoretical analysis while providing practical
implications on mechanistic interpretability. The new insights on emerging features we presented
contribute to a better understanding and diagnosis of the representation learning of transformers,
which makes a big step towards transparent and reliable AI. As our study considers a setup of train-
ing from scratch on public datasets, there is no direct privacy issue and harm. The authors also
acknowledge and respect the ethics of confidentiality and fairness, and confirmed that there are no
identified violations of them.
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REPRODUCIBILITY STATEMENT

All the theoretical analyses in this work are accompanied by full proofs with detailed step-by-step
explanations (in the Appendix) for easy verification, reproduction, and reuse. We not only elabo-
rate full details of hyperparameters and setup in the main body of the paper for all the empirical
validations, but also will provide implementation code to maximize transparency. In addition, our
choice of LLM backbone models pursues both (1) the ethics of fairness so that relatively low-funded
labs can also try to run our experiments and (2) maximum reproducibility, given its simple and fully
open-sourced configurations.
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A DETAILED DESCRIPTION ON WEIGHT CHARACTERIZATION

The token-to-token correlation captured by Q̄ is determined by how strongly correlated one token is
with the other’s next-token distribution. These correlations are captured by Qi where each element
Qijk of Qi measures for Xi, the correlation between the token at position j and the token at position
k + 1. This correlation between the token at position j and position k + 1 gets mapped back to a
correlation between the tokens at positions j and k through X⊤i QiXi. let Qi given in Eq. (16) be
the per-example correlation matrix computed from input–output token pairs in ith input,

Q̄ =
1

NT

N∑
i=1

X⊤i QiXi. (14)

We walk through an overview of the construction of Qi in four steps and provide the detailed com-
putation in Appendix A.

Feature composition. As a preliminary step, we first define a composed feature ΣB̄Φ̄ by multiply-
ing the interchangeability mapping ΣB̄ with the context mapping Φ̄. Each entry corresponds to the
average product of path weights from token ei to ej with one step on ΣB̄ and one step on Φ̄. This
composition utilizes local interchangeability to map a token to its more general functional class and
utilizes the context-summary to capture longer-range semantic correlations shared by tokens in the
functional class. We will refer to the resulting feature as the composed feature for simplicity in the
remaining steps.

Scoring input–output pairs. For each input Xi and its corresponding output Yi, we utilize the
composed feature, ΣB̄Φ̄, to compute correlation scores between input and output tokens as seen in
Figure 2.

(Yi −UO)ΣB̄Φ̄X⊤i , (15)

where UO is a baseline matrix with all elements set to 1/|V|. This assigns a correlation score to
each input–output token pair according the composed feature.

Masking and centering. The auto-regressive constraint is enforced by masking future tokens, keep-
ing only scores from input tokens that precede the output token. The resulting scores for each output
token are centered and normalized based on its position. matrix is then centered so that the scores
for each output token sum to zero, yielding the per-example matrix Qi.

Qi = eintjk, tk→tj

(
Ji, (Yi −UO)ΣB̄Φ̄X⊤i

)
, (16)

where Ji is the masking operator and ein denotes an Einstein summation.

Next to Query Mapping. Lastly, the scores between each input and output token are then mapped
to be the correlation between the input token and the token preceding the output token. In this way,
the model learns to attend to the input token when it expects the next token to be the output token.

Aggregation across the dataset. Finally, we map per-example correlations back to the vocabulary
space and average over all N inputs and T tokens per input:

Q̄ =
1

NT

N∑
i=1

X⊤i QiXi. (17)

In this way, each token is associated with the average correlations to other tokens across the dataset.

B ADDITIONAL EXPERIMENTS

BPE tokenization. We train a 3-layer attention-based model on TinyStories as in Section 5.1 using
a BPE tokenization with vocabulary size of 10,000. We train the model for 10 epochs with a learning
rate of 0.005 and measure the cosine similarity between the theoretical and actual weights. We report
the minimum over the 10 epochs in Table 2.
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Weights Min. Cosine

Attention 0.999914
Value 0.998800

Output 0.997891

Table 2: Minimum cosine similarities between theoretical and actually learned weights across all
epochs. Results from a 3-layer attention-based model trained on TinyStories and with a BPE tok-
enization.

Causal intervention. We aim to understand how the model output changes when removing the
leading terms from each of the weights. We perform this analysis on the 3-layer attention-based
transformers trained on TinyStories with a learning rate of 0.05. Unlike most causal intervention
settings, the features considered have a general function rather than a specific function applicable
to a narrower setting, and therefore, we expect removing the leading terms to result in performance
degradation across the dataset. As a result, we choose to focus on the extent to which the output
distribution changes when the leading term component is removed for each weight matrix. For
each weight matrix, we remove the projection of the weight matrix onto its corresponding leading
term. After removing this projection, we compute the loss of the resulting model on the dataset. We
provide the results of this intervention in Table 3. We can see that the output layer has the largest
effect on the loss, while the attention weights have the least. This behavior is predicted by the theory
as the output layer has the largest order update, while the attention weights have the smallest order
updates.

Weights Loss

Original 5.349
Attention Layer 0 5.350
Attention Layer 1 5.352
Attention Layer 2 5.361

Value Layer 0 6.192
Value Layer 1 6.526
Value Layer 2 6.520

Output 8.287

Table 3: Loss of the attention-based model on TinyStories after the leading term component from
each weight matrix is removed. The first row corresponds to the original model.

Validation on additional dataset. We perform the analysis in Section 5.2 on the token-token
correlations captured by embeddings in Pythia-1.4B except instead of using OpenWebText, we use
FineWeb (Penedo et al., 2024). We provide the results in Figure 8 where we see very similar results
as with OpenWebText.
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Figure 8: Cosine similarity between covariance matrices for Pythia-1.4B attention weights and em-
beddings and the corresponding leading term features based on FineWeb.
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C EXPERIMENTAL DETAILS

TinyStories Experiments We collect the vocabulary from TinyStories treating each word, punc-
tuation mark, or number as a token and use the 3000 most common tokens. We then filter out
samples that include tokens outside of the set of 3000. For training, we use 65536 of the filtered
samples with sequence length at least 201 and truncate all sequences to 201 tokens for training
and computing theoretical leading terms. For the BPE tokenization, we tokenize the dataset using
a vocabulary size of 10,000, and for training, we use samples with sequence length at least 201
and truncate all sequences to 201 tokens for training and computing theoretical leading terms. We
compute the theoretical matrices using the first batch.

Pythia Experiments We use the first 100k samples of OpenWebText/FineWeb with length at least
512 characters to perform the analysis.

We utilize 4 A100 GPUs with 80GB of memory. These experiments can be performed with less
compute by reducing batch size or sequence length.

D PROOFS

∥·∥ will be the operator norm unless denoted otherwise.

D.1 PROOF OF 1-LAYER THEOREM

Lemma D.1 (General Gradient Form). Under the setting described, we have that

∂L
∂WO

=
−1

NT

N∑
i=1

h
(1)⊤
i Ri (18)

∂L
∂V (1)

=
−1

NT

N∑
i=1

XiA
(1)⊤
i R⊤i W

⊤
O (19)

∂L
∂W (1)

=
−1

NT

N∑
i=1

X⊤i eintjk,tk→tj(Ji, (RiW
⊤
O V (1)⊤X⊤i ))Xi (20)

∂L
∂P (1)

=
−1

NT
eintjk,jk→t

(
D,

N∑
i=1

eintjk,tk→tj(Ji, (RiW
⊤
O V (1)⊤X⊤i ))

)
(21)

where A
(1)
i = S(Mask(XiW

(1)X⊤i + P (1))), Ri = Yi − S(Fθ(Xi)), Ji ∈ RT×T×T with Ji,t =

Diag(A(1)[t]
i ) − A

(1)[t]⊤
i A

(1)[t]
i being the Jacobian of the softmax function for the tth token in the

sequence, D ∈ RT×T×T with Dt being a matrix with ones along the (−t + 1)th sub-diagonal and
zeros elsewhere, and ein is used to denote an Einstein summation.

Proof. We start by considering the derivative of the loss with respect to Fθ(Xi)
[t] which is

Y
[t]
i − S(Fθ(Xi)

[t]) (22)

and derivative of Fθ(Xi)
[t] with respect to WO is h(1)[t]

i . Then it follows that

∂L
∂WO

=
−1

NT

N∑
i=1

h
(1)⊤
i Ri (23)

Now, we consider the gradient with respect to V (1) using the chain rule which gives

∂L
∂V (1)

=
−1

NT

N∑
i=1

XiA
(1)⊤
i R⊤i W

⊤
O (24)
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Now, we consider the gradient with respect to A
(1)
i as an intermediate step towards the gradient with

respect to W (1), P (1). Using the chain rule as before, we have

∂L
∂A

(1)
i

=
−1

NT

N∑
i=1

RiW
⊤
O V (1)⊤X⊤i (25)

Letting B
(1)
i = XiW

(1)X⊤i + P (1), we have that the derivative of A(1)[t]
i with respect to B

(1)[t]
i is

Ji,t = Diag(A(1)[t]
i )−A

(1)[t]⊤
i A

(1)[t]
i (26)

Then, in order to get the gradient of the loss with respect to B
(1)
i , we need to consider the contribu-

tion from each t resulting in the Einstein summation

∂L
∂B

(1)
i

=
−1

NT

N∑
i=1

eintjk,tk→tj(Ji, RiW
⊤
O V (1)⊤X⊤i ) (27)

From the chain rule, we can derive the gradient with respect to both W (1) and P (1).

∂L
∂W (1)

=
−1

NT

N∑
i=1

X⊤i eintjk,tk→tj(Ji, RiW
⊤
O V (1)⊤X⊤i )Xi (28)

∂L
∂P (1)

=
−1

NT
eintjk,jk→t

(
D,

N∑
i=1

eintjk,tk→tj(Ji, RiW
⊤
O V (1)⊤X⊤i )

)
(29)

where Dt has ones along the (−t + 1)th sub-diagonal and zeros elsewhere. This completes the
proof.

Lemma D.2 (Softmax Jacobian Norm). The norm of the Jacobian of the softmax function applied
to a vector with i elements unmasked is at most 1/

√
i.

Proof. If v is the masked vector before softmax is applied, then the Jacobian as S(v)j(1 − S(v)j)
as the jth element on the diagonal and −S(v)jS(v)k for the element in the jth row and kth column
with j ̸= k. The norm is maximized when the output is the uniform distribution and is less than
1/

√
i.

Lemma D.3 (First Gradient Step). Under the setting described, after one gradient step, we have
that

WO = η(B̄) (30)

W (1), V (1), P (1) = 0 (31)

where B̄ a |V |× |V | matrix where the jth row is the average next-token distribution of the jth token
in the vocabulary weighted by the relative frequency of token j across the dataset and centered to
have the row sum be 0.

Proof. From Lemma 1.1, as the parameters are initially zero, we can see that W (1), V (1), P (1) all
have gradients of zero and therefore remain as 0. For WO, as the value matrix is initially zero,
h
(1)
i = Xi and as WO is zero, the output distribution for every token is the uniform distribution. Let

UO ∈ RT×|V | represent the resulting output with each element 1/|V |. Then, we have that

∂L
∂WO

=
−1

NT

N∑
i=1

X⊤i (Yi − UO) (32)

We consider the sum of each of the terms X⊤i Yi and X⊤i UO. First, we consider the sum of X⊤i Yi.
The jth row of X⊤i Yi is a |V |-dimensional vector with each element being the number of times the
corresponding token appears after each occurrence of the jth token in the vocabulary in Xi. Then,
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summing over all i and dividing by NT results in each row mapping to the average next-token
distribution weighted by the frequency of the token corresponding to the row. We can write this as

B =
1

NT

N∑
i=1

X⊤i Yi =


α1P1

α2P2

...
α|V |P|V |

 (33)

where αj is the relative frequency of the jth token in the dataset and Pj is the average next-token
distribution for token j. For the sum U⊤OXi divided by NT , we simply get that every row is αj

times the uniform distribution over the vocabulary, and we will denote this matrix by U . Then, we
have that

∂L
∂WO

= −(B − U) (34)

and therefore after the first step,
WO = η(B − U) (35)

Then, as B̄ = B − U , this completes the proof.

Lemma D.4 (Second Gradient Step). Under the setting described, after two gradient steps, we have
that ∥∥WO − 2ηB̄

∥∥
F
≤ η2√

|V |
(36)

∥∥∥V (1) − η2Φ̄⊤B̄⊤
∥∥∥
F
≤ 2η3√

|V |
(37)

W (1), P (1) = 0 (38)

where B̄ is as defined in the previous lemma and Φ̄ is given by

Φ̄jk = P(ek → ej)− µΦ,k (39)

where P(ek → ej) corresponds to the empirical probability that ej is the current token and ek is in
its prefix and µΦ,k is the value that sets each column sum to 0.

Proof. First, as V(1) remains at zero after the first step, we have that the gradients for W (1), P (1)

are zero and therefore, they remain at zero after the second step. We now consider the forward pass
after the first gradient step. As the value matrix remains as zero, we have that

Fθ(Xi) = ηXiB̄ (40)

Then, by the Softmax Jacobian lemma, we have that

∥S(Fθ(Xi))− UO∥F ≤ η√
|V |

∥∥XiB̄
∥∥
F
≤ η

√
T√

|V |
(41)

Then, we have that

∥Ri − (Yi − UO)∥F ≤ η
√
T√

|V |
(42)

and by Lemma 1.1 and that ∥Xi∥ ≤
√
T , we have∥∥∥∥ ∂L

∂WO
+ B̄

∥∥∥∥
F

≤ 1

NT

N∑
i=1

ηT√
|V |

=
η√
|V |

(43)

Then, it follows that after the second gradient step,∥∥WO − 2ηB̄
∥∥
F
≤ η2√

|V |
(44)
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Now, we consider the gradient with respect to V (1). By Lemma 1.1, we have that

∂L
∂V (1)

=
−1

NT

N∑
i=1

ηX⊤i A
(1)⊤
i (Yi − S(Fθ(Xi)))B̄

⊤ (45)

and since W (1), P (1) = 0, A(1)
i = A0 where the tth row of A0 has the first t elements equal to 1/t

and the rest equal to 0. Then, by equation 41, we have that∥∥ηX⊤i A0(Yi − S(Fθ(Xi)))B̄
⊤ − ηX⊤i A⊤0 (Yi − UO)B̄

⊤∥∥
F
≤ η2T√

|V |
∥A0∥ (46)

Then, using the discrete Hardy’s inequality with p = 2, we have that ∥A0∥ ≤ 2 and∥∥∥∥∥ ∂L
∂V (1)

− 1

NT

N∑
i=1

ηX⊤i A⊤0 (Yi − UO)B̄
⊤

∥∥∥∥∥
F

≤ 2η2√
|V |

(47)

Now, we will analyze
1

NT

N∑
i=1

ηX⊤i A⊤0 (Yi − UO)B̄
⊤ (48)

Since ηB̄ is independent of i, we can move it outside the sum and we can analyze

1

NT

N∑
i=1

X⊤i A⊤0 (Yi − UO) (49)

We start by consider the form of X⊤i A⊤0 . Since the tth row of A0 has 1/t as the first t elements and
zeros for all other elements, we have that the jth element of the tth column of X⊤i A⊤0 is

γi(ej , t)

t
(50)

where ej represents the jth token in the vocabulary and γi(ej , t) is the number of occurrences of ej
in the first t tokens of Xi. Letting Φ′ = 1

NT

∑N
i=1 X

⊤
i A⊤0 Yi, we have that

Φ′jk =
1

NT

N∑
i=1

T∑
t=1

1(X
[t+1]
i = ek)

γi(ej , t)

t
(51)

Swapping the order of the sums, we have

Φ′jk =
1

NT

T∑
t=1

1

t

N∑
i=1

1(X
[t+1]
i = ek)γi(ej , t) (52)

Then, as γi(ej , t) =
∑t

m=1 1(X
[m]
i = ej), we have that

Φ′jk =
1

T

T∑
t=1

1

t

t∑
m=1

1

N

N∑
i=1

1(X
[t+1]
i = ek, X

[m]
i = ej) (53)

Then, as 1
N

∑N
i=1 corresponds to an average over the dataset, the average over N corresponds to

the empirical probability of having a sequence with the t+ 1th token equal to ek and the mth token
equal to ej , which we will denote as P(xt+1 = ek, xm = ej). Then, this gives

Φ′jk =
1

T

T∑
t=1

1

t

t∑
m=1

P(xt+1 = ek, xm = ej) (54)

Then, we have an average over m ∈ [t] which results in the average probability that the t+1th token
is ek and ej is in the first t tokens. We will denote this as P(ej ∈ x1:t, xt+1 = ek). This gives

Φ′jk =
1

T

T∑
t=1

P(ej ∈ x1:t, xt+1 = ek) (55)
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This probability of ej being in the prefix of xt+1 = ek is averaged over the different positions of ek
to get an average probability that ej is in the prefix given that ek is the current token, which we will
denote as P(ej → ek) and

Φ′jk = P(ej → ek) (56)

Now, we consider UP = 1
NT

∑N
i=1 X

⊤
i A⊤0 UO. Then, we have that

UPjk
=

1

NT

N∑
i=1

T∑
t=1

γi(ej , t)

|V |t
(57)

Rearranging the sum and decomposing γi, we get

UPjk
=

1

T

T∑
t=1

1

t|V |

t∑
m=1

P(xm = ej) (58)

Then, if we consider the average over positions m and t, we get the average probability that ej is in
the first t tokens over all t multiplied by 1/|V |. We can notice that the sum of the jth row of UP and
Φ′ are the same. Then, setting

Φ̄′ = Φ′ − UP (59)

we have ∥∥∥∥ ∂L
∂V (1)

+ ηΦ̄′B̄⊤
∥∥∥∥
F

≤ 2η2√
|V |

(60)

Then, it follows that after two gradient steps,∥∥∥V (1) − η2Φ̄′B̄⊤
∥∥∥
F
≤ 2η3√

|V |
(61)

Defining Φ̄ = Φ̄′⊤, we have ∥∥∥V (1) − η2Φ̄⊤B̄⊤
∥∥∥
F
≤ 2η3√

|V |
(62)

This completes the proof.

Lemma D.5 (Third Gradient Step). Under the setting described, after three gradient steps with η,
we have that ∥∥WO − 3ηB̄

∥∥
F
≤ 3η2 (63)∥∥∥V (1) − 3η2Φ̄⊤B̄⊤
∥∥∥
F
≤ 2η3 (64)∥∥∥W (1) − 2η4Q̄

∥∥∥
F
≤ 2η5T (65)∥∥∥P (1) − 2η4∆

∥∥∥
F
≤ 2η5T (66)

Proof. First, we start with bounding the norm of WO, V
(1), A0. We have that

∥WO∥F ≤ 2η +
η2√
|V |

(67)

∥∥∥V (1)
∥∥∥ ≤

(
2η2 +

2η3√
|V |

)
(68)

∥A0∥ ≤ 2 (69)

Now, we consider the deviation of the output from the uniform distribution. We start by bounding
the norm of Xi +A0XiV

(1) ∥∥∥Xi +A0XiV
(1)
∥∥∥ ≤

(
1 + 5η2

)√
T (70)
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Then, we can upper bound the norm of Fθ(Xi)

∥Fθ(Xi)∥F ≤ 5η

2

(
1 + 5η2

)√
T ≤ 4η

√
T (71)

and then using the Softmax Jacobian lemma, we have that

∥S(Fθ(Xi))− UO∥F ≤ 4η
√
T√

|V |
(72)

Then, it follows that ∥∥∥∥ ∂L
∂WO

+ B̄

∥∥∥∥
F

≤ 1

NT

N∑
i=1

(
8ηT√
|V |

+ 5η2T

)
= 2η (73)

and ∥∥WO − 3ηB̄
∥∥
F
≤ η2√

|V |
+ 2η2 ≤ 3η2 (74)

Now, we consider the gradient with respect to V (1). Since ∥Yi − S(Fθ(Xi))∥ ≤
√
2T , we have that∥∥∥∥ ∂L

∂V (1)
+ 2ηΦ̄⊤B̄⊤

∥∥∥∥
F

≤ 2

(
4η√
|V |

5η

2
+

η2√
|V |

)
≤ 22η2√

|V |
≤ η2 (75)

Then, we have that after the third step,∥∥∥V (1) − 3η2Φ̄⊤B̄⊤
∥∥∥
F
≤ 2η3 (76)

Now, we consider the gradient with respect to W (1), P (1) which according to Lemma 1.1 are

∂L
∂W (1)

=
−1

NT

N∑
i=1

X⊤i eintjk,tk→tj(Ji, RiW
⊤
O V (1)⊤X⊤i )Xi (77)

∂L
∂P (1)

=
−1

NT
eintjk,jk→t

(
D,

N∑
i=1

eintjk,tk→tj(Ji, RiW
⊤
O V (1)⊤X⊤i )

)
(78)

We start by analyzing RiW
⊤
O V (1)⊤X⊤i . First, We will use that ∥Yi − UO∥ ≤

√
T and∥∥Φ̄∥∥ ≤ 1

T
max

i
∥Xi∥ ∥A0∥ ∥Yi − UO∥ ≤ 2

T
T = 2 (79)

We know by the previous lemma and the bound on the deviation of the output that∥∥∥RiW
⊤
O V (1)⊤X⊤i − 2η3(Yi − UO)B̄

⊤B̄Φ̄X⊤i

∥∥∥
F
≤ 25η4T√

|V
+

5Tη4

2
√

|V |
+

4η4T√
|V |

≤ 3η4T

2
(80)

We start by considering the structure of YiB̄
⊤B̄Φ̄X⊤i . We first consider the simpler multiplication

of ejB̄⊤B̄Φ̄e⊤k . First, we define ΣB̄ = B̄⊤B̄ which has ΣB̄mn =
∑|V |

l=1 α
2
l P̄lmP̄ln where αl is the

relative frequency of token l and P̄l is the average next-token distribution of token el centered at 0.
This corresponds to a similarity measure of the previous tokens of em and en with common tokens
more heavily weighted. Then, we have that

ejΣB̄Φ̄e
⊤
k =

|V |∑
m=1

ΣB̄jmP̄(em → ek) (81)

where P̄(em → ek) is the probability that em is in the prefix of ek centered at 0. We can then
interpret the each element (ΣB̄Φ̄)jk as a measure of assocation between token j and k based on a
two-step chain of (interchangeability mapping, suffix token mapping). Essentially, how often does
token ek succeed token ej and similar tokens. We will let Ḡ = ΣB̄Φ̄. Now, we can consider
2η3YiḠX⊤i . This results in a T × T matrix where the jk-th element is P̃(X

[k]
i →2 X

[j+1]
i ) and

we will denote this as gijk. Then, 2η3(Yi − UO)ḠX⊤i will have elements centered to have row
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sums of 0 and we will let the centered elements be ḡijk. Then, we consider the einsum of J and
2η3(Yi − UO)ḠX⊤i . The tth column of the resulting matrix will the be product of Jt and the tth
column of 2η3(Yi − UO)ḠX⊤i . This results in the tth row having the form

2η3





ḡi1t
t
...

ḡitt
t
0
...
0


−



µg,it

t
...

µg,it

t
0
...
0





⊤

(82)

The tth row is 2η3ḡijt for 1 ≤ j ≤ t weighted by 1/t and centered to have a row sum of 0 and
we will refer to the centered and weighted elements 2η3qijt and the resulting matrix Qi. Letting
Q̄ = 1

NT

∑N
i=1 X

⊤
i QiXi, we have that∥∥∥∥ ∂L

∂W (1)
+ 2η3Q̄

∥∥∥∥
F

≤ 2η4T (83)

where we have used that the squared Frobenius norm of the einsum is the sum of the norms of each
column and that ∥Jt∥ = 1/t. Then, it follows that∥∥∥W (1) − 2η4Q̄

∥∥∥
F
≤ 2η5T (84)

Now, we consider the gradient with respect to each element of P (1)∥∥∥∥∥ ∂L
∂P

(1)
m

+
2η3

NT

N∑
i=1

Tr(D−mQi)

∥∥∥∥∥
F

≤ 2η4
√
T (85)

Since the trace is a linear function, we let ∆m = Tr(D−m
1

NT

∑N
i=1 Qi) and let ∆ be the vector

consisting of ∆m, and we have ∥∥∥∥ ∂L
∂P (1)

+ 2η3∆

∥∥∥∥
F

≤ 2η4T (86)

and it follows that ∥∥∥P (1) − 2η4∆
∥∥∥
F
≤ 2η5T (87)

This completes the proof.

Theorem D.6 (Early Stage Features). Under the setting described, for s ≤ η−1 3
8T 3/8 , for T ≥

3, |V | ≥ 500, we have that after s gradient descent steps with learning rate η,∥∥WO − sηB̄
∥∥
F
≤ 3s2η2 (88)∥∥∥∥V (1) −

(
s

2

)
η2Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 4s3η3 (89)∥∥∥∥W (1) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4Q̄

∥∥∥∥
F

≤ 6s5η5T (90)∥∥∥∥P (1) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4∆

∥∥∥∥
F

≤ 6s5η5T (91)

Proof. We will prove the result by induction. The previous lemmas form the base case. The first
phase will be bounding the deviation of the output from the uniform distribution after s gradient
steps. To start, we bound the norm of Ai, the resulting attention mapping for Xi. We know from
Lemma D.2, that for each row of the attention mapping

∥(Ai −A0)[t, :]∥ ≤ 1√
t

∥∥∥(XiW
(1)X⊤i [t, : t] + P (1)[: t]

∥∥∥ (92)
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Using the fact that there are t elements in (XiW
(1)X⊤i + P (1))[t, : t] with magnitude at most

maxkm |W (1)
km| + maxm |P (1)

m | and applying the inductive hypothesis for P (1) and W (1), we have
that

∥(Ai −A0)[t, :]∥ ≤
(
3

(
s

4

)
+ 2

(
s

3

))
η4(max

km
|Q̄km|+max

m
|∆m|) + 12s5η5T√

t
(93)

Since the maximum magnitude of an element of ΣB̄ is
∑|V |

k=1 α
2
k ≤ 1 and each column of Φ̄⊤ has

elements with magnitudes that sum to at most 1, we know that each element of Ḡ has magnitude at
most 1. Then, it follows that maxkm |Q̄i,km| ≤ 1 and therefore maxkm |Q̄km|,maxm |∆m| ≤ 1.
Then, we have

∥(Ai −A0)[t, :]∥ ≤
(
6

(
s

4

)
+ 4

(
s

3

))
η4 +

12s5η5T√
t

(94)

Then, summing the upper bounds on the squared norms of each row, and using that
∑r

q=1 1/q ≤
1 + log r we have

∥Ai −A0∥F ≤
(
6

(
s

4

)
+ 4

(
s

3

))
η4
√
T + 12s5η5T

√
1 + log T (95)

Then, we have that∥∥∥A(1)
i

∥∥∥ ≤ 2 +

(
6

(
s

4

)
+ 4

(
s

3

))
η4
√
T + 12s5η5T

√
1 + log T (96)

Then, upper bounding 6
(
s
4

)
+ 4
(
s
3

)
by 2s4, we have∥∥∥A(1)

i

∥∥∥ ≤ 2 + 2s4η4
√
T + 12s5η5T

√
1 + log T (97)

Now, using that sη ≤ 3
8T 3/8 , we have that

2s4η4
√
T + 12s5η5T

√
1 + log T ≤ 2sη (98)

and ∥∥∥A(1)
i

∥∥∥ ≤ 2 + 2sη (99)

Now, we bound the norm of V (1) which by the inductive hypothesis we have is at most(
s

2

)
η22

√
2 + 4s3η3 (100)

which is at most
s2η2

√
2 + 4s3η3 (101)

and since sη ≤ 1
3 , ∥∥∥V (1)

∥∥∥
F
≤ 4s2η2 (102)

Then, we have that ∥∥∥Xi +A
(1)
i XiV

(1)
∥∥∥
F
≤

√
T
(
1 + 16s2η2

)
(103)

Since sη ≤ min 3
8T 3/8 and by the inductive hypothesis we have that

∥Fθ(Xi)∥F ≤ 2
√
T
(
sη + 3s2η2

)
(104)

Since sη ≤ 3
8T 3/8 , we have

∥Fθ(Xi)∥F ≤ 4sη
√
T (105)

Then, by Lemma D.2, we have

∥S(Fθ(Xi))− UO∥F ≤ 4sη

√
T

|V |
(106)
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Now, we will utilize the bound on the deviation of the output from the uniform distribution as well
to perform the inductive step for WO. We have based on the bound that after the (s+ 1)th step∥∥∥∥ ∂L

∂WO
+ B̄

∥∥∥∥
F

≤ 8sη√
|V |

+ 12s2η2 ≤ 6sη (107)

Then, after (s+ 1) steps, we have that∥∥WO − (s+ 1)ηB̄
∥∥
F
≤ 3η2s2 + 6sη2 ≤ 3η2(s+ 1)2 (108)

Now, we perform the inductive step for V (1) using the bound on the deviation of the attention pattern
and on the output deviation. We have that after the (s+ 1)th step∥∥∥∥ ∂L

∂V (1)
+ sηΦ̄⊤B̄⊤

∥∥∥∥
F

≤ ∥Ri − (Yi − UO)∥F
∥∥∥A(1)

i

∥∥∥ ∥Xi∥ ∥WO∥

+ ∥(Yi − UO)∥
∥∥∥A(1)

i −A0

∥∥∥
F
∥Xi∥ ∥WO∥

+ ∥(Yi − UO)∥ ∥A0∥ ∥Xi∥
∥∥WO − B̄

∥∥
F

(109)

Applying upper bounds and using that |V | ≥ 500, we have∥∥∥∥ ∂L
∂V (1)

+ sηΦ̄⊤B̄⊤
∥∥∥∥
F

≤ 1

T

(
24sη√
|V |

Tηs+ 4Ts2η2 + 6Ts2η2

)
≤ 12s2η2 (110)

Then, after (s+ 1) steps, we have that∥∥∥∥V (1) −
(
s+ 1

2

)
η2Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 4s3η3 + 12s2η3 ≤ 4(s+ 1)3η3 (111)

Now, we perform the inductive step for W (1) utilizing the earlier bounds on the output and attention
pattern deviations. We start by bounding the deviation between s3−s2

2 η3ΣB̄Φ̄ and W⊤O V (1)⊤. By
the inductive hypothesis and 2 ≤

√
|V |, we have that∥∥∥∥W⊤O V (1)⊤ − s3 − s2

2
η3ΣB̄Φ̄

∥∥∥∥
F

≤ 8s4η4 + 3
√
2s4η4 ≤ 13s4η4 (112)

Then, for each RiW
⊤
O V (1)⊤X⊤i since |V | ≥ 500, we have that∥∥∥∥RiW

⊤
O V (1)⊤X⊤i − s3 − s2

2
η3(Yi − UO)ΣB̄Φ̄X

⊤
i

∥∥∥∥
F

≤ 20s4η4T√
|V |

+ 13s4η4T ≤ 14s4η4T

(113)
Now, in order to consider the deviation of the einsum of J and s3−s2

2 η3(Yi − UO)ΣB̄Φ̄
⊤X⊤i , we

need to first bound the deviation of the Jacobian of the current attention pattern from J . We do so
by considering the deviation for each Jt. As proven earlier, we have that

∥(Ai −A0)[t, :]∥ ≤
(
6

(
s

4

)
+ 4

(
s

3

))
η4 +

12s5η5T√
t

(114)

Then, we have that for the current Jacobian for the sample Xi corresponding to the tth row which
will call Jt,i

Jt,i − Jt = Diag(Ai[t, :]−A0[t, :])−A0[t, :](Ai[t, :]−A0[t, :])
⊤ − (Ai[t, :]−A0[t, :])A0[t, :]

⊤

− (Ai[t, :]−A0[t, :])(Ai[t, :]−A0[t, :])
⊤ (115)

and it follows then that for t ≥ 2

∥Jt,i − Jt∥2 ≤ ∥Ai[t, :]−A0[t, :]∥∞ +
2√
t
∥Ai[t, :]−A0[t, :]∥2 + ∥Ai[t, :]−A0[t, :]∥22 (116)

Then, as
∥Ai[t, :]−A0[t, :]∥∞ ≤ ∥Ai[t, :]−A0[t, :]∥2 (117)
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we have that

∥Jt,i − Jt∥2 ≤
((

6

(
s

4

)
+ 4

(
s

3

))
η4 +

12s5η5T√
t

)
(
1 +

2√
t
+

(
6

(
s

4

)
+ 4

(
s

3

))
η4 +

12s5η5T√
t

)
(118)

Since J1,i is always all zeros, we can ignore this term and for t ≥ 2, we have that as sη ≤ 3
8T 3/8 ,

∥Jt,i − Jt∥2 ≤ 5s2η2 (119)

Then, we have that∥∥∥∥s3 − s2

2
η3Qi − eintjk,tk→tj(Ji, RiW

⊤
O V (1)⊤X⊤i )

∥∥∥∥
F

≤ ∥Ji − J∥2

∥∥∥∥s3 − s2

2
η3(Yi − UO)ΣB̄Φ̄X

⊤
i

∥∥∥∥
F

+ ∥Ji∥2

∥∥∥∥RiW
⊤
O V (1)⊤X⊤i − s3 − s2

2
η3(Yi − UO)ΣB̄Φ̄X

⊤
i

∥∥∥∥
F

(120)

Then, as ∥Jt∥2 = 1
t , ∥Ji∥2 ≤ 3

2 + 5s2η2
√
T ≤ 2, and sη ≤ 3

8T 3/8 , we have that∥∥∥∥s3 − s2

2
η3Qi − eintjk,tk→tj(Ji, RiW

⊤
O V (1)⊤X⊤i )

∥∥∥∥
F

≤ 5
√
2s5η5T+28s4η4T ≤ 30s4η4T

(121)

Then, we have that ∥∥∥∥ ∂L
∂W (1)

+
s3 − s2

2
η3Q̄

∥∥∥∥
F

≤ 30s4η4T (122)

Then, we have that after (s+ 1) steps,∥∥∥∥W (1) −
(
3

(
s+ 1

4

)
+ 2

(
s+ 1

3

))
η4Q̄

∥∥∥∥
F

≤ 6s5η5T + 30s4η5T ≤ 6(s+ 1)5η5T (123)

Finally, as we have the bound on the deviation from Qi, we have that for P (1),∥∥∥∥ ∂L
∂P (1)

+
s3 − s2

2
η3∆

∥∥∥∥
F

≤ 30s4η4T (124)

and that after (s+ 1) steps,∥∥∥∥P (1) −
(
3

(
s+ 1

4

)
+ 2

(
s+ 1

3

))
η4∆

∥∥∥∥
F

≤ 6s5η5T + 30s4η5T ≤ 6(s+ 1)5η5T (125)

D.2 PROOF OF MULTI-LAYER THEOREM

Lemma D.7 (General Gradient Form). Under the setting described, defining

S
(l)
i = eintjk, tk→tj

(
J
(l)
i , G

(l)
i V (l)⊤h

(l−1)⊤
i

)
, (126)

G
(l−1)
i = G

(l)
i +A

(l)⊤
i G

(l)
i V (l)⊤ + S

(l)
i h

(l−1)
i W (l)⊤ + S

(l)⊤
i h

(l−1)
i W (l), (127)

with
G

(L)
i = RiW

⊤
O (128)

we have that
∂L
∂WO

=
−1

NT

N∑
i=1

h
(L)⊤
i Ri, (129)
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∂L
∂V (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i A

(l)⊤
i G

(l)
i , (130)

∂L
∂W (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i S

(l)
i h

(l−1)
i , (131)

∂L
∂P (l)

=
−1

NT
eintjk, jk→t

(
D,

N∑
i=1

S
(l)
i

)
, (132)

where A
(l)
i = S(Mask(h

(l−1)
i W (l)h

(l−1)⊤
i + P (l))), Ri = Yi − S(Fθ(Xi)), J

(l)
i ∈ RT×T×T with

J
(l)
i,t = Diag(A

(l)[t]
i )−A

(l)[t]⊤
i A

(l)[t]
i being the Jacobian of the softmax function at the lth attention

layer for the tth token in the sequence, D ∈ RT×T×T with Dt being a matrix with ones along the
−tth sub-diagonal and zeros elsewhere, and ein denotes an Einstein summation.

Proof. We begin by considering the derivative of the loss with respect to Fθ(Xi)
[t], which is

∂L
∂Fθ(Xi)[t]

= Y
[t]
i − S(Fθ(Xi)

[t]) = −R
[t]
i (133)

Since
∂Fθ(Xi)

[t]

∂WO
= h

(L)[t]
i (134)

it follows that
∂L
∂WO

=
−1

NT

N∑
i=1

h
(L)⊤
i Ri (135)

We now consider the gradient through each attention layer in terms of the current and previous layer
embeddings h

(l−1)
i , h

(l)
i . Let h = h

(l−1)
i , A = A

(l)
i , G = G

(l)
i = ∂L/∂U (l)

i , V = V (l), where
U

(l)
i = (Ah)V . We have

∂L
∂V (l)

= (Ah)⊤G = h⊤A⊤G (136)

Summing over i and normalizing yields

∂L
∂V (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i A

(l)⊤
i G

(l)
i (137)

The gradient for M = Ah is δM = GV (l)⊤, δA = δMh⊤, δ
(1)
h = A⊤δM . Next, through the

row-wise softmax, each row Jacobian is

J
(l)
i,t = Diag(A

(l)[t]
i )−A

(l)[t]
i A

(l)[t]⊤
i (138)

Stacking these gives a tensor J (l)
i . Applying it row-wise to δA gives

S
(l)
i = eintjk, tk→tj

(
J
(l)
i , G

(l)
i V (l)⊤h

(l−1)⊤
i

)
(139)

Finally, back-propagating through Ã = hW (l)h⊤ + P (l) gives

∂L
∂W (l)

= h⊤S
(l)
i h, (140)

∂L
∂P (l)

= eintjk, jk→t(D, S
(l)
i ) (141)

Summing over i and normalizing,

∂L
∂W (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i S

(l)
i h

(l−1)
i (142)
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∂L
∂P (l)

=
−1

NT
eintjk, jk→t

(
D,

N∑
i=1

S
(l)
i

)
(143)

Collecting all contributions to h
(l−1)
i gives

G
(l−1)
i = G

(l)
i +A

(l)⊤
i G

(l)
i V (l)⊤ + S

(l)
i h

(l−1)
i W (l)⊤ + S

(l)⊤
i h

(l−1)
i W (l) (144)

Since at the last layer,

G
(L)
i =

∂L
∂h

(L)
i

=
∂L
∂Zi

W⊤O = RiW
⊤
O (145)

we can inductively apply the recurrence and collecting the per-layer parameter derivatives gives the
desired expressions for ∂L/∂WO, ∂L/∂V (l), ∂L/∂W (l), and ∂L/∂P (l).

Lemma D.8 (First Step, Multi-Layer Zero-Initialization). Under the setting described, after one
gradient step, we have that

WO = η(B̄) (146)

W (l), V (l), P (l) = 0 (147)

for 1 ≤ l ≤ L where B̄ is a |V |×|V | matrix where the jth row is the average next-token distribution
of the jth token in the vocabulary weighted by the relative frequency of token j across the dataset
and centered to have the row sum be 0.

Proof. By Lemma D.7,

∂L
∂WO

=
−1

NT

N∑
i=1

h
(L)⊤
i Ri =

−1

NT

N∑
i=1

X⊤i (Yi − UO) = −(B − U) ≡ −B̄ (148)

where B and U are defined the same as in the one-layer case. A single gradient step gives

WO = −η
∂L
∂WO

= ηB̄ (149)

At initialization WO = 0, so by Lemma D.7 the upstream gradient from layer L is

G
(L)
i = RiW

⊤
O = 0 (150)

Using the recurrence (Lemma D.7),

G
(l−1)
i = G

(l)
i +A

(l)⊤
i G

(l)
i V (l)⊤ + S

(l)
i h

(l−1)
i W (l)⊤ + S

(l)⊤
i h

(l−1)
i W (l) (151)

Since G
(L)
i = 0 and W (l), V (l) = 0 for all l, we inductively get G(l)

i = 0 for every l.

Now, the layerwise gradients are (Lemma D.7)

∂L
∂V (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i A

(l)⊤
i G

(l)
i = 0 (152)

and with S
(l)
i = eintjk, tk→tj

(
J
(l)
i , G

(l)
i V (l)⊤h

(l−1)⊤
i

)
we also have S

(l)
i = 0 (because G

(l)
i = 0

or V (l,0) = 0), hence

∂L
∂W (l)

=
−1

NT

N∑
i=1

h
(l−1)⊤
i S

(l)
i h

(l−1)
i = 0 (153)

∂L
∂P (l)

=
−1

NT
eintjk,jk→t

(
D,

N∑
i=1

S
(l)
i

)
= 0 (154)

Therefore a single gradient step leaves W (l), V (l), P (l) = 0 for 1 ≤ l ≤ L).
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Theorem D.9 (Early Stage Features, Multi-Layer). Fix a depth L ≤
√
T
4 and assume zero initial-

ization for all parameters. Under the setting described, for s ≤ η−1 min
(

1
12L ,

5
8
√
T

)
with T ≥ 60

and |V | ≥ 500, after s gradient descent steps with learning rate η we have, uniformly for every
layer 1 ≤ l ≤ L, ∥∥WO − sηB̄

∥∥
F
≤ 3s2η2 (155)∥∥∥∥V (l) −

(
s

2

)
η2Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 12s3η3 (156)

∥∥∥∥W (l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4Q̄

∥∥∥∥
F

≤ 13s5η5T (157)

∥∥∥∥P (l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4∆

∥∥∥∥
F

≤ 13s5η5T (158)

where B̄, Φ̄, Q̄, and ∆ are as in the one-layer analysis (row-centered bigram matrix, centered
prefix-statistics operator, and the third-step structures, respectively).

Proof. We prove the bounds simultaneously for all layers with induction.

By the previous lemma, with zero initialization and one step, WO = ηB̄,W (l) = 0, V (l) =
0, P (l) = 0 for 1 ≤ l ≤ L). This gives the base case.

Now we prove the inductive step. Assume the four bounds hold after s steps, with (s + 1)η ≤
min

(
1

12L ,
5

8
√
T

)
. We derive bounds on the deviations in the attention patterns, activations, and

outputs in the forward pass after s steps.

Now, we start with a bound on the deviations in the activations from Xi at each row. Since, each
row of A(l)

i sums to 1, we have that∥∥∥h(l)
i [t, :]−Xi[t, :]

∥∥∥ ≤
∥∥∥h(l−1)

i [t, :]−Xi[t, :]
∥∥∥+ ∥∥∥h(l−1)

i [t, :]
∥∥∥∥∥∥V (l)

∥∥∥ (159)

and ∥∥∥h(l)
i [t, :]

∥∥∥ ≤ (1 +
∥∥∥V (l)

∥∥∥)∥∥∥h(l−1)
i [t, :]

∥∥∥ (160)

Then, by the inductive hypothesis and sη ≤ 1
12L , we have that

∥∥V (l)
∥∥
F

≤ 3
2s

2η2. Using this and

that h(0)
i = Xi which has unit norm, we have that across all layers and rows∥∥∥h(l)

i [t, :]
∥∥∥ ≤

(
1 +

3

2
s2η2

)L

(161)

and as sη ≤ 1
12L and as (1 + c/L)L ≤ 1 + 2c for c ≤ 1, we have that∥∥∥h(l)

i [t, :]
∥∥∥ ≤ 1 +

sη

4
(162)

Using this and again that h(0)
i = Xi, we have that for all rows and layers,∥∥∥h(l)

i [t, :]−Xi[t, :]
∥∥∥ ≤ L

(
1 +

sη

4

) 3

2
s2η2 ≤ 2s2η2L ≤ sη

6
(163)

again using that sη ≤ 1
12L .

Let A0 be the uniform causal attention with the t-th row having the first t elements equal to 1/t and
the remaining elements being 0. For each row, of A(l)

i , we have that

A
(l)
i = S(Mask(h(l−1)

i [t, :]W (l)h
(l−1)⊤
i + DM(P (l))[t, :])) (164)
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Decomposing h
(l−1)
i [t, :] as Xi[t, :]+(h

(l−1)
i [t, :]−Xi[t, :]), we get by the inductive hypothesis and

that maxkm |Q̄km|,maxm |∆m| ≤ 1 as shown in the one-layer case that∥∥∥MASK(h
(l−1)
i [t, :]W (l)h

(l−1)⊤
i + DM(P (l))[t, :])

∥∥∥
≤
(
6

(
s

4

)
+ 4

(
s

3

))
η4
√
t+ (CW + CP )s

5η5T

+ 2
∥∥∥h(l−1)

i [t, :]−Xi[t, :]
∥∥∥(6(s

4

)
+ 4

(
s

3

))
η4
√
T

+
∥∥∥h(l−1)

i [t, :]−Xi[t, :]
∥∥∥2(6(s

4

)
+ 4

(
s

3

))
η4
√
T

(165)

By our earlier bounds, we have then∥∥∥MASK(h
(l−1)
i [t, :]W (l)h

(l−1)⊤
i + DM(P (l))[t, :])

∥∥∥
≤ s4η4

√
t+ 26s5η5T +

sη

3
s4η4

√
T +

s2η2

36
s4η4

√
T

(166)

which we can upper bound by∥∥∥MASK(h
(l−1)
i [t, :]W (l)h

(l−1)⊤
i + DM(P (l))[t, :])

∥∥∥ ≤ s4η4
√
t+

21

2
s3η3 (167)

Then, by Lemma D.2, we have∥∥∥(A(l)
i −A0)[t, :]

∥∥∥ ≤ s4η4 +
21s3η3

2
√
t

≤ 11s3η3 ≤ 7s2η2√
T

≤ sη√
T

(168)

Then, we also have that ∥∥∥A(l)
i −A0

∥∥∥
F
≤ 7s2η2 ≤ sη (169)

From the deviation bounds on the activations and the inductive control of WO,

∥Fθ(Xi)∥F = ∥h(L)
i WO∥F ≤ ∥h(L)

i ∥F ∥WO∥ ≤ (1 +
sη

4
)
√
T (sη + 3s2η2) ≤ 2sη

√
T (170)

Applying Lemma D.2 gives

∥S(Fθ(Xi))− UO∥F ≤ 2sη

√
T

|V |
. (171)

Then as in the one-layer case but using equation 171 and accounting for deviations in the hidden
state from Xi, ∥∥∥∥ ∂L

∂WO
+ B̄

∥∥∥∥
F

≤ 4sη√
|V |

+ 4sη ≤ 5sη (172)

Then, after s+ 1 steps, we have∥∥WO − (s+ 1)ηB̄
∥∥
F
≤ 3s2η2 + 5sη2 ≤ 3(s+ 1)2η2 (173)

From Lemma D.7,
∂L

∂V (l)
= − 1

NT

∑
i

h
(l−1)⊤
i A

(l)⊤
i RiW

⊤
O (174)

Considering the deviation from each of the terms, we have∥∥∥∥ ∂L
∂V (1)

+ sηΦ̄⊤B̄⊤
∥∥∥∥ ≤ 36s2η2 (175)

Then, we have that after s+ 1 steps,∥∥∥∥V (l) −
(
s+ 1

2

)
η2 Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 12s3η3 + 36s2η3 ≤ 12(s+ 1)3η3
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From Lemma D.7,
∂L

∂W (l)
= − 1

NT

∑
i

h
(l−1)⊤
i S

(l)
i h

(l−1)
i (176)

∂L
∂P (l)

= − 1

NT
eintjk, jk→t

(
D,
∑
i

S
(l)
i

)
(177)

with S
(l)
i = ein

(
J
(l)
i , G

(l)
i V (l)⊤h

(l−1)⊤
i

)
. As in the one-layer bound, we can use the bound on the

attention pattern to control J (l)
i . We have that for t ≥ 2

∥Jt,i − Jt∥2 ≤
(
1 +

2√
t

)
∥Ai[t, :]−A0[t, :]∥2 + ∥Ai[t, :]−A0[t, :]∥22 (178)

Then, as we have that
∥Ai[t, :]−A0[t, :]∥2 ≤ sη√

T
(179)

it follows that
∥Jt,i − Jt∥2 ≤ 10sη√

T
(180)

Since J1,i is always all zeros, we can ignore this term and for t ≥ 2, we have that as sη ≤ 5
8
√
T

,

∥Jt,i − Jt∥2 ≤ 10sη√
T

(181)

Now, we bound the deviation of G(l)
i from η(Yi − UO)B̄

⊤. Starting from layer L, we have∥∥∥G(L)
i − sη(Yi − UO)B̄

⊤
∥∥∥
F
≤ 2sη

√
T

|V |
(2sη) +

√
T (3s2η2) ≤ 4s2η2

√
T (182)

We will let the bound on the deviation at layer l be DG,l. Now, we consider the bound for each layer
l, ∥∥∥G(l−1)

i − sη(Yi − UO)B̄
⊤
∥∥∥
F
≤ DG,l + 4s2η2

∥∥∥G(l)
i

∥∥∥+ 2
∥∥∥S(l)

i

∥∥∥ (2√T )(2s4η4T ) (183)

Since we also need the norm of S(l)
i to iterate through layers, we bound the norm of S(l)

i ,∥∥∥S(l)
i

∥∥∥
F
≤
∥∥∥J (l)

i

∥∥∥∥∥∥G(l)
i

∥∥∥∥∥∥V (l)
∥∥∥∥∥∥h(l−1)

i

∥∥∥
F

≤ 5

2

∥∥∥G(l)
i

∥∥∥ (3
2
s2η2)(2

√
T )

≤ 8s2η2
∥∥∥G(l)

i

∥∥∥√T

≤ 5sη
∥∥∥G(l)

i

∥∥∥
(184)

Using this upper bound back in the recurrence for DG,l, we have∥∥∥G(l−1)
i − sη(Yi − UO)B̄

⊤
∥∥∥
F
≤ DG,l + 4s2η2

∥∥∥G(l)
i

∥∥∥+ 40s5η5T 3/2
∥∥∥G(l)

i

∥∥∥ (185)

Using sη ≤ 5
8
√
T

, we have∥∥∥G(l−1)
i − sη(Yi − UO)B̄

⊤
∥∥∥
F
≤ DG,l + 14s2η2

∥∥∥G(l)
i

∥∥∥ (186)

We can now write a recurrence for
∥∥∥G(l)

i

∥∥∥ as
∥∥∥G(l)

i

∥∥∥ ≤ sη
∥∥(Yi − UO)B̄

⊤
∥∥+DG,l, we have∥∥∥G(l−1)

i

∥∥∥ ≤ (1 + 14s2η2)(
∥∥sη(Yi − UO)B̄

⊤∥∥+DG,l) ≤ (1 + 14s2η2)(sη
√
2T +DG,l) (187)

Utilizing this with the recurrence for DG,l, we can then write a recurrence only in terms of DG,l

and find that for all l, DG,l ≤ 12s2η2
√
T as L ≤

√
T
4 and sη ≤ min

(
1

12L ,
5

8
√
T

)
. Then, we also

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

have that for all l,
∥∥Gl

i

∥∥ ≤ sη
√
T + 12s2η2

√
T ≤ 2sη

√
T . Then, we have that as ∥Jt∥2 = 1

t ,

∥Ji∥2 ≤ 3
2 + 10s2η2 ≤ 2, and sη ≤ min

(
1

12L ,
5

8
√
T

)
,∥∥∥∥s3 − s2

2
η3Qi − S

(l)
i

∥∥∥∥
F

≤ 64s4η4T (188)

This produces ∥∥∥∥ ∂L
∂W (l)

+
s3 − s2

2
η3Q̄

∥∥∥∥
F

≤ 64s4η4T (189)

and similarly, ∥∥∥∥ ∂L
∂P (l)

+
s3 − s2

2
η3∆

∥∥∥∥
F

≤ 64s4η4T (190)

and hence after (s+ 1) steps∥∥∥∥W (l) −
(
3

(
s+ 1

4

)
+ 2

(
s+ 1

3

))
η4Q̄

∥∥∥∥
F

≤ 13(s+ 1)5η5T (191)

∥∥∥∥P (l) −
(
3

(
s+ 1

4

)
+ 2

(
s+ 1

3

))
η4∆

∥∥∥∥
F

≤ 13(s+ 1)5η5T (192)

Lemma D.10 (Gaussian Initialization Operator Norm). Under the setting described and with all
parameters initialized from N (0, v2

|V |2+2ξ ) for ξ ≥ 0 and T ≤ |V |, we have that with probability at

least 1− (3L+ 1) exp
(
− |V |

1+2ξ

4

)
, for all 1 ≤ l ≤ L,

∥WO∥ ,
∥∥∥V (l)

∥∥∥ ,∥∥∥W (l)
∥∥∥ ,∥∥∥P (l)

∥∥∥ ≤ 3v

|V |1/2
(193)

Proof. We start with WO. Using a concentration bound on Gaussian random matrices, we have that

P
(∥∥v|V |1+ξWO

∥∥ ≥ 2
√

|V |+ t
)
≤ e−t

2/2 (194)

Then, setting t = |V |1/2+ξ, we have that

P
(
∥WO∥ ≥ 3v

|V |1/2

)
≤ exp

(
−|V |1+2ξ

2

)
(195)

Then, with probability at least 1− exp
(
− |V |

1+2ξ

2

)
,

∥WO∥ ≤ 3v

|V |1/2
(196)

We can apply the same argument for each of V (l),W (l) to derive the same bound. Since P (l) is
smaller than the other matrices and has the same initialization, we can also apply the same bound.
Applying a union bound on the probability of failures for each of the weights, we have that with
probability at least 1− (3L+1) exp

(
− |V |

1+2ξ

2

)
, all of WO, V

(l),W (l), P (l) have operator norm at

most 3v
|V |1/2 .

Lemma D.11 (Gaussian Initialization Frobenius Norm). Under the setting described and with all
parameters initialized from N (0, v2

|V |2+2ξ ) for ξ ≥ 0 and T ≤ |V |, we have that with probability at

least 1− (3L+ 1) exp
(
− |V |

2+2ξ

4

)
, for all 1 ≤ l ≤ L,

∥WO∥F ,
∥∥∥V (l)

∥∥∥
F
,
∥∥∥W (l)

∥∥∥
F
,
∥∥∥P (l)

∥∥∥
F
≤ 2v (197)
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Proof. We start with WO. Using Lemma 1 from Laurent & Massart (2000), we have that

P
(
∥WO∥2F ≥ v2

|V |2+2ξ
(|V |2 + 2|V |

√
t+ 2t)

)
≤ e−t (198)

Then, setting t = |V |2+2ξ

4 , we have that

P
(
∥WO∥2F ≥ 3v2

)
≤ exp

(
−|V |2+2ξ

4

)
(199)

Then, with probability at least 1− exp
(
− |V |

2+2ξ

4

)
,

∥WO∥F ≤ 2v (200)

We can apply the same argument for each of V (l),W (l) to derive the same bound. For P (l), we have

P
(∥∥∥P (1)

∥∥∥2
F
≥ v2

|V |2+2ξ
(T + 2

√
Tt+ 2t)

)
≤ e−t (201)

Then, setting t = |V |2+2ξ

4 and using that T ≤ |V |, we have that

P
(∥∥∥P (1)

∥∥∥2
F
≥ 3v2

)
≤ exp

(
−|V |2+2ξ

4

)
(202)

Then, with probability at least 1− exp
(
− |V |

2+2ξ

4

)
,∥∥∥P (1)

∥∥∥
F
≤ 2v (203)

Applying a union bound on the probability of failures for each of the weights, we have that with
probability at least 1− (3L+ 1) exp

(
− |V |

2+2ξ

4

)
, all of WO, V

(l),W (l), P (l) have Frobenius norm
at most 2v.

Theorem D.12 (Gaussian Initialization (Multi-Layer)). Assume the setting of D.9 with depth L ≤√
T
4 , all parameters initialized i.i.d. from N

(
0, v2

|V |2+2ξ

)
with v ≤ η2

T 2 , T ≤ |V |, and learning rate
η ≥ T−1. Then, with probability at least

1− (3L+ 1)

[
exp

(
− |V |1+2ξ

2

)
+ exp

(
− |V |2+2ξ

4

)]
for s ≤ η−1 min

(
1

12L ,
5

8
√
T

)
with T ≥ 60 and |V | ≥ 500, after s gradient descent steps with

learning rate η we have, uniformly for every layer 1 ≤ l ≤ L,∥∥WO − sηB̄
∥∥
F
≤ 3s2η2 (204)∥∥∥∥V (l) −

(
s

2

)
η2Φ̄⊤B̄⊤

∥∥∥∥
F

≤ 12s3η3 (205)∥∥∥∥W (l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4Q̄

∥∥∥∥
F

≤ 13s5η5T (206)∥∥∥∥P (l) −
(
3

(
s

4

)
+ 2

(
s

3

))
η4∆

∥∥∥∥
F

≤ 13s5η5T (207)

where B̄, Φ̄, Q̄, and ∆ are as in the one-layer analysis (row-centered bigram matrix, centered
prefix-statistics operator, and the third-step structures, respectively).

Proof. We start by noting that as long the proof holds when v = η2

T 2 and we show that the first
gradient step satisfies the inductive hypothesis used in Theorem D.9, then the proof will be complete.
We will prove that the first gradient step satisfies the inductive hypothesis with v = η2

T 2 .
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We will condition on the event that the results of Lemmas D.10 and D.11 holds. Then, our results
will hold with probability at least

1− (3L+ 1)

[
exp

(
− |V |1+2ξ

2

)
+ exp

(
− |V |2+2ξ

4

)]
and we have that at initialization for all 1 ≤ l ≤ L

∥WO∥ ,
∥∥∥V (l)

∥∥∥ ,∥∥∥W (l)
∥∥∥ ,∥∥∥P (l)

∥∥∥ ≤ 3η2

T 2|V |1/2
(208)

and

∥WO∥F ,
∥∥∥V (l)

∥∥∥
F
,
∥∥∥W (l)

∥∥∥
F
,
∥∥∥P (l)

∥∥∥
F
≤ 2η2

T 2
(209)

Now, we start with a bound on the deviations in the activations from Xi at each row. Since, each
row of A(l)

i sums to 1, we have that∥∥∥h(l)
i [t, :]−Xi[t, :]

∥∥∥ ≤
∥∥∥h(l−1)

i [t, :]−Xi[t, :]
∥∥∥+ ∥∥∥h(l−1)

i [t, :]
∥∥∥∥∥∥V (l)

∥∥∥ (210)

and ∥∥∥h(l)
i [t, :]

∥∥∥ ≤ (1 +
∥∥∥V (l)

∥∥∥)∥∥∥h(l−1)
i [t, :]

∥∥∥ (211)

Using that
∥∥V (l)

∥∥ ≤ 3η2

T 2|V |1/2 and that h(0)
i = Xi which has unit norm, we have that across all

layers and rows ∥∥∥h(l)
i [t, :]

∥∥∥ ≤
(
1 +

3η2

T 2|V |1/2

)L

(212)

and as η ≤ 1
12L and as (1 + c/L)L ≤ 1 + 2c for c ≤ 1, we have that∥∥∥h(l)

i [t, :]
∥∥∥ ≤ 1 +

η7/2

2
(213)

Using this and again that h(0)
i = Xi, we have that for all rows and layers,∥∥∥h(l)

i [t, :]−Xi[t, :]
∥∥∥ ≤ L

(
1 +

η7/2

2

)
3η2

T 2|V |1/2
≤ η7/2

3
(214)

again using that sη ≤ 1
12L .

Let A0 be the uniform causal attention with the t-th row having the first t elements equal to 1/t and
the remaining elements being 0. For each row, of A(l)

i , we have that

A
(l)
i = S(Mask(h(l−1)

i [t, :]W (l)h
(l−1)⊤
i + DM(P (l))[t, :])) (215)

By our earlier bounds, we have then∥∥∥MASK(h
(l−1)
i [t, :]W (l)h

(l−1)⊤
i + DM(P (l))[t, :])

∥∥∥
≤
(
1 +

η7/2

2

)2
3η2

T 2|V |1/2
√
T +

3η2

T 2|V |1/2
≤ 6η7/2√

T

(216)

where we have use 1
T ≤ η and η ≤ 1

12L . Then, by Lemma D.2, we have∥∥∥(A(l)
i −A0)[t, :]

∥∥∥ ≤ 6η7/2√
Tt

(217)

Then, we also have that ∥∥∥A(l)
i −A0

∥∥∥
F
≤ 6η7/2√

T

√
1 + log T ≤ 6η7/2 (218)
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From the deviation bounds on the activations and the initial bound on WO,

∥Fθ(Xi)∥F = ∥h(L)
i WO∥F ≤ ∥h(L)

i ∥F ∥WO∥ ≤ (1 +
η7/2

2
)
√
T

3η2

T 2|V |1/2
≤ 4η4 (219)

Applying Lemma D.2 gives

∥S(Fθ(Xi))− UO∥F ≤ 4η4√
|V |

(220)

Then following the argument in the zero-initialization case,∥∥∥∥ ∂L
∂WO

+ B̄

∥∥∥∥
F

≤ 4η4√
|V |

+
η5/2√
T

≤ 2η3 (221)

Then, after the first step, ∥∥WO − ηB̄
∥∥
F
≤ 3η2

T 2|V |1/2
+ 2η4 ≤ 3η4 ≤ 3η2 (222)

From Lemma D.7,
∂L

∂V (l)
= − 1

NT

∑
i

h
(l−1)⊤
i A

(l)⊤
i RiW

⊤
O (223)

Considering the deviation from each of the terms, we have∥∥∥∥ ∂L
∂V (1)

∥∥∥∥
F

≤ 15η2

T 2|V |1/2
≤ 15η9/2 (224)

Then, we have that after the first step∥∥V (l)
∥∥
F
≤ 2η2

T 2
+ 15η11/2 ≤ 3η4 ≤ 12η3

From Lemma D.7,
∂L

∂W (l)
= − 1

NT

∑
i

h
(l−1)⊤
i S

(l)
i h

(l−1)
i (225)

∂L
∂P (l)

= − 1

NT
eintjk,jk→t

(
D,
∑
i

S
(l)
i

)
(226)

with S
(l)
i = ein

(
J
(l)
i , G

(l)
i V (l)⊤h

(l−1)⊤
i

)
. As in the zero-initialization case, we can use the bound

on the attention pattern to control J (l)
i . We have that for t ≥ 2

∥Jt,i − Jt∥2 ≤
(
1 +

2√
t

)
∥Ai[t, :]−A0[t, :]∥2 + ∥Ai[t, :]−A0[t, :]∥22 (227)

Then, as we have that

∥Ai[t, :]−A0[t, :]∥2 ≤ 6η7/2√
T

(228)

it follows that

∥Jt,i − Jt∥2 ≤ 15η7/2√
T

(229)

Since J1,i is always all zeros, we can ignore this term and for t ≥ 2, we have that,

∥Ji − J∥2 ≤ 15η7/2 (230)

Now, we bound the norm of G(l)
i . Starting from layer L, we have∥∥∥G(L)

i

∥∥∥
F
≤

√
2T

3η2

T 2|V |1/2
≤ 5η4 (231)
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We will let the bound on the deviation at layer l be DG,l. Now, we consider the bound for each layer
l,∥∥∥G(l−1)

i

∥∥∥
F
≤ DG,l+

5

2
DG,l

3η2

T 2|V |1/2
+2

∥∥∥S(l)
i

∥∥∥√2T
3η2

T 2|V |1/2
≤ (1+8η9/2)DG,l+9η4

∥∥∥S(l)
i

∥∥∥
(232)

Since we also need the norm of S(l)
i to iterate through layers, we bound the norm of S(l)

i ,∥∥∥S(l)
i

∥∥∥
F
≤
∥∥∥J (l)

i

∥∥∥∥∥∥G(l)
i

∥∥∥∥∥∥V (l)
∥∥∥∥∥∥h(l−1)

i

∥∥∥
F
≤ 5

2
DG,l

3η2

T 2|V |1/2
√
2T ≤ 8η4DG,l (233)

Using this upper bound back in the recurrence for DG,l, we have∥∥∥G(l−1)
i

∥∥∥
F
≤ (1 + 8η9/2 + 72η8)DG,l (234)

Then for all l, DG,l ≤ 6η4 as L ≤
√
T
4 and η ≤ min

(
1

12L ,
5

8
√
T

)
. Then, we also have that for

all l,
∥∥Gl

i

∥∥ ≤ 6η4. Then, we have that as ∥Jt∥2 = 1
t , ∥Ji∥2 ≤ 3

2 + 15η7/2 ≤ 2, and sη ≤
min

(
1

12L ,
5

8
√
T

)
, ∥∥∥S(l)

i

∥∥∥
F
≤ 48η8 (235)

This produces ∥∥∥∥ ∂L
∂W (l)

∥∥∥∥
F

≤ 48η8 (236)

and similarly, ∥∥∥∥ ∂L
∂P (l)

∥∥∥∥
F

≤ 48η8 (237)

and hence after the first step ∥∥W (l)
∥∥
F
≤ 48η9 +

3η2

T 2
≤ 4η5T

∥∥P (l)
∥∥
F
≤ 48η9 +

3η2

T 2
≤ 4η5T
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