

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW DO TRANSFORMERS LEARN TO ASSOCIATE TO-KENS: GRADIENT LEADING TERMS BRING MECHANISTIC INTERPRETABILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Semantic associations such as the link between “bird” and “flew” are foundational for language modeling as they enable models to go beyond memorization and instead generalize and generate coherent text. Understanding how these associations are learned and represented in language models is essential for connecting deep learning with linguistic theory and developing a mechanistic foundation for large language models. In this work, we analyze how these associations emerge from natural language data in attention-based language models through the lens of training dynamics. By leveraging a leading-term approximation of the gradients, we develop closed-form expressions for the weights at early stages of training that explain how semantic associations first take shape. Through our analysis, we reveal that each set of weights of the transformer has closed-form expressions as simple compositions of three basis functions—bigram, token-interchangeability, and context mappings—reflecting the statistics in the text corpus and uncover how each component of the transformer captures the semantic association based on these compositions. Experiments on real-world LLMs demonstrate that our theoretical weight characterizations closely match the learned weights, and qualitative analyses further guide us on how our theorem shines light on interpreting the learned association in transformers.

1 INTRODUCTION

Large language models (LLMs) based on self-attention have shown strong capabilities in capturing both factual knowledge and qualitative aspects of the human world (Grattafiori et al., 2024; Yang et al., 2025; Team et al., 2024; Achiam et al., 2023). This progress has sparked growing interest in understanding why these models work so well and, in particular, what kinds of internal structures emerge during training (Engels et al., 2024; Li et al., 2023a; Meng et al., 2022; Cunningham et al., 2023). Among these structures, semantic associations are especially foundational to language modeling (Harris, 1954; Firth, 1957; Miller & Charles, 1991), as they enable models to connect words and concepts in ways that support generalization and coherent text generation. While recent studies have identified specific mechanisms such as induction heads (Olsson et al., 2022), linear semantic relations (Nanda et al., 2023), and topic clustering (Li et al., 2023b), we still lack a principled account of *how semantic associations arise during the training of attention-based transformers*.

By semantic associations, we mean the statistical and functional relationships between tokens that encode meaning—for example, the link between “bird” and “flew”, the interchangeability of “car” and “truck” in adjectival contexts, or the coupling of “country” and “capital”. These associations have long been recognized in linguistics under the lens of distributional semantics (Harris, 1954). In modern transformers, such associations are not explicitly programmed but instead emerge through gradient-based optimization over large corpora. Understanding *how* these structures crystallize during training is therefore essential not only for connecting deep learning with linguistic theory but also for developing a mechanistic foundation of representation learning in large language models.

In this work, we develop a theory for the emergence of semantic associations in attention-based language models trained on natural language data, through the lens of training dynamics. A formal analysis of training dynamics is attractive as it allows us to rigorously discuss how modern language

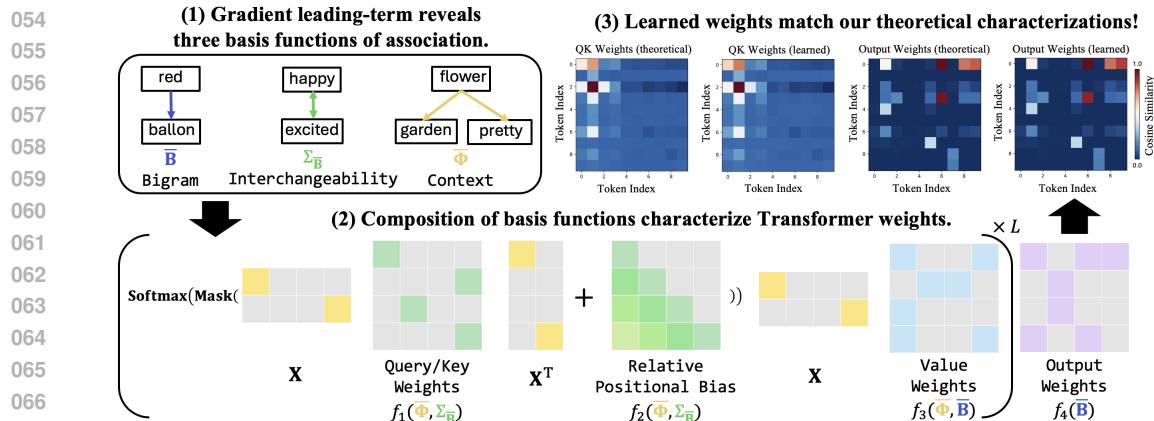


Figure 1: To understand the emergence of associative features, we analyze the training dynamics of Transformer by focusing on the gradient leading terms for weights, allowing us to identify interpretable basis functions that characterize each weight by their compositions. Empirical validation confirms that our weight characterizations match the actual ones learned in practical transformers.

models learn features and capabilities. Unfortunately, the training dynamics of transformers are highly complex, which has led prior work to adopt unrealistic assumptions that diverge from practice: (1) synthetic structured language (Li et al., 2023b; Yang et al., 2024), (2) simplified model architectures without, e.g., positional encoding or residual connections (Tian et al., 2023; Huang et al., 2025), and (3) non-standard training, such as sequential component-wise training or partially frozen weights (Bietti et al., 2023; Li et al., 2023b). While these theoretical analyses provide valuable insights, their departures from realistic conditions raise concerns about generalizability to LLMs used in practice. In contrast, we ground our study in realistic settings by focusing on naturalistic text distributions and standard attention-based transformers with positional encoding, optimized with a standard training procedure (Brown et al., 2020). This is essential to minimize the gap between our theory and practical use.

Our key technical innovation is to analyze transformer training dynamics through the leading term of an expansion of the gradients for each set of weights. In particular, transformers are known to acquire many core behaviors early in training—including semantic relations—and persist through convergence (Olsson et al., 2022; Elhage et al., 2021; Nanda et al., 2023). This makes the early phase not only empirically important but also analytically tractable. During this stage, gradient updates admit a closed-form approximation: the leading terms dominate parameter updates before higher-order corrections accumulate. Leveraging this, we show that the learned weight matrices (including the output matrix, value matrices, query-key matrices) can be expressed as simple compositions of three basis functions: a *bigram mapping*, which captures next token dependencies; an *interchangeability mapping*, which reflects functional similarity across tokens (e.g., synonyms or shared grammatical roles); and a *context mapping*, which encodes longer-range prefix-suffix co-occurrence.

Through experiments on a natural language dataset, we verify that the learned weights in an attention-based transformer model closely match our theoretical closed-form expressions, and further demonstrate that this holds even beyond the early stage. We also show rich qualitative examples of how each weight component of the transformer captures the actual word-wise semantic associations characterized by our theorem. Furthermore, we verify that our theoretically characterized features are correlated with the behavior of real-world language model. Figure 1 depicts an overview of our analysis, and we summarize our **contributions** as follows:

1. We present the first explicit characterization of weights in attention-based transformers trained on real-world text corpora under the next-token prediction loss;
2. We interpret the features learned in weights as compositions of bi-gram, interchangeability, and context mappings, and then show how these basis functions capture semantic association across words;
3. We finally validate our theoretical interpretation on both self-attention models and practical LLM, demonstrating the generality and relevance of our theorems.

108

2 RELATED WORKS

110 **Understanding feature emergence of Transformer.** Many works have considered the training
 111 dynamics of transformers under controlled settings to interpret their feature learning (Tian et al.,
 112 2023; Bietti et al., 2023; Nichani et al., 2024; Kim & Suzuki, 2024). A line of them investigates how
 113 low-level associative features, such as bigram structure (Bietti et al., 2023), cyclic structure (Huang
 114 et al., 2025), and co-occurrence (Tian et al., 2023; Yang et al., 2024), are learned from data. There
 115 are also multiple works that analyze how high-level capabilities, such as chain-of-thought (Kim &
 116 Suzuki, 2025), topic clustering (Li et al., 2023b; Jiang et al., 2024), reasoning or memorization (Yao
 117 et al., 2025), and in-context learning capability (Nichani et al., 2024; Bietti et al., 2023; Wang
 118 et al., 2024a; Kim & Suzuki, 2024; Edelman et al., 2024), are obtained during training. Although
 119 insightful, they often assume structured or abstract language data (Li et al., 2023b; Nichani et al.,
 120 2024; Yang et al., 2024), unrealistic model architecture (Tian et al., 2023; Cui et al., 2024; Troiani
 121 et al., 2025), and adjusted training strategies far from practice (Bietti et al., 2023; Kim & Suzuki,
 122 2024; Huang et al., 2025), which depart from reality. In contrast, our theoretical analysis is grounded
 123 in natural language data, realistic architecture, and a standard training strategy. As a result, our
 124 theory substantially reduces the gap between formal analysis and practical use, which is further
 125 corroborated by our empirical validations.

126 **Understanding feature learning beyond Transformer.** Recent work has also explored how mod-
 127 els learn data-dependent features through dynamics for non-transformer models as well (Dandi
 128 et al., 2023; Ba et al., 2022; Mousavi-Hosseini et al., 2023). However, this line of work similarly
 129 considers abstractions of language, such as Gaussian data (Ba et al., 2022), single or multi-index
 130 models (Damian et al., 2024; Dandi et al., 2023), or spiked models (Wang et al., 2024b; Mousavi-
 131 Hosseini et al., 2023), and considers measures of data complexity with Hermite expansions (Bietti
 132 et al., 2022; Damian et al., 2024; Lee et al., 2024). On the contrary, we adopt a realistic theoretical
 133 setup to analyze features in transformers, which remains the dominant architecture in practice.

134

3 PRELIMINARY

135

3.1 PROBLEM STATEMENT

136 Semantic associations are foundational for language models: they enable models to go beyond mem-
 137 orizing sequences and instead generalize across contexts (Hinton, 1984), infer latent structure (Wu
 138 et al., 2018), and generate coherent text. Despite their importance, the mechanisms by which trans-
 139 formers acquire these associations during training remain poorly understood. Towards a *mechanistic*
 140 and *theory-grounded interpretation* of LLMs in a more realistic setup, we pose the question:

***How do semantic associations emerge during the training of attention-based
 language models on natural language data?***

141 It is worth noting that we focus here on general natural language data, rather than synthetically
 142 structured or abstractive language, which has been considered in previous works (Yang et al., 2024;
 143 Nichani et al., 2024; Huang et al., 2025). This is essential to minimize the gap between our theory
 144 and practical use, since real-world text is highly diverse and is not restricted to a specific structure.
 145 In addition, prior studies (Olsson et al., 2022; Elhage et al., 2021; Nanda et al., 2023) have shown
 146 that critical semantic and reasoning abilities, such as induction heads and linear semantic relations,
 147 can already emerge in the early stage and be preserved through convergence. This makes the early
 148 stage of training a natural and necessary focus for theoretical analysis, which we now develop.

149

3.2 MODEL ARCHITECTURE

150 Prior works have analyzed the training dynamics of attention-based models under simplifying as-
 151 sumptions, such as restricting attention to low rank (Cui et al., 2024), removing causal mask-
 152 ing (Tian et al., 2023; Yang et al., 2024), without positional encodings (Bietti et al., 2023) or residual
 153 streams (Huang et al., 2025). In line with Nichani et al. (2024), we study an attention-based architec-
 154 ture that retains these components: positional encodings, causal masking, and residual streams. To
 155 further align with practice, we employ a relative positional encoding scheme, as in T5 (Raffel et al.,

2020), rather than augmenting embeddings with absolute position vectors. We begin by introducing
163 the necessary notation before formally defining the transformer computation.

164 Let $\mathcal{V} = \{\mathbf{e}_1, \dots, \mathbf{e}_j, \dots, \mathbf{e}_{|\mathcal{V}|}\}$ denote the set of vocabulary. For an input sequence of length T , we
165 represent the input as a matrix $\mathbf{X} \in \mathbb{R}^{T \times |\mathcal{V}|}$, where each row of \mathbf{X} is the one-hot encoding of the
166 t -th token in the sequence. In an L -layer transformer, the parameters associated with self-attention
167 are given by $\{\mathbf{W}^{(l)}, \mathbf{P}^{(l)}, \mathbf{V}^{(l)}\}_{l=1}^L$ together with \mathbf{W}_O , where $\mathbf{W}^{(l)} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ is the key–query
168 matrix of layer l , $\mathbf{V}^{(l)} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ is the value matrix, $\mathbf{P}^{(l)} \in \mathbb{R}^{T \times T}$ is the learned relative positional
169 encoding, and $\mathbf{W}_O \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ is the output matrix. The model with input \mathbf{X} is defined as follows.

170 **Definition 3.1** (Attention-Based Transformer). *Given an input matrix $\mathbf{X} \in \mathbb{R}^{T \times |\mathcal{V}|}$, the L -layer
171 attention-based transformer with parameters $\Theta = \{\mathbf{W}^{(l)}, \mathbf{P}^{(l)}, \mathbf{V}^{(l)}\}_{l=1}^L \cup \{\mathbf{W}_O\}$ is defined as*

$$\mathbf{F}_\Theta(\mathbf{X}) = \mathbf{h}^{(L)} \mathbf{W}_O, \quad (1)$$

172 where \mathbf{h}^L is defined by the recurrence relation, i.e.,

$$\mathbf{h}^{(l)} = \mathbf{h}^{(l-1)} + \mathcal{S}(\text{Mask}(\mathbf{h}^{(l-1)} \mathbf{W}^{(l)} \mathbf{h}^{(l-1)\top} + \text{DM}(\mathbf{P}^{(l)}))) \mathbf{h}^{(l-1)} \mathbf{V}^{(l)} \text{ and } \mathbf{h}^{(0)} = \mathbf{X}, \quad (2)$$

173 here $\mathcal{S}(\cdot)$ represents the softmax function, $\text{DM}(v)$ maps the i th element of v to the $(-i+1)$ th subdiagonal, and $\text{Mask}(\cdot)$ denotes the operator of attention mask. This architecture is in line with Nichani
174 et al. (2024), and recent work shows that self-attention–only models can match the performance of
175 architectures with MLP layers (Wang et al., 2025).

3.3 TRAINING SETUP

176 **Learning objective.** To align with standard language modeling practice and ensure comparability
177 with prior works (Huang et al., 2025; Nichani et al., 2024), we adopt the standard cross-entropy
178 objective: given N input matrices $\mathbf{X}_1, \dots, \mathbf{X}_N$ with sequence length T and corresponding output
179 matrices $\mathbf{Y}_1, \dots, \mathbf{Y}_N$, where $\mathbf{Y}_i \in \mathbb{R}^{T \times |\mathcal{V}|}$, the objective function is defined as

$$\mathcal{L}(\Theta) = \frac{-1}{NT} \sum_{i=1}^N \sum_{t=1}^T \log \mathcal{S}(\mathbf{F}_\Theta(\mathbf{X}_i)^{[t]}) \mathbf{Y}_i^{[t]\top}, \quad (3)$$

190 where $\mathbf{M}^{[t]}$ denotes the t -th row of a matrix \mathbf{M} and $\mathbf{Y}_i^{[t]}$ corresponds to the one-hot embedding for
191 the $t+1$ -th token of the sequence corresponding to \mathbf{X}_i .

192 **Gradient descent.** We analyze the evolution of the parameters under full-batch gradient descent
193 with a constant learning rate η . Under gradient descent, the parameters are updated as follows:

$$\Theta(t) = \Theta(t-1) - \eta \nabla_\Theta \mathcal{L}(\Theta). \quad (4)$$

194 Due to the nonlinear complexities of the gradient, deriving an exact form for even one of the weight
195 matrices after t steps is challenging. We address these challenges by considering a leading-order
196 approximation technique, allowing for a closed-form expression of the gradients and weights while
197 yielding a close approximation of the full gradient.

4 THEORETICAL ANALYSIS

201 In Section 4.1, we provide theorems demonstrating that the weights of attention-based transformers
202 remain close to their gradient leading terms for $O(1/\eta)$ steps under both zero and Gaussian initializations.
203 Then, Section 4.2 uncovers how three basis functions, which are crucial to express token
204 associations and language structure, are encapsulated in those gradient leading terms, and how these
205 three functions are compounded to shape the desiderata of the transformers’ weight matrices.

4.1 MAIN THEOREMS

211 Under the setup described in Sec. 3, we obtain the following results for attention-based transformers.

212 **Theorem 4.1.** *(Informal) Given an attention-based transformer (Def. 3.1) under sufficiently small
213 Gaussian initialization, with $L \leq \sqrt{T}/4$, after s gradient descent steps with learning rate $\eta \geq \frac{1}{T}$, if
214 $s \leq \eta^{-1} \min(\frac{5}{8\sqrt{T}}, \frac{1}{12L})$, then for all layers $l = 1, \dots, L$,*

$$\|\mathbf{W}_O - s\eta \bar{\mathbf{B}}\|_F \leq 3s^2\eta^2, \quad (5)$$

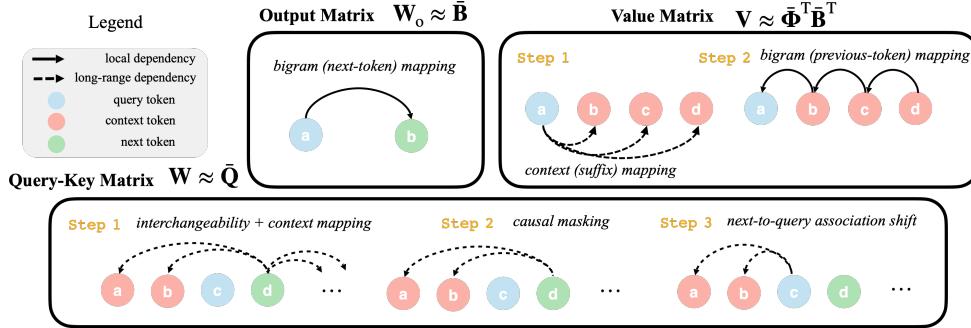


Figure 2: **Illustration of theoretical results.** We characterize weight matrices of the attention-only transformer as compositions of three basis functions: bigram mapping, interchangeability mapping, and context mappings. We illustrate how these mappings are composed across weight matrices to learn semantic associations between a given query token and its surrounding text.

$$\left\| \mathbf{V}^{(l)} - \binom{s}{2} \eta^2 \bar{\Phi}^T \bar{B}^T \right\|_F \leq 12s^3 \eta^3, \quad (6)$$

$$\left\| \mathbf{W}^{(l)} - \left(3 \binom{s}{4} + 2 \binom{s}{3} \right) \eta^4 \bar{Q} \right\|_F \leq 13s^5 \eta^5 T, \quad (7)$$

$$\left\| \mathbf{P}^{(l)} - \left(3 \binom{s}{4} + 2 \binom{s}{3} \right) \eta^4 \Delta \right\|_F \leq 13s^5 \eta^5 T, \quad (8)$$

where $\|\cdot\|_F$ is the Frobenius norm, \bar{B} corresponds to a bigram statistic, $\bar{\Phi}$ corresponds to a context co-occurrence statistic, \bar{Q} corresponds to a token-to-token correlation based on a composition of \bar{B} and $\bar{\Phi}$, and Δ corresponds to a relative position correlation based on the same feature as \bar{Q} .

The above Theorem shows that any finite-depth L -layer attention-based transformer (Def. 3.1) has the same characterization for its weights uniformly across all layers under a zero-initialization (Theorem D.9) and a small Gaussian initialization (Theorem 4.1), suggesting that all layers of the model capture common associative features from natural language as a starting point before evolving differently as training progresses (Figure 6). As seen in Figure 2, compositions of these features form the leading terms of the output matrix (\bar{B}), value matrix ($\bar{\Phi} \bar{B}^T$), and query-key matrix (\bar{Q}). We walk through these matrices in Section 4.2.1 and how they form the weights of the model in Section 4.2.2. The formal theorem and proofs are in Appendix D.

4.2 INTERPRETATION OF THEOREMS

In the previous section, we showed that the model parameters can be approximated by key corpus statistics \bar{B} , $\bar{\Phi}$, \bar{Q} and Δ . Now, we discuss the definitions of these statistics by first introducing **three basis functions** and explaining how **their composition characterizes the model's behavior**.

4.2.1 THREE BASIS FUNCTIONS SHAPING ASSOCIATIVE FEATURES

(1) Bigram mapping \bar{B} . The (i, j) -th element in \bar{B}_{ij} corresponds to a correlation between token \mathbf{e}_i and token \mathbf{e}_j based on how likely \mathbf{e}_i is to be directly followed by \mathbf{e}_j as a bigram. More precisely,

$$\bar{B}_{ij} = \mathcal{P}_t(\mathbf{e}_i) \mathcal{P}_t(\mathbf{e}_j | \mathbf{e}_i) - \mathcal{P}_t(\mathbf{e}_i) / |\mathcal{V}|, \quad (9)$$

where $\mathcal{P}_t(\mathbf{e}_i)$ is the relative frequency of \mathbf{e}_i over all tokens in the dataset $\mathbf{X}_1, \dots, \mathbf{X}_N$ and $\mathcal{P}_t(\mathbf{e}_j | \mathbf{e}_i)$ is the relative frequency of \mathbf{e}_j given that the previous token was \mathbf{e}_i . The product between $\mathcal{P}_t(\mathbf{e}_i)$ and $\mathcal{P}_t(\mathbf{e}_j | \mathbf{e}_i)$ forms an estimate of the likelihood of \mathbf{e}_i followed by \mathbf{e}_j appearing as a bigram and the second term $-\mathcal{P}_t(\mathbf{e}_i) / |\mathcal{V}|$ simply acts as a centering term such that each row sums to 0.

(2) Interchangeability mapping $\Sigma_{\bar{B}}$. We study $\Sigma_{\bar{B}} = \bar{B}^T \bar{B}$, the correlation matrix of \bar{B} , which captures correlations between pairs of tokens based on a frequency-weighted similarity of their previous-token distributions. From Eq. (9), the (i, j) -th element of $\Sigma_{\bar{B}}$ can be represented as

$$\underbrace{\mathcal{P}_t(\mathbf{e}_i) \mathcal{P}_t(\mathbf{e}_j)}_{\text{Frequency weighting}} \sum_{k=1}^{|\mathcal{V}|} \underbrace{\mathcal{P}_t(\mathbf{e}_k^\leftarrow | \mathbf{e}_i) \mathcal{P}_t(\mathbf{e}_k^\leftarrow | \mathbf{e}_j)}_{\text{Previous token similarity}}. \quad (10)$$

In essence, Eq. (10) shows that $\Sigma_{\bar{B}}$ captures a symmetric relationship between tokens based on how similar of a function or role they play across different contexts. Specifically, in Eq. (10), we can see that the corresponding row, which acts as a feature for token e_i captures its associations with **interchangeable** tokens captured by the previous token similarity factor and **frequent** tokens captured by the frequency weights. Similarities in previous token distributions are an indicator of functional similarities or interchangeability, as this captures structural patterns such as nouns being preceded by articles or adjectives and objects being preceded by common descriptors. This interchangeability map, $\Sigma_{\bar{B}}$, acts a building block of characterizations for the weights $W^{(l)}$ and $P^{(l)}$ as illustrated in Figure 2. We depict a simple example of a word-wise correlation captured by $\Sigma_{\bar{B}}$ in Figure 1.

(3) Context mapping $\bar{\Phi}$. The (i, j) -th element of $\bar{\Phi}$ corresponds to a correlation between token e_i and e_j based on how likely e_j is to appear as a prefix of e_i . This can be written as

$$\frac{1}{T} \sum_{k=1}^T \frac{1}{k} \sum_{m=1}^k \mathcal{P}_t(\text{the } k+1\text{-th token is } e_i, \text{ the } m\text{-th token is } e_j) - \mu_j, \quad (11)$$

where μ_j centers the columns of $\bar{\Phi}$ to be 0. Considering each row as an embedding for a token e_i , which represents an average of the tokens that appear in its context, i.e., smoothed context.

More precisely, the strength of the association from token e_i to e_j is determined by the average probability that e_j appears in the context of e_i over possible positions of e_i and e_j . This matrix can be interpreted as assigning a representation to a token based on a summary of the possible contexts that token e_i appears in. This allows for learning associations between words that capture richer semantic relationships than bigram features. For example, we could expect to see correlations between animal and habitat, country and capital, or emotions and facial expressions (See Figure 3). This context mapping $\bar{\Phi}$ is a core building block of the gradients for the query-key attention $W^{(l)}$ and value $V^{(l)}$ matrices as shown in Figure 2.

4.2.2 COMPOSITION OF BASIS FUNCTIONS FOR SEMANTIC ASSOCIATION

We now show how these three basis functions, bigram mapping \bar{B} , interchangeability mapping $\Sigma_{\bar{B}}$, and context mapping $\bar{\Phi}$, are compounded to characterize four classes of weight matrices of the transformer.

(1) Output matrix W_O . As shown in Eq. (5), \bar{B} is the leading term of W_O , and thus the mapping from embedding vectors to output predictions can be understood by examining the matrix product $e_i \bar{B}$ for a token embedding e_i . The j -th element of the resulting output vector is \bar{B}_{ij} , and each \bar{B}_{ij} includes a factor of $\mathcal{P}_t(e_i)$. This implies that tokens are scored according to how frequently they occur in the average next-token distribution of e_i , and explain how models at early stages effectively learn bigram-like patterns.

(2) Value matrix $V^{(l)}$. The leading term of the value matrix $V^{(l)}$ can be expressed as $\bar{\Phi}^\top \bar{B}^\top$ as noted in Eq. (6), which acts as a composition of a context summary and bigram mapping. Because $\bar{\Phi}^\top$ captures longer-term dependencies and \bar{B}^\top captures only bigram statistics, the resulting embedding from $V^{(1)}$ still endows the original token representations with semantic properties similar to those of $\bar{\Phi}^\top$ as seen in Figure 2.

(3) Attention matrix $W^{(l)}$. Theorem 4.1 characterizes the attention weight (a shared query-key matrix) as \bar{Q} , which is constructed as a composition of $\Sigma_{\bar{B}}$, $\bar{\Phi}$, the input matrix X_i , the output matrix Y_i , etc. We note that this compound feature captures a token-to-token correlation determined by how predictive one token is of the other’s next-token distribution based on the context and interchangeability mappings. We walk through an overview of the construction of \bar{Q} in three steps (See Appendix A for details).

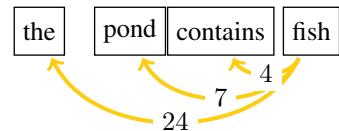


Figure 3: An example of $\bar{\Phi}$ with arrows pointing to prefix tokens for “fish” with context summary scores on edges. Larger values indicate the token appears more frequently in the context of “fish”.

324 1. *Input-output matching scoring in context.* As a preliminary step, we first define a composed
 325 feature $\Sigma_{\bar{B}}\bar{\Phi}$ by multiplying the interchangeability mapping $\Sigma_{\bar{B}}$ with the transpose of the
 326 context mapping $\bar{\Phi}$. This composition utilizes local interchangeability to map a token to a
 327 class of similar tokens and utilizes the context mapping to capture longer-range semantic
 328 correlations shared by the set of similar tokens. Using this feature, for each sample, we
 329 assign scores between each input and output token.

330 2. *Masking and centering.* The auto-regressive constraint is enforced by masking future
 331 tokens, keeping only scores from input tokens that precede the output token. Then, the re-
 332 sulting scores for each output token are centered and normalized based on its position.

333 3. *Next-to-query shift and averaging.* The scores between each input and output token are
 334 then shifted so that the same score is assigned instead to be between the input token and the
 335 token directly preceding the output token. Then, the scores are averaged across all samples.

336

337 **(4) Positional encoding $\mathbf{P}^{(l)}$.** The closed-form characterization Δ of the positional encoding $\mathbf{P}^{(l)}$
 338 follows a very similar composition to \bar{Q} , with the main difference being that the correlations are
 339 mapped to *positional differences* rather than to the vocabulary-space differences (See Lemma D.1).

340

341 4.2.3 HOW THE WEIGHTS COOPERATE

342 To illustrate how the weights work together and provide further context on the role of each of the
 343 weights as functions, we consider the leading-term computation of a single-layer attention-based
 344 model. Dropping constant factors to focus on the interactions between features, the leading terms of
 345 the entire model computation can be written as

346

$$347 (\mathcal{S}(\text{Mask}(\mathbf{X}\bar{Q}\mathbf{X}^\top + \text{DM}(\Delta))) \mathbf{X}\bar{\Phi}^\top\bar{\mathbf{B}}^\top + \mathbf{X})\bar{\mathbf{B}}. \quad (12)$$

348 We can further decompose this into $\mathbf{X}\mathbf{W}_O$ and the computation from the self-attention block is:

349

$$350 \mathcal{S}(\text{Mask}(\mathbf{X}\bar{Q}\mathbf{X}^\top + \text{DM}(\Delta))) \mathbf{X}\bar{\Phi}^\top\Sigma_{\bar{B}}. \quad (13)$$

351 \bar{Q} and Δ capture correlations between two tokens or two positions based on how predictive the first
 352 token/position is of the next-token distribution of the second token/position according to $(\bar{\Phi}^\top\Sigma_{\bar{B}})^\top$.
 353 Notice that the attended tokens are mapped to the output space by $\bar{\Phi}^\top\Sigma_{\bar{B}}$, the same feature that
 354 determines the correlations for attention. As a result, the self-attention block effectively attends to
 355 tokens that, under the value and output matrix projection, lead to better next-token prediction. Thus,
 356 we find that while the residual stream $\mathbf{X}_i\mathbf{W}_O$ provides an average prediction of the next token, \bar{Q}
 357 enables the model to refine this prediction by selectively focusing on tokens most indicative of the
 358 next-token given its current parameters, those capturing corpus association statistics.

359

Implication. By considering an end-to-end analysis of the model under simultaneous training
 360 of layers and by decomposing the weights, we obtain a clear interpretation of how differ-
 361 ent components collaborate to form semantic representations and can rigorously contextual-
 362 ize the function of each component in the full computation of attention-based transformers.
 363 While these features only yield small changes in the actual text output, they provide impor-
 364 tant insight into how the model’s behavior develops during training. For example, if early
 365 training already associates *fish* with *pond* (as in Figure 3), we expect such relationships to
 366 be a useful anchor for later training, allowing the model to complete more complex sen-
 367 tences, e.g., “A pond in the garden was filled with colorful fish that sparkled in the sunlight”,
 368 coherently with learned semantic associations.

369 5 EXPERIMENTS

370

371 5.1 3-LAYER ATTENTION-BASED TRANSFORMER

372

373 We begin with an experimental setting designed to closely mirror our theory, enabling direct veri-
 374 fication of results and analysis of the semantic relationships embedded in the learned weights. For
 375 clearer interpretability, we use the TinyStories dataset (Eldan & Li, 2023), truncated to the 3,000
 376 most frequently occurring words, which also defines the model’s vocabulary. A 3-layer self-attention
 377 model defined in Definition 3.1 is then trained with sequence length $T = 200$.

378
 379 Table 1: Minimum cosine similarities
 380 between theoretical and actually
 381 learned weights across all epochs. Re-
 382 sults from a 3-layer attention-based
 383 model trained on TinyStories (small η).
 384

Weights	Min. Cosine
Attention	0.999496
Value	0.999169
Output	0.998486

390
 391 **Verification of theory.** To verify Theorem 4.1, we measure the cosine similarity between the learned
 392 weights and their corresponding leading terms at checkpoints over the first 100 epochs of SGD
 393 using a batch size of 2048 for computational tractability with a learning rate of 0.005. We also
 394 consider the cosine similarity between the learned weights and their leading terms when using a
 395 larger learning rate of 0.05 to understand how features evolve at later stages with respect to the
 396 leading term gradients. We provide results for both settings in Table 1 and Figure 4. The results show
 397 that *the learned weights maintain strong agreement with the theoretical predictions: even after 30*
 398 *epochs, all weights achieve a cosine similarity of at least 0.9*. Moreover, all parameter matrices have
 399 a cosine similarity above 0.7 even after 100 epochs where the loss had dropped from 8.00 to 5.35.
 400 These findings suggest that the features predicted by the theorem not only characterize the model
 401 dynamics during the early stage, but also remain informative well beyond it. *We provide results for*
 402 *a BPE tokenization and for a causal analysis in Appendix B, and we elaborate experimental details*
 403 *for the TinyStories experiments in Appendix C.*

the	red	to	they	happy	wanted	fish	flower	birds
park	ball	the	she	happy	saw	fish	beautiful	bird
little	car	play	they	sad	had	big	yellow	tree
bird	dress	go	he	excited	wanted	small	butterfly	up
ball	balloon	be	it	scared	asked	pond	hose	park
dog	truck	help	one	proud	went	lake	garden	nest
big	blocks	see	lily	angry	loved	water	bloom	flowers
tree	apples	her	timmy	nice	ran	catch	pretty	tweety
man	shirt	make	tom	curious	looked	sea	daisy	sky
box	hat	do	her	surprised	took	boat	field	flew

(a) Examples for \bar{B} (b) Examples for $\Sigma_{\bar{B}}$ (c) Examples for $\bar{\Phi}$

415 Figure 5: Selected tokens from the top 30 correlated tokens under different basis features from
 416 TinyStories. The characterized features actually capture both grammatical and semantic structures.
 417

418 **Semantic structure.** To validate our interpretation of associative features, we collect for each
 419 token the top 30 most correlated tokens under each of the basis functions: the bigram mapping
 420 (\bar{B}), interchangeability mapping ($\Sigma_{\bar{B}}$), and context matrix ($\bar{\Phi}$), constructed from the TinyStories
 421 corpus. We provide examples of tokens where the expected semantic relationships can be observed
 422 in Figure 5. Under \bar{B} , we see that the word “red” is correlated with common objects such as “truck”
 423 that would be described by the word “red”. Under $\bar{\Phi}$, we can see that the word “fish” is correlated
 424 with common settings where fish would appear such as “pond” or “lake”.

425 5.2 TRANSFORMERS IN PRACTICE

427 **Setup.** To evaluate how well our theoretical results extend to practical LLMs, we analyze token
 428 relationships learned from OpenWebText (Gokaslan et al., 2019), a real-world large-scale dataset
 429 with text from millions of webpages, in Pythia-1.4B (Biderman et al., 2023) and compare them with
 430 our theoretical predictions, examining how these relationships evolve across layers on datasets and
 431 models reflecting real-world complexities. We choose the Pythia model family, as they are open-
 432 sourced and uniquely provide access to intermediate checkpoints, enabling fine-grained analysis of

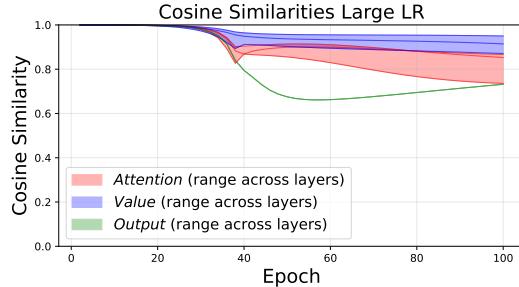


Figure 4: **Cosine similarity between theoretical and learned weights.** Results from a 3-layer transformer model trained on TinyStories.

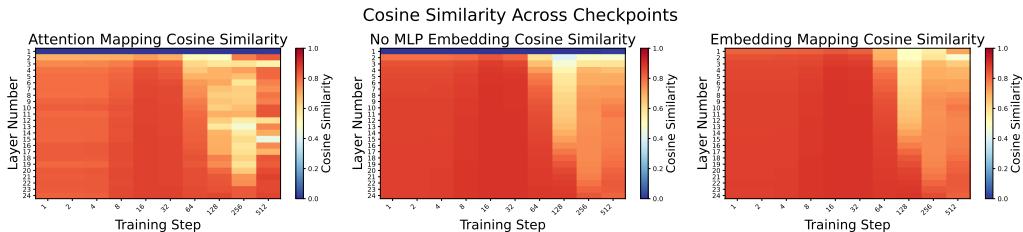
432 training dynamics and interpretability (Marks et al., 2024; Gallego-Feliciano et al., 2025). Unlike
 433 our theoretical setting, Pythia includes additional components such as MLP and multi-head attention,
 434 making it impossible to directly read off average token correlations from the weights. In order to
 435 interpret the layer-wise representations in terms of token-token correlations, we perform the analysis
 436 through the following steps:

- 438 1. We pass in each token \mathbf{e}_i as the input to the transformer.
- 439 2. For each token and from each layer l , we collect the following embeddings: the input to
 440 layer l $\mathbf{h}_{i,l,pre}$, the output of layer l $\mathbf{h}_{i,l,post}$, and the output of layer l without the MLP
 441 component $\mathbf{h}_{i,l,attn}$.¹
- 442 3. The embeddings $\mathbf{h}_{i,l,pre}$ form the rows of $\mathbf{E}_{l,pre} \in \mathbb{R}^{|\mathcal{V}| \times d}$ which represents a mapping
 443 from the input embeddings of layer l to tokens. Similarly, the embeddings $\mathbf{h}_{i,l,post}$ and
 444 $\mathbf{h}_{i,l,attn}$ form the rows of $\mathbf{E}_{l,post} \in \mathbb{R}^{|\mathcal{V}| \times d}$ and $\mathbf{E}_{l,attn} \in \mathbb{R}^{|\mathcal{V}| \times d}$ respectively.

446
 447 **Attention correlations.** To analyze the correlations captured by the attention weights at each layer,
 448 we compute the product of the key and query mappings for each head and average these products,
 449 which we will call $\mathbf{A}_{l,emb} \in \mathbb{R}^{d \times d}$. We then multiply the mapping $\mathbf{E}_{l,pre}$ on both sides of $\mathbf{A}_{l,emb}$ to
 450 convert the average attention mapping into a token-basis attention weight matrix $\mathbf{A}_{l,tok}$. Finally, we
 451 consider token correlations captured by $\mathbf{A}_{l,tok}$ by using its covariance matrix, which we compare
 452 with the covariance matrix of $\bar{\mathbf{Q}}$, the leading-order attention mapping term from our theorem.

453
 454 **Embedding correlations.** To analyze the correlations captured by the value mapping and the
 455 MLP, we consider the token-token correlations captured by the output of each layer. Utilizing the
 456 covariance matrix of $\mathbf{E}_{l,post}$ allows for direct comparison with the covariance matrix of the leading
 457 value matrix term $\bar{\mathbf{B}}^\top \mathbf{B}^\top$, since the matrices themselves have different dimensions. Furthermore,
 458 this enables us to control for shifts in the embedding space.

459
 460 **Comparison methodology.** We compute the leading term matrices using 100K samples from
 461 OpenWebText. To control for differences in model architecture, we normalize each row of the
 462 leading term weights to have unit norm. Then, we compute cosine similarities between the corre-
 463 sponding covariance matrices across layers and across checkpoints. We perform the same analysis
 464 on the FineWeb (Penedo et al., 2024) dataset and provide results in Appendix B. More details on the
 465 experimental setup are in Appendix C.



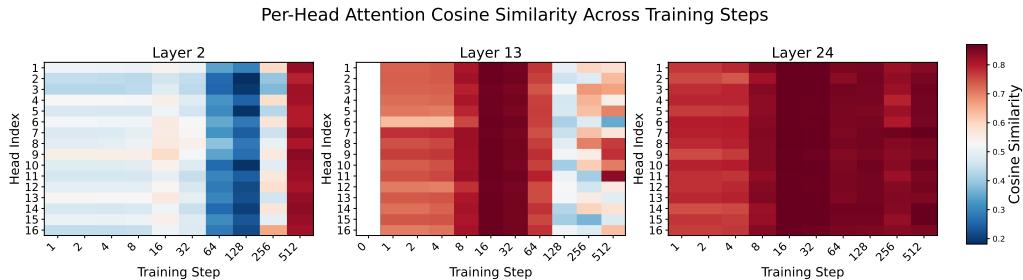
473 Figure 6: Cosine similarity between covariance matrices for Pythia-1.4B attention weights and em-
 474 beddings and the corresponding leading term features based on OpenWebText.

475
 476 **Results.** We provide a visualization of results in Figure 6, where we can see that, at the early stage
 477 of training, there is very strong agreement between the Pythia embeddings and our leading-term
 478 features. We can see that for the embedding mapping, *the token representations strongly match*
 479 *our theoretical analysis across all layers, and similarly for the attention weights*, excluding only
 480 the first layer. We can see that as the model continues training, the weights gradually drift from
 481 fixed associative features to represent richer knowledge beyond association, starting with the earlier
 482 layers. However, it still maintains these features to a large extent for relatively longer steps. This
 483 suggests that our analysis on attention-based models generalizes with the addition of multi-head
 484 attention or MLP and act as a starting point for a finer-grained analysis of full training dynamics.

485
 486 ¹We remind the reader of each layer’s structure in the Pythia model. The input is normalized and then passed
 487 into the attention block and the MLP block in parallel. Then the outputs of each are added to the original input.

486 **MLP ablation.** We perform an ablation at each layer by performing the embedding correlation
 487 analysis using $E_{l,attn}$, which is based on only the output of the attention block and excludes the
 488 MLP component. The results for this analysis can be seen in the middle plot of Figure 6. We
 489 can see that the correlations captured by embeddings with and without the MLP are similar except
 490 at the first layer. This suggests that at the first layer, the MLP maps tokens to embeddings with
 491 structures similar to that of the leading-order value matrix term and maintains a similar structure at
 492 later layers. Based on these initial results, one possible hypothesis is that the MLP at early stages
 493 functions similarly to the leading-term value mapping.

494 **Individual attention heads.** In order to capture a fine-grained understanding of the attention
 495 block, we perform the analysis on attention correlations using individual attention heads. We per-
 496 form this analysis at an early (Layer 2), middle (Layer 13), and late layer (Layer 24) to also under-
 497 stand how heads may evolve differently at different stages of the model. In Figure 7, we find that
 498 different layers evolve differently with respect to the gradient leading-term for attention mappings.
 499 The earlier layers learn the leading-term features at a slower rate, as seen by the high similarity
 500 (red) appearing at later steps, especially for layer 2. We can also see that layer 13 exhibits faster
 501 specialization of attention heads than the other layers, as seen by the high variance in each column
 502 at later steps for layer 13. This provides insight into the rate of specialization of attention heads and
 503 suggests that intermediate layers are where specialization initially occurs.



513 Figure 7: Cosine similarity between covariance matrices for Pythia-1.4B individual attention head
 514 weights and the corresponding leading term features based on OpenWebText.

515 6 CONCLUSION

516 We present new theoretical results on the emergence of semantic associations in self-attention mod-
 517 els learned from a natural language dataset. Our gradient leading term analysis for each model
 518 weight illuminate how the core basis functions that shape the associative features, i.e., bigram map-
 519 ping, interchangeability mapping, and context mapping, develop from the training corpus. We show
 520 that transformer weights have closed-form expressions as compositions of those basis functions
 521 to represent semantic associations across natural language tokens. The extensive analyses on the
 522 weight matrices’ characterizations grounded by empirical supports from toy transformers and real-
 523 world LLMs contribute to the theoretical foundations of representation learning in transformers
 524 while also opening pathways for interpretability research: discovering common factors that allow
 525 weight matrices across components to be decomposed into simple functions of those shared factors;
 526 leveraging theory to formulate broad hypotheses about how concepts arise in models, extending
 527 beyond individual mechanisms or specific behaviors.

530 ETHICS STATEMENT

532 We provide a novel theorem that characterizes the roles of weights in the transformer model, which
 533 is a de facto standard building block of modern LLMs. We try to uphold high standards of sci-
 534 entific excellence by making minimal assumptions for theoretical analysis while providing practical
 535 implications on mechanistic interpretability. The new insights on emerging features we presented
 536 contribute to a better understanding and diagnosis of the representation learning of transformers,
 537 which makes a big step towards transparent and reliable AI. As our study considers a setup of train-
 538 ing from scratch on public datasets, there is no direct privacy issue and harm. The authors also
 539 acknowledge and respect the ethics of confidentiality and fairness, and confirmed that there are no
 identified violations of them.

540 REPRODUCIBILITY STATEMENT
541

542 All the theoretical analyses in this work are accompanied by full proofs with detailed step-by-step
543 explanations (in the Appendix) for easy verification, reproduction, and reuse. We not only elaborate
544 full details of hyperparameters and setup in the main body of the paper for all the empirical
545 validations, but also will provide implementation code to maximize transparency. In addition, our
546 choice of LLM backbone models pursues both (1) the ethics of fairness so that relatively low-funded
547 labs can also try to run our experiments and (2) maximum reproducibility, given its simple and fully
548 open-sourced configurations.

550 REFERENCES
551

552 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
553 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
554 report. *arXiv preprint arXiv:2303.08774*, 2023.

555 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
556 dimensional asymptotics of feature learning: How one gradient step improves the representation.
557 *Advances in Neural Information Processing Systems*, 35:37932–37946, 2022.

558 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
559 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
560 Pythia: A suite for analyzing large language models across training and scaling. In *International
561 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

562 Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
563 shallow neural networks. *Advances in neural information processing systems*, 35:9768–9783,
564 2022.

565 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
566 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:
567 1560–1588, 2023.

568 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
569 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
570 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

571 Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between
572 positional and semantic learning in a solvable model of dot-product attention. *Advances in Neural
573 Information Processing Systems*, 37:36342–36389, 2024.

574 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
575 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
576 2023.

577 Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. The computational complexity
578 of learning gaussian single-index models. *arXiv preprint arXiv:2403.05529*, 7, 2024.

579 Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
580 neural networks learn, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.

581 Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The evolution
582 of statistical induction heads: In-context learning markov chains. *Advances in Neural Information
583 Processing Systems*, 37:64273–64311, 2024.

584 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
585 coherent english? *arXiv preprint arXiv:2305.07759*, 2023.

586 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
587 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
588 transformer circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

594 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
 595 features are one-dimensionally linear. *arXiv preprint arXiv:2405.14860*, 2024.

596

597 John Rupert Firth. *Papers in Linguistics 1934–1951*. Oxford University Press, London, 1957.

598

599 Jorge Gallego-Feliciano, S Aaron McClendon, Juan Morinelli, Stavros Zervoudakis, and Antonios
 600 Saravacos. Hidden dynamics of massive activations in transformer training. *arXiv preprint*
arXiv:2508.03616, 2025.

601

602 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

603

604 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 605 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 606 of models. *arXiv preprint arXiv:2407.21783*, 2024.

607

608 Zellig S Harris. Distributional structure. *Word*, 10(2-3):146–162, 1954.

609

610 Geoffrey E Hinton. Distributed representations. 1984.

611

612 Ruiquan Huang, Yingbin Liang, and Jing Yang. Non-asymptotic convergence of training transform-
 613 ers for next-token prediction. *Advances in Neural Information Processing Systems*, 37:80634–
 80673, 2025.

614

615 Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch. On the
 616 origins of linear representations in large language models. In *Proceedings of the 41st International
 Conference on Machine Learning*, pp. 21879–21911, 2024.

617

618 Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: nonconvex mean-field
 619 dynamics on the attention landscape. In *Proceedings of the 41st International Conference on
 Machine Learning*, pp. 24527–24561, 2024.

620

621 Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought. In
 622 *The Thirteenth International Conference on Learning Representations*, 2025.

623

624 Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
 625 tion. *Annals of statistics*, pp. 1302–1338, 2000.

626

627 Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
 628 polynomials with sgd near the information-theoretic limit. *Advances in Neural Information Pro-
 cessing Systems*, 37:58716–58756, 2024.

629

630 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 631 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 Processing Systems*, 36:41451–41530, 2023a.

632

633 Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
 634 a mechanistic understanding. In *Proceedings of the 40th International Conference on Machine
 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19689–19729. PMLR,
 635 23–29 Jul 2023b.

636

637 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 638 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 639 *arXiv preprint arXiv:2403.19647*, 2024.

640

641 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 642 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022.

643

644 George A. Miller and Walter G. Charles. Contextual correlates of semantic similarity. *Language
 and Cognitive Processes*, 6(1):1–28, 1991.

645

646 Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-based feature
 647 learning under structured data. *Advances in Neural Information Processing Systems*, 36:71449–
 71485, 2023.

648 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 649 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.
 650

651 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 652 gradient descent. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
 653 38018–38070, 2024.

654 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 655 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
 656 heads. *arXiv preprint arXiv:2209.11895*, 2022.

657

658 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 659 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
 660 the finest text data at scale. In *The Thirty-eight Conference on Neural Information Processing*
 661 *Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=n6SCkn2QaG>.

662

663 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 664 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 665 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

666

667 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 668 patiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 669 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

670

671 Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding training
 672 dynamics and token composition in 1-layer transformer. *Advances in neural information process-
 673 ing systems*, 36:71911–71947, 2023.

674

675 Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, and Lenka Zdeborová. Fundamental
 676 limits of learning in sequence multi-index models and deep attention networks: High-dimensional
 677 asymptotics and sharp thresholds. *arXiv preprint arXiv:2502.00901*, 2025.

678

679 Mingze Wang, Ruoxi Yu, Lei Wu, et al. How transformers implement induction heads: Approxima-
 680 tion and optimization analysis. *arXiv preprint arXiv:2410.11474*, 2024a.

681

682 Peng Wang, Yifu Lu, Yaodong Yu, Druv Pai, Qing Qu, and Yi Ma. Attention-only transformers via
 683 unrolled subspace denoising. *arXiv preprint arXiv:2506.03790*, 2025.

684

685 Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propa-
 686 gation in deep neural networks. In *The Thirty Seventh Annual Conference on Learning Theory*,
 687 pp. 4891–4957. PMLR, 2024b.

688

689 Yiling Wu, Shuhui Wang, and Qingming Huang. Learning semantic structure-preserved embeddings
 690 for cross-modal retrieval. In *Proceedings of the 26th ACM International Conference on Multi-
 691 media, MM '18*, pp. 825–833, New York, NY, USA, 2018. Association for Computing Machinery.
 692 ISBN 9781450356657.

693

694 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 695 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 696 arXiv:2505.09388*, 2025.

697

698 Hongru Yang, Bhavya Kailkhura, Zhangyang Wang, Yingbin Liang, et al. Training dynamics of
 699 transformers to recognize word co-occurrence via gradient flow analysis. *Advances in Neural
 700 Information Processing Systems*, 37:46047–46117, 2024.

701

702 A DETAILED DESCRIPTION ON WEIGHT CHARACTERIZATION

704 The token-to-token correlation captured by $\bar{\mathbf{Q}}$ is determined by how strongly correlated one token is
 705 with the other’s next-token distribution. These correlations are captured by Q_i where each element
 706 $Q_{i,j,k}$ of Q_i measures for X_i , the correlation between the token at position j and the token at position
 707 $k + 1$. This correlation between the token at position j and position $k + 1$ gets mapped back to a
 708 correlation between the tokens at positions j and k through $\mathbf{X}_i^\top \mathbf{Q}_i \mathbf{X}_i$. let \mathbf{Q}_i given in Eq. (16) be
 709 the per-example correlation matrix computed from input–output token pairs in i th input,

$$711 \quad \bar{\mathbf{Q}} = \frac{1}{NT} \sum_{i=1}^N \mathbf{X}_i^\top \mathbf{Q}_i \mathbf{X}_i. \quad (14)$$

714 We walk through an overview of the construction of \mathbf{Q}_i in four steps and provide the detailed com-
 715 putation in Appendix A.

716 **Feature composition.** As a preliminary step, we first define a composed feature $\Sigma_{\bar{\mathbf{B}}} \bar{\Phi}$ by multiply-
 717 ing the interchangeability mapping $\Sigma_{\bar{\mathbf{B}}}$ with the context mapping $\bar{\Phi}$. Each entry corresponds to the
 718 average product of path weights from token e_i to e_j with one step on $\Sigma_{\bar{\mathbf{B}}}$ and one step on $\bar{\Phi}$. This
 719 composition utilizes local interchangeability to map a token to its more general functional class and
 720 utilizes the context-summary to capture longer-range semantic correlations shared by tokens in the
 721 functional class. We will refer to the resulting feature as the composed feature for simplicity in the
 722 remaining steps.

723 **Scoring input–output pairs.** For each input \mathbf{X}_i and its corresponding output \mathbf{Y}_i , we utilize the
 724 composed feature, $\Sigma_{\bar{\mathbf{B}}} \bar{\Phi}$, to compute correlation scores between input and output tokens as seen in
 725 Figure 2.

$$726 \quad (\mathbf{Y}_i - \mathbf{U}_O) \Sigma_{\bar{\mathbf{B}}} \bar{\Phi} \mathbf{X}_i^\top, \quad (15)$$

728 where \mathbf{U}_O is a baseline matrix with all elements set to $1/|\mathcal{V}|$. This assigns a correlation score to
 729 each input–output token pair according the composed feature.

731 **Masking and centering.** The auto-regressive constraint is enforced by masking future tokens, keep-
 732 ing only scores from input tokens that precede the output token. The resulting scores for each output
 733 token are centered and normalized based on its position. matrix is then centered so that the scores
 734 for each output token sum to zero, yielding the per-example matrix \mathbf{Q}_i .

$$736 \quad \mathbf{Q}_i = \text{ein}_{tjk, tk \rightarrow tj} (\mathbf{J}_i, (\mathbf{Y}_i - \mathbf{U}_O) \Sigma_{\bar{\mathbf{B}}} \bar{\Phi} \mathbf{X}_i^\top), \quad (16)$$

737 where \mathbf{J}_i is the masking operator and ein denotes an Einstein summation.

739 **Next to Query Mapping.** Lastly, the scores between each input and output token are then mapped
 740 to be the correlation between the input token and the token preceding the output token. In this way,
 741 the model learns to attend to the input token when it expects the next token to be the output token.

742 **Aggregation across the dataset.** Finally, we map per-example correlations back to the vocabulary
 743 space and average over all N inputs and T tokens per input:

$$745 \quad \bar{\mathbf{Q}} = \frac{1}{NT} \sum_{i=1}^N \mathbf{X}_i^\top \mathbf{Q}_i \mathbf{X}_i. \quad (17)$$

748 In this way, each token is associated with the average correlations to other tokens across the dataset.

750 B ADDITIONAL EXPERIMENTS

753 **BPE tokenization.** We train a 3-layer attention-based model on TinyStories as in Section 5.1 using
 754 a BPE tokenization with vocabulary size of 10,000. We train the model for 10 epochs with a learning
 755 rate of 0.005 and measure the cosine similarity between the theoretical and actual weights. We report
 the minimum over the 10 epochs in Table 2.

Weights	Min. Cosine
Attention	0.999914
Value	0.998800
Output	0.997891

Table 2: Minimum cosine similarities between theoretical and actually learned weights across all epochs. Results from a 3-layer attention-based model trained on TinyStories and with a BPE tokenization.

Causal intervention. We aim to understand how the model output changes when removing the leading terms from each of the weights. We perform this analysis on the 3-layer attention-based transformers trained on TinyStories with a learning rate of 0.05. Unlike most causal intervention settings, the features considered have a general function rather than a specific function applicable to a narrower setting, and therefore, we expect removing the leading terms to result in performance degradation across the dataset. As a result, we choose to focus on the extent to which the output distribution changes when the leading term component is removed for each weight matrix. For each weight matrix, we remove the projection of the weight matrix onto its corresponding leading term. After removing this projection, we compute the loss of the resulting model on the dataset. We provide the results of this intervention in Table 3. We can see that the output layer has the largest effect on the loss, while the attention weights have the least. This behavior is predicted by the theory as the output layer has the largest order update, while the attention weights have the smallest order updates.

Weights	Loss
Original	5.349
Attention Layer 0	5.350
Attention Layer 1	5.352
Attention Layer 2	5.361
Value Layer 0	6.192
Value Layer 1	6.526
Value Layer 2	6.520
Output	8.287

Table 3: Loss of the attention-based model on TinyStories after the leading term component from each weight matrix is removed. The first row corresponds to the original model.

Validation on additional dataset. We perform the analysis in Section 5.2 on the token-token correlations captured by embeddings in Pythia-1.4B except instead of using OpenWebText, we use FineWeb (Penedo et al., 2024). We provide the results in Figure 8 where we see very similar results as with OpenWebText.

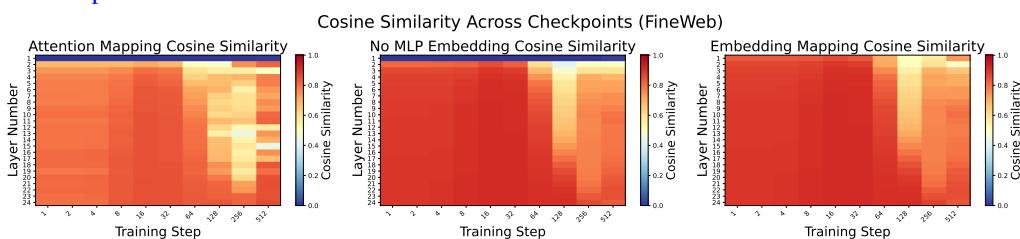


Figure 8: Cosine similarity between covariance matrices for Pythia-1.4B attention weights and embeddings and the corresponding leading term features based on FineWeb.

810 **C EXPERIMENTAL DETAILS**
 811

812 **TinyStories Experiments** We collect the vocabulary from TinyStories treating each word, punctuation
 813 mark, or number as a token and use the 3000 most common tokens. We then filter out
 814 samples that include tokens outside of the set of 3000. For training, we use 65536 of the filtered
 815 samples with sequence length at least 201 and truncate all sequences to 201 tokens for training
 816 and computing theoretical leading terms. For the BPE tokenization, we tokenize the dataset using
 817 a vocabulary size of 10,000, and for training, we use samples with sequence length at least 201
 818 and truncate all sequences to 201 tokens for training and computing theoretical leading terms. We
 819 compute the theoretical matrices using the first batch.

820 **Pythia Experiments** We use the first 100k samples of OpenWebText/FineWeb with length at least
 821 512 characters to perform the analysis.

823 We utilize 4 A100 GPUs with 80GB of memory. These experiments can be performed with less
 824 compute by reducing batch size or sequence length.

826 **D PROOFS**
 827

828 $\|\cdot\|$ will be the operator norm unless denoted otherwise.

830 **D.1 PROOF OF 1-LAYER THEOREM**
 831

832 **Lemma D.1** (General Gradient Form). *Under the setting described, we have that*

833

$$\frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(1)\top} R_i \quad (18)$$

834

$$\frac{\partial \mathcal{L}}{\partial V^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N X_i A_i^{(1)\top} R_i^\top W_O^\top \quad (19)$$

835

$$\frac{\partial \mathcal{L}}{\partial W^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N X_i^\top ein_{tjk, tk \rightarrow tj}(J_i, (R_i W_O^\top V^{(1)\top} X_i^\top)) X_i \quad (20)$$

836

$$\frac{\partial \mathcal{L}}{\partial P^{(1)}} = \frac{-1}{NT} ein_{tjk, jk \rightarrow t} \left(D, \sum_{i=1}^N ein_{tjk, tk \rightarrow tj}(J_i, (R_i W_O^\top V^{(1)\top} X_i^\top)) \right) \quad (21)$$

837 where $A_i^{(1)} = \mathcal{S}(\text{Mask}(X_i W^{(1)} X_i^\top + P^{(1)}))$, $R_i = Y_i - \mathcal{S}(F_\theta(X_i))$, $J_i \in \mathbb{R}^{T \times T \times T}$ with $J_{i,t} =$
 838 $\text{Diag}(A_i^{(1)[t]}) - A_i^{(1)[t]\top} A_i^{(1)[t]}$ being the Jacobian of the softmax function for the t th token in the
 839 sequence, $D \in \mathbb{R}^{T \times T \times T}$ with D_t being a matrix with ones along the $(-t+1)$ th sub-diagonal and
 840 zeros elsewhere, and ein is used to denote an Einstein summation.

841 *Proof.* We start by considering the derivative of the loss with respect to $F_\theta(X_i)^{[t]}$ which is

842

$$Y_i^{[t]} - \mathcal{S}(F_\theta(X_i)^{[t]}) \quad (22)$$

843 and derivative of $F_\theta(X_i)^{[t]}$ with respect to W_O is $h_i^{(1)[t]}$. Then it follows that

844

$$\frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(1)\top} R_i \quad (23)$$

845 Now, we consider the gradient with respect to $V^{(1)}$ using the chain rule which gives

846

$$\frac{\partial \mathcal{L}}{\partial V^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N X_i A_i^{(1)\top} R_i^\top W_O^\top \quad (24)$$

864 Now, we consider the gradient with respect to $A_i^{(1)}$ as an intermediate step towards the gradient with
 865 respect to $W^{(1)}, P^{(1)}$. Using the chain rule as before, we have
 866

$$867 \frac{\partial \mathcal{L}}{\partial A_i^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N R_i W_O^\top V^{(1)\top} X_i^\top \quad (25)$$

870 Letting $B_i^{(1)} = X_i W^{(1)} X_i^\top + P^{(1)}$, we have that the derivative of $A_i^{(1)[t]}$ with respect to $B_i^{(1)[t]}$ is
 871

$$872 J_{i,t} = \text{Diag}(A_i^{(1)[t]}) - A_i^{(1)[t]\top} A_i^{(1)[t]} \quad (26)$$

874 Then, in order to get the gradient of the loss with respect to $B_i^{(1)}$, we need to consider the contribu-
 875 tion from each t resulting in the Einstein summation
 876

$$877 \frac{\partial \mathcal{L}}{\partial B_i^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N \text{ein}_{tjk, tk \rightarrow tj}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) \quad (27)$$

880 From the chain rule, we can derive the gradient with respect to both $W^{(1)}$ and $P^{(1)}$.
 881

$$882 \frac{\partial \mathcal{L}}{\partial W^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N X_i^\top \text{ein}_{tjk, tk \rightarrow tj}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) X_i \quad (28)$$

$$885 \frac{\partial \mathcal{L}}{\partial P^{(1)}} = \frac{-1}{NT} \text{ein}_{tjk, jk \rightarrow t} \left(D, \sum_{i=1}^N \text{ein}_{tjk, tk \rightarrow tj}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) \right) \quad (29)$$

888 where D_t has ones along the $(-t + 1)$ th sub-diagonal and zeros elsewhere. This completes the
 889 proof. \square
 890

891 **Lemma D.2** (Softmax Jacobian Norm). *The norm of the Jacobian of the softmax function applied
 892 to a vector with i elements unmasked is at most $1/\sqrt{i}$.*

894 *Proof.* If v is the masked vector before softmax is applied, then the Jacobian as $\mathcal{S}(v)_j(1 - \mathcal{S}(v)_j)$
 895 as the j th element on the diagonal and $-\mathcal{S}(v)_j \mathcal{S}(v)_k$ for the element in the j th row and k th column
 896 with $j \neq k$. The norm is maximized when the output is the uniform distribution and is less than
 897 $1/\sqrt{i}$. \square

898 **Lemma D.3** (First Gradient Step). *Under the setting described, after one gradient step, we have
 899 that*

$$900 W_O = \eta(\bar{B}) \quad (30)$$

$$902 W^{(1)}, V^{(1)}, P^{(1)} = \mathbf{0} \quad (31)$$

903 where \bar{B} a $|V| \times |V|$ matrix where the j th row is the average next-token distribution of the j th token
 904 in the vocabulary weighted by the relative frequency of token j across the dataset and centered to
 905 have the row sum be 0.
 906

907 *Proof.* From Lemma 1.1, as the parameters are initially zero, we can see that $W^{(1)}, V^{(1)}, P^{(1)}$ all
 908 have gradients of zero and therefore remain as $\mathbf{0}$. For W_O , as the value matrix is initially zero,
 909 $h_i^{(1)} = X_i$ and as W_O is zero, the output distribution for every token is the uniform distribution. Let
 910 $U_O \in \mathbb{R}^{T \times |V|}$ represent the resulting output with each element $1/|V|$. Then, we have that
 911

$$912 \frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N X_i^\top (Y_i - U_O) \quad (32)$$

916 We consider the sum of each of the terms $X_i^\top Y_i$ and $X_i^\top U_O$. First, we consider the sum of $X_i^\top Y_i$.
 917 The j th row of $X_i^\top Y_i$ is a $|V|$ -dimensional vector with each element being the number of times the
 corresponding token appears after each occurrence of the j th token in the vocabulary in X_i . Then,

918 summing over all i and dividing by NT results in each row mapping to the average next-token
 919 distribution weighted by the frequency of the token corresponding to the row. We can write this as
 920

$$921 \quad 922 \quad 923 \quad 924 \quad 925 \quad B = \frac{1}{NT} \sum_{i=1}^N X_i^\top Y_i = \begin{bmatrix} \alpha_1 P_1 \\ \alpha_2 P_2 \\ \vdots \\ \alpha_{|V|} P_{|V|} \end{bmatrix} \quad (33)$$

926 where α_j is the relative frequency of the j th token in the dataset and P_j is the average next-token
 927 distribution for token j . For the sum $U_O^\top X_i$ divided by NT , we simply get that every row is α_j
 928 times the uniform distribution over the vocabulary, and we will denote this matrix by U . Then, we
 929 have that

$$930 \quad \frac{\partial \mathcal{L}}{\partial W_O} = -(B - U) \quad (34)$$

931 and therefore after the first step,

$$932 \quad W_O = \eta(B - U) \quad (35)$$

933 Then, as $\bar{B} = B - U$, this completes the proof. \square

934 **Lemma D.4** (Second Gradient Step). *Under the setting described, after two gradient steps, we have
 935 that*

$$936 \quad 937 \quad \|W_O - 2\eta\bar{B}\|_F \leq \frac{\eta^2}{\sqrt{|V|}} \quad (36)$$

$$938 \quad 939 \quad \|V^{(1)} - \eta^2 \bar{\Phi}^\top \bar{B}^\top\|_F \leq \frac{2\eta^3}{\sqrt{|V|}} \quad (37)$$

$$940 \quad 941 \quad W^{(1)}, P^{(1)} = \mathbf{0} \quad (38)$$

942 where \bar{B} is as defined in the previous lemma and $\bar{\Phi}$ is given by

$$943 \quad \bar{\Phi}_{jk} = \mathcal{P}(e_k \rightarrow e_j) - \mu_{\Phi,k} \quad (39)$$

944 where $\mathcal{P}(e_k \rightarrow e_j)$ corresponds to the empirical probability that e_j is the current token and e_k is in
 945 its prefix and $\mu_{\Phi,k}$ is the value that sets each column sum to 0.

946 *Proof.* First, as $V_{(1)}$ remains at zero after the first step, we have that the gradients for $W^{(1)}$, $P^{(1)}$
 947 are zero and therefore, they remain at zero after the second step. We now consider the forward pass
 948 after the first gradient step. As the value matrix remains as zero, we have that

$$949 \quad F_\theta(X_i) = \eta X_i \bar{B} \quad (40)$$

950 Then, by the Softmax Jacobian lemma, we have that

$$951 \quad 952 \quad 953 \quad \|S(F_\theta(X_i)) - U_O\|_F \leq \frac{\eta}{\sqrt{|V|}} \|X_i \bar{B}\|_F \leq \frac{\eta \sqrt{T}}{\sqrt{|V|}} \quad (41)$$

954 Then, we have that

$$955 \quad 956 \quad 957 \quad \|R_i - (Y_i - U_O)\|_F \leq \frac{\eta \sqrt{T}}{\sqrt{|V|}} \quad (42)$$

958 and by Lemma 1.1 and that $\|X_i\| \leq \sqrt{T}$, we have

$$959 \quad 960 \quad 961 \quad \left\| \frac{\partial \mathcal{L}}{\partial W_O} + \bar{B} \right\|_F \leq \frac{1}{NT} \sum_{i=1}^N \frac{\eta T}{\sqrt{|V|}} = \frac{\eta}{\sqrt{|V|}} \quad (43)$$

962 Then, it follows that after the second gradient step,

$$963 \quad 964 \quad 965 \quad \|W_O - 2\eta\bar{B}\|_F \leq \frac{\eta^2}{\sqrt{|V|}} \quad (44)$$

972 Now, we consider the gradient with respect to $V^{(1)}$. By Lemma 1.1, we have that
 973

$$974 \frac{\partial \mathcal{L}}{\partial V^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N \eta X_i^\top A_i^{(1)\top} (Y_i - \mathcal{S}(F_\theta(X_i))) \bar{B}^\top \quad (45)$$

$$975$$

$$976$$

977 and since $W^{(1)}, P^{(1)} = \mathbf{0}$, $A_i^{(1)} = A_0$ where the t th row of A_0 has the first t elements equal to $1/t$
 978 and the rest equal to 0. Then, by equation 41, we have that
 979

$$980 \|\eta X_i^\top A_0 (Y_i - \mathcal{S}(F_\theta(X_i))) \bar{B}^\top - \eta X_i^\top A_0^\top (Y_i - U_O) \bar{B}^\top\|_F \leq \frac{\eta^2 T}{\sqrt{|V|}} \|A_0\| \quad (46)$$

$$981$$

982 Then, using the discrete Hardy's inequality with $p = 2$, we have that $\|A_0\| \leq 2$ and
 983

$$984 \left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} - \frac{1}{NT} \sum_{i=1}^N \eta X_i^\top A_0^\top (Y_i - U_O) \bar{B}^\top \right\|_F \leq \frac{2\eta^2}{\sqrt{|V|}} \quad (47)$$

$$985$$

$$986$$

987 Now, we will analyze

$$988 \frac{1}{NT} \sum_{i=1}^N \eta X_i^\top A_0^\top (Y_i - U_O) \bar{B}^\top \quad (48)$$

$$989$$

$$990$$

991 Since $\eta \bar{B}$ is independent of i , we can move it outside the sum and we can analyze
 992

$$993 \frac{1}{NT} \sum_{i=1}^N X_i^\top A_0^\top (Y_i - U_O) \quad (49)$$

$$994$$

995 We start by consider the form of $X_i^\top A_0^\top$. Since the t th row of A_0 has $1/t$ as the first t elements and
 996 zeros for all other elements, we have that the j th element of the t th column of $X_i^\top A_0^\top$ is
 997

$$998 \frac{\gamma_i(e_j, t)}{t} \quad (50)$$

$$999$$

1000 where e_j represents the j th token in the vocabulary and $\gamma_i(e_j, t)$ is the number of occurrences of e_j
 1001 in the first t tokens of X_i . Letting $\Phi' = \frac{1}{NT} \sum_{i=1}^N X_i^\top A_0^\top Y_i$, we have that
 1002

$$1003 \Phi'_{jk} = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \mathbb{1}(X_i^{[t+1]} = e_k) \frac{\gamma_i(e_j, t)}{t} \quad (51)$$

$$1004$$

$$1005$$

1006 Swapping the order of the sums, we have

$$1007 \Phi'_{jk} = \frac{1}{NT} \sum_{t=1}^T \frac{1}{t} \sum_{i=1}^N \mathbb{1}(X_i^{[t+1]} = e_k) \gamma_i(e_j, t) \quad (52)$$

$$1008$$

$$1009$$

1010 Then, as $\gamma_i(e_j, t) = \sum_{m=1}^t \mathbb{1}(X_i^{[m]} = e_j)$, we have that
 1011

$$1012 \Phi'_{jk} = \frac{1}{T} \sum_{t=1}^T \frac{1}{t} \sum_{m=1}^t \frac{1}{N} \sum_{i=1}^N \mathbb{1}(X_i^{[t+1]} = e_k, X_i^{[m]} = e_j) \quad (53)$$

$$1013$$

$$1014$$

1015 Then, as $\frac{1}{N} \sum_{i=1}^N$ corresponds to an average over the dataset, the average over N corresponds to
 1016 the empirical probability of having a sequence with the $t+1$ th token equal to e_k and the m th token
 1017 equal to e_j , which we will denote as $\mathcal{P}(x_{t+1} = e_k, x_m = e_j)$. Then, this gives
 1018

$$1019 \Phi'_{jk} = \frac{1}{T} \sum_{t=1}^T \frac{1}{t} \sum_{m=1}^t \mathcal{P}(x_{t+1} = e_k, x_m = e_j) \quad (54)$$

$$1020$$

$$1021$$

1022 Then, we have an average over $m \in [t]$ which results in the average probability that the $t+1$ th token
 1023 is e_k and e_j is in the first t tokens. We will denote this as $\mathcal{P}(e_j \in x_{1:t}, x_{t+1} = e_k)$. This gives
 1024

$$1025 \Phi'_{jk} = \frac{1}{T} \sum_{t=1}^T \mathcal{P}(e_j \in x_{1:t}, x_{t+1} = e_k) \quad (55)$$

1026 This probability of e_j being in the prefix of $x_{t+1} = e_k$ is averaged over the different positions of e_k
 1027 to get an average probability that e_j is in the prefix given that e_k is the current token, which we will
 1028 denote as $\mathcal{P}(e_j \rightarrow e_k)$ and

$$1029 \quad \Phi'_{jk} = \mathcal{P}(e_j \rightarrow e_k) \quad (56)$$

1030 Now, we consider $U_P = \frac{1}{NT} \sum_{i=1}^N X_i^\top A_0^\top U_O$. Then, we have that

$$1032 \quad U_{P_{jk}} = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \frac{\gamma_i(e_j, t)}{|V|} \quad (57)$$

1035 Rearranging the sum and decomposing γ_i , we get

$$1037 \quad U_{P_{jk}} = \frac{1}{T} \sum_{t=1}^T \frac{1}{t|V|} \sum_{m=1}^t \mathcal{P}(x_m = e_j) \quad (58)$$

1040 Then, if we consider the average over positions m and t , we get the average probability that e_j is in
 1041 the first t tokens over all t multiplied by $1/|V|$. We can notice that the sum of the j th row of U_P and
 1042 Φ' are the same. Then, setting

$$1043 \quad \bar{\Phi}' = \Phi' - U_P \quad (59)$$

1044 we have

$$1045 \quad \left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} + \eta \bar{\Phi}' \bar{B}^\top \right\|_F \leq \frac{2\eta^2}{\sqrt{|V|}} \quad (60)$$

1048 Then, it follows that after two gradient steps,

$$1049 \quad \left\| V^{(1)} - \eta^2 \bar{\Phi}' \bar{B}^\top \right\|_F \leq \frac{2\eta^3}{\sqrt{|V|}} \quad (61)$$

1052 Defining $\bar{\Phi} = \bar{\Phi}'^\top$, we have

$$1054 \quad \left\| V^{(1)} - \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq \frac{2\eta^3}{\sqrt{|V|}} \quad (62)$$

1056 This completes the proof. \square

1057 **Lemma D.5** (Third Gradient Step). *Under the setting described, after three gradient steps with η ,
 1058 we have that*

$$1059 \quad \|W_O - 3\eta \bar{B}\|_F \leq 3\eta^2 \quad (63)$$

$$1061 \quad \|V^{(1)} - 3\eta^2 \bar{\Phi}^\top \bar{B}^\top\|_F \leq 2\eta^3 \quad (64)$$

$$1063 \quad \|W^{(1)} - 2\eta^4 \bar{Q}\|_F \leq 2\eta^5 T \quad (65)$$

$$1065 \quad \|P^{(1)} - 2\eta^4 \Delta\|_F \leq 2\eta^5 T \quad (66)$$

1068 *Proof.* First, we start with bounding the norm of $W_O, V^{(1)}, A_0$. We have that

$$1069 \quad \|W_O\|_F \leq 2\eta + \frac{\eta^2}{\sqrt{|V|}} \quad (67)$$

$$1073 \quad \|V^{(1)}\| \leq \left(2\eta^2 + \frac{2\eta^3}{\sqrt{|V|}} \right) \quad (68)$$

$$1076 \quad \|A_0\| \leq 2 \quad (69)$$

1077 Now, we consider the deviation of the output from the uniform distribution. We start by bounding
 1078 the norm of $X_i + A_0 X_i V^{(1)}$

$$1079 \quad \|X_i + A_0 X_i V^{(1)}\| \leq (1 + 5\eta^2) \sqrt{T} \quad (70)$$

1080 Then, we can upper bound the norm of $F_\theta(X_i)$
 1081

$$1082 \|F_\theta(X_i)\|_F \leq \frac{5\eta}{2} (1 + 5\eta^2) \sqrt{T} \leq 4\eta\sqrt{T} \quad (71)$$

1083 and then using the Softmax Jacobian lemma, we have that
 1084

$$1085 \|S(F_\theta(X_i)) - U_O\|_F \leq \frac{4\eta\sqrt{T}}{\sqrt{|V|}} \quad (72)$$

1086 Then, it follows that
 1087

$$1088 \left\| \frac{\partial \mathcal{L}}{\partial W_O} + \bar{B} \right\|_F \leq \frac{1}{NT} \sum_{i=1}^N \left(\frac{8\eta T}{\sqrt{|V|}} + 5\eta^2 T \right) = 2\eta \quad (73)$$

1089 and

$$1090 \|W_O - 3\eta\bar{B}\|_F \leq \frac{\eta^2}{\sqrt{|V|}} + 2\eta^2 \leq 3\eta^2 \quad (74)$$

1091 Now, we consider the gradient with respect to $V^{(1)}$. Since $\|Y_i - S(F_\theta(X_i))\| \leq \sqrt{2T}$, we have that
 1092

$$1093 \left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} + 2\eta\bar{\Phi}^\top\bar{B}^\top \right\|_F \leq 2 \left(\frac{4\eta}{\sqrt{|V|}} \frac{5\eta}{2} + \frac{\eta^2}{\sqrt{|V|}} \right) \leq \frac{22\eta^2}{\sqrt{|V|}} \leq \eta^2 \quad (75)$$

1094 Then, we have that after the third step,
 1095

$$1096 \|V^{(1)} - 3\eta^2\bar{\Phi}^\top\bar{B}^\top\|_F \leq 2\eta^3 \quad (76)$$

1097 Now, we consider the gradient with respect to $W^{(1)}, P^{(1)}$ which according to Lemma 1.1 are
 1098

$$1099 \frac{\partial \mathcal{L}}{\partial W^{(1)}} = \frac{-1}{NT} \sum_{i=1}^N X_i^\top e_{in_{tjk,tk \rightarrow tj}}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) X_i \quad (77)$$

$$1100 \frac{\partial \mathcal{L}}{\partial P^{(1)}} = \frac{-1}{NT} e_{in_{tjk,jk \rightarrow t}} \left(D, \sum_{i=1}^N e_{in_{tjk,tk \rightarrow tj}}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) \right) \quad (78)$$

1101 We start by analyzing $R_i W_O^\top V^{(1)\top} X_i^\top$. First, We will use that $\|Y_i - U_O\| \leq \sqrt{T}$ and
 1102

$$1103 \|\bar{\Phi}\| \leq \frac{1}{T} \max_i \|X_i\| \|A_0\| \|Y_i - U_O\| \leq \frac{2}{T} T = 2 \quad (79)$$

1104 We know by the previous lemma and the bound on the deviation of the output that
 1105

$$1106 \left\| R_i W_O^\top V^{(1)\top} X_i^\top - 2\eta^3(Y_i - U_O)\bar{B}^\top\bar{B}\bar{\Phi}X_i^\top \right\|_F \leq \frac{25\eta^4 T}{\sqrt{|V|}} + \frac{5T\eta^4}{2\sqrt{|V|}} + \frac{4\eta^4 T}{\sqrt{|V|}} \leq \frac{3\eta^4 T}{2} \quad (80)$$

1107 We start by considering the structure of $Y_i \bar{B}^\top \bar{B} \bar{\Phi} X_i^\top$. We first consider the simpler multiplication
 1108 of $e_j \bar{B}^\top \bar{B} \bar{\Phi} e_k^\top$. First, we define $\Sigma_{\bar{B}} = \bar{B}^\top \bar{B}$ which has $\Sigma_{\bar{B}mn} = \sum_{l=1}^{|V|} \alpha_l^2 \bar{P}_{lm} \bar{P}_{ln}$ where α_l is the
 1109 relative frequency of token l and \bar{P}_l is the average next-token distribution of token e_l centered at 0.
 1110 This corresponds to a similarity measure of the previous tokens of e_m and e_n with common tokens
 1111 more heavily weighted. Then, we have that
 1112

$$1113 e_j \Sigma_{\bar{B}} \bar{\Phi} e_k^\top = \sum_{m=1}^{|V|} \Sigma_{\bar{B}jm} \bar{\mathcal{P}}(e_m \rightarrow e_k) \quad (81)$$

1114 where $\bar{\mathcal{P}}(e_m \rightarrow e_k)$ is the probability that e_m is in the prefix of e_k centered at 0. We can then
 1115 interpret the each element $(\Sigma_{\bar{B}} \bar{\Phi})_{jk}$ as a measure of association between token j and k based on a
 1116 two-step chain of (interchangeability mapping, suffix token mapping). Essentially, how often does
 1117 token e_k succeed token e_j and similar tokens. We will let $\bar{G} = \Sigma_{\bar{B}} \bar{\Phi}$. Now, we can consider
 1118 $2\eta^3 Y_i \bar{G} X_i^\top$. This results in a $T \times T$ matrix where the jk -th element is $\bar{\mathcal{P}}(X_i^{[k]} \rightarrow_2 X_i^{[j+1]})$ and
 1119 we will denote this as g_{ijk} . Then, $2\eta^3(Y_i - U_O)\bar{G}X_i^\top$ will have elements centered to have row
 1120

sums of 0 and we will let the centered elements be \bar{g}_{ijk} . Then, we consider the einsum of J and $2\eta^3(Y_i - U_O)\bar{G}X_i^\top$. The t th column of the resulting matrix will be the product of J_t and the t th column of $2\eta^3(Y_i - U_O)\bar{G}X_i^\top$. This results in the t th row having the form

$$2\eta^3 \left(\begin{bmatrix} \frac{\bar{g}_{i1t}}{t} \\ \vdots \\ \frac{\bar{g}_{itt}}{t} \\ 0 \\ \vdots \\ 0 \end{bmatrix} - \begin{bmatrix} \frac{\mu_{g,1t}}{t} \\ \vdots \\ \frac{\mu_{g,tt}}{t} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \right)^\top \quad (82)$$

The t th row is $2\eta^3\bar{g}_{ijt}$ for $1 \leq j \leq t$ weighted by $1/t$ and centered to have a row sum of 0 and we will refer to the centered and weighted elements $2\eta^3q_{ijt}$ and the resulting matrix Q_i . Letting $\bar{Q} = \frac{1}{NT} \sum_{i=1}^N X_i^\top Q_i X_i$, we have that

$$\left\| \frac{\partial \mathcal{L}}{\partial W^{(1)}} + 2\eta^3 \bar{Q} \right\|_F \leq 2\eta^4 T \quad (83)$$

where we have used that the squared Frobenius norm of the einsum is the sum of the norms of each column and that $\|J_t\| = 1/t$. Then, it follows that

$$\left\| W^{(1)} - 2\eta^4 \bar{Q} \right\|_F \leq 2\eta^5 T \quad (84)$$

Now, we consider the gradient with respect to each element of $P^{(1)}$

$$\left\| \frac{\partial \mathcal{L}}{\partial P_m^{(1)}} + \frac{2\eta^3}{NT} \sum_{i=1}^N \text{Tr}(D_{-m} Q_i) \right\|_F \leq 2\eta^4 \sqrt{T} \quad (85)$$

Since the trace is a linear function, we let $\Delta_m = \text{Tr}(D_{-m} \frac{1}{NT} \sum_{i=1}^N Q_i)$ and let Δ be the vector consisting of Δ_m , and we have

$$\left\| \frac{\partial \mathcal{L}}{\partial P^{(1)}} + 2\eta^3 \Delta \right\|_F \leq 2\eta^4 T \quad (86)$$

and it follows that

$$\left\| P^{(1)} - 2\eta^4 \Delta \right\|_F \leq 2\eta^5 T \quad (87)$$

This completes the proof. \square

Theorem D.6 (Early Stage Features). *Under the setting described, for $s \leq \eta^{-1} \frac{3}{8T^{3/8}}$, for $T \geq 3, |V| \geq 500$, we have that after s gradient descent steps with learning rate η ,*

$$\left\| W_O - s\eta \bar{B} \right\|_F \leq 3s^2 \eta^2 \quad (88)$$

$$\left\| V^{(1)} - \binom{s}{2} \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq 4s^3 \eta^3 \quad (89)$$

$$\left\| W^{(1)} - \left(3\binom{s}{4} + 2\binom{s}{3} \right) \eta^4 \bar{Q} \right\|_F \leq 6s^5 \eta^5 T \quad (90)$$

$$\left\| P^{(1)} - \left(3\binom{s}{4} + 2\binom{s}{3} \right) \eta^4 \Delta \right\|_F \leq 6s^5 \eta^5 T \quad (91)$$

Proof. We will prove the result by induction. The previous lemmas form the base case. The first phase will be bounding the deviation of the output from the uniform distribution after s gradient steps. To start, we bound the norm of A_i , the resulting attention mapping for X_i . We know from Lemma D.2, that for each row of the attention mapping

$$\left\| (A_i - A_0)[t, :] \right\| \leq \frac{1}{\sqrt{t}} \left\| (X_i W^{(1)} X_i^\top [t, :] + P^{(1)}[:, t]) \right\| \quad (92)$$

1188 Using the fact that there are t elements in $(X_i W^{(1)} X_i^\top + P^{(1)})[t, : t]$ with magnitude at most
 1189 $\max_{km} |W_{km}^{(1)}| + \max_m |P_m^{(1)}|$ and applying the inductive hypothesis for $P^{(1)}$ and $W^{(1)}$, we have
 1190 that
 1191

$$1192 \|(A_i - A_0)[t, :]\| \leq \left(3\binom{s}{4} + 2\binom{s}{3}\right) \eta^4 (\max_{km} |\bar{Q}_{km}| + \max_m |\Delta_m|) + \frac{12s^5\eta^5 T}{\sqrt{t}} \quad (93)$$

1194 Since the maximum magnitude of an element of $\Sigma_{\bar{B}}$ is $\sum_{k=1}^{|V|} \alpha_k^2 \leq 1$ and each column of $\bar{\Phi}^\top$ has
 1195 elements with magnitudes that sum to at most 1, we know that each element of \bar{G} has magnitude at
 1196 most 1. Then, it follows that $\max_{km} |\bar{Q}_{i,km}| \leq 1$ and therefore $\max_{km} |\bar{Q}_{km}|, \max_m |\Delta_m| \leq 1$.
 1197 Then, we have
 1198

$$1199 \|(A_i - A_0)[t, :]\| \leq \left(6\binom{s}{4} + 4\binom{s}{3}\right) \eta^4 + \frac{12s^5\eta^5 T}{\sqrt{t}} \quad (94)$$

1200 Then, summing the upper bounds on the squared norms of each row, and using that $\sum_{q=1}^r 1/q \leq$
 1201 $1 + \log r$ we have
 1202

$$1203 \|\|A_i - A_0\|_F \leq \left(6\binom{s}{4} + 4\binom{s}{3}\right) \eta^4 \sqrt{T} + 12s^5\eta^5 T \sqrt{1 + \log T} \quad (95)$$

1204 Then, we have that
 1205

$$1206 \left\|A_i^{(1)}\right\| \leq 2 + \left(6\binom{s}{4} + 4\binom{s}{3}\right) \eta^4 \sqrt{T} + 12s^5\eta^5 T \sqrt{1 + \log T} \quad (96)$$

1207 Then, upper bounding $6\binom{s}{4} + 4\binom{s}{3}$ by $2s^4$, we have
 1208

$$1209 \left\|A_i^{(1)}\right\| \leq 2 + 2s^4\eta^4 \sqrt{T} + 12s^5\eta^5 T \sqrt{1 + \log T} \quad (97)$$

1210 Now, using that $s\eta \leq \frac{3}{8T^{3/8}}$, we have that
 1211

$$1212 2s^4\eta^4 \sqrt{T} + 12s^5\eta^5 T \sqrt{1 + \log T} \leq 2s\eta \quad (98)$$

1213 and

$$1214 \left\|A_i^{(1)}\right\| \leq 2 + 2s\eta \quad (99)$$

1215 Now, we bound the norm of $V^{(1)}$ which by the inductive hypothesis we have is at most
 1216

$$1217 \binom{s}{2} \eta^2 2\sqrt{2} + 4s^3\eta^3 \quad (100)$$

1218 which is at most
 1219

$$1220 s^2\eta^2 \sqrt{2} + 4s^3\eta^3 \quad (101)$$

1221 and since $s\eta \leq \frac{1}{3}$,
 1222

$$1223 \left\|V^{(1)}\right\|_F \leq 4s^2\eta^2 \quad (102)$$

1224 Then, we have that
 1225

$$1226 \left\|X_i + A_i^{(1)} X_i V^{(1)}\right\|_F \leq \sqrt{T} (1 + 16s^2\eta^2) \quad (103)$$

1227 Since $s\eta \leq \min \frac{3}{8T^{3/8}}$ and by the inductive hypothesis we have that
 1228

$$1229 \left\|F_\theta(X_i)\right\|_F \leq 2\sqrt{T} (s\eta + 3s^2\eta^2) \quad (104)$$

1230 Since $s\eta \leq \frac{3}{8T^{3/8}}$, we have
 1231

$$1232 \left\|F_\theta(X_i)\right\|_F \leq 4s\eta\sqrt{T} \quad (105)$$

1233 Then, by Lemma D.2, we have
 1234

$$1235 \left\|\mathcal{S}(F_\theta(X_i)) - U_O\right\|_F \leq 4s\eta\sqrt{\frac{T}{|V|}} \quad (106)$$

Now, we will utilize the bound on the deviation of the output from the uniform distribution as well to perform the inductive step for W_O . We have based on the bound that after the $(s + 1)$ th step

$$\left\| \frac{\partial \mathcal{L}}{\partial W_O} + \bar{B} \right\|_F \leq \frac{8s\eta}{\sqrt{|V|}} + 12s^2\eta^2 \leq 6s\eta \quad (107)$$

Then, after $(s + 1)$ steps, we have that

$$\|W_O - (s + 1)\eta\bar{B}\|_F \leq 3\eta^2s^2 + 6s\eta^2 \leq 3\eta^2(s + 1)^2 \quad (108)$$

Now, we perform the inductive step for $V^{(1)}$ using the bound on the deviation of the attention pattern and on the output deviation. We have that after the $(s + 1)$ th step

$$\begin{aligned} \left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} + s\eta\bar{\Phi}^\top\bar{B}^\top \right\|_F &\leq \|R_i - (Y_i - U_O)\|_F \|A_i^{(1)}\| \|X_i\| \|W_O\| \\ &\quad + \|(Y_i - U_O)\| \|A_i^{(1)} - A_0\|_F \|X_i\| \|W_O\| \\ &\quad + \|(Y_i - U_O)\| \|A_0\| \|X_i\| \|W_O - \bar{B}\|_F \end{aligned} \quad (109)$$

Applying upper bounds and using that $|V| \geq 500$, we have

$$\left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} + s\eta\bar{\Phi}^\top\bar{B}^\top \right\|_F \leq \frac{1}{T} \left(\frac{24s\eta}{\sqrt{|V|}} T\eta s + 4Ts^2\eta^2 + 6Ts^2\eta^2 \right) \leq 12s^2\eta^2 \quad (110)$$

Then, after $(s + 1)$ steps, we have that

$$\left\| V^{(1)} - \binom{s+1}{2} \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq 4s^3\eta^3 + 12s^2\eta^3 \leq 4(s+1)^3\eta^3 \quad (111)$$

Now, we perform the inductive step for $W^{(1)}$ utilizing the earlier bounds on the output and attention pattern deviations. We start by bounding the deviation between $\frac{s^3-s^2}{2}\eta^3\Sigma_{\bar{B}}\bar{\Phi}$ and $W_O^\top V^{(1)\top}$. By the inductive hypothesis and $2 \leq \sqrt{|V|}$, we have that

$$\left\| W_O^\top V^{(1)\top} - \frac{s^3-s^2}{2}\eta^3\Sigma_{\bar{B}}\bar{\Phi} \right\|_F \leq 8s^4\eta^4 + 3\sqrt{2}s^4\eta^4 \leq 13s^4\eta^4 \quad (112)$$

Then, for each $R_i W_O^\top V^{(1)\top} X_i^\top$ since $|V| \geq 500$, we have that

$$\left\| R_i W_O^\top V^{(1)\top} X_i^\top - \frac{s^3-s^2}{2}\eta^3(Y_i - U_O)\Sigma_{\bar{B}}\bar{\Phi} X_i^\top \right\|_F \leq \frac{20s^4\eta^4 T}{\sqrt{|V|}} + 13s^4\eta^4 T \leq 14s^4\eta^4 T \quad (113)$$

Now, in order to consider the deviation of the einsum of J and $\frac{s^3-s^2}{2}\eta^3(Y_i - U_O)\Sigma_{\bar{B}}\bar{\Phi}^\top X_i^\top$, we need to first bound the deviation of the Jacobian of the current attention pattern from J . We do so by considering the deviation for each J_t . As proven earlier, we have that

$$\|(A_i - A_0)[t, :]\| \leq \left(6\binom{s}{4} + 4\binom{s}{3} \right) \eta^4 + \frac{12s^5\eta^5 T}{\sqrt{t}} \quad (114)$$

Then, we have that for the current Jacobian for the sample X_i corresponding to the t th row which will call $J_{t,i}$

$$\begin{aligned} J_{t,i} - J_t &= \text{Diag}(A_i[t, :] - A_0[t, :]) - A_0[t, :](A_i[t, :] - A_0[t, :])^\top - (A_i[t, :] - A_0[t, :])A_0[t, :]^\top \\ &\quad - (A_i[t, :] - A_0[t, :])(A_i[t, :] - A_0[t, :])^\top \end{aligned} \quad (115)$$

and it follows then that for $t \geq 2$

$$\|J_{t,i} - J_t\|_2 \leq \|A_i[t, :] - A_0[t, :]\|_\infty + \frac{2}{\sqrt{t}} \|A_i[t, :] - A_0[t, :]\|_2 + \|A_i[t, :] - A_0[t, :]\|_2^2 \quad (116)$$

Then, as

$$\|A_i[t, :] - A_0[t, :]\|_\infty \leq \|A_i[t, :] - A_0[t, :]\|_2 \quad (117)$$

1296 we have that
1297

$$\begin{aligned} \|J_{t,i} - J_t\|_2 &\leq \left(\left(6 \binom{s}{4} + 4 \binom{s}{3} \right) \eta^4 + \frac{12s^5 \eta^5 T}{\sqrt{t}} \right) \\ &\quad \left(1 + \frac{2}{\sqrt{t}} + \left(6 \binom{s}{4} + 4 \binom{s}{3} \right) \eta^4 + \frac{12s^5 \eta^5 T}{\sqrt{t}} \right) \end{aligned} \quad (118)$$

1303 Since $J_{1,i}$ is always all zeros, we can ignore this term and for $t \geq 2$, we have that as $s\eta \leq \frac{3}{8T^{3/8}}$,
1304

$$\|J_{t,i} - J_t\|_2 \leq 5s^2\eta^2 \quad (119)$$

1306 Then, we have that
1307

$$\begin{aligned} &\left\| \frac{s^3 - s^2}{2} \eta^3 Q_i - \text{ein}_{tjk, tk \rightarrow tj}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) \right\|_F \\ &\leq \|J_i - J\|_2 \left\| \frac{s^3 - s^2}{2} \eta^3 (Y_i - U_O) \Sigma_{\bar{B}} \bar{\Phi} X_i^\top \right\|_F \\ &+ \|J_i\|_2 \left\| R_i W_O^\top V^{(1)\top} X_i^\top - \frac{s^3 - s^2}{2} \eta^3 (Y_i - U_O) \Sigma_{\bar{B}} \bar{\Phi} X_i^\top \right\|_F \end{aligned} \quad (120)$$

1315 Then, as $\|J_t\|_2 = \frac{1}{t}$, $\|J_i\|_2 \leq \frac{3}{2} + 5s^2\eta^2\sqrt{T} \leq 2$, and $s\eta \leq \frac{3}{8T^{3/8}}$, we have that
1316

$$\left\| \frac{s^3 - s^2}{2} \eta^3 Q_i - \text{ein}_{tjk, tk \rightarrow tj}(J_i, R_i W_O^\top V^{(1)\top} X_i^\top) \right\|_F \leq 5\sqrt{2}s^5\eta^5 T + 28s^4\eta^4 T \leq 30s^4\eta^4 T \quad (121)$$

1320 Then, we have that
1321

$$\left\| \frac{\partial \mathcal{L}}{\partial W^{(1)}} + \frac{s^3 - s^2}{2} \eta^3 \bar{Q} \right\|_F \leq 30s^4\eta^4 T \quad (122)$$

1324 Then, we have that after $(s+1)$ steps,
1325

$$\left\| W^{(1)} - \left(3 \binom{s+1}{4} + 2 \binom{s+1}{3} \right) \eta^4 \bar{Q} \right\|_F \leq 6s^5\eta^5 T + 30s^4\eta^5 T \leq 6(s+1)^5\eta^5 T \quad (123)$$

1328 Finally, as we have the bound on the deviation from Q_i , we have that for $P^{(1)}$,
1329

$$\left\| \frac{\partial \mathcal{L}}{\partial P^{(1)}} + \frac{s^3 - s^2}{2} \eta^3 \Delta \right\|_F \leq 30s^4\eta^4 T \quad (124)$$

1332 and that after $(s+1)$ steps,
1333

$$\left\| P^{(1)} - \left(3 \binom{s+1}{4} + 2 \binom{s+1}{3} \right) \eta^4 \Delta \right\|_F \leq 6s^5\eta^5 T + 30s^4\eta^5 T \leq 6(s+1)^5\eta^5 T \quad (125)$$

1336 \square
1337

1338 D.2 PROOF OF MULTI-LAYER THEOREM 1339

1340 **Lemma D.7** (General Gradient Form). *Under the setting described, defining*

$$S_i^{(l)} = \text{ein}_{tjk, tk \rightarrow tj} \left(J_i^{(l)}, G_i^{(l)} V^{(l)\top} h_i^{(l-1)\top} \right), \quad (126)$$

$$G_i^{(l-1)} = G_i^{(l)} + A_i^{(l)\top} G_i^{(l)} V^{(l)\top} + S_i^{(l)} h_i^{(l-1)\top} W^{(l)\top} + S_i^{(l)\top} h_i^{(l-1)} W^{(l)}, \quad (127)$$

1345 with

$$G_i^{(L)} = R_i W_O^\top \quad (128)$$

1348 we have that
1349

$$\frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(L)\top} R_i, \quad (129)$$

1350
1351
1352

$$\frac{\partial \mathcal{L}}{\partial V^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} A_i^{(l)\top} G_i^{(l)}, \quad (130)$$

1353
1354
1355

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} S_i^{(l)} h_i^{(l-1)}, \quad (131)$$

1356
1357
1358

$$\frac{\partial \mathcal{L}}{\partial P^{(l)}} = \frac{-1}{NT} \text{ein}_{tjk, jk \rightarrow t} \left(D, \sum_{i=1}^N S_i^{(l)} \right), \quad (132)$$

1359 where $A_i^{(l)} = \mathcal{S}(\text{Mask}(h_i^{(l-1)} W^{(l)} h_i^{(l-1)\top} + P^{(l)}))$, $R_i = Y_i - \mathcal{S}(F_\theta(X_i))$, $J_i^{(l)} \in \mathbb{R}^{T \times T \times T}$ with
1360 $J_{i,t}^{(l)} = \text{Diag}(A_i^{(l)[t]}) - A_i^{(l)[t]\top} A_i^{(l)[t]}$ being the Jacobian of the softmax function at the l th attention
1361 layer for the t th token in the sequence, $D \in \mathbb{R}^{T \times T \times T}$ with D_t being a matrix with ones along the
1362 $-t$ th sub-diagonal and zeros elsewhere, and ein denotes an Einstein summation.

1364

1365 *Proof.* We begin by considering the derivative of the loss with respect to $F_\theta(X_i)^{[t]}$, which is

1366
1367
1368

$$\frac{\partial \mathcal{L}}{\partial F_\theta(X_i)^{[t]}} = Y_i^{[t]} - \mathcal{S}(F_\theta(X_i)^{[t]}) = -R_i^{[t]} \quad (133)$$

1369 Since

1370
1371

$$\frac{\partial F_\theta(X_i)^{[t]}}{\partial W_O} = h_i^{(L)[t]} \quad (134)$$

1372 it follows that

1373
1374
1375

$$\frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(L)\top} R_i \quad (135)$$

1376 We now consider the gradient through each attention layer in terms of the current and previous layer
1377 embeddings $h_i^{(l-1)}, h_i^{(l)}$. Let $h = h_i^{(l-1)}$, $A = A_i^{(l)}$, $G = G_i^{(l)} = \partial \mathcal{L} / \partial U_i^{(l)}$, $V = V^{(l)}$, where
1378 $U_i^{(l)} = (Ah)V$. We have

1379
1380
1381

$$\frac{\partial \mathcal{L}}{\partial V^{(l)}} = (Ah)^\top G = h^\top A^\top G \quad (136)$$

1382 Summing over i and normalizing yields

1383
1384
1385

$$\frac{\partial \mathcal{L}}{\partial V^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} A_i^{(l)\top} G_i^{(l)} \quad (137)$$

1386 The gradient for $M = Ah$ is $\delta_M = GV^{(l)\top}, \delta_A = \delta_M h^\top, \delta_h^{(1)} = A^\top \delta_M$. Next, through the
1387 row-wise softmax, each row Jacobian is
1388

1389
1390

$$J_{i,t}^{(l)} = \text{Diag}(A_i^{(l)[t]}) - A_i^{(l)[t]} A_i^{(l)[t]\top} \quad (138)$$

1391 Stacking these gives a tensor $J_i^{(l)}$. Applying it row-wise to δ_A gives

1392
1393

$$S_i^{(l)} = \text{ein}_{tjk, tk \rightarrow tj} (J_i^{(l)}, G_i^{(l)} V^{(l)\top} h_i^{(l-1)\top}) \quad (139)$$

1394 Finally, back-propagating through $\tilde{A} = hW^{(l)}h^\top + P^{(l)}$ gives

1395
1396
1397

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = h^\top S_i^{(l)} h, \quad (140)$$

1398
1399
1400

$$\frac{\partial \mathcal{L}}{\partial P^{(l)}} = \text{ein}_{tjk, jk \rightarrow t} (D, S_i^{(l)}) \quad (141)$$

1401 Summing over i and normalizing,

1402
1403

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} S_i^{(l)} h_i^{(l-1)} \quad (142)$$

$$\frac{\partial \mathcal{L}}{\partial P^{(l)}} = \frac{-1}{NT} \text{ein}_{tjk, jk \rightarrow t} \left(D, \sum_{i=1}^N S_i^{(l)} \right) \quad (143)$$

Collecting all contributions to $h_i^{(l-1)}$ gives

$$G_i^{(l-1)} = G_i^{(l)} + A_i^{(l)\top} G_i^{(l)} V^{(l)\top} + S_i^{(l)} h_i^{(l-1)} W^{(l)\top} + S_i^{(l)\top} h_i^{(l-1)} W^{(l)} \quad (144)$$

Since at the last layer,

$$G_i^{(L)} = \frac{\partial \mathcal{L}}{\partial h_i^{(L)}} = \frac{\partial \mathcal{L}}{\partial Z_i} W_O^\top = R_i W_O^\top \quad (145)$$

we can inductively apply the recurrence and collecting the per-layer parameter derivatives gives the desired expressions for $\partial \mathcal{L} / \partial W_O$, $\partial \mathcal{L} / \partial V^{(l)}$, $\partial \mathcal{L} / \partial W^{(l)}$, and $\partial \mathcal{L} / \partial P^{(l)}$. \square

Lemma D.8 (First Step, Multi-Layer Zero-Initialization). *Under the setting described, after one gradient step, we have that*

$$W_O = \eta(\bar{B}) \quad (146)$$

$$W^{(l)}, V^{(l)}, P^{(l)} = \mathbf{0} \quad (147)$$

for $1 \leq l \leq L$ where \bar{B} is a $|V| \times |V|$ matrix where the j th row is the average next-token distribution of the j th token in the vocabulary weighted by the relative frequency of token j across the dataset and centered to have the row sum be 0.

Proof. By Lemma D.7,

$$\frac{\partial \mathcal{L}}{\partial W_O} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(L)\top} R_i = \frac{-1}{NT} \sum_{i=1}^N X_i^\top (Y_i - U_O) = -(B - U) \equiv -\bar{B} \quad (148)$$

where B and U are defined the same as in the one-layer case. A single gradient step gives

$$W_O = -\eta \frac{\partial \mathcal{L}}{\partial W_O} = \eta \bar{B} \quad (149)$$

At initialization $W_O = 0$, so by Lemma D.7 the upstream gradient from layer L is

$$G_i^{(L)} = R_i W_O^\top = 0 \quad (150)$$

Using the recurrence (Lemma D.7),

$$G_i^{(l-1)} = G_i^{(l)} + A_i^{(l)\top} G_i^{(l)} V^{(l)\top} + S_i^{(l)} h_i^{(l-1)} W^{(l)\top} + S_i^{(l)\top} h_i^{(l-1)} W^{(l)} \quad (151)$$

Since $G_i^{(L)} = 0$ and $W^{(l)}, V^{(l)} = 0$ for all l , we inductively get $G_i^{(l)} = 0$ for every l .

Now, the layerwise gradients are (Lemma D.7)

$$\frac{\partial \mathcal{L}}{\partial V^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} A_i^{(l)\top} G_i^{(l)} = 0 \quad (152)$$

and with $S_i^{(l)} = \text{ein}_{tjk, tk \rightarrow t} \left(J_i^{(l)}, G_i^{(l)} V^{(l)\top} h_i^{(l-1)\top} \right)$ we also have $S_i^{(l)} = 0$ (because $G_i^{(l)} = 0$ or $V^{(l,0)} = 0$), hence

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = \frac{-1}{NT} \sum_{i=1}^N h_i^{(l-1)\top} S_i^{(l)} h_i^{(l-1)} = 0 \quad (153)$$

$$\frac{\partial \mathcal{L}}{\partial P^{(l)}} = \frac{-1}{NT} \text{ein}_{tjk, jk \rightarrow t} \left(D, \sum_{i=1}^N S_i^{(l)} \right) = 0 \quad (154)$$

Therefore a single gradient step leaves $W^{(l)}, V^{(l)}, P^{(l)} = 0$ for $1 \leq l \leq L$. \square

1458 **Theorem D.9** (Early Stage Features, Multi-Layer). *Fix a depth $L \leq \frac{\sqrt{T}}{4}$ and assume zero initial-
 1459 ization for all parameters. Under the setting described, for $s \leq \eta^{-1} \min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$ with $T \geq 60$
 1460 and $|V| \geq 500$, after s gradient descent steps with learning rate η we have, uniformly for every
 1461 layer $1 \leq l \leq L$,*

$$1463 \quad \|W_O - s\eta\bar{B}\|_F \leq 3s^2\eta^2 \quad (155)$$

$$1465 \quad \left\| V^{(l)} - \binom{s}{2} \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq 12s^3\eta^3 \quad (156)$$

$$1468 \quad \left\| W^{(l)} - \left(3\binom{s}{4} + 2\binom{s}{3}\right) \eta^4 \bar{Q} \right\|_F \leq 13s^5\eta^5 T \quad (157)$$

$$1471 \quad \left\| P^{(l)} - \left(3\binom{s}{4} + 2\binom{s}{3}\right) \eta^4 \Delta \right\|_F \leq 13s^5\eta^5 T \quad (158)$$

1473 where \bar{B} , $\bar{\Phi}$, \bar{Q} , and Δ are as in the one-layer analysis (row-centered bigram matrix, centered
 1474 prefix-statistics operator, and the third-step structures, respectively).

1476 *Proof.* We prove the bounds simultaneously for all layers with induction.

1478 By the previous lemma, with zero initialization and one step, $W_O = \eta\bar{B}$, $W^{(l)} = 0$, $V^{(l)} =$
 1479 0 , $P^{(l)} = 0$ for $1 \leq l \leq L$. This gives the base case.

1480 Now we prove the inductive step. Assume the four bounds hold after s steps, with $(s+1)\eta \leq$
 1481 $\min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$. We derive bounds on the deviations in the attention patterns, activations, and
 1483 outputs in the forward pass after s steps.

1484 Now, we start with a bound on the deviations in the activations from X_i at each row. Since, each
 1485 row of $A_i^{(l)}$ sums to 1, we have that

$$1487 \quad \|h_i^{(l)}[t, :] - X_i[t, :]\| \leq \|h_i^{(l-1)}[t, :] - X_i[t, :]\| + \|h_i^{(l-1)}[t, :]\| \|V^{(l)}\| \quad (159)$$

1489 and

$$1491 \quad \|h_i^{(l)}[t, :]\| \leq (1 + \|V^{(l)}\|) \|h_i^{(l-1)}[t, :]\| \quad (160)$$

1493 Then, by the inductive hypothesis and $s\eta \leq \frac{1}{12L}$, we have that $\|V^{(l)}\|_F \leq \frac{3}{2}s^2\eta^2$. Using this and
 1494 that $h_i^{(0)} = X_i$ which has unit norm, we have that across all layers and rows

$$1496 \quad \|h_i^{(l)}[t, :]\| \leq \left(1 + \frac{3}{2}s^2\eta^2\right)^L \quad (161)$$

1498 and as $s\eta \leq \frac{1}{12L}$ and as $(1 + c/L)^L \leq 1 + 2c$ for $c \leq 1$, we have that

$$1501 \quad \|h_i^{(l)}[t, :]\| \leq 1 + \frac{s\eta}{4} \quad (162)$$

1503 Using this and again that $h_i^{(0)} = X_i$, we have that for all rows and layers,

$$1505 \quad \|h_i^{(l)}[t, :] - X_i[t, :]\| \leq L \left(1 + \frac{s\eta}{4}\right) \frac{3}{2}s^2\eta^2 \leq 2s^2\eta^2L \leq \frac{s\eta}{6} \quad (163)$$

1507 again using that $s\eta \leq \frac{1}{12L}$.

1508 Let A_0 be the uniform causal attention with the t -th row having the first t elements equal to $1/t$ and
 1509 the remaining elements being 0. For each row, of $A_i^{(l)}$, we have that

$$1511 \quad A_i^{(l)} = \mathcal{S}(\text{Mask}(h_i^{(l-1)}[t, :] W^{(l)} h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :])) \quad (164)$$

1512 Decomposing $h_i^{(l-1)}[t, :]$ as $X_i[t, :] + (h_i^{(l-1)}[t, :] - X_i[t, :])$, we get by the inductive hypothesis and
 1513 that $\max_{km} |\bar{Q}_{km}|, \max_m |\Delta_m| \leq 1$ as shown in the one-layer case that
 1514

$$\begin{aligned} & \left\| \text{MASK}(h_i^{(l-1)}[t, :]W^{(l)}h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :]) \right\| \\ & \leq \left(6 \binom{s}{4} + 4 \binom{s}{3} \right) \eta^4 \sqrt{t} + (C_W + C_P) s^5 \eta^5 T \\ & + 2 \left\| h_i^{(l-1)}[t, :] - X_i[t, :] \right\| \left(6 \binom{s}{4} + 4 \binom{s}{3} \right) \eta^4 \sqrt{T} \\ & + \left\| h_i^{(l-1)}[t, :] - X_i[t, :] \right\|^2 \left(6 \binom{s}{4} + 4 \binom{s}{3} \right) \eta^4 \sqrt{T} \end{aligned} \quad (165)$$

1524 By our earlier bounds, we have then

$$\begin{aligned} & \left\| \text{MASK}(h_i^{(l-1)}[t, :]W^{(l)}h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :]) \right\| \\ & \leq s^4 \eta^4 \sqrt{t} + 26s^5 \eta^5 T + \frac{s\eta}{3} s^4 \eta^4 \sqrt{T} + \frac{s^2 \eta^2}{36} s^4 \eta^4 \sqrt{T} \end{aligned} \quad (166)$$

1529 which we can upper bound by

$$\left\| \text{MASK}(h_i^{(l-1)}[t, :]W^{(l)}h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :]) \right\| \leq s^4 \eta^4 \sqrt{t} + \frac{21}{2} s^3 \eta^3 \quad (167)$$

1533 Then, by Lemma D.2, we have

$$\left\| (A_i^{(l)} - A_0)[t, :] \right\| \leq s^4 \eta^4 + \frac{21s^3 \eta^3}{2\sqrt{t}} \leq 11s^3 \eta^3 \leq \frac{7s^2 \eta^2}{\sqrt{T}} \leq \frac{s\eta}{\sqrt{T}} \quad (168)$$

1537 Then, we also have that

$$\left\| A_i^{(l)} - A_0 \right\|_F \leq 7s^2 \eta^2 \leq s\eta \quad (169)$$

1540 From the deviation bounds on the activations and the inductive control of W_O ,

$$\|F_\theta(X_i)\|_F = \|h_i^{(L)}W_O\|_F \leq \|h_i^{(L)}\|_F \|W_O\| \leq (1 + \frac{s\eta}{4})\sqrt{T}(s\eta + 3s^2\eta^2) \leq 2s\eta\sqrt{T} \quad (170)$$

1543 Applying Lemma D.2 gives

$$\left\| \mathcal{S}(F_\theta(X_i)) - U_O \right\|_F \leq 2s\eta \sqrt{\frac{T}{|V|}}. \quad (171)$$

1548 Then as in the one-layer case but using equation 171 and accounting for deviations in the hidden
 1549 state from X_i ,

$$\left\| \frac{\partial \mathcal{L}}{\partial W_O} + \bar{B} \right\|_F \leq \frac{4s\eta}{\sqrt{|V|}} + 4s\eta \leq 5s\eta \quad (172)$$

1553 Then, after $s + 1$ steps, we have

$$\left\| W_O - (s + 1)\eta \bar{B} \right\|_F \leq 3s^2 \eta^2 + 5s\eta^2 \leq 3(s + 1)^2 \eta^2 \quad (173)$$

1556 From Lemma D.7,

$$\frac{\partial \mathcal{L}}{\partial V^{(l)}} = -\frac{1}{NT} \sum_i h_i^{(l-1)\top} A_i^{(l)\top} R_i W_O^\top \quad (174)$$

1559 Considering the deviation from each of the terms, we have

$$\left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} + s\eta \bar{\Phi}^\top \bar{B}^\top \right\| \leq 36s^2 \eta^2 \quad (175)$$

1563 Then, we have that after $s + 1$ steps,

$$\left\| V^{(l)} - \left(\frac{s+1}{2} \right) \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq 12s^3 \eta^3 + 36s^2 \eta^3 \leq 12(s + 1)^3 \eta^3$$

1566 From Lemma D.7,

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = -\frac{1}{NT} \sum_i h_i^{(l-1)\top} S_i^{(l)} h_i^{(l-1)} \quad (176)$$

$$\frac{\partial \mathcal{L}}{\partial P^{(l)}} = -\frac{1}{NT} \text{ein}_{tjk, jk \rightarrow t}(D, \sum_i S_i^{(l)}) \quad (177)$$

1572 with $S_i^{(l)} = \text{ein}(J_i^{(l)}, G_i^{(l)\top} V^{(l)\top} h_i^{(l-1)\top})$. As in the one-layer bound, we can use the bound on the
1573 attention pattern to control $J_i^{(l)}$. We have that for $t \geq 2$
1574

$$\|J_{t,i} - J_t\|_2 \leq \left(1 + \frac{2}{\sqrt{t}}\right) \|A_i[t, :] - A_0[t, :]\|_2 + \|A_i[t, :] - A_0[t, :]\|_2^2 \quad (178)$$

1575 Then, as we have that
1576

$$\|A_i[t, :] - A_0[t, :]\|_2 \leq \frac{s\eta}{\sqrt{T}} \quad (179)$$

1577 it follows that
1578

$$\|J_{t,i} - J_t\|_2 \leq \frac{10s\eta}{\sqrt{T}} \quad (180)$$

1579 Since $J_{1,i}$ is always all zeros, we can ignore this term and for $t \geq 2$, we have that as $s\eta \leq \frac{5}{8\sqrt{T}}$,
1580

$$\|J_{t,i} - J_t\|_2 \leq \frac{10s\eta}{\sqrt{T}} \quad (181)$$

1581 Now, we bound the deviation of $G_i^{(l)}$ from $\eta(Y_i - U_O)\bar{B}^\top$. Starting from layer L , we have
1582

$$\|G_i^{(L)} - s\eta(Y_i - U_O)\bar{B}^\top\|_F \leq 2s\eta \sqrt{\frac{T}{|V|}} (2s\eta) + \sqrt{T}(3s^2\eta^2) \leq 4s^2\eta^2\sqrt{T} \quad (182)$$

1583 We will let the bound on the deviation at layer l be $D_{G,l}$. Now, we consider the bound for each layer
1584 l ,
1585

$$\|G_i^{(l-1)} - s\eta(Y_i - U_O)\bar{B}^\top\|_F \leq D_{G,l} + 4s^2\eta^2 \|G_i^{(l)}\| + 2 \|S_i^{(l)}\| (2\sqrt{T})(2s^4\eta^4T) \quad (183)$$

1586 Since we also need the norm of $S_i^{(l)}$ to iterate through layers, we bound the norm of $S_i^{(l)}$,
1587

$$\begin{aligned} \|S_i^{(l)}\|_F &\leq \|J_i^{(l)}\| \|G_i^{(l)}\| \|V^{(l)}\| \|h_i^{(l-1)}\|_F \\ &\leq \frac{5}{2} \|G_i^{(l)}\| (\frac{3}{2}s^2\eta^2)(2\sqrt{T}) \\ &\leq 8s^2\eta^2 \|G_i^{(l)}\| \sqrt{T} \\ &\leq 5s\eta \|G_i^{(l)}\| \end{aligned} \quad (184)$$

1588 Using this upper bound back in the recurrence for $D_{G,l}$, we have
1589

$$\|G_i^{(l-1)} - s\eta(Y_i - U_O)\bar{B}^\top\|_F \leq D_{G,l} + 4s^2\eta^2 \|G_i^{(l)}\| + 40s^5\eta^5T^{3/2} \|G_i^{(l)}\| \quad (185)$$

1590 Using $s\eta \leq \frac{5}{8\sqrt{T}}$, we have
1591

$$\|G_i^{(l-1)} - s\eta(Y_i - U_O)\bar{B}^\top\|_F \leq D_{G,l} + 14s^2\eta^2 \|G_i^{(l)}\| \quad (186)$$

1592 We can now write a recurrence for $\|G_i^{(l)}\|$ as $\|G_i^{(l)}\| \leq s\eta \|(Y_i - U_O)\bar{B}^\top\| + D_{G,l}$, we have
1593

$$\|G_i^{(l-1)}\| \leq (1 + 14s^2\eta^2)(\|s\eta(Y_i - U_O)\bar{B}^\top\| + D_{G,l}) \leq (1 + 14s^2\eta^2)(s\eta\sqrt{2T} + D_{G,l}) \quad (187)$$

1594 Utilizing this with the recurrence for $D_{G,l}$, we can then write a recurrence only in terms of $D_{G,l}$
1595 and find that for all l , $D_{G,l} \leq 12s^2\eta^2\sqrt{T}$ as $L \leq \frac{\sqrt{T}}{4}$ and $s\eta \leq \min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$. Then, we also
1596

1620 have that for all l , $\|G_i^l\| \leq s\eta\sqrt{T} + 12s^2\eta^2\sqrt{T} \leq 2s\eta\sqrt{T}$. Then, we have that as $\|J_t\|_2 = \frac{1}{t}$,
1621 $\|J_t\|_2 \leq \frac{3}{2} + 10s^2\eta^2 \leq 2$, and $s\eta \leq \min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$,
1622

$$1623 \quad \left\| \frac{s^3 - s^2}{2} \eta^3 Q_i - S_i^{(l)} \right\|_F \leq 64s^4\eta^4 T \quad (188)$$

1626 This produces

$$1627 \quad \left\| \frac{\partial \mathcal{L}}{\partial W^{(l)}} + \frac{s^3 - s^2}{2} \eta^3 \bar{Q} \right\|_F \leq 64s^4\eta^4 T \quad (189)$$

1630 and similarly,

$$1631 \quad \left\| \frac{\partial \mathcal{L}}{\partial P^{(l)}} + \frac{s^3 - s^2}{2} \eta^3 \Delta \right\|_F \leq 64s^4\eta^4 T \quad (190)$$

1633 and hence after $(s + 1)$ steps

$$1635 \quad \left\| W^{(l)} - \left(3 \binom{s+1}{4} + 2 \binom{s+1}{3} \right) \eta^4 \bar{Q} \right\|_F \leq 13(s+1)^5\eta^5 T \quad (191)$$

$$1638 \quad \left\| P^{(l)} - \left(3 \binom{s+1}{4} + 2 \binom{s+1}{3} \right) \eta^4 \Delta \right\|_F \leq 13(s+1)^5\eta^5 T \quad (192)$$

1640 \square

1641 **Lemma D.10** (Gaussian Initialization Operator Norm). *Under the setting described and with all
1643 parameters initialized from $\mathcal{N}(0, \frac{v^2}{|V|^{2+2\xi}})$ for $\xi \geq 0$ and $T \leq |V|$, we have that with probability at
1644 least $1 - (3L + 1) \exp\left(-\frac{|V|^{1+2\xi}}{4}\right)$, for all $1 \leq l \leq L$,*

$$1646 \quad \|W_O\|, \|V^{(l)}\|, \|W^{(l)}\|, \|P^{(l)}\| \leq \frac{3v}{|V|^{1/2}} \quad (193)$$

1649 *Proof.* We start with W_O . Using a concentration bound on Gaussian random matrices, we have that

$$1651 \quad \mathbb{P}\left(\|v|V|^{1+\xi} W_O\| \geq 2\sqrt{|V|} + t\right) \leq e^{-t^2/2} \quad (194)$$

1653 Then, setting $t = |V|^{1/2+\xi}$, we have that

$$1655 \quad \mathbb{P}\left(\|W_O\| \geq \frac{3v}{|V|^{1/2}}\right) \leq \exp\left(-\frac{|V|^{1+2\xi}}{2}\right) \quad (195)$$

1657 Then, with probability at least $1 - \exp\left(-\frac{|V|^{1+2\xi}}{2}\right)$,

$$1660 \quad \|W_O\| \leq \frac{3v}{|V|^{1/2}} \quad (196)$$

1662 We can apply the same argument for each of $V^{(l)}, W^{(l)}$ to derive the same bound. Since $P^{(l)}$ is
1663 smaller than the other matrices and has the same initialization, we can also apply the same bound.
1664 Applying a union bound on the probability of failures for each of the weights, we have that with
1665 probability at least $1 - (3L + 1) \exp\left(-\frac{|V|^{1+2\xi}}{2}\right)$, all of $W_O, V^{(l)}, W^{(l)}, P^{(l)}$ have operator norm at
1666 most $\frac{3v}{|V|^{1/2}}$.
1667 \square

1668 **Lemma D.11** (Gaussian Initialization Frobenius Norm). *Under the setting described and with all
1669 parameters initialized from $\mathcal{N}(0, \frac{v^2}{|V|^{2+2\xi}})$ for $\xi \geq 0$ and $T \leq |V|$, we have that with probability at
1670 least $1 - (3L + 1) \exp\left(-\frac{|V|^{2+2\xi}}{4}\right)$, for all $1 \leq l \leq L$,*

$$1673 \quad \|W_O\|_F, \|V^{(l)}\|_F, \|W^{(l)}\|_F, \|P^{(l)}\|_F \leq 2v \quad (197)$$

1674 *Proof.* We start with W_O . Using Lemma 1 from Laurent & Massart (2000), we have that
 1675

$$1676 \quad \mathbb{P} \left(\|W_O\|_F^2 \geq \frac{v^2}{|V|^{2+2\xi}} (|V|^2 + 2|V|\sqrt{t} + 2t) \right) \leq e^{-t} \quad (198)$$

1677 Then, setting $t = \frac{|V|^{2+2\xi}}{4}$, we have that
 1678

$$1680 \quad \mathbb{P} \left(\|W_O\|_F^2 \geq 3v^2 \right) \leq \exp \left(-\frac{|V|^{2+2\xi}}{4} \right) \quad (199)$$

1683 Then, with probability at least $1 - \exp \left(-\frac{|V|^{2+2\xi}}{4} \right)$,
 1684

$$1685 \quad \|W_O\|_F \leq 2v \quad (200)$$

1687 We can apply the same argument for each of $V^{(l)}, W^{(l)}$ to derive the same bound. For $P^{(l)}$, we have
 1688

$$1689 \quad \mathbb{P} \left(\|P^{(1)}\|_F^2 \geq \frac{v^2}{|V|^{2+2\xi}} (T + 2\sqrt{Tt} + 2t) \right) \leq e^{-t} \quad (201)$$

1691 Then, setting $t = \frac{|V|^{2+2\xi}}{4}$ and using that $T \leq |V|$, we have that
 1692

$$1693 \quad \mathbb{P} \left(\|P^{(1)}\|_F^2 \geq 3v^2 \right) \leq \exp \left(-\frac{|V|^{2+2\xi}}{4} \right) \quad (202)$$

1696 Then, with probability at least $1 - \exp \left(-\frac{|V|^{2+2\xi}}{4} \right)$,
 1697

$$1698 \quad \|P^{(1)}\|_F \leq 2v \quad (203)$$

1700 Applying a union bound on the probability of failures for each of the weights, we have that with
 1701 probability at least $1 - (3L+1) \exp \left(-\frac{|V|^{2+2\xi}}{4} \right)$, all of $W_O, V^{(l)}, W^{(l)}, P^{(l)}$ have Frobenius norm
 1702 at most $2v$. \square
 1703

1704 **Theorem D.12** (Gaussian Initialization (Multi-Layer)). *Assume the setting of D.9 with depth $L \leq$
 1705 $\frac{\sqrt{T}}{4}$, all parameters initialized i.i.d. from $\mathcal{N}(0, \frac{v^2}{|V|^{2+2\xi}})$ with $v \leq \frac{\eta^2}{T^2}$, $T \leq |V|$, and learning rate
 1706 $\eta \geq T^{-1}$. Then, with probability at least*

$$1708 \quad 1 - (3L+1) \left[\exp \left(-\frac{|V|^{1+2\xi}}{2} \right) + \exp \left(-\frac{|V|^{2+2\xi}}{4} \right) \right]$$

1710 for $s \leq \eta^{-1} \min \left(\frac{1}{12L}, \frac{5}{8\sqrt{T}} \right)$ with $T \geq 60$ and $|V| \geq 500$, after s gradient descent steps with
 1711 learning rate η we have, uniformly for every layer $1 \leq l \leq L$,

$$1713 \quad \|W_O - s\eta\bar{B}\|_F \leq 3s^2\eta^2 \quad (204)$$

$$1715 \quad \left\| V^{(l)} - \binom{s}{2} \eta^2 \bar{\Phi}^\top \bar{B}^\top \right\|_F \leq 12s^3\eta^3 \quad (205)$$

$$1718 \quad \left\| W^{(l)} - \left(3\binom{s}{4} + 2\binom{s}{3} \right) \eta^4 \bar{Q} \right\|_F \leq 13s^5\eta^5 T \quad (206)$$

$$1720 \quad \left\| P^{(l)} - \left(3\binom{s}{4} + 2\binom{s}{3} \right) \eta^4 \Delta \right\|_F \leq 13s^5\eta^5 T \quad (207)$$

1722 where \bar{B} , $\bar{\Phi}$, \bar{Q} , and Δ are as in the one-layer analysis (row-centered bigram matrix, centered
 1723 prefix-statistics operator, and the third-step structures, respectively).
 1724

1725 *Proof.* We start by noting that as long the proof holds when $v = \frac{\eta^2}{T^2}$ and we show that the first
 1726 gradient step satisfies the inductive hypothesis used in Theorem D.9, then the proof will be complete.
 1727

1728 We will prove that the first gradient step satisfies the inductive hypothesis with $v = \frac{\eta^2}{T^2}$.

We will condition on the event that the results of Lemmas D.10 and D.11 holds. Then, our results will hold with probability at least

$$1 - (3L + 1) \left[\exp\left(-\frac{|V|^{1+2\xi}}{2}\right) + \exp\left(-\frac{|V|^{2+2\xi}}{4}\right) \right]$$

and we have that at initialization for all $1 \leq l \leq L$

$$\|W_O\|, \|V^{(l)}\|, \|W^{(l)}\|, \|P^{(l)}\| \leq \frac{3\eta^2}{T^2|V|^{1/2}} \quad (208)$$

and

$$\|W_O\|_F, \|V^{(l)}\|_F, \|W^{(l)}\|_F, \|P^{(l)}\|_F \leq \frac{2\eta^2}{T^2} \quad (209)$$

Now, we start with a bound on the deviations in the activations from X_i at each row. Since, each row of $A_i^{(l)}$ sums to 1, we have that

$$\|h_i^{(l)}[t, :] - X_i[t, :]\| \leq \|h_i^{(l-1)}[t, :] - X_i[t, :]\| + \|h_i^{(l-1)}[t, :]\| \|V^{(l)}\| \quad (210)$$

and

$$\|h_i^{(l)}[t, :]\| \leq (1 + \|V^{(l)}\|) \|h_i^{(l-1)}[t, :]\| \quad (211)$$

Using that $\|V^{(l)}\| \leq \frac{3\eta^2}{T^2|V|^{1/2}}$ and that $h_i^{(0)} = X_i$ which has unit norm, we have that across all layers and rows

$$\|h_i^{(l)}[t, :]\| \leq \left(1 + \frac{3\eta^2}{T^2|V|^{1/2}}\right)^L \quad (212)$$

and as $\eta \leq \frac{1}{12L}$ and as $(1 + c/L)^L \leq 1 + 2c$ for $c \leq 1$, we have that

$$\|h_i^{(l)}[t, :]\| \leq 1 + \frac{\eta^{7/2}}{2} \quad (213)$$

Using this and again that $h_i^{(0)} = X_i$, we have that for all rows and layers,

$$\|h_i^{(l)}[t, :] - X_i[t, :]\| \leq L \left(1 + \frac{\eta^{7/2}}{2}\right) \frac{3\eta^2}{T^2|V|^{1/2}} \leq \frac{\eta^{7/2}}{3} \quad (214)$$

again using that $s\eta \leq \frac{1}{12L}$.

Let A_0 be the uniform causal attention with the t -th row having the first t elements equal to $1/t$ and the remaining elements being 0. For each row, of $A_i^{(l)}$, we have that

$$A_i^{(l)} = \mathcal{S}(\text{Mask}(h_i^{(l-1)}[t, :] W^{(l)} h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :])) \quad (215)$$

By our earlier bounds, we have then

$$\begin{aligned} & \left\| \text{MASK}(h_i^{(l-1)}[t, :] W^{(l)} h_i^{(l-1)\top} + \text{DM}(P^{(l)})[t, :]) \right\| \\ & \leq \left(1 + \frac{\eta^{7/2}}{2}\right)^2 \frac{3\eta^2}{T^2|V|^{1/2}} \sqrt{T} + \frac{3\eta^2}{T^2|V|^{1/2}} \leq \frac{6\eta^{7/2}}{\sqrt{T}} \end{aligned} \quad (216)$$

where we have use $\frac{1}{T} \leq \eta$ and $\eta \leq \frac{1}{12L}$. Then, by Lemma D.2, we have

$$\|(A_i^{(l)} - A_0)[t, :]\| \leq \frac{6\eta^{7/2}}{\sqrt{Tt}} \quad (217)$$

Then, we also have that

$$\|A_i^{(l)} - A_0\|_F \leq \frac{6\eta^{7/2}}{\sqrt{T}} \sqrt{1 + \log T} \leq 6\eta^{7/2} \quad (218)$$

1782 From the deviation bounds on the activations and the initial bound on W_O ,
 1783

$$1784 \|F_\theta(X_i)\|_F = \|h_i^{(L)} W_O\|_F \leq \|h_i^{(L)}\|_F \|W_O\| \leq (1 + \frac{\eta^{7/2}}{2}) \sqrt{T} \frac{3\eta^2}{T^2 |V|^{1/2}} \leq 4\eta^4 \quad (219)$$

1786 Applying Lemma D.2 gives

$$1788 \|S(F_\theta(X_i)) - U_O\|_F \leq \frac{4\eta^4}{\sqrt{|V|}} \quad (220)$$

1790 Then following the argument in the zero-initialization case,

$$1792 \left\| \frac{\partial \mathcal{L}}{\partial W_O} + \bar{B} \right\|_F \leq \frac{4\eta^4}{\sqrt{|V|}} + \frac{\eta^{5/2}}{\sqrt{T}} \leq 2\eta^3 \quad (221)$$

1795 Then, after the first step,

$$1797 \|W_O - \eta \bar{B}\|_F \leq \frac{3\eta^2}{T^2 |V|^{1/2}} + 2\eta^4 \leq 3\eta^4 \leq 3\eta^2 \quad (222)$$

1799 From Lemma D.7,

$$1801 \frac{\partial \mathcal{L}}{\partial V^{(l)}} = -\frac{1}{NT} \sum_i h_i^{(l-1)\top} A_i^{(l)\top} R_i W_O^\top \quad (223)$$

1803 Considering the deviation from each of the terms, we have

$$1805 \left\| \frac{\partial \mathcal{L}}{\partial V^{(1)}} \right\|_F \leq \frac{15\eta^2}{T^2 |V|^{1/2}} \leq 15\eta^{9/2} \quad (224)$$

1807 Then, we have that after the first step

$$1809 \|V^{(l)}\|_F \leq \frac{2\eta^2}{T^2} + 15\eta^{11/2} \leq 3\eta^4 \leq 12\eta^3$$

1811 From Lemma D.7,

$$1813 \frac{\partial \mathcal{L}}{\partial W^{(l)}} = -\frac{1}{NT} \sum_i h_i^{(l-1)\top} S_i^{(l)} h_i^{(l-1)} \quad (225)$$

$$1815 \frac{\partial \mathcal{L}}{\partial P^{(l)}} = -\frac{1}{NT} \text{ein}_{tjk, jk \rightarrow t} \left(D, \sum_i S_i^{(l)} \right) \quad (226)$$

1818 with $S_i^{(l)} = \text{ein}(J_i^{(l)}, G_i^{(l)\top} V^{(l)} h_i^{(l-1)\top})$. As in the zero-initialization case, we can use the bound
 1819 on the attention pattern to control $J_i^{(l)}$. We have that for $t \geq 2$

$$1821 \|J_{t,i} - J_t\|_2 \leq \left(1 + \frac{2}{\sqrt{t}} \right) \|A_i[t, :] - A_0[t, :]\|_2 + \|A_i[t, :] - A_0[t, :]\|_2^2 \quad (227)$$

1823 Then, as we have that

$$1825 \|A_i[t, :] - A_0[t, :]\|_2 \leq \frac{6\eta^{7/2}}{\sqrt{T}} \quad (228)$$

1827 it follows that

$$1828 \|J_{t,i} - J_t\|_2 \leq \frac{15\eta^{7/2}}{\sqrt{T}} \quad (229)$$

1830 Since $J_{1,i}$ is always all zeros, we can ignore this term and for $t \geq 2$, we have that,

$$1831 \|J_i - J\|_2 \leq 15\eta^{7/2} \quad (230)$$

1833 Now, we bound the norm of $G_i^{(l)}$. Starting from layer L , we have

$$1835 \|G_i^{(L)}\|_F \leq \sqrt{2T} \frac{3\eta^2}{T^2 |V|^{1/2}} \leq 5\eta^4 \quad (231)$$

1836 We will let the bound on the deviation at layer l be $D_{G,l}$. Now, we consider the bound for each layer
 1837 l ,

$$1839 \quad \|G_i^{(l-1)}\|_F \leq D_{G,l} + \frac{5}{2} D_{G,l} \frac{3\eta^2}{T^2|V|^{1/2}} + 2 \|S_i^{(l)}\| \sqrt{2T} \frac{3\eta^2}{T^2|V|^{1/2}} \leq (1 + 8\eta^{9/2}) D_{G,l} + 9\eta^4 \|S_i^{(l)}\| \quad (232)$$

1841 Since we also need the norm of $S_i^{(l)}$ to iterate through layers, we bound the norm of $S_i^{(l)}$,

$$1843 \quad \|S_i^{(l)}\|_F \leq \|J_i^{(l)}\| \|G_i^{(l)}\| \|V^{(l)}\| \|h_i^{(l-1)}\|_F \leq \frac{5}{2} D_{G,l} \frac{3\eta^2}{T^2|V|^{1/2}} \sqrt{2T} \leq 8\eta^4 D_{G,l} \quad (233)$$

1846 Using this upper bound back in the recurrence for $D_{G,l}$, we have

$$1848 \quad \|G_i^{(l-1)}\|_F \leq (1 + 8\eta^{9/2} + 72\eta^8) D_{G,l} \quad (234)$$

1850 Then for all l , $D_{G,l} \leq 6\eta^4$ as $L \leq \frac{\sqrt{T}}{4}$ and $\eta \leq \min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$. Then, we also have that for
 1851 all l , $\|G_i^l\| \leq 6\eta^4$. Then, we have that as $\|J_t\|_2 = \frac{1}{t}$, $\|J_i\|_2 \leq \frac{3}{2} + 15\eta^{7/2} \leq 2$, and $s\eta \leq$
 1852 $\min\left(\frac{1}{12L}, \frac{5}{8\sqrt{T}}\right)$,

$$1854 \quad \|S_i^{(l)}\|_F \leq 48\eta^8 \quad (235)$$

1856 This produces

$$1857 \quad \left\| \frac{\partial \mathcal{L}}{\partial W^{(l)}} \right\|_F \leq 48\eta^8 \quad (236)$$

1859 and similarly,

$$1860 \quad \left\| \frac{\partial \mathcal{L}}{\partial P^{(l)}} \right\|_F \leq 48\eta^8 \quad (237)$$

1863 and hence after the first step

$$1864 \quad \|W^{(l)}\|_F \leq 48\eta^9 + \frac{3\eta^2}{T^2} \leq 4\eta^5 T$$

$$1867 \quad \|P^{(l)}\|_F \leq 48\eta^9 + \frac{3\eta^2}{T^2} \leq 4\eta^5 T$$

1869 \square

1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889