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Abstract

Near Infrared (NIR) spectroscopy is a well-known sensor technology which is used in many
applications to gather information about chemical composition of materials. For paper waste
sorting this information can be used to classify different paper classes which enables better
sorting and higher recycling quality. With a small number of NIR scores and assuming
more or less unimodal clustered data, a pixel classifier can still be crafted by hand, using
knowledge about chemical properties and a reasonable amount of intuition. Additional
information can be gained by visual data. However it is not obvious how this information
can be well captured by describing features, and what features are finally important for
successfully separating the paper classes in feature space. Due to the huge variety of possible
visual features, e.g. based on color, saturation, textured areas with different structure size,
etc., a rigorous feature analysis becomes inevitable. We therefore have chosen a pattern
recognition approach to deal with the curse of dimensionality. By exploiting a classification
tree and a variety of additional visual features, followed by a forceful feature selection, we
achieve a recognition rate of 78% for 11 classes, compared to 63% only using NIR features.
The feature reduction shrinks the otherwise high computational burden to compute all
features and furthermore even increases recognition rate slightly. While some visual features
like color saturation and hue showed to be important, some NIR scores could even be
dropped.

1 Introduction

More than 16 million tons of waste paper are processed each year in Germany [9]. At
our partner facility around 130,000 tons per year are handled. A high sorting quality of
the waste paper is critical to achieve a high grade of recycled paper while keeping the
environmental footprint to a minimum. In [7] a general overview of many methods in
the field of paper waste sorting is given, and the impact is emphasized these methods can
have on the conservation of natural resources in terms of energy and water consumption,
CO2-footprint, and environmental pollution. Ultimately, good knowledge about the input
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material may be used to optimize the parameters of the sorting facility, e.g. the conveyor
belt speed.

We address this sorting problem by using NIR and additional RGB visual data. From the
visual data, a variety of features is computed consisting of co-occurrence features, histogram
moments, Haar wavelet filters, anisotropic Gaussian filters, and first and second order
spatial derivatives for various mask widths and orientation angles (VIS features).

Our classifier implementation of a Classification and Regression Tree (CART) allows
a ranking of the features by importance and thus can be used to select only the most
important features. Furthermore, the complexity of the classifier can be parametrized to
create simpler decision trees which has proven to be more robust in case of high measuring
errors and partly non-representative data. The optimal decision tree ultimately results by a
cross-validation training scheme.

We compare the classification performance in three experiments: First, only NIR scores
are used for training, then RGB and HSV data is added, and finally a whole variety of VIS
features is combined. Based on the set of NIR and VIS features we were able to show the
power of an importance ranking for an effective feature selection.

2 Characteristics of paper data

Line scan cameras for NIR and RGB were used to image the conveyor belt transporting the
waste paper. The system used in a real paper sorting plant recorded 172 NIR tracks and
1204 RGB tracks at 175 scans per second and a belt speed of around 0.5 m/sec and covered
a width of circa 90 cm (see figure 3).

Overall, 29 features were used for the classification problem which were processed from
the raw NIR spectra similarly to [6] and were provided by a third party project partner.
These consist of 11 scores discriminating plastic versus paper, 15 scores sensitive to different
paper classes, and 3 values measuring the content of characteristic chemicals: talcum, kaolin,
and lignin. Plastic content may result from coated paper classes, adhesive tapes or foils, for
example.

We discriminate 10 paper classes which were defined by a third party project partner. The
conveyor belt is treated as a separate background class. Thus, a total number of 11 classes
are discriminated for the results in this paper.

3 Related Work

NIR spectroscopy is a well established technique for material identification in general and
paper sorting in particular [6, 7, 8]. Besides characteristic absorption bands, also first and
second order derivatives are used to preprocess the raw reflectance spectra. Smoothing
filters like Savitzky-Golay are used to reduce noise in the derivatives [6]. Furthermore,
Principal Component Analysis (PCA) is used to reduce the dimension of the feature space
[5]. Classification is then carried out by evaluating several subsequent binary decision rules,
for which Partial Least Squares (PLS) regression is applied. The order of these substeps is
based on a sequence of manual analysis steps or on rather intuitive decisions.

Along with PCA also other techniques for feature analysis like Fisher Linear Discriminant
Analysis (LDA) or the divergence measure based on Kullback-Leibler distance for probability
distributions, besides others, have been used for similar problems in pattern recognition [3].
Generally, the linear techniques PCA and LDA are only optimal if the class distributions are
well separated and normal in feature space.
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Well known classifiers include Classification and Regression Trees (CART) [2], Randomized
Trees or Random Forests [1] and Support Vector Machines (SVM), besides many others
[3]. Feature ranking can be done using CART with surrogates [2] or Recursive Feature
Elimination (RFE) using weight parameters of trained SVMs [4].

We decided to use a CART classifier, since it is a rule-based and parameter free technique
which can handle a large number of features and performs well on arbitrary distributions,
provided a large number of training samples is available, which is clearly the case in our
application [2].

4 Methodology

4.1 Classi�er

We use our own C++ implementation of the CART algorithm which is based on the principles
presented in [2]. The CART algorithm trains a binary decision tree. In each node the pattern
set is split at a threshold for a feature which minimizes the impurity in the following subsets.
As impurity metric we use the Gini diversity index for a node t as proposed by [2]:

i(t) = ∑
i 6=j

p(i|t)p(j|t) , (1)

where i and j are different classes. The decrease of impurity from one node to the left and
right child nodes tL and tR by the splitter s is described by the delta impurity

∆i(s, t) = i(t)− pRi(tR)− pLi(tL) , (2)

where pL and pR are the proportions of data in tL and tR respectively. The splitter s
which maximizes ∆i(s, t) is then used as primary splitter. A splitter s is defined by the
feature which is used to split and the corresponding threshold. Each leaf of the tree finally
represents one class. To use a trained classification tree, the tree is traversed for a given
pattern according to the splits in each node and the class of the reached leaf node is returned.

4.2 Feature Ranking and Selection

In order to rate the importance of features, surrogates are chosen in each node of the tree.
Therefore, splitting thresholds for the other features than used in the primary splitter are
sought, such that the resulting child trees would be most similar to the trees created by the
original primary splitter. For each surrogate s∗ and the primary splitter s, the delta impurity
measure from (2) is calculated. Finally theses delta impurities are summed up over all nodes
for each feature, which gives a measure M(xm) for the importance of each feature xm:

M(xm) = ∑
t∈T

(∆i(s∗m, t) + ∆i(sm, t)) , (3)

where m denotes the index of the specific feature, T is the set of all nodes representing the
decision tree and s∗m and sm denote the surrogates and the primary splitter which involve
feature xm. As opposed to the importance measure found in [2], which ignores the delta
impurity for the primary splitter, we deliberately included it, since we think the feature
used in the primary splitter is important by definition. Tests with an artificially designed
test dataset also yielded more realistic importance measures when the primary splitter was
included.
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4.3 Robustness Improvements

If the classifier is trained until each leaf contains one single training pattern the classifier is
likely to be overfitted, since also outliers are ’learned by heart’ and might be confused with
representative data from other classes. This problem is addressed by an internal crossvalida-
tion scheme that prunes the fully trained tree to a certain degree until it generalizes well on
the given dataset.

However, in a real-world scenario with changing side conditions, feature measurements
might be slightly influenced by additional effects not covered by the original training dataset.
We address this problem by continuing the pruning process of the trained tree to make it
more robust against small changing measurement effects. By the way, this leads to simpler
trees as well.

4.4 Data Preprocessing

The training data is compiled from mono-fraction recordings for each class. As a prepro-
cessing step the paper objects were separated from the background by using a threshold on
the visual data.

For the results in this paper, the visual resolution of 1204 pixels per scan was scaled down
to the resolution of 172 pixels of the NIR data, by a simple data reduction.

Since the background class of the conveyor belt showed to be quite dominant and very
well distinguishable from the paper classes, the background data was resampled to roughly
the same amount as the next bigger classes. This avoids the overall recognition rate to be
too optimistic just because of a good background recognition.

5 Experimental Results

The dataset used for the following results consisted of almost 4 million samples of which
80% were used as training set and 20% as validation set in a 3-fold cross-validation scheme.
To be clear, the purpose of this crossvalidation is to get a most accurate estimation of the
real recognition rate. We emphasise that this dataset originates from a real sorting facility
with all dirty effects.

Solely using the given NIR features as described in section 2, our classifier achieved
an overall recognition rate of 63%. Adding the RGB and HSV channels the recognition
rate could be raised to 69%. In a first attempt to include other features, a variety of 386
additional visual features were computed consisting of co-occurrence features, histogram
moments, Haar wavelet filters, anisotropic Gaussian filters, and first and second order spatial
derivatives for various mask widths and orientation angles. The total of 419 features resulted
in a recognition rate of around 77% (see far right in figure 1). By iteratively deleting the
most unimportant features (according to the measure described in section 4.2), the number
of features could be reduced to just 59, while even improving the recognition rate slightly to
78% (see peak in figure 1). Further deletion of features would result in a significant decrease
of the recognition rate (see far left in figure 1). Thus, with appropriate feature selection,
the computational cost can also be reduced, since only the best visual features need to be
computed.

For each classifier, error statistics are computed (see table 1 and 2). Ni/N is the fraction
of data belonging to class i. F is called error matrix or confusion matrix and is visualized
in figure 2. The elements of F are the number of samples from class i which are classified
as class j, where i is the row index and j the column index. From F the diagonal elements
diag(F) are extracted and the F1 measure is computed. The F1 measure is the harmonic
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class i 1 2 3 4 5 6 7 8 9 10 11

Ni/N 16.65 11.87 21.44 13.56 4.93 5.46 2.98 2.26 13.52 3.83 3.49
F1 measure 95.09 54.68 60.35 65.75 43.68 36.32 36.03 19.23 68.98 30.82 34.39

diag(F) 16.169 7.120 14.346 9.618 2.284 1.702 0.736 0.276 9.060 0.789 0.858

1− P(F) = 62.958

Table 1: Classification statistics for NIR features.

class i 1 2 3 4 5 6 7 8 9 10 11

Ni/N 16.65 11.87 21.44 13.56 4.93 5.46 2.98 2.26 13.52 3.83 3.49
F1 measure 96.49 72.60 75.19 80.84 82.79 70.18 63.42 69.81 75.57 62.53 61.99

diag(F) 16.026 8.704 17.086 11.074 4.079 3.629 1.641 1.457 10.242 2.172 1.973

1− P(F) = 78.082

Table 2: Classification statistics for best 59 features of NIR, RGB, HSV and a mixture of
visual features.
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Figure 1: Recognition rate over selected features. Best trade-off with 59 features and recog-
nition rate of 78%

mean of precision and recall and thus also considers false positives and false negatives. The
overall recognition rate is calculated as 1− P(F), where P(F) is the error probability.

It is worth to be noted, that the increase in recognition rate from 63% to 78% contributed
mainly to the paper classes and not to the background class (compare F1 measures in tables 1
and 2).

Interestingly, our feature ranking also showed, that the H and S channel of the HSV data
are quite important, which is also stated by [6]. More surprisingly, almost half of the original
NIR features could be dropped in the remaining set of 59 features – even the values for
talcum and lignin.

While [7] states, that rule-based classifiers like CART are generally too slow for real-time
applications, we would be able to process at a conveyor speed of 4m/sec on a standard
4-core computer based on 29 NIR, 3 RGB and 3 HSV features without the need to parallelize
further by hardware. When, however, exploiting many hundreds of visual features, more
sophisticated data preprocessing steps need to be applied.
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Figure 2: Visualization of the class error matrix F for best 59 features (see peak in figure 1).
With i being the row index and j the column index, the elements Fij are the number
of samples from class i which are classified as class j. Low values are colored in
blue, high values in red.

Figure 3: Example visualization of the classification results on real world data. The upper
image shows the RGB data of a section of the conveyor belt. Each color in the
lower image represents the recognized paper class. The background is colored in
black.
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6 Conclusion and Outlook

The experimental results including additional visual features showed a significant improve-
ment over NIR scores alone. Our results on the real world data approve the preliminary
results attained on a laboratory-dataset with 14 different paper classes. The feature ranking
of the CART classifier enables us to use many potential features at first and automatically
select only the best subset for a productive environment.

For the future, we plan to exploit the full visual resolution in order to capture finer
structure details. At the same time, intelligent data fusion of multivariate data of different
resolutions is needed to avoid resubstitution error due to partially replicated data. With a
sevenfold higher resolution, the computational cost will also be a critical factor. Therefore,
we want to investigate the applicability of a regional pre-clustering procedure and other
data reduction techniques. We also intend to compare the feature ranking technique used
in our CART classifier to other possible techniques. Compared to a simple RGB camera a
NIR sensor is rather expensive. Thus, it is also of interest, if visual features alone suffice to
achieve an at least acceptable recognition rate for a lower price. Since real world paper waste
is not guaranteed to only contain paper, detection of problematic material like inflammables
or rigid objects which might damage the sorting plant would be much appreciated. For
these classes it is generally hard to gather much training data, as the variety of possible
objects is huge. Furthermore, we aim to extend our methods to other tasks like recognition
of plastic materials and such.
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