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Abstract

Surrogate regret bounds, also known as excess risk bounds, bridge the gap between
the convergence rates of surrogate and target losses. The regret transfer is lossless
if the surrogate regret bound is linear. While convex smooth surrogate losses
are appealing in particular due to the efficient estimation and optimization, the
existence of a trade-off between the loss smoothness and linear regret bound has
been believed in the community. Under this scenario, the better optimization and
estimation properties of convex smooth surrogate losses may inevitably deteriorate
after undergoing the regret transfer onto a target loss. We overcome this dilemma
for arbitrary discrete target losses by constructing a convex smooth surrogate loss,
which entails a linear surrogate regret bound composed with a tailored prediction
link. The construction is based on Fenchel-Young losses generated by the convolu-
tional negentropy, which are equivalent to the infimal convolution of a generalized
negentropy and the target Bayes risk. Consequently, the infimal convolution en-
ables us to derive a smooth loss while maintaining the surrogate regret bound linear.
We additionally benefit from the infimal convolution to have a consistent estimator
of the underlying class probability. Our results are overall a novel demonstration of
how convex analysis penetrates into optimization and statistical efficiency in risk
minimization.

1 Introduction

The risk of a machine learning model is often measured by the expectation of a target loss ¢ that
quantifies the error between the model prediction ¢ and a natural label y. However, minimizing the
target risk over a dataset is often computationally hard because a target prediction problem is usually
discretely structured, including multiclass, multilabel, top-% prediction problems. For this reason, a
tractable surrogate risk induced by a surrogate loss L(0,y) serves as an essential proxy with a score
0 < R, The resulting surrogate optimization is no longer discretely constrained.

An ideal surrogate loss should be convex, smooth (or entailing a Lipschitz continuous gradient),
and calibrated toward a given target prediction problem. Convexity and smoothness have been
fundamental both in optimization and statistical estimation—indeed, classical optimization theory
reveals that convex smooth functions can be optimized with first-order methods more efficiently than
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non-smooth functions [67,[83]. In addition, several studies have demonstrated that the convexity and
smoothness can further enhance fast rates in the risk estimation [87, 98]]. Meanwhile, calibration is
regarded as a minimal requirement on surrogate losses, ensuring that the surrogate risk minimization
leads to the target risk minimization [[12}88]]{7| To establish a relationship between surrogate and target
risks, surrogate regret bounds play a crucial role. Therein the regret (or the suboptimality) of a target
loss is controlled by that of a surrogate loss through a non-decreasing rate function ¢ : R>g — Rx>g.
A surrogate regret bound can be informally written as follows: for any score vector 8 € R? and a
class distribution 7,

Regret,(¢(0),n) < 1 (Regret (0,7)), )]

where ¢ is a prediction link that converts a score vector 0 into a target prediction ¢(8). If the regret
rate function is linear ¢)(r) = O(r), which is the best possible (data-independent) regret rate then
the optimization and estimation errors of the surrogate loss are optimally translated to the target loss.
For example, under the binary classification target loss, Bartlett et al. [12] demonstrated that the linear
regret rate is possible with the hinge loss. Later, symmetric losses [24] and polyhedral losses [39]
were shown to yield the linear regret rate. Unfortunately, these loss functions lack either convexity or
smoothness, which deteriorates the optimization and estimation errors of the surrogate regret, even if
they enjoy linear regret bounds. By contrast, a square-root regret rate ¢)(r) = O(y/r) is common for
convex smooth surrogate losses, such as the logistic, exponential, and squared losses [12, 169, |39].
These losses typically enjoy better optimization and estimation properties, yet suffer from larger
target regrets due to the suboptimal regret rate. Therefore, it has been open to develop a convex
smooth surrogate loss without sacrificing the linear regret rate.

Notwithstanding, the previous literature in this line has implied that such an ideal surrogate loss may
be inconceivable. Mahdavi et al. [50] considered this question with an interpolated loss between
the hinge (non-smooth) and logistic (smooth) losses and showed that we inevitably face the trade-
off between generalization and optimization unless strong distributional assumptions are imposed.
Further, Frongillo and Waggoner [39]] proved that locally smooth and strongly convex losses must
suffer from a square-root regret rate at least. Ramaswamy et al. [76] blame convex smooth losses for
redundantly modeling continuous class distributions, which is unnecessary if our goal is merely to
solve discrete target problems.

In this paper, we demonstrate that this seemingly impossible trade-off can be overcome for arbitrary
discrete target losses. Specifically, we build a convex smooth surrogate loss built upon the framework
of Fenchel-Young losses [[16]—a framework to generate a loss function from a generalized negentropy
and its conjugate. In a nutshell, our main results are summarized as follows:

Theorem 1 (Informal version of Theorem[I3) For any discrete target loss {, there exist a convex
smooth surrogate loss L (defined over a score @ € R?) and prediction link o such that the surrogate
regret bound (1) holds with some linear rate ) (r) = O(r).

This existence is proved constructively, which provides a systematic framework on the construction
of convex smooth surrogate losses and their corresponding prediction links with linear surrogate
regret bounds. Our high-level construction, which significantly leverages convex analysis and is
detailed in Section [3.1] proceeds as follows. First, a user chooses a strongly convex negentropy
with some regularity conditions, such as the Shannon negentropy. We encode the structure of a
target loss £ into the chosen base negentropy by adding the negative Bayes risk of £. This additivity
eventually translates into the infimal convolution in the induced Fenchel-Young loss, which we call
the convolutional Fenchel-Young loss. The convolutional Fenchel-Young loss is endowed with the
convexity and smoothness arising from the base negentropy, shown in Section [3.2] Then we can
obtain a prediction link via the infimal convolution. Paired with the convolutional Fenchel-Young
loss, it admits a linear surrogate regret bound, demonstrated in Section@

In addition, we improve the multiplicative term in the initial linear surrogate regret bound in Sec-
tion [3.4] to make the bound tighter, which exploits the low-rank structure of a target loss £. As a
by-product of the loss smoothness, we can provide a Fisher-consistent probability estimator of the un-
derlying probability in Section[3.5] Finally, Section [ instantiates the framework of the convolutional
Fenchel-Young loss for the multiclass classification problem, highlighting the efficient computation

Readers should distinguish this calibration property from calibrated prediction [38].
3A super-linear bound is possible with distribution-dependent losses [97]], which we do not consider here.



of the prediction link. More examples of target prediction problems, such as classification with
rejection and multilabel ranking, are available in Appendix D}

1.1 Related Works

Surrogate losses for general discrete prediction problems. A discrete prediction problem aims to
predict ¢ that minimizes a discrete target loss £(¢, y) over the class distribution, and the study of convex
surrogates for £ is of significant interest. Extensive research has been conducted on surrogate losses
for specific discrete tasks, including but not limited to classification [12} 101489} 193. 185} 166, 164} 811,
top-k (951 90], and multilabel learning [40} (100} |54} 49} 65]].

In contrast to ad-hoc approaches, recent studies have advanced the principled design of calibrated
convex surrogate losses for general discrete prediction problems, without imposing restrictions on
the target losses. In Ramaswamy and Agarwal [[73]] and Ramaswamy et al. [75]], surrogate losses
based on the squared loss and error correcting output codes are proposed, respectively, which embed
the structure of a target problem into a surrogate loss and are shown to be calibrated with the
corresponding target losses. The design of calibrated surrogate losses has also been extensively
studied in the context of structured prediction [29} (74} 26,127, 70,168l 169, 23], where the structural/low-
rank properties of target losses are exploited to construct more efficient surrogates. As opposed
to the smooth losses utilized in the works above, polyhedral losses [34, 35 37] have attracted
attention recently, which provides a systematic framework for efficiently constructing calibrated yet
non-smooth convex losses based on a discrete target loss.

Surrogate regret bounds. Surrogate regret bounds have been well studied for margin losses under
binary and multiclass classification [[LO1} |12} |89, 84, 56, I86], where the target loss is the 0-1 loss.
Similarly, proper losses [21} 142} 78,13} 45/ 163]] have been shown to provide surrogate regret bounds
w.r.t. the L, distance between the estimated and true class probabilities [77, 8, 9], which facilitates
analyses for downstream tasks. For structured prediction, surrogate regret bounds are sometimes
called comparison inequalities [26] 70, 68, [14]], which are typically of square-root type. Notably,
Frongillo and Waggoner [39] demonstrated that polyhedral losses exhibit linear surrogate regret
bounds for general discrete prediction problems, covering various piecewise linear non-smooth
losses [95. [76]] as special cases. However, they lack the smoothness. To the contrary, Mao et al. [53]]
and Mao et al. [52] propose smooth losses with linear regret rates but lacking convexity.

Whereas a growing line of research has focused on H-consistency to analyze how the restriction
to a hypothesis space H affects consistency [48, 99, [7], we implicitly suppose that the hypothesis
space is all measurable functions because the analysis is often more transparent and it is reasonable
to suppose that the hypothesis space is sufficiently expressive under the overparametrization regime.
The extension to 7{-consistency is rather straightforward by integrating the minimizability gap
152,55, 54, 57, 51) ]

2 Preliminaries

Let [d] :== {1,2,---,d} and [-] is the Iverson bracket. The p-norm is denoted by || - ||,, which
we assume to be the 2-norm unless otherwise noted. Let R := R U {oo} be the extended real-line
and A? .= {n € R<, : ||n||; = 1} the d-simplex. For a set S C RY, int(S) and relint(S) are its
interior and relative interior, respectively, and conv(S) is its convex hull. The indicator function is
denoted by Is : R? — {0, +co}, where I5(0) = 0 if & € S and +oco otherwise. For a function
f:RY— R,dom(f) = {0 € R?: f(0) < +o0} is its effective domain. A function f is extended
to be set-valued with slight abuse of notation by f(S) := {f(s) : s € S}. The Fenchel conjugate
of Qis Q*(0) = suppedom(g){BTp — Q(p)}. The identity matrix is I. The canonical basis of the
Euclidean space is denoted by {e; }, where the dimensionality depends on the contexts.

2.1 Discrete Prediction Problems and Target Losses

Let Y = [K] be the finite class space. The class distribution on ) is 7 € AX such that class Y = y
has probability 7,. A discrete prediction problem aims to find a target prediction ¢ from the finite

“This condition can be relaxed to the well-specified hypothesis space, under which the hypothesis space is
required to contain at least one population risk minimizer, rather than the entire space of measurable functions.



prediction space y = [N] for each ) by minimizing a discrete zarget loss { : Y xY — R over
y ~ m. The averaged target loss is called the target risk: R(¢,n) = E,,[l(t,y)] = (n,£(1)),
where £(t) € R is the loss vector such that £(t), = £(t,y) for each y € ). The Bayes risk of £ at
is R,(n) := min, ey Ry(t,n), which is a concave function of 1. The suboptimality of a prediction ¢
w.r.t. the target loss £ over a class distribution 7) is characterized by the target regret, which is the gap

between its risk and the Bayes risk.

Definition 2 (Target regret) Given a discrete target loss £, the target regret of a prediction t w.r.t. a
class probability n € AX is defined as follows:

Regret,(t,n) == Re(t,n) — Ry(n). (2

Equivalent lower-dimensional decomposition. By encoding every possible class label y € ) into
the canonical basis e, € R, we can express any target loss in the following form:

Ut y) = (ey, £(1)). ©)

An equivalent but more efficient decomposition of (3)), known as Structure Encoding Loss Functions
(SELF), was introduced in Ciliberto et al. [26], which allows lower-dimensional label encodings.
It has been widely used to construct efficient loss functions, and further generalized via Affine
Decomposition in Blondel [14} (12)]. We also adopt a general form to represent discrete target losses.

Definition 3 ((p, £°)-decomposition) For a discrete target loss { : Y x Y — R, its (p,£°)-
decomposition is given as follows:

U(t,y) = (p(y), £°(1)) + c(y), ©)

where p : Y — R? is a label encoding function that maps discrete labels into the d-dimensional

Euclidean space, £P : JAJ — R? is the corresponding loss encoding function, and ¢ : ) — R is the
remainder independent of prediction t.

This loss decomposition contains the Affine Decomposition [14} (12)]. Any discrete target loss admits
such a decomposition via the trivial choice p(y) = e,, £°(t) = £(t), and ¢ = 0 with d = K, which
immediately recovers (3). With a properly chosen p, the encoded cardinality d can often be greatly
smaller than K, particularly in the context of structured prediction. For example, consider multilabel
classification, where Y = Y = [K], K = 2¢, and each y € [K] corresponds to a unique binary
vector v(y) € {0,1}9 representing a set of binary labels. Suppose our target loss is the Hamming
loss £ (t,y) == 17 (v(t) + v(y)) — 2(v(t),v(y)), which is the Hamming distance between v(t)
and v(y). This entails the decomposition p(y) = 1 — 2v(y), £P(t) = v(t), and c(y) = 1Tv(y).
Here, d = log, K significantly reduces the dimensionality from the cardinality of ). We refer reader
to Blondel [14, Appendix A] and Appendix [D]for more examples of discrete prediction problems.
The cardinality d of label encoding p is closely related to surrogate regret bounds later in Section

2.2 Surrogate Losses and Surrogate Regret Bounds

Unlike discrete target losses assessing a discrete prediction ¢ € V.a surrogate loss L : R4 x Y — R
receives a continuous score @ € R?. Then a prediction link ¢ : R? — Y is used to transform a score 6
to a prediction ¢. Its risk and Bayes risk are defined as R (6,7n) := E,,[L(0,y)| = (n, L(0)) and
Ry (n) = infgcpa R(6, 1), respectively, where L(8) = [L(6,y)]/_,. The regret of a surrogate
loss is defined as the gap between the risk of a score 8 and the Bayes risk, similar to the target regret.

Definition 4 (Surrogate regret) Given a surrogate loss L, the surrogate regret of score 8 w.r.t. a
class probability n € AX is defined as follows:

Regret  (0,7n) = R.(0,n) — R, (n). &)

For a desirable surrogate loss, the convergence of its surrogate regret will dominate the target regret.
That is, for a fixed class distribution 77, a convergent € such that Regret; (6, 1) — 0 should imply
Regret,(p(0),n) — 0. This convergence relationship indicates that the target regret minimization
can be achieved by the minimization of the surrogate regret adopted with an appropriate prediction
link. A surrogate regret bound offers a quantitative characterization of this relationship through a
regret rate function v, which is the key focus of this work.



Definition S (Surrogate regret bound) A surrogate loss L and prediction link ¢ entail a surrogate
regret bound w.r.t. target { with a non-decreasing regret rate function ¢ : R>g — R>q satisfying
¥ (0) = 0 if the following inequality holds:

Regret,(p(0),n) < 1 (Regret, (0,n)), forany (8,n) € R? x AK. (6)

While a linear regret rate ¢(r) = O(r) is the best possible, previously know linear-rate losses are
either non-smooth or non-convex, including the (non-smooth) hinge loss [[12] and (non-convex)
sigmoid loss [24]. These loss functions may face challenges in optimization and estimation [87]. In
this work, we aim to develop a framework that facilitates the use of convex smooth surrogates with
linear surrogate regret bounds.

2.3 Fenchel-Young Loss

In this work, we build upon Fenchel-Young losses [[16} 18l 59]] to construct convex smooth surrogates
equipped with linear regret rate functions. Let us review Fenchel-Young losses first.

Definition 6 (Fenchel-Young loss) For Q : R? — R, the associated Fenchel-Young loss Lq :
dom(Q*) x dom(Q2) — Rx is defined as follows:

La(0,p) = Q(p) +Q*(0) — (0, p). @)

Similar constructions can also be found in Duchi et al. [33], Agarwal et al. [2], which focus on
multiclass classification. The function €2 is often regarded as a generalized negentropy, which equals
the negative of the Bayes risk of its induced Fenchel-Young loss. Fenchel-Young losses often impose
additional requirements on the domains of €2 and Q*, tailored to specific target problems, and we will
highlight them when necessary.

Fenchel-Young losses possess favorable properties: they are inherently convex (in score 8) by
definition. Moreover, we can use the map VQ* () to obtain the mean E, ., [p(y)], which is the
class distribution 77 under multiclass classification with p(y) = e,; or linear properties in general [1].
Many common losses are encompassed in Fenchel-Young losses, inlcluding the cross-entropy loss,

squared loss, and Crammer—Singer loss [31]]. For example, Q(p) = % ||p||* + Iax (p) generates the

sparsemax loss, which induces the sparsemax as a Fisher-consistent estimator of 7 [38]].

Connections to information geometry. While Fenchel-Young losses are systematically defined
under the convex-analytic formulation, it also has a longstanding history in information geometry,
particularly through its connection to the Bregman divergence and related generalizations [72]]. In
Blondel et al. [16], it is noted that a Fenchel-Young loss can be interpreted as the mixed-type
Bregman divergence [4]. When (2 is of Legendre-type, {2 can yield the dual coordinate system and the
Fenchel-Young loss is further equivalent to the canonical divergence generated by € [5, Eq. (3.44)].

3 Convex Smooth Surrogates with Linear Surrogate Regret Bounds

In this section, we first show our construction of surrogate losses and prediction links. After showing
that this loss is convex and smooth with an appropriately chosen base negentropy (Theorem [TT]), we
move on to the main result of this paper, linear surrogate regret bounds with convex smooth surrogate
losses (Theorem [I3). We further discuss the computational aspects and improve the regret bound
constant. The missing proofs are deferred to Appendix B}

3.1 Construction

We design a convex smooth surrogate loss built upon the framework of Fenchel-Young losses. To
make its surrogate regret bound linear, we craft a negentropy by delicately leveraging the structure of a
target prediction problem. Denote by 7" the polyhedral convex function T'(p) = — min, 5 (p, €°(t)).
Then, we have the following definition.

Definition 7 (Convolutional negentropy) Suppose (p, £P)-decomposition for a target loss £. For a
negentropy § : R4 — R, its convolutional negentropy is defined as follows:

Qr(p) = Q(p) + T(p) ®)



While commonly used negentropy in Fenchel-Young losses, such as the Shannon negentropy and
norm negentropy [19], are unstructured toward a target loss, the convolutional negentropy {27 encodes
a target loss ¢ explicitly into the base negentropy €2 via 7. This polyhedral convex function 7 is an
affinely transformed negative Bayes risk of a target loss ¢ when p € conv{p()))}. Indeed, with the
linear property p = E, ., [p(y)], i.e., expectation of p(y) w.r.t. class probability n:

T(p) = f%wp? £8(1) = *Igéi;lEwap(y),ﬂ”(t)ﬂ = > mely) —Rm). O

The base negentropy €2 is up to our choice. Before deriving the conjugate of (0, we make the
following requirement on €2 throughout this work for a well-behaved convolutional negentropy.

Condition 1  is proper convex and lower-semicontinuous (L.s.c.), and satisfies conv(p(Y)) C
dom(f2) and dom(Q2*) = R?

It is a mild requirement. Indeed, proper convexity and lower-semicontinuity merely aim to avoid
pathologies, and the domain assumptions are met by a differentiable and finite €2 over the valid predic-
tion space conv(p())). The assumption on Q* is crucial for the induced loss to have unconstrained
domain R?. Then we show an explicit form of the conjugated convolutional negentropy.

Lemma 8 (Conjugate of Q27) Suppose Conditionholds, then Q. is proper convex and l.s.c. with
dom(Q%) = RY and can be expressed as follows:

05(0) = ing Q" (0 + LP) forany @ € RY, (10)
e

where LP € R¥*N g the loss matrix with the t-th column being €P(t) € R fort € j In addition,
there always exists @ € AYN that achieves the infimum of (T0) for any 6 € R4,

The conjugated form (T0) owes to the infimal convolution between the base negentropy (2 and the
target Bayes risk 7. We coined the name of the convolutional negentropy inspired by this structure.
Intuitively, the conjugated convolutional negentropy 2% can be viewed as a “perturbed” version of
the conjugated base negentropy 2* toward the direction of the target loss matrix £. This result
facilitates a more concrete formulation of the Fenchel-Young loss generated by {27, which we refer
to as the convolutional Fenchel-Young loss—the central focus of this work.

Definition 9 (Convolutional Fenchel-Young loss) Suppose that a discrete target loss { enjoys
(p, £°)-decomposition. For a negentropy Q : RY — R satisfying Condmon the convolutional
Fenchel-Young loss Lq,,. : R? x Y — R induced by the convolutional negentropy Qr is defined as
follows:

Lo (0,y) = min 070 + L) + Q1 (p(y)) — (0, p(y))- (11)

Note that L. (6, -) is deliberately constrained to the class space ) instead of the general domain
dom(Q7), to align with the surrogate loss form introduced in Section

Given a surrogate loss, we need to specify a prediction link. For general discrete prediction problems
where ) 75 V. a prediction link yields a discrete prediction in Y from a score 6 € R? obtained

through minimizing the surrogate loss. Thus, a loss and link are the two sides of the same coin. Unlike
the standard argmax link in multiclass classification [89,94], we create an alternative argmax-like
prediction link based on the minimizer of (I0).
Definition 10 (7r-argmax link) Let IT: R? — 22" be a set-valued map defined as follows:

I1(0) := argmin {Q*(0 + LPm) : w € AN} forany 6 € RY. (12)
Let  : R — AN be a selector of 11 such that w(0) € 11(0) for all 6 € Rd.E] Then the w-argmax
link o : Re — Yis defined as

©(0) € argmax {m(@) (te JA)} forany 6 € R?,

where the tie can be broken arbitrarily.

>We slightly abuse the notation 7r by using it for both a vector and a vector-valued mapping; in particular, the
7r appearing in the 7r-argmax link refers to the selector function.



The existence of such links is guaranteed as long as I1(8) is non-empty for every 8 € R%, which

is guaranteed by Lemma |8 While the standard argmax link returns a prediction ¢ € Y with the
maximum score 6y, the 7r-argmax link returns ¢ with the maximum 7;. This probabilistic quantity
7 € I1(0) defined via (TI0) distorts the original score @ by leveraging the target loss structure £°.

3.2 Convexity and Smoothness

Before discussing surrogate regret bounds, we verify that convolutional Fenchel—Young losses are
indeed convex and smooth, implied by the conjugacy between smoothness and strong convexity [44].

Corollary 11 (Convexity and smoothness of Lq,.) Suppose that a discrete target loss { enjoys
(p, £P)-decomposition. For a base negentropy ), we additionally suppose that Conditionis satisfied.
If Q is strictly convex on dom(Q), La.,.(-,y) is convex and differentiable over R for any y € Y. If
Q) is additionally strongly convex on dom(R2), Lq.. (-, y) is smooth over R? for any y € Y.

There are several exemplar base negentropies fulfilling the conditions of Corollary For example,

the squared norm Q(p) = 1||p||? is strongly convex with the self-conjugate Q*(8) = $|6]2. In this

case, (2 is effective over the entire R? and hence includes conv(p(y)!)(, satisfying Condition |1} In
light of the target-loss decomposition (3), we have conv(p())) = A*. In this case, the Shannon
negentropy Q(p) = (p,Inp) + I« (p) is strongly convex on AX with its conjugate Q*(0) =
In(exp(@), 1) satisfying dom(2*) = R’ where In and exp are element-wise. Hence, both base
negentropy yield convex and smooth Lgq,,..

Note that Lq,. is not locally strongly convex at every point. We can see this by noting that T’
is not differentiable and neither is {27, which implies that 27 is not strictly convex [80, Theo-
rem 11.13]. This is important for establishing linear surrogate regret bounds (in Section[3.3)) because
the known square-root regret rate lower bound considers locally strongly convex surrogate losses [39]
Theorem 2].

While the loss Lq,. is now ensured to be convex and smooth, its gradient calculation, which is the
basis for gradient-based optimization [17, [15], remains non-trivial. This is because the gradient of
min A~ Q*(0 + LP7) contained in (TT) cannot be written analytically in general. We show that its
gradient calculation reduces to computing I1(80) through the following variant of envelope theorems.

Lemma 12 (Envelope theorem) Suppose Conditionholds and Q is strictly convex on dom(f2).
For any 6 € R% and € T1(0), we have

Vo [ min (6 + E”w)} = V(0 + LP). (13)
TEAN

Deviating from the standard envelope theorems [15} [13]], we carefully addresses the non-uniqueness
of the minimizers. Given this, the gradient of the convolutional Fenchel-Young loss (IT)) is accessed
via VoLq, (0,y) = VQ* (0 + LP7) — p(y). At the core of its proof, the differentiability of Q.
(indirectly obtained via Theorem [TT)) is vital.

3.3 Linear Surrogate Regret Bounds
Now we exhibit linear surrogate regret bounds with the convolutional Fenchel-Young loss.

Theorem 13 (Linear surrogate regret bound) Consider a target loss with (p, £P)-decomposition.

For a negentropy §) : R? — R, suppose Condition|l| holds. For any m-argmax link ¢, (Lq,.,¢)
admits the following surrogate regret bound:

Regret,(¢(0),n) < NRegretLQT(H,n), forany (0,m) € R? x AKX, (14)

The regret bound in Theorem [13|indeed has the linear rate ¢(r) = Nr in the form (I)), while
Lgq,. can be naturally made convex and smooth as discussed in Section [3.2] This is a remarkable
consequence because many authors have previously implied the impossibility to overcome the barrier
of the square-root regret rate with convex smooth surrogate losses [50 (76} 39, [8]. The crux of this
success lies in the infimal convolution structure in (T0), which enables us to additively decompose
the conjugate 27, exploited below. The constant N will be improved in Section3.4]

From now on we sketch the regret bound proof. The following lemma is a cornerstone herein.



Lemma 14 (Lower bound of surrogate regret) Assume the same set of conditions as in Theo-
rem For any 0 € R and 7 € 11(0), we have the following inequality:

N

Zﬂ'tRegretz(t, n) < RegretLQT(O,n), for any (8,m) € RY x AKX, (15)
t=1

Its proof, formally given in Appendix [B] hinges on the following additive regret decomposition:

RegretLQT(&n) = Rp,(0+LPm,m) + Zte? mRegret,(t,n) V(8,7) € R? x 11(0),

Risk of Fenchel-Young loss Lo > 0

Convex combination of the target regret

which directly implies the lower bound (I3)) because the Fenchel-Young loss L, is non-negative.
Note that this additive decomposition is indispensable for the linear lower bound (I3). This becomes
possible just because we create the convolutional negentropy {21 based on the additive form in (8],
which yields the additive form 6 4+ £P7r in the conjugate expression (I0). All of these are thanks to
the structure of the infimal convolution, and Theorem [I3|immediately follows with rescaling.

Finally, we achieve the main result by combining Corollary [[Tand Theorem[I3] We constructively
prove the existence of convex smooth linear-regret surrogate losses, by noting that both strongly
convex €2 satisfying Condition [I]and 7r-argmax link do exist.

Theorem 15 (Main result) Consider a target loss £ with (p, £P)-decomposition. For a negentropy
Q : R? — R satisfying Condition |l| suppose that ) is strongly convex on dom(Q2). Then the
convolutional Fenchel-Young loss Lq..(-, ) is convex, differentiable, and smooth over R for any
y € Y. Moreover, with -argmax link ¢, (La,., ) enjoys the linear surrogate regret bound (14).

3.4 Improving Constant of Linear Surrogate Regret Bounds

The constant N in the linear surrogate regret bound in (I4) can be prohibitively large, leading to
a vacuous bound. This issue is significant in structured prediction as studied in Osokin et al. [[70]].
For example, in multilabel classification with the Hamming loss, N = 24 is the number of all the
potential binary label predictions that increases exponentially with d, the number of binary labels.
In top-k classification, N = (Ik( ) is the number of all possible size-k subsets of the class space.
Thankfully, the geometry property of the problem (I0) provides a promising scheme for reducing the
dependency on prediction number N, which induces the following improved link.

Corollary 16 (Improved surrogate regret bound) Suppose Condition |l| holds. There exists T :
RY — AN such that 7w (0) € T1(0) and ||7(0)|o < affdim(LP) + 1 for any 6 € RY. Moreover, with
the induced 7-argmax link oz : RY — AN, (Lo, pz) admits the following surrogate regret bound:

Regret,(¢#(0),n) < [affdim(LP) + 1] RegretLQT(H, n), forany (0,m) c R x AK  (16)
where affdim(LP) is the dimension of the affine hull of the column vectors of LP.

Note that we have affdim(£P) < min{N, d}, which indicates that the dependency on N can be

largely reduced when d < N. For example, in top-k classification, p(y) = e, is used with d = K,

which is much smaller than N = (Ik( ) In multilabel classification with Hamming loss, d = logy N is

logarithmically smaller than N when binary encoding p(y) = v(y) is used (see Section 2.1).
3.5 Bonus: Fisher-consistent Probability Estimator

We discuss a benefit of convex smooth surrogate losses beyond discrete prediction problems. Often-
times people are interested in a probability estimator over possible prediction outcomes, recovering
from surrogate risk minimizers, as in classification with rejection [25} 111} 128} 130, 22155, 136]. Herein
non-smooth surrogate losses have been unfavored because of lacking reasonable probability esti-
mators [60, 24]]. Ramaswamy et al. [76] conjectures the incompatibility of probability estimation
with linear regret bounds. By contrast, we give a Fisher-consistent estimator of the linear property
E,~n[p(y)] for convolutional Fenchel-Young losses without sacrificing the linear regret bound.

Theorem 17 (Fisher-consistent probability estimator) Suppose Condition [I| holds and Q is
strictly convex on dom(Q). For any i € relint(AX), the surrogate risk Rig, (-,m) is minimized at

0* € R? such that VQ*(0* + LPm) = Eynlp(y)] for any m € T1(0*).



Algorithm 1 Exact Solution of in O(K In K)
. Sort @ € RX such that 9(1) > > G(K).
:n < max{k € [K]: 1+ kb > S i)}

1

2

3 7(0) «— 25;1:<i>—1_

4: Tog(0); < max{0; — 7(0),0}.

As aresult, the empirical minimizers w.r.t. Lq,. are Fisher-consistent estimators of the linear property
Ey~n[p(y)]. According to the result above, we can first solve II(0) in (I2Z) and select = € I1(0).
Then, VQ*(0 + L) is a rational estimate of the linear property E, ., [p(y)]. When we follow the
trivial loss decomposition (3) with p(y) = e, the estimand is E,,[p(y)] = n € AX. For this
reason, we say VQ*(0* + LPr) is a “probability” estimator.

For example, let us recap the encoding of multilabel classification in Section[2.1} where y € Y is
a multilabel among all 2¢ possible combinations of d binary labels. A multilabel y is encoded by
v(y) € {0,1}4, and the Hamming loss is decomposed with p(y) = 1 — 2v(y). Here E,.,,[v(y)]
reads 7 = [Prob(v;(y) = 1)]%_,, whose i-th element indicates the likelihood of the binary class i
being positive. Through the relation p = 1 — 2w, the probability estimator VQ* (60 + LP) is capable
of recovering ¥ by [1 — VQ*(0 + LP)]/2.

4 Example: Multiclass Classification

We demonstrate convolutional Fenchel-Young losses for multiclass classification. and further exam-
ples of prediction problems can be found in Appendices|[D]and|[E] including detailed computational
complexity analyses and visualizations of the associated binary classification losses. In multiclass
classification, the class space and the prediction space are the same: ) = Y= [K]. For an input with
class probability n € AKX the goal is to predict the most likely class ¢ € argmax,cy 7);. The target
loss is the 0-1 loss 401 (¢, y) = [t # y].

Firstly, we adopt the decomposition (3 for this task, that is, £°(t) = [€o1(¢,1), -+ , o1 (¢, K)] =
1 — e; and p(y) = e,, which corresponds to the one-hot encoding commonly used in this task. In
this case, N =d = K,and £P = 11T — I.

Next, we move on to the convolutional negentropy {2r. For the choice of €2, we use the Shannon
negentropy, which induces the celebrated cross-entropy loss in the original Fenchel-Young loss

framework [16] Table 1]. Its conjugate is the log-sum-exp function 2*(0) = In{exp(8), 1). Then we
can calculate the conjugate of 2 based on Lemma [8}

05(0) = min Q*(0 + LP7) = min In(exp(@ +1 —m),1). (17)
TEAK TEAK

Since € is proper convex and l.s.c. with conv(p())) = A¥ = dom(£2) and dom(Q2*) = RX, Q
satisfies Condition |1} Furthermore, since {2 is strongly convex on A, we can finally derive the
convolutional Fenchel-Young loss (IT)) by nothing Q7 (p(y)) = 0 for all y € Y, as follows:

Lo, (0,y) =Q7(0) + Qr(p(y)) — (0,p(y)) = 7rréliAnK In(exp(@ +1—m),1) —6,, (18)
which is convex and smooth in @ thanks to Theorem[I1} While shares the form of cross-entropy loss
Lq(6,y) = In(exp(@), 1) — 6,, it further incorporates an additional bounded perturbation.

Solving the minimization problem is important from the computational aspects, including the
gradient calculation of L, and accessing to the probability estimator given by Theorem 17} We
provide Algorithm[I]to solve (I7) with O(K In K) time.

Lemma 18 For any 6 € R¥, the problem (I7) has a unique minimizer o5 (0) € 11(0), which can
be obtained in O(K In K) time by Algorithm

The proof is deferred to Appendix [C.T] following from the KKT conditions. Eventually we have

exp(6y)

VQ7(0) = softmax (0 + 1 — mo5(0)), where softmax(0), = ————
> im1exp(0;)

fory € [K].



Algorithm [T]comes with a significant resemblance with the sparsemax [58| Algorithm 1], which is
determined by the similar structure shared by and Euclidean projection problem [58, (2)]. Since
I1(@) is a singleton, we have the unique 7r|g-argmax link ¢, , (Definition . While we need to
solve problem (I7) for every 0 to have access to VgL, (0, y), the prediction by the 7r},-argmax
link is much cheaper, without requiring Algorithm[I] which indicates that we can simply use the class
label with the largest score max, ¢ (k] 0, in test time. The proof can be found in Appendix

Proposition 19 A prediction link o is the Tg-argmax link if and only if ©(6) € argmax;cy,0;.

Remark 20 Under classification, a surrogate loss with a regret bound is classification-calibrated,
which indicates that the surrogate risk minimization eventually leads to the Bayes-optimal classifier.
In literature, Blondel [14] and Wang and Scott [94] have investigated sufficient conditions for
Fenchel-Young losses to be classification-calibrated. Therein the base negentropy is assumed to be
of Legendre-type or twice differentiable. Our convolutional Fenchel-Young losses are interesting
because we do not require these conditions to yield both the smoothness and a regret bound. Thus it
remains open to relax these existing sufficient conditions for Fenchel-Young losses further.

5 Discussion

Convex non-smooth linear regret losses. Compared to existing convex non-smooth surrogates
with linear regret, e.g., polyhedral losses [37], our smooth convex surrogate has several advantages.
First, smoothness enables more efficient optimization, as supported by results in both deterministic
and stochastic optimization regimes [67}183]] while it is left open to exploit specific structures arising
from polyhedral losses to achieve faster optimization. In addition, the smoothness can lead to
optimistic ERM rates of estimation error [87]], offering better estimation in easier tasks. Another
appealing aspect is that our loss admits a consistent probability estimator (Theorem[I7), which can
be valuable for downstream tasks such as uncertainty quantification and calibration.

Efficient gradient calculation. In general discrete prediction problems, we need to solve the
minimization (T0) to take a gradient of Lq,., which is potentially demanding over a high-dimensional
domain A . To have access to the gradient, we can alternatively solve

1111161‘1/1 Q"0 +v), where V= conv({ﬂp(t)}te[N]). (19)

To see this, let us denote the minimizer of (I9) by v*. Then (I9) is an equivalent optimization
problem to because there exists 7w € II(0) such that v* = LPxr. Eventually VQ*(0 + v*)
serves as an alternative to the gradient formula (T3). Thus we can reduce the dimensionality of the
optimization problem. For example, in multilabel classification (Section [2.1), V' = [0,1]% has a
logarithmically smaller optimization dimensionality than N = 2¢. We can solve (T9) with this box
constraint efficiently by using the standard L-BFGS solver [47].

Randomized prediction link. Recall that the 7w-argmax link ¢ (Definition deterministically
outputs in the probability simplex AY. Instead we can define a randomized link ¢ such that
Pr[@(0) = t] = m;(0). This yields a better regret bound by Lemma(14] as follows:

N
Ez(0)[Regret,(¢(0),n)] = Zm(@) Regret,(t,n) < RegretLQT(H,n) Y(8,m) € R? x AKX,
t=1

where the expectation is taken over the randomness of ¢. Although we adopt the expected target
regret differently from Theorem [I3] the constant of regret bounds is strikingly improved from N to 1,
which is dimension-free. Sakaue et al. [[82]] observes a similar regret improvement by a randomized
link for online structured prediction with Fenchel-Young losses.

6 Conclusion

In this work, we construct convex and smooth surrogate losses with linear surrogate regret bounds by
leveraging Fenchel—-Young losses and infimal convolution. Our results demonstrate that convexity,
smoothness, and linear surrogate regret are compatible for arbitrary discrete prediction problems.
Moreover, our loss naturally admits consistent probability estimator, bridging the gap between linear
regret and estimation. We illustrate the broad applicability of our approach through examples in
multiclass classification, classification with rejection, and multilabel ranking. Overall, this study
highlights the utility of convex analysis as a principled tool for designing surrogate losses.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Theorem [I]in the introduction (Section I]) reflect our scope
(surrogate regret bound of losses) and contribution (a family of convex smooth surrogates
with linear surrogate regret bounds).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of this work is discussed in Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Assumptions are clearly stated in each theoretical claim. All theoretical claims
are provided with proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setting, including the data augmentation, optimizer, model
architecture, and associated computational cost.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our experiments use public datasets, the official PyTorch training script, and
detailed formulations of both the loss and solver, making the work fully reproducible without
releasing extra code or data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental settings are provided in Appendix [
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For ImageNet experiments, we perform a 5% t-test for comparison. For
classification with rejection results, no comparison is involved, and we report only the
averaged performance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detailed information on computer resources is provided in Appendix [F
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This theoretical work aims to advance machine learning by informing the
design and use of surrogate losses for discrete prediction. While it may influence downstream
research and applications, we do not identify any specific risks that warrant emphasis.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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A Additional Discussions on Related Losses

Fast rate losses. Let us briefly discuss the target risk estimation error rates induced by different
surrogate losses. Suppose that a surrogate risk can be estimated with the estimation error upper bound
€est and the surrogate regret rate is . Then, the target risk estimation error is of order (e ). Hence,
we need to take care of both 1) and €. to discuss the target risk estimation.

On the one hand, loss functions entailing either strongly convex or exponentially concave are known
to achieve fast estimation error rates with ERM (e.g., O(1/n)) in standard parametric setting, where
the hypothesis class is of finite dimension [87,191} 61} 92]. However, Frongillo and Waggoner [39,
Theorem 4] reveals that typical fast rate losses suffer at least from square-root regret rates, and
thus their corresponding target risk estimation error bounds are O(1/4/n) at least. On the other
hand, convolutional Fenchel-Young losses (which is convex smooth but not strongly convex) yield
the estimation error upper bounds of order O(1/4/n) under the same setting, while the final target
risk upper bounds are in order of O(1/4/n) thanks to the linear regret rate function. As a result,
convolutional Fenchel-Young losses achieve target regret convergence rates that are comparable to
those of existing fast-rate losses.

In more general nonparametric settings, where fast rates are often hard to achieve without additional
assumptions [62], convolutional Fenchel-Young losses achieve a target risk estimation error bound of
order O(1/+/n). In contrast, strongly convex surrogate losses typically achieve a slower target risk
estimation error rate than O(1//n) because the general nonparametric estimation error is O(1/+/n)
but the regret rate are slower than ¢ (r) = O(r).

While we do not intend to argue that the convolutional Fenchel-Young loss is always better, we
would like to highlight that it may be a good alternative when the parametric conditions for fast rates
cannot be readily justified. It also remains an open and worthwhile question whether fast rates can be
obtained for our loss under additional assumptions, such as low-noise or margin conditions.

Smooth non-convex linear regret losses. While our focus is on convex surrogates due to their
favorable optimization and statistical properties, we note that certain smooth but non-convex surro-
gates, such as the mean absolute error (MAE) [41,152]] and structured comp-sum losses with MAE
[53], also achieve linear regret. These methods, while typically non-convex and not equipped with
probability estimator, offer valuable advantages in other aspects, such as robustness to label noise,
‘H-consistency, and potential benefits under adversarial conditions [10} 6], where non-convexity can
play a meaningful role.

B Deferred Proofs in Section

Recalling the definition of T'(p) = —min, 5 (p,£”(t)), which is the negative of the affinely
transformed target Bayes risk in (9)). It can be inferred that it is proper convex and 1.s.c., and we have
Qr=Q+T.

B.1 Proof of Lemma

Proof. Since (2 and T are proper convex and Ls.c., so are {27 and thus ©27.. Then we prove (T0) using
the infimal convolution. First, by noting that 7" is nothing else but the support function of the closed
convex set conv({—£°(t)}, ), we can express T as follows:

T"(0) = su 0,p) — max (p,—£°(t))| =1 e 1\ (0),
6) = sup [ 0.9) =i (0,700 = Lo ) 0)

where we use the conjugacy relationship between a support function and indicator function of a
closed convex set conv({—£P(t)},.5) [79. Section 13]. According to Condition|l|and the definition

of T', we see that both €2 and 7" are proper convex and 7" is continuous on dom(£2). Then we use the
infimal convolution [20] to derive the conjugate of Qp:

AC)

. * / !
glnelﬂgd |:Q (0 -0 ) + Hconv({*ep(t)}tef})(e )

e’econV({—lp(t)}teﬁ)
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= inf Q%0+ LPm).

TEAN

Next we show that the infimum is indeed achieved by some w € A", Note that for any € R?,
the set © = {0 + LPm : w € AN} is compact and non-empty, and that Q* is L.s.c. on © since
dom(Q*) = R?. Then the infimum of Q*(8) is achieved by some 8" € ©, and there must exist
7 € AN such that @ + LPm = 6" by the definition of ©, which complete the proof of the existence
of the minimizer.

Finally we see that for any 8 € RY, there exists w € AY such that Q4(8) = Q*(8 + LPm), which
is smaller than 400 since dom(Q2*) = R? and 6 + LPm € R?. This indicates that dom(Q) = R?
because 6 is chosen arbitrarily. |

B.2 Proof of Theorem

Proof. In the convolutional Fenchel-Young loss (TT), the term Q7 (p(y)) — (0, p(y)) is linear. Hence
it suffices to prove the convexity and smoothness of the conjugate min, c A~ Q*(0 + LPr).

When 2 is strictly convex, Qp is also strictly convex since 7" is convex. Since the strict convexity
holds on dom(€2r), Qr is further essentially strictly convex, that is, strictly convex on every convex
subset of dom (9 ) [79 p253]. According to Rockafellar [[79] Theorem 26.3], Q% is essentially
smooth, that is, differentiable throughout non-empty int(dom(£2%)) with ||[V§5(0)| diverging
to +o0o when 6 approaches a boundary point of int(dom(£2%.)), which immediately indicates the
differentiability on R?.

When (2 is further strongly convex, so is 7. According to Condition [T and Lemma [§] Q7 is
proper convex and Ls.c., and thus the biconjugate (27" matches {17 by the Fenchel-Moreau theorem.
According to Rockafellar and Wets [80, Proposition 12.60], €% is smooth since its conjugate
Q7 = Qr is strongly convex. ]

B.3  Proof of Lemma|12]
Proof. According to Condition T} the strict convexity of (2, and the proof of Theorem [T} both (2%,
and Q* are differentiable on R%. In addition, we have dom(£2) = dom(Qr) according to (8).

Note that Q* (6 + LP7) is convex in 7r. Then its first-order optimal condition for any 7 € T1(@) reads
(VQ* (0 + LPm), LP(n' —m)) >0  anyn’ € AV,
First, for any 7 € I1(0), we choose

t € argmin,, .5(VQ* (8 + LP), £°(t')),

then we have

(0 + £Pm) D (0 + £Pm) TV (O + LPT) — QVQ (0 + LPT))

=0V (0 + LPT) + (VQ* (8 + LPT), LPT) — Q(VQ* (0 + LPT))

(A)

< 0TVQ(0 4 LPT) 4+ (VY (0 + LPT), LPe;) — Q(VQ* (0 + LPTT))

=0TV (0 + LPT) 4+ (VQ* (0 + LPT), £P(t)) — Q(VQ* (0 + LP))

D 0TV (0 + L£Pm) + min(VQ* (0 + LPm), £°(¢)) —Q(VQ (6 + LP))
t'ey

=—T(VQ* (8+LPT))

©oTvQr (0 + £Pm) — Qp(VQH (0 + LPT))

(D) T
< sup 0 p—Qr(p)
pedom(Qr)
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where (A) owes to the optimality of 7w € TI(8), (B) holds by the definition of ¢, and (C) holds by
the definition of the convolutional negentropy Qr (). Since 7 € II(0), we have Q*(0 + LPm) =
2%.(@) according to Lemma Thus the above inequality is indeed an identity. In particular, (D)
becomes an identity, which implies that the supremum of Sup,cqom(Qr) 0" p — Qr(p) is achieved
at VQ*(0 + LPr). Since the supremum is also achieved at VQ3.(0) and the maximizer is unique
according to Rockafellar and Wets [80) Proposition 11.3] and the differentiability of €2%., we have

VQ5(0) = VQ* (0 + LP).
Since 7 € T1(0) and 6 € R are chosen arbitrarily, this concludes the proof. |

B.4 Proof of Theorem

Proof. Fix any 6 € R? and choose any m € AY out of T1(0). Then we have

N
vn € AK, RegretLQT(a,n) > thl mRegret,(t,n) (by (13))

> m,0)Regret,(¢(6),m) (because 7; > 0 for any ¢ € V)
> Regret,(¢(0),m)/N.  (by definition of ¢ in Defintion [I0)
|

B.5 Proof of Lemma

Proof. First, we derive the Bayes risk of the convolutional Fenchel-Young loss Lg,. as follows:
B, (n) = juf R, (6,0)

Juf [25(0) ~ (6.Eyenlp(®)])] +Eyen[r (o(v))]

= = sup (0, Eynlp(y)]) — 22(8)] + Eyn 21 (p(y))
ocRrd

=~ Q5" (Eyno@)]) + Eyn [ (0(1))]

= Eyrn[ 0 (p(1)] ~ 1 (Eynlo(v)])

where the Fenchel-Moreau theorem is applied to proper convex and Ls.c. {27 (by Lemma@) at the
last identity. Then we can get the following regret lower bound for any 7 € 11(6):

Regret,  (6,m) = Ri,, (6,n) — Ry, (n)
= 05(0) = (8, Eynlp(®)]) + 01 (Eymnlo(w)])
= Q0+ £0m) = (8,EynlpW)]) + 2(Eyunlp®)]) + T (Eynnlo(v)])
2070+ £m) = (04 L°7 Eyenlp)]) + Q(Eynlp(v)])

L, Eyon [P(y)]> + T(EyNW[P(y)])

_|_

V@
MZ ~

7o Eyenlo(u)],£2(6)) — min(Ey o [o(u)], €20

1 t

~
Il

(@
M=

mRegret,(t,n),

~~
Il

1

where (A) holds according to the explicit form of 2%, in and the definition of I1(8), (B) owes to
Fenchel-Young inequality, and (C) holds according to the definition of (p, £°)-decomposition in ().
This concludes the proof. |
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B.6  Proof of Corollary[16]

Proof. Fix an arbitrary @ € R?. Since I1(8) is non-empty, we can select 7 from I1(0). Note that
LPr € conv({€P(t)},.5). According to Carathéodory’s theorem, there exists 7 such that [|7[jo <
affdim(£P)+ 1 and LP7 = LP is also in I1(0). Since @ is chosen arbitrarily, we can then construct
a single-valued function 7 : R? — AN such that 7w(8) € I1(0) and ||7(0)]|o < affdim(LP) + 1.
Noting that max, 5 7(0) > 1/[affdim(L?) + 1], we can complete the rest of the proof similarly to
Theorem 131 [ |

Remark 21 Interestingly, Ramaswamy and Agarwal [73] also used the affine dimension of the loss
matrix to study the dimension of convex surrogates, suggesting that this concept plays a important
role in loss function design and deserves more attention.

B.7 Proof of Theorem

Proof. First of all, we prove that relint(conv(p(Y))) is in the image of V2% by contradiction.
According to Rockafellar [79, Theorem 23.4], we have that 9 (p) is non-empty for all p €
relint(dom(£27)). Now suppose there exists p € relint(dom(£2r)) such that p # VQ5(0) for any
0 < R%. Since 9Q7(p) is non-empty, there exists @' € R such that &' = VQr(p). By Rockafellar
and Wets [80, Proposition 11.3] (applied on proper l.s.c. Qr), we have p = VQ5(0’), which
contradicts the assumption p # VQ3.(0'). Thus we have verified that relint(dom(€27)) is in the
image of V.. This additionally implies that relint(conv(p()’))) C relint(dom(£2r)) is also in the
image of V27, because of Condition [T}

Now we fix 1 € relint(AX) and note that
Rig, (8,n) = Q7(0) + Eyn[Qr(p(y))] — (0, Eynnp(y)])

is differentiable and convex in 6. If * € R? is the minimizer of R Lo, (+ M), its optimality condition
indicates

VoL, (0%,m) = VQ7(0%) — Eynlp(y)] = 0.

When 7 € relint(AX), we have E,,[p(y)] € relint(conv(p()))), and thus 6* satisfying the
above optimality condition does exist. Finally, we conclude the proof by combining Lemmas [§]
and[12] [ ]

C Deferred Proofs in Section @
C.1 Proof of Lemma

Proof. Denote by V() == Zszl e%*+1=7i_ Since In(-) is strictly increasing on R, Vo () shares

the same minimizer as ln(ZiK:1 eei‘*‘l_m). The Lagrangian F of the minimization problem Vy for

7 € AK is written as follows:

K K
F(m, a,p) = Z ditl=mi _aTw 4 <Z T — 1) ,
i=1 i=1

where a, .. .,ax > 0and 8 are the Lagrangian multipliers. Since Vg () is convex and differen-
tiable, and the feasible region AK is convex, the KKT conditions are necessary and sufficient for the
optimality of w* € II(8), which requires that there exists (a*, 5*) satisfying

— elutl=my —a, + 3" =0, foranyy=1,..., K, (20)
1'7n* =1, n*>0, o >0, (21)
oy, =0, foranyy=1,..., K. (22)

The conditions (21) and (22) indicates that 7; > 0 == «;; = 0. Then according to (20), we have
m, >0 = m, =0, (Ing" —1). (23)
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Meanwhile, for 7 = 0, (22) indicates that ;> 0, which further indicates

T, =0 = 0,=In(f"—ay) -1 <Ing" -1 24
Then (23)) and 24) can be rewritten as follows:
T, = max{f, — (In 3" —1),0}. (25)

According to (2T)) and In 8* — 1 € R, the KKT conditions can be further simplified into the existence
of 7* € R such that the following conditions simultaneously hold:

m, = max{f, — 7*,0},
Yooy max{f, — 7,0} = 1.

Denote by f(7) == 25:1 max{6, — 7,0}. Then f is continuous on R, and moreover, it is strictly
decreasing on (—00, f1)] and equals 0 for 7 > ;) because of the following expression:

z;ﬂ%—f) if 7 < 05,
f(T) = Ziz_ll(ﬁ(i) —7') ifr e [G(k),e(k,l)]fork:2,...,K,
0 if 7> 9(1).

Then 7 defined in line 2 of Algorithm [T|exists since f(6(1)) = 0 < 1. We also have that f(6(,)) =
Z;L:l(g(i) — 0(n)) < 1. When n < K, we have that f(t9(n+1)) = 27:11(9(1) — 0(n+1)) =
> 1 (0 — O(ng1y) > 1 by definition. Then we see

Dic1 0y — 1

and

When n = K, we have that Zfil 0y — K0y < 1, that is,

Y0 — 1
K

Yici b =1\
().

< H[K].

0 Y0 — 1
o= Kg

K
Oy = b +1
=1

Then

-

i=1

I
WE

=1

I
—
O

Combining these two cases, we have

o0 —1
= szl n( ) < 0(1)7

which is what line 3 of Algorithm [I{returns. Since f(7) is strictly decreasing on (—o0, 6(1)], 7*
uniquely satisfies f(7%) = 1.

Since Zle 0(;) can be calculated cumulatively in O(K’) time and the quick sort runs in O(K log K)
time, Algorithm runs in O(K log K) time in total. Furthermore, since 7 is unique and 7, =
max{6, — 7*,0}, we ensure that IT(@) is a singleton, which concludes the proof. |
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C.2 Proof of Proposition

Proof. By Definition [I0} the statement is equivalent to

argmax 0; = argmax miog(0);.
tey tey
According to Lemma [18|and Algorithm([1] there exists 7 € R such that miog(f); = max{6; — 7, 0}.
We also have that max; §; > 7 by contradiction: if max;60; < T, moe(6) = 0 holds, which
contradicts g (6) € AK.

Denote the set argmax;,0; by Z. For any i € Z, we have mjo4(6); = max{0; — 7,0} = max; ; —
7> 0. Forany j ¢ Z,

o If 0; > 7t meg(0); = max{f; — 7,0} =60, — 7 <max, 6, — T,
o If ; < 7: mog(0); = max{f; — 7,0} =0 < max; 0; — 7.

These imply that for any i € Z, miog(6); > Tiog(0); and the equality holds if and only if j € Z,
which concludes the proof. |

D Additional Examples

In this section, we further provide more examples of target losses to demonstrate that we can generate
convex smooth surrogate losses for a wide range of target prediction problems. The generated
convolutional Fenchel-Young losses are automatically guaranteed to entail linear surrogate regret
bounds thanks to Theorem[13]

D.1 Multiclass Classification with Rejection

Problem setup. In multiclass classification with rejection [23], the class space is Y = [K], and
the prediction space Y= [K + 1], which is augmented by a rejection option K + 1. We focus on
the case that rejection cost c is in [0, 0.5) here. For an input instance with class probability n € A,
the goal is to predict the most likely class label ¢ € argmax, .y, 7, if max,ey 1, > 1 — c for the
predetermined cost ¢, and refrain from predicting otherwise. The standard target loss is the 0-1-c loss:

[t #y], telK]
loic(t,y) =
o1c(t, y) {07 t=K+1,
that is, the prediction suffers from the ordinary classification error if it is a wrong class label, and
suffers from an intermediate error c if it chooses to refrain from prediction.
We adopt the decomposition (3) for this task: £°(t) = [lo1c(¢,1), - ,o1(t, K)] = 1 — e, if
t# K+ 1,and £°(t) = c1if t = K + 1. We choose the label encoding function p(y)... as in the

multiclass classification task. In this case, N = K + 1 and d = K, and LP = [11T — I, c1], where
1 is K-dimensional.

Loss formulation and calculation. In this case, we consider the Shannon negentropy €2 as in
Section[d] Based on the discussion above and Lemma 8] the conjugated convolutional negentropy
Q7. can be written as followsﬂ

K
O5(0) = ﬂ£i£+1 OO0+ LPm) = 7rErrAliII(l+1 In (Z; exp(0; +1—m — (1 — C)7TK+1)> , (26)

and we can then get the corresponding convolutional Fenchel-Young loss as follows, by noting
Qr(p(y)) =0forally € Y:

K
Lo, (0,y) = min In (Z exp(0; +1—m — (1 — c)7TK+1)> — 0. 27

wEAKFL
=1

To compute Lq,,., we need to know the minimizer 7 in (26). We show its closed form below.

Lemma 22 For any @ € RE, the problem [26)) has a unique minimizer w*(6) € I1(0), which can be
obtained in O(K) time. Denote by y* an arbitrary element in argmax, ¢ x| Hy/,IZ] then the minimizer

%We emphasize that the domain of conjugate is K -dimensional, despite the 7r is in K + 1-simplex.
"Though chosen arbitrarily, uniqueness is guaranteed: argmax sets are singleton in the first and third cases.
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can be written as follows:

. exp(0y+)
€y~ i exp(0y« )+ iz, exp(0; SRS
* o . exp(0,,*
7 (0) = exi1, fZ p(exP()Q p<l-c

V(0)ey- + (1 —v(0))ex+1, else,

where v(0) == —In (M — 1) In (=¢).

exp(6y+)

Proof. First, the Lagrangian of the minimization problem (26)) is written as follows:

K+1

>1

—C

K
F(m,a, ) =1n (ZGXP(@ +1-—m—(1- c)7rK+1)> —a'm+p (Z T — 1)

=1 =1

K K+1
=In <Zexp(9i +1 —m-)) —(l—emgy—a' ' w+ 8 (Z T — 1) )

i=1 i=1

where 1, ...,ax41 > 0and 8 € R are the Lagrangian multipliers. Since the log-sum-exp term is
convex and differentiable and the feasible region AX*! is convex, the KKT conditions are necessary
and sufficient for the optimality of 7w* € II(0), which requires that there exists (a*, 5*) satisfying

exp(y +1—
Kp(y v) =B —aqj, foranyy=1,..., K,
Yoo exp(b; +1—7f)

1*016**04}}-«-17
1’7 =1, w*>0, a" >0,

a,m, =0, foranyy=1,..., K + 1.

We continue the proof with the following four observations:

Observation 1. By noting 1 — ¢ > 0.5, we have

eXP(Hy*) *
——— >1—c = argmaxf, = {y*}.
>i exp(6;) Vel

Observation 2. From the KKT conditions, we have

exp(fy-)
exp( + Z’L 1,i#y* eXp(9 + 1)
To see this, let us integrate the above left-hand side with (28) and (29):

>1—c = 7" =ey.

exp(fy- +1—m}.)

(28)

(29)
(30)
(3D

B —al. = v by @)
T e +1-77)
_ exp(fy-)
eXp( ) + Ez 1,i#y* eXp(ei + 7T;;* - ﬂ-;k)
Oy
> exp(0y-) by 772* <landw; >0
eXp( ) + Zz 1,i#£y* eXp(e + 1) l
(%) .
>1-c by the assumption
=f" = Ak by

which indicates that aj, ; > aj. > 0, and thus 73, ; = 0 due to (30) and (31)). On the other hand,

forany y € [K]\ {y*}, we have
exp(8, +1—7))

B —aj = Y by
Y Zf; exp(6; + 1 —7})
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exp(fy +1—7}.)

e
T ZLiewi1-m)

<1—-(1-¢) by the same argument as ()
=c

<l-c¢ by c € [0,0.5)

=p" - 0‘?(4-1’ by @)

and thqs ay > aje 1 > 0, which indicates that 7 = 0 except for y = y* due to (30) and (BT)). Thus,
we verify % = e,-.
Observation 3. From the KKT conditions, we have
exp(fy-)
ZiKzl exp(6;)

To see this, we show the contraposition of Observation 3. Suppose there exists y € [K] such that
my > 0. Then, we have a;; = 0 due to (31)), and consequently

exp(, +1— )
S exp(8; +1— )

<l—-¢ = 7" =exy1-

=" by 28) and a;, = 0

R (32)
> B — a4 by GO)
=1-c by (29)
Then, for any 3’ € [K] \ {y}, this inequality implies
. . exp(f, +1—7k)
B =l = = - by 28)
>oioiexp(by+1—7))
1 exp(fy +1—my)
T Yl e+ 1)
<1-(1-¢) by (32)
=c
<1l-g, by ¢ € [0.0.5)
which indicates that oy, > 0 and 7}, = 0 due to (30) and (3T). Then, we have
exp(fy +1—my) - exp(fy — m,)
exp(fy + 1= mp) + 3 iy exp(0 +1)  exp(fy —mp) + 3015, 1, exp(6)
_ eXP(Qy)
exp(0y) + TiZ1 iy exD(0: + )
Z 1- &
where we used (32) at the last line. This inequality further implies
i;(p(ey*) > e:;p(%) S1-e
i1 exp(0i)  exp(fy) + Eizu;éy exp(6; + 7";)
Thus, the contraposition of Observation 3 is shown.
Observation 4. From the KKT conditions again, we have
‘?P(gy*) >1—¢> e>§(p(9y*)
> i—1 exp(0;) exp(fy~) + 21:1,1‘7&1,* exp(f; +1)
— 7 =7(0)ey- + (1 —7(0))ex1,
where 7(0) = —In (% — 1) —1In (126). To see this, we carefully examine 7*. First, if

there exists different 3/, y” € [K] with 7/, m,» > 0, we have
exp(fy +1—m,)

g =
S exp(f; +1— )

by 28) and o, = 0 since 7,» > 0
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exp(fy» +1—7,
= Kp( Y ) by (28) and «;,, = 0 since 7, > 0
>imexp(fi +1—m)

> B — ajes by ey > 0
=1l-c by 29
> 0.5,

which is impossible since

exp(fy +1—m) exp(Oyr +1—my.)

K N K N
Yoimgexp(0i+1—mF) Sl exp(b;+1—m7))
This contradiction indicates that there exists at most one y € [K] such that 7; > 0. Second, we show

y € [K] with 7 > 0 must be y = y*. To see this, suppose there exists y € [K] such that 7 > 0 but
y # y*, thenm;, = 0 forany y' € [K] \ {y} and we have

exp(0y +1—m;) exp (0, — )
Zfil exp(0; +1—7F)  exp(0, —7}) + Zfil,#y exp(6;)
= 6" —aj by (28)
=" by 7, > 0 and (31
> B" —ak by a1 >0
>1l—c by @)
> 0.5.
However, this contradicts the following inequality:
exp(fy- +1—my.) exp(fy~)
Efil exp(0; +1—m})  exp(f, —my) + Zfil,i;ﬁy exp(0;)
0,
> o) by 1 > 0
21:1 exp(0;)
>1—c¢ by the assumption
> 0.5.

Thus, we have verified that 7, > 0 is possible with y = y* or y = K + 1 only. From this, we have
T =Tey + (1 - My )ex . (33)

From now on, we show that
7 =7(0)ey- + (1 —7(0))ex
a*=0 (34)
gr=1—c
fulfill the KKT conditions under the assumption of Observation 4. By using (33), we have
exp(fy- +1—my.) exp(fy- —m.)

= . by (33)

Siiexp(0;+1—mF)  exp(fy — ) + ey sy exp(6;)

=f" —ay. by (28)
=1l-c+aj. —ajk,. by 29)
By elementary algebra and plugging in a* = 0 given by (34), we can solve it with respect to Ty S
follows:
S exp(6;) 1—c
T = —In | &= — ] —ln( > =(6). (35)
exp(fy-) c
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By rearranging the assumption of Observation 4, we have

K
1 ¢ < iz exp(fi) 1< €

el—c™ exp(f,) —1-c

from which we can see 0 < 7. = (0) < 1. Allin all, (7*,*, 3*) in (34) fulfill the KKT
conditions, and thus Observation 4 is verified.

By combining Observations 2, 3, and 4, we have shown the closed form of 7*(60). Furthermore,
Observation 1 guarantees the uniqueness of 7w*(8).

Lastly, it is easy to see that 7w*(6) can be computed in linear time because both of the following terms
exp(fy+) and exp(fy+)
exp(fy-) + Zfiu#y* exp(f; + 1) ZZK=1 exp(6;)
can be computed in linear time. |

D.2 Multilabel Learning with Precision@#%

Problem setup. In multilabel learning, the target prediction space ) = [29] is the collection of
indices of all possible combinations of d binary labels with | Y| = K = 2¢. Precision@F is a common
performance metric for multilabel ranking. We consider that the prediction space Y = [(z)] is the
collection of indices of all possible size-k subsets of multilabels with |3A} |=N = (g) In addition,

we encode the label y € Y into p(y) € {0,1}¢ and the prediction ¢ € Y into () € {0,1}¢, where
{u(t)}Y, is the collection of all distinct permutations of w = e; + - - - + ey. Then, the target loss
of Precision@F£ is defined as follows:

d
Doiz1 PY)ip(t)s
B A
This is the portion of binary labels with value 0 in the top-£ list.

Lt,y)=1—

We adopt the decomposition (3) by using the aforementioned p(y), £°(t) = —%, and ¢(y) = 1 for
ally € ).
Loss formulation and calculation. For Precision@#, we consider the base negentropy

d

Qp) = Z(pi Inp; + (1 —pi) In(1 — py)).

i=1
Then, we have

d
0 (0) = Z In(1 + exp(6;)),

and

d L
O5.(0) = mind Z In (1 + exp (Hi % Zm,u(t)i)> . (36)

weEA\K/ =1
We can simplify it into the following problem:
d 1
Q5(0) =min » In (1 + exp <9i - kw)) , 37

veV
i=1

where V := {v € R? : v; € [0,1], ||v||; = k}. Then, the convolutional Fenchel-Young loss can be
written as follows:

Lo, (6,y) = ggrvlgln (1 texp (ei - ,1)) ~ (p(1), ).

To calculate the gradient of Lq,. (-, ), we only need the solution v* in the optimization problem (37),
which can be obtained efficiently.
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Algorithm 2 Exact Solution of in O(dInd)

1: Set f(A) = Z?zl max{0, min{¢; — A, 1}} )

2: Sort @ = [0;0 — 1] € R?? such that Oy >+ > 0(2a).
3: n+max{n € [2d] : f(0)) < k}.
4
5

Loy J _ k*f(9~<n))~ 5 2
A — H(n) + F@onst)—FBony) (9(n+1) (9(”)).

: vf < max{0, min{6; — \*,1}}.

Lemma 23 For any @ € RY, the minimization problem has a unique minimizer v*, which can
be obtained in O(dlog d) time with Algorithm|2]

Proof. The uniqueness can be seen by noting that the objective function is strictly convex and its
domain V' is compact and convex.

Let us analyze the Lagrangian of the minimization problem (37)), which can be written as follows:

d
Fv,a,B,7) = Zln(l+exp<0 ]1i))—aTv—&-,BT(v—l)—kW(Zvi—k),(38)

i=1

wherea € R, B € R>o ,and v € R are the Lagrangian multipliers. Then, we have the following
KKT conditions:

exp(6; — v))

i A /A ot fi i=1,...,d 39
1+exp(9171)2*) +51 az? Oranyl ) ) ( )
7o' =k 0<v'<1, oa"20 >0, (40)
ajvi =0, Bi(l—v)=0, foranyi=1,...,d (41)

where the inequalities in (40) are element-wise.

First, we show that the KKT conditions are fulfilled by v} = max{0, min{6; — A*, 1}} for each

i € [d], where \* := In(y*/(1 —~*)). Fixing ¢ € [d], we divide into cases. If v} > 6, — A*, we have
exp(0; — v})

1+ exp(0; —v})

which implies 8 — a; < 0 by (39). Since 5} > 0 by (@0), we have o > 0, which implies v} =0
due to @T). If v; < 6; — A*, we can show v} = 1 similarly. Thus, we have

*

<7

o If v} > 6; — \*, then v;
o If v} < 6; — \*, then v;

=05
=1.

*
3
*
(2

Moreover, let us divide into cases on 6; — A*. If §; — A* < 0, we must have v} > 6; — \* since

€ [0, 1] (due to the feasibility @0), which yields v} = 0. If ; — \* > 1, we have v} = 1 similarly.
If0 <6; — A* <1, we have v} = 0; — A* otherwise it ends up with contradiction—say, supposing
v} > 6; — \*, then we have 0 = v} > 6, — A*, which contradicts the premise 6; — \* € [0, 1].
Combining all above, we have verified that

v} = max{0, min{6; — A\*,1}} fori € [d]
fulfills the KKT conditions.

Next, we show that Algorithm [2| returns this v*. By noting the constraint Z = k in the

feasibility conditions (40}, we have

1172

d
:) Z max{O, Inin{ei - >\*7 1}} =k.
i=1

Thus, we need to solve f(A\*) = k to obtain v*. Let us sort the elements of 6 := [0;0 — 1]
R24 such that 01y > --- > 024 The solution to f(A\*) = k uniquely exists since we have
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Figure 1: Visualization of the convolutional Fenchel-Young loss, logistic loss, and probability estimators.

f(é(l)) =0<k, f(é[Qd]) = d > k, and f is continuous and strictly decreasing on [é[gd ,9~(1)].
From the strict decreasing nature, it can also be inferred that n in Step 3 of Algorithm Ei is the
largest possible n. € [2d] that f(6,,)) < k and f(6(,,11)) > k, which indicates that the solution is in

(§n+17 0(r)]. Furthermore, f is linear on each segment [é[iﬂ] , é(i)]. This indicates that for the point

A€ [0ty é(n)], we have

~ ~ én - én
Ont1) = )

which yields Step 4 in Algorithm

The time complexity of sorting 6 is O(d log d). Note that the computation of f(z) is in O(d) and n
can be found using binary search due to monotonicity of f in O(log d) steps, we can conclude that
Step 3 is in O(dlogd). |

E A Special Case: Visualization on Binary Classification

In this section, we visualize the graphs of convolutional Fenchel-Young losses and the corresponding
probability estimator (provided in Theorem [I7) for binary classification to get more intuition. For

binary classification, we adopt the class space Y = Y = {—1, +1}, and the target loss ¢p1 (y,t) =
[y # t]. We use the following decomposition of the target loss:

p(+1) = % p(—1) = —%, PP(41) = —1, 07(=1) =1, and e(+1) = c(—1) = %

With this decomposition, surrogate losses can operate on a univariate prediction, which is convenient
for the visualization purpose.

We compare convolutional Fenchel-Young losses with the standard Fenchel-Young losses generated
by the binary Shannon negentropy:

Qp) = <;+p>ln<;+p>+<;—p>ln<;—p>,

where % +p =: 141 is the positive class probability and % — p =: n_ is the negative class probability.
The corresponding convolutional negentropy is as follows:

Qr(p) = (; +p) In (; +p) + (; —p) In (; —p) + max{p, —p},

where max{p, —p} = 1 — min{n41,n_1} is the negative Bayes 0-1 risk of class probability
(n41,m-1) = (3 + p. 2 — p). Then, the conjugate of convolutional negentropy can be written
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as follows:
In(1+exp(d+1)) — &2, ifo < —1
O5(0) = ¢ In(2), if—-1<6<1

In(1+exp(d —1)) — 52 if1 <@

Correspondingly, the convolutional Fenchel-Young loss is

In(1 4 exp(1 + 0)) — 2L ifg < 1
Lo, (0,y) = { In(2) — %, if-1<0<1
In(1 4 exp(f — 1)) — 2H0=1 0 if 1 < ¢

We can explicitly write down the gradient of the conjugated entropy as follows:

T+exp(1+0) ~ 27

* _ exp(6—1)
Vo (0) = | trepeey — 3 0> 1

0, RS [_lal]

exp(1+6) 1 0 < —1

_ oM41—n—1 _ ny1—14n4
- 2 - 2

which is the estimator of 741 p(+1) + n—1p(—1) = 141 — 1 by Theo-
rem Finally, we can use the link function V¢Q%(60) + % as the estimator of 74 1.

We show the convolutional Fenchel-Young loss and logistic loss (which is the standard Fenchel—-
Young loss generated by the binary Shannon negentropy) in Figure It can be seen that the
convolutional Fenchel-Young loss is linear in the shaded region # € [—1, 1], while resembling
the logistic loss outside of this region. Compared with the sigmoid function used for probability
estimation with logistic loss, the link function induced by the convolutional Fenchel-Young loss also
generates a valid probability estimate in [0, 1] for any 0 € R, with § € [—1, 1] generates constant
value 0.5 as the estimate.

Further discussion. In case of binary classification, Figure [I] (a) nicely illustrates that the con-
volutional Fenchel-Young loss linearly “extends” the logistic loss at § = 0, which is the boundary
point for binary classification. This illustration is possible because the above formulation for binary
classification operates on the univariate score § € R. The linear extension at the boundary point aligns
with Frongillo and Waggoner [39]], which shows the square-root regret lower bound by assuming
that a surrogate loss is locally strongly convex around the boundary points. In general prediction
tasks, it is not straightforward to overcome the square-root regret lower bound by such a linear
extension because the boundary points for a high-dimensional prediction task can be infinitely many.
By contrast, convolutional Fenchel-Young losses provide a general recipe to get linear surrogate
regret bound via infimal convolution.

F Additional Empirical Results

F.1 Multiclass Classification

To provide empirical validation of our proposed results, we use the loss introduced in Section [4]
as an example and evaluate its performance on the ImageNet-1k dataset [32] using the ResNet-50
architecture [43]].

Experimental Setup. We follow the default configuration of the PyTorch [[71]] ImageNet training
script. Specifically, we use stochastic gradient descent (SGD) with a momentum of 0.9, training for
120 epochs with a mini-batch size of 256. The initial learning rate is set to 0.1 and divided by 10
every 30 epochs. For comparison, we also report results obtained using the standard cross-entropy
loss under the same configuration. All experiments are conducted on 8 GeForce RTX 3090 GPUs,
and we report the average validation accuracy over 3 independent runs.

Results and Discussion. As shown in Table[I] our proposed loss slightly outperforms the stan-
dard cross-entropy loss in terms of validation accuracy under a 5% t-test,. This improvement is
achieved without any additional hyperparameter tuning, demonstrating the potential of our approach.
Meanwhile, the computation time per epoch remains comparable between the two methods, which
indicates the efficiency of the proposed loss. These results confirm the compatibility of our loss with
both mini-batch and distributed optimization settings.
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Table 1: Comparison between cross-entropy loss and the proposed loss on ImageNet-1k using ResNet-50.

Metric Cross-Entropy Loss  Proposed Loss (I8)
Accuracy (%) 76.40 76.81
Averaged Running Time / Epoch (s) 647.22 653.63

F.2 Classification with Rejection

We further evaluate the proposed loss under the classification with rejection (CwR) setting,
where the rejection cost is fixed at ¢ = 0.05. The experiments are conducted on the CIFAR-10 and
CIFAR-100 datasets [46]. We adopt the WideResNet-28 architecture [96] with a widen factor of 4
and a hidden dimension of 50 as the backbone network for all experiments.

Experimental Setup. We train each model for 120 epochs on 8 GeForce RTX 3090 GPUs with a
per-GPU batch size of 128. The optimizer is SGD with a momentum of 0.9, weight decay of 5e — 4,
and an initial learning rate of 0.1. The learning rate is scheduled by cosine annealing.

For data augmentation, each image is first converted to a tensor, then padded by 4 pixels on each side
using reflection padding, followed by random cropping to 32 x 32 and random horizontal flipping.
The images are finally normalized using the dataset-specific mean and standard deviation. We report
the average system accuracy (1-averaged 0-1-c loss) and acceptance rate over 5 runs. Meanwhile, we
also provide the result of ordinary classification using the similar loss (I8) we proposed.

Table 2: CwR/Classification performance of proposed losses on CIFAR-10/100 using WideResNet-28.

Metric CIFAR-10 CIFAR-100
CwR with
System Accuracy: ¢=0.05 (%) 96.79 91.90
Acceptance Rate (%) 92.84 65.94
Averaged Running Time / Epoch (s) 5.79 6.64
Classification with
Accuracy (%) 93.87 74.36
Averaged Running Time / Epoch (s) 6.07 7.41

Results and Discussion. As shown in Table |2} both CIFAR-10 and CIFAR-100 experiments
demonstrate that our proposed loss successfully performs classification with rejection, achieving
higher system accuracy while maintaining a reasonable acceptance rate. This indicates that the
model learns to reject uncertain samples effectively without sacrificing overall performance. In
addition, the average computation time per epoch is even lower than that of ordinary classification,
which we attribute to the O(K) complexity of gradient computation for the proposed formulation,
compared with the O(K log K) cost in standard classification. These results confirm the efficiency
and practicality of our loss for reliable decision-making under uncertainty.
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