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ABSTRACT

Bilevel optimization has recently attracted considerable attention due to its abun-
dant applications in machine learning problems. However, existing methods rely on
prior knowledge of problem parameters to determine stepsizes, resulting in signifi-
cant effort in tuning stepsizes when these parameters are unknown. In this paper,
we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO
employs a double-loop structure with stepsizes adaptively adjusted by the "inverse
of cumulative gradient norms" strategy. S-TFBO features a simpler fully single-
loop structure that updates three variables simultaneously with a theory-motivated
joint design of adaptive stepsizes for all variables. We provide a comprehensive
convergence analysis for both algorithms and show that D-TFBO and S-TFBO
respectively requireO( 1ϵ ) andO( 1ϵ log

4( 1ϵ )) iterations to find an ϵ-accurate station-
ary point, (nearly) matching their well-tuned counterparts using the information
of problem parameters. Experiments on various problems show that our methods
achieve performance comparable to existing well-tuned approaches, while being
more robust to the selection of initial stepsizes. To the best of our knowledge, our
methods are the first to completely eliminate the need for stepsize tuning, while
achieving theoretical guarantees.

1 INTRODUCTION

Bilevel optimization has gained considerable attention recently due to its widespread use in various
machine learning applications, such as meta-learning (Franceschi et al., 2018; Bertinetto et al., 2018;
Rajeswaran et al., 2019), hyperparameter optimization (Shaban et al., 2019; Feurer & Hutter, 2019),
reinforcement learning (Konda & Tsitsiklis, 2000; Hong et al., 2023a), robotics Wang et al. (2024),
communication (Ji & Ying, 2022) and federated learning Tarzanagh et al. (2022). In this paper, we
study a standard bilevel optimization problem that takes the following mathematical formulation:

min
x∈Rdx

Φ(x) := f
(
x, y∗(x)

)
s.t. y∗(x) = arg min

y∈Rdy
g(x, y), (1)

where f and g are jointly continuously differentiable outer (upper-level) and inner (lower-level)
functions. In this paper, we focus on the nonconvex-strongly-convex setting, where the lower-level
function g is strongly convex w.r.t. y and the outer function Φ(x) is possibly nonconvex.

Recent years have witnessed the rapid development of bilevel optimization algorithms, which can
be categorized into approximate implicit differentiation (AID) (Ji et al., 2021; Dagréou et al., 2022)
based, iterative differentiation (ITD) (Ji et al., 2022; Grazzi et al., 2020) based, and value-function
based (Kwon et al., 2023; Liu et al., 2021a) approaches. However, these methods often require
substantial effort to tune a couple of hyperparameters like stepsizes, which typically depend on
unknown problem parameters (such as Lipschitzness parameters, strong convexity parameters, and
optimal function values). This emphasizes the importance of adaptive and tuning-free methods
in bilevel optimization. In this paper, an algorithm is considered tuning-free if it does not need
to know the problem parameters in advance but can still achieve almost the same convergence
rate guarantee as its well-tuned counterpart using this information. Despite several recent efforts
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to reduce dependence on problem-specific parameters (Fan et al., 2024; Antonakopoulos et al.,
2024), developing a fully tuning-free bilevel optimization algorithm remains an open challenge. For
instance, Fan et al. (2024) utilizes Polyak’s stepsizes to automate both inner and outer updates but
still requires information such as gradient Lipschitzness parameters and optimal lower-level function
values. Similarly, Antonakopoulos et al. (2024) introduces an "on-the-fly" accumulation strategy
for (hyper)gradient norms, which removes the reliance on inner and outer gradient Lipschitzness
parameters but still depends on the strong convexity parameter for the inner AdaNGD-type updates.

This paper aims to close this gap by introducing two novel fully tuning-free bilevel optimization algo-
rithms named D-TFBO and S-TFBO (where D and S represent double- and single-loop approaches),
along with a comprehensive convergence analysis demonstrating their competitive performance
compared to existing well-tuned approaches (which tune their hyperparameters like stepsizes based
on the problem parameters). Our key contributions are outlined below.

• Our algorithms are inspired by the "inverse of cumulative gradient norms" strategy introduced by
Xie et al. (2020); Ward et al. (2020), adapting the stepsizes based on accumulated (hyper)gradient
norms. D-TFBO utilizes two optimization sub-loops: one for solving the inner problem and
another for addressing a linear system (LS), which approximates the Hessian-inverse-vector
product of each hypergradient. Unlike previous approaches, D-TFBO introduces cold-start
adaptive stepsizes that accumulate gradients exclusively within the sub-loops. This method
establishes a tighter lower bound on stepsizes, improving gradient complexity. In contrast,
S-TFBO adopts a single-loop structure, where all variables are updated simultaneously in each
iteration. Rather than applying the "inverse of cumulative gradient norms" uniformly to all
updates, our error analysis motivates a joint design of adaptive stepsizes for y, v, and x, which
correspond to solving the inner problem, LS, and outer problem, respectively. For instance, the
stepsize for v is coupled with that for y, while the stepsize for x depends on both y and v.

• Compared to the well-tuned AID methods in Ji et al. (2022), our D-TFBO method achieves the
same O( 1

T ) convergence rate. Similarly, our S-TFBO method attains an Õ( 1
T ) convergence rate,

matching that of well-tuned counterparts, up to polylogarithmic factors. The complexity analysis
shows that D-TFBO and S-TFBO require O( 1

ϵ2 ) and Õ( 1ϵ ) gradient computations, respectively,
to reach an ϵ-accurate stationary point. This comparison differs from the observation in well-
tuned bilevel optimization, where double-loop approaches generally achieve lower gradient
complexity than single-loop methods (Ji et al., 2022). This is because the inner tuning-free solver
requires O( 1ϵ ) more iterations than well-tuned methods to achieve ϵ-level accuracy.

• The theoretical analysis is inspired by the two-stage framework in Xie et al. (2020); Ward et al.
(2020), where the stages describe the relationship between the stepsizes and certain constants
that depend on the problem parameters. However, exploring this technical framework in bilevel
problems is far more challenging because the stages for analyzing each stepsize interact with
those for other stepsizes, resulting in intertwined multi-stage dynamics across different variables.
For instance, the error analysis for the updates on v must account for the accumulated gradient
norms from the updates on y. This motivates us to couple the stepsize for v with the adaptive
stepsize for y to prevent the propagation of accumulated errors. In addition, our analysis requires
establishing precise upper and lower bounds for all stepsizes to ensure convergence results that
match those achieved under well-tuned stepsizes.

• We validate the effectiveness of our methods through experiments on regularization selection,
data hyper-cleaning, and coreset selection for continual learning. The results show that our
methods perform comparably to existing well-tuned methods. More importantly, our methods
demonstrate greater robustness to different initial stepsizes, due to the tuning-free design.

2 RELATED WORK

Bilevel Optimization. Bilevel optimization, initially introduced by Bracken & McGill (1973), has
been extensively studied for decades. Early works (Hansen et al., 1992; Shi et al., 2005) approached
the bilevel problem from a constrained optimization perspective. More recently, gradient-based
methods have gained significant attention for their efficiency and effectiveness. Among these,
Approximate Implicit Differentiation (AID) methods (Domke, 2012; Liao et al., 2018; Ji et al., 2021;
Dagréou et al., 2022) leverage the implicit derivation of the hypergradient by approximating it through
the solution of a linear system. In contrast, Iterative Differentiation (ITD) methods (Maclaurin et al.,
2015; Franceschi et al., 2017) estimate the hypergradient using automatic differentiation, employing
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either forward or reverse mode. Recently, a range of stochastic bilevel methods have been developed
and analyzed, using techniques such as Neumann series (Chen et al., 2022; Ji et al., 2021), recursive
momentum (Yang et al., 2021; Guo & Yang, 2021), and variance reduction (Yang et al., 2021).
Another class of methods formulates the lower-level problem as a value-function-based constraint
(Kwon et al., 2023; Wang et al., 2023), enabling the solution of bilevel problems without the need for
second-order gradients. A more detailed discussion of related work can be found in the Appendix.

Adaptive and Tuning-free Algorithms. Adaptive gradient descent has achieved remarkable success
and is widely studied and applied in modern machine learning. Early adaptive algorithms trace
back to line search methods, such as backtracking (Goldstein, 1962), and Polyak’s stepsize (Polyak,
1969), both of which have inspired numerous recent variants (Armijo, 1966; Bello Cruz & Nghia,
2016; Salzo, 2017; Vaswani et al., 2019; Hazan & Kakade, 2019; Loizou et al., 2021; Orvieto et al.,
2022). To reduce the computational cost of line search and avoid the reliance on an unknown optimal
function value, the Barzilai-Borwein stepsize (Barzilai & Borwein, 1988; Raydan, 1993; Dai &
Liao, 2002) was introduced, drawing inspiration from quasi-Newton schemes. Normalized gradient
descent (Cortés, 2006; Nesterov, 2013; Murray et al., 2019) preserves the direction of the gradient
while ignoring its magnitude, removing the need for prior knowledge about the function. Duchi et al.
(2011) and McMahan & Streeter (2010) pioneered AdaGrad, an adaptive gradient-based method,
which proved efficient in solving online convex optimization problems. AdaGrad rapidly evolved
for deep learning applications, giving rise to numerous methods, including popular variants like
Adam (Diederik, 2014; Reddi et al., 2018; Luo et al., 2019; Xie et al., 2024), RMSprop (Tieleman &
Hinton, 2012), and Adadelta (Zeiler, 2012). Specifically, normalized versions of AdaGrad, such as
AdaNGDk (Levy, 2017), AcceleGrad (Levy et al., 2018), and AdaGrad-Norm (Ward et al., 2020; Xie
et al., 2020), introduced adaptive stepsizes that require no problem-specific parameters, making them
tuning-free approaches. Recent work by Maladkar et al. (2024) further established lower bounds
for minimizing the deterministic gradient l1-norm. Additional methods, such as Lipschitz contact
approximation (Malitsky & Mishchenko, 2020) and restart techniques (Marumo & Takeda, 2024),
have also been explored. A more comprehensive discussion refers to Khaled & Jin (2024).

Adaptive and Tuning-free Bilevel Algorithms. Instead of focusing on single-level problems, Huang
& Huang (2021) extended Adam to bilevel optimization algorithms. Fan et al. (2024) introduced
adaptive stepsizes for bilevel problems, based on Polyak’s stepsize and line search techniques. Most
recently, Antonakopoulos et al. (2024) proposed a novel framework that applies adaptive normalized
gradient descent to the strongly convex inner problem and AdaGrad-Norm to the nonconvex outer
problem, allowing the algorithm to update adaptively with fewer problem-specific parameters.

3 ALGORITHM

3.1 STANDARD BILEVEL OPTIMIZATION

A key challenge in bilevel optimization is calculating the hypergradient ∇Φ(x), which, according to
the implicit function theorem, is given by:

∇Φ(x) = ∇xf
(
x, y∗(x)

)
−∇x∇yg

(
x, y∗(x)

)[
∇y∇yg

(
x, y∗(x)

)]−1∇yf
(
x, y∗(x)

)
,

when g is twice differentiable,∇yg is continuously differentiable and the Hessian∇y∇yg
(
x, y∗(x)

)
is invertible. In practice, y∗(x) is not directly accessible, and one often use an iterative algorithm to
obtain an estimate ŷ instead. Since computing the Hessian inverse is prohibitively expensive, a more
efficient way is to approximate the Hessian-inverse-vector product in the above hypergradient∇Φ(x)
by solving the following linear system:

min
v

R(x, ŷ, v) =
1

2
vT∇y∇yg(x, ŷ)v − vT∇yf(x, ŷ). (2)

Similarly, an iterative algorithm is usually deployed to obtain an approximate solution v̂ of the problem
in eq. (2). Given the approximates ŷ and v̂, the variable x is then updated with a hypergradient
estimate given by

∇̄f(x, ŷ, v̂) = ∇xf(x, ŷ)−∇x∇yg(x, ŷ)v̂. (3)

Standard bilevel optimization approaches select the stepsizes for updating y, v, and x based on
problem-specific parameters, such as Lipschitzness and strong convexity parameters (Dagréou et al.,
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Algorithm 1 Double-loop Tuning-Free Bilevel Optimizer (D-TFBO)

1: Input: initialization x0, y0, v0, α0 > 0, β0 > 0, γ0 > 0, total iteration rounds T , and ϵy = ϵv = 1
T

2: for t = 0, 1, 2, ..., T − 1 do
3: p = 0, q = 0, set y0

t = y
Pt−1
t−1 , v0t = v

Qt−1
t−1 if t > 0 and y0, v0 otherwise

4: while ∥∇yg(xt, y
p
t )∥2 > ϵy do

5: β2
p+1 = β2

p + ∥∇yg(xt, y
p
t )∥2, yp+1

t = yp
t − 1

βp+1
∇yg(xt, y

p
t ), p = p+ 1

6: end while
7: Pt = p
8: while ∥∇vR(xt, y

Pt
t , vqt )∥2 > ϵv do

9: γ2
q+1 = γ2

q + ∥∇vR(xt, y
Pt
t , vqt )∥2, vq+1

t = vqt − 1
γq+1

∇vR(xt, y
Pt
t , vqt ), q = q + 1

10: end while
11: Qt = q
12: α2

t+1 = α2
t + ∥∇̄f(xt, y

Pt
t , vQt

t )∥2, xt+1 = xt − 1
αt+1

∇̄f(xt, y
Pt
t , vQt

t )

13: end for

2022; Ji et al., 2021; 2022). However, these parameters are often difficult to obtain or approximate in
practice, leading to significant tuning efforts. This challenge motivates the development of adaptive
bilevel optimization algorithms that require less to no tuning.

3.2 EXISTING ADAPTIVE BILEVEL OPTIMIZATION METHODS

Among the existing adaptive bilevel methods, the most closely related to this work are Fan et al.
(2024) and Antonakopoulos et al. (2024). Fan et al. (2024) utilizes Polyak’s stepsizes and a line
search to automate the stepsizes for both inner and outer updates. Antonakopoulos et al. (2024)
applies AdaNGD (Levy, 2017) to solve the inner problem and updates x using the inverse of
cumulative hypergradient norms, where the hypergradient norms are approximated via gradient
mapping (Nesterov, 2013) with Fenchel coupling (Mertikopoulos & Sandholm, 2016).

However, these methods are not entirely tuning-free. For instance, the initialization of Polyak’s
stepsizes in Fan et al. (2024) depends on Lipschitzness parameters, strong convexity parameters, and
the optimal lower-level function values. While the line search approach in Fan et al. (2024) bypasses
the need for problem-specific parameters, it lacks theoretical convergence guarantees. Similarly,
Antonakopoulos et al. (2024) requires the strong convexity parameter for the inner AdaNGD updates.

3.3 DOUBLE-LOOP TUNING-FREE BILEVEL OPTIMIZATION- D-TFBO

As shown in Algorithm 1, our D-TFBO method follows a double-loop structure, where two sub-loops
of iterations are used to solve the lower-level and linear system problems. In the first sub-loop, we
employ the idea of "inverse of cumulative gradient norm" to design the adaptive updates as

yp+1
t ← ypt −

1

βp+1
∇yg(xt, y

p
t ), with β2

p+1 = β2
p + ∥∇yg(xt, y

p
t )∥2.

It can be seen from Algorithm 1 that our D-TFBO algorithm employs a stopping criterion based on
the gradient norm: ∥∇yg(xt, y

p
t )∥2 ≤ ϵy , where ϵy (defaulted to 1/T for convergence analysis) is

independent of problem parameters. The rationale behind this design is that if the stopping criterion
is not met (i.e., ∥∇yg(xt, y

p
t )∥2 > ϵy), the accumulation βp of gradient norms continues to increase.

This increase causes the stepsize 1
βp

to decrease to a value at which a descent in the optimality gap is
guaranteed. A similar stopping criterion applies to the updates of vqt when solving the linear system.

Notably, both sub-loops utilize warm-start variable values but reset the stepsizes at each iteration
(cold-start stepsizes). The warm-start variables ensure that the initial point is reasonably close to the
optimal solution, while the cold-start scheme guarantees stepsizes to achieve stronger lower bounds.
Finally, the update of xt is based on the accumulation of hypergradient estimates ∇̄f(xt, y

Pt
t , vQt

t ).
Remark 1 (Extension to a tunable version with problem-parameter-free tuning coefficients.). Al-
though Algorithm 1 is designed as a tuning-free method, a tunable version with the flexibility to preset
hyperparameters can still achieve the same convergence rate and gradient complexity. The stepsizes
for {x, y, v} can be set as {ηx/αt, ηy/βp, ηv/γq} and the sub-loops stopping criteria can be set to
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Algorithm 2 Single-loop Tuning-Free Bilevel Optimizer (S-TFBO)
1: Input: initialization x0, y0, v0, α0 ≥ 1, β0 > 0, γ0 > 0, number of iteration rounds T
2: for t = 0, 1, 2, ..., T − 1 do
3: β2

t+1 = β2
t + ∥∇yg(xt, yt)∥2

4: γ2
t+1 = γ2

t + ∥∇vR(xt, yt, vt)∥2
5: φt+1 = max{βt+1, γt+1}
6: α2

t+1 = α2
t + ∥∇̄f(xt, yt, vt)∥2

7: yt+1 = yt − 1
βt+1

∇yg(xt, yt)

8: vt+1 = vt − 1
φt+1

∇vR(xt, yt, vt)

9: xt+1 = xt − 1
αt+1φt+1

∇̄f(xt, yt, vt)

10: end for

{cy/T, cv/T}, where {ηx, ηy, ηv, cy, cv} are configurable hyperparameters that are independent of
the problem parameters such as strong-convexity and Lipschitzness parameters.

3.4 SINGLE-LOOP TUNING-FREE BILEVEL OPTIMIZATION- S-TFBO

The two sub-loops in D-TFBO may complicate the implementation, and increase the number of
iterations to meet the stopping criterion. In this section, we propose a much simpler fully single-loop
tuning-free bilevel optimization method named S-TFBO, as described in Algorithm 2.

The design of stepsizes in Algorithm 2 follows a similar idea in Algorithm 1. In each iteration t,
we update αt, βt, γt as accumulations of gradient norms of ∇̄f ,∇yg, and∇vR from the previous
t − 1 iterations. We then update variables yt, vt and xt simultaneously with adaptive stepsizes{

1
βt
, 1
max{βt,γt} ,

1
αtmax{βt,γt}

}
. However, the stepsizes for v and x are not straightforward and

require careful designs guided by our theoretical analysis, as elaborated below.

Design of stepsize for vt. Instead of simply using 1
γt

, we introduce 1
φt

:= 1
max{βt,γt} as the

stepsize. This adjustment is necessary because ∇vR(xt, yt, vt) involves the approximation error
∥yt − y∗(xt)∥2. Since this error is proportional to ∥∇yg(xt, yt)∥2, using 1

βt
helps control this error

and prevents it from exploding after accumulation, as validated in our theoretical analysis later.

Design of stepsize for xt. Similarly, we use 1
αtφt

as the stepsize for updating xt, where the coupled
factor 1

φt
is introduced to mitigate the approximation errors from the yt and vt updates, leading to a

more stable convergence.
Remark 2 (Extension to a tunable version with problem-parameter-free tuning coefficients.). Sim-
ilarly to Remark 1, Algorithm 2 can extend to a tunable version with the same convergence rate
and gradient complexity. The stepsizes for {x, y, v} can be set as {ηx/αtφt, ηy/βt, ηv/φt}, where
{ηx, ηy, ηv} are configurable hyperparameters that are independent of the problem parameters.

4 THEORETICAL ANALYSIS

4.1 TECHNICAL CHALLENGES

Compared to existing single-level tuning-free approaches, fully tuning-free bilevel optimization poses
unique challenges that have not been addressed well.

• Compared to single-level problems, bilevel problems involve interdependent variable updates,
resulting in more complex and interconnected stepsize designs.

• The stages for analyzing each stepsize interact with those of other stepsizes, leading to inter-
twined multi-stage dynamics across various variables.

• The optimization error of each variable can accumulate (hyper)gradient norms from previous
iterations due to the adaptive stepsize designs, complicating the error analysis.

In Section 4.2, we introduce the standard definitions and assumptions. Next, in Section 4.3 and 4.4,
we provide a detailed convergence analysis, explaining how we address the above challenges.

5



Published as a conference paper at ICLR 2025

4.2 ASSUMPTIONS AND DEFINITIONS

We make the following definitions and assumptions for outer- and inner-objective functions, as also
adopted by Ghadimi & Wang (2018); Chen et al. (2022); Khanduri et al. (2021).

Definition 1. A mapping f is L-Lipschitz continuous if ∥f(x1)− f(x2)∥ ≤ L∥x1− x2∥ for ∀x1, x2.

Since the outer objective function Φ(x) is non-convex, we aim to find an ϵ-accurate stationary point,
as defined below.

Definition 2. An output x̄ of an algorithm is the ϵ-accurate stationary point of the objective function
Φ(x) if ∥∇Φ(x̄)∥2 ≤ ϵ, where ϵ ∈ (0, 1).

Assumption 1. Functions f(x, y) and g(x, y) are twice continuously differentiable and g(x, y) is µ
strongly convex w.r.t. y, for x ∈ Rdx , y ∈ Rdy .

The following assumption imposes the Lipschitz continuity on the outer and inner functions and their
derivatives.

Assumption 2. Function f(x, y) is Lf,0-Lipschitz continuous; the gradients ∇f(x, y) and ∇g(x, y)
are Lf,1 and Lg,1-Lipschitz continuous, respectively; the second-order gradients ∇x∇yg(x, y) and
∇y∇yg(x, y) are Lg,2-Lipschitz continuous.

Rather than directly using the Lipschitz continuity parameters as bounds on gradients-which can
cause dimensional inconsistencies during logarithmic operations-we offer the following remark:

Remark 3. Assumption 2 indicates that there exist parameters Cfx , Cfy , Cgxy
and Cgyy

such that
∥∇xf(x, y)∥ ≤ Cfx , ∥∇yf(x, y)∥ ≤ Cfy , ∥∇x∇yg(x, y)∥ ≤ Cgxy

and ∥∇y∇yg(x, y)∥ ≤ Cgyy
.

Assumption 3. There exists m ∈ R such that infx Φ(x) ≥ m.

Next, we present the main convergence theorems for Algorithm 1 and Algorithm 2, along with key
propositions that provide insights into these theorems. A proof sketch is provided in Appendix C.

4.3 CONVERGENCE AND COMPLEXITY ANALYSIS FOR ALGORITHM 1

Firstly, we explain the two-stage framework used in our analysis.

Proposition 1. Suppose the iteration rounds to update {x, y, v} are {T1, T2, T3} and {αt, βt, γt}
are generated by Algorithm 1 or 2. For any Cα ≥ α0, Cβ ≥ β0, Cγ ≥ γ0, we have

(a) either αt ≤ Cα for any t ≤ T1, or ∃k1 ≤ T1 such that αk1
≤ Cα, αk1+1 > Cα;

(b) either βt ≤ Cβ for any t ≤ T2, or ∃k2 ≤ T2 such that βk2 ≤ Cβ , βk2+1 > Cβ;

(c) either γt ≤ Cγ for any t ≤ T3, or ∃k3 ≤ T3 such that γk3 ≤ Cγ , γk3+1 > Cγ .

The analysis for each stepsize is divided into two cases. Let us take (a) as an illustration example.
Case 1: the accumulation αt of gradient norms is bounded by a constant Cα before the end of the
iteration. In this case, the average gradient norm square can be bound as C2

α

T1
, which decreases with

T1. Case 2: the accumulation αT1
exceeds Cα, and hence αt experiences two stages: in stage 1,

αt ≤ Cα, and in stage 2, αt > Cα. The error analysis for stage 1 is similar to that of case 1. In stage
2, the stepsizes are small enough to show the gradient norm decreases via a descent lemma.

Proposition 2. Recall that for tth iteration, the sub-loops in Algorithm 1 aim to find yPt
t and vQt

t

such that ∥∇yg(xt, y
Pt
t )∥2 ≤ ϵy and ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv . Under Assumptions 1, 2, we have
Pt ≤

log(C2
β/β

2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
,

Qt ≤
log(C2

γ/γ
2
0)

log(1 + ϵv/C2
γ)

+
γmax

µ
log
(C2

gyy
(γmax − Cγ)

ϵv

)
,

where {Cβ , Cγ}, βmax, γmax are denied in eq. (5), eq. (22), eq. (29) in the Appendix, respectively.
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Proposition 2 provides upper bounds on Pt and Qt, which correspond to the total numbers of iterations
of the two sub-loops. This result is the same as that of the standard AdaGrad-Norm in the strongly
convex setting Xie et al. (2020). For the sub-loop for y, in Case 1 above, the loop terminates within
log(C2

β/β
2
0)/log(1 + ϵy/C

2
β) steps; and in Case 2, it takes at most log(C2

β/β
2
0)/log(1 + ϵy/C

2
β)

steps for stage 1 and at most βmax
µ log(L2

g,1(βmax − Cβ)/ϵy) for stage 2. For ϵy small enough, it can
be seen that Pt takes an order of 1/ϵy , which is typically larger than those obtained with well-tuned
stepsizes. Based on this proposition, we can derive the following convergence results.
Theorem 1. Suppose Assumptions 1,2,3 are satisfied. By setting ϵy = 1/T and ϵv = 1/T , the
iterates generated by Algorithm 1 satisfy

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
= O

( 1

T

)
,

where Cα and c1 are constants defined in eq. (5) and eq. (37), respectively.

Corollary 1. Under the same setting Theorem 1, to achieve an ϵ-accurate stationary point, Algo-
rithm 1 needs T = O(1/ϵ), {Pt, Qt} = O(1/ϵ), and the gradient complexity (i.e., the number of
gradient evaluations) is Gc(ϵ) = O(1/ϵ2).

Theorem 1 shows that the convergence rate of Algorithm 1 matches that of the standard double-loop
bilevel algorithms (Ji et al., 2021; 2022). According to Proposition 2, the sub-loops for updating
y and v require O(1/ϵy) iterations to ensure an ϵy-level approximation accuracy, which is worse
than the O(1) results achieved by well-tuned bilevel optimization methods. This is because more
iterations are needed to ensure high accuracy in both sub-loops, due to the lack of information about
the Lipschitz parameters and strong convexity parameters. Consequently, the gradient complexity of
our D-TFBO method is worse than those of well-tuned double-loop methods by an order of 1/ϵ.

4.4 CONVERGENCE AND COMPLEXITY ANALYSIS FOR ALGORITHM 2

Differently from D-TFBO that uses sub-loops to achieve high-accurate y and v iterates, the main
challenge for analyzing S-TFBO lies in dealing with the accumulated approximations errors for
updating all variables over iterations. In the following propositions, we will show how we upper-
bound such cumulative approximation errors and lower-bound the adaptive stepsizes.

First, we present a descent result for the objective function Φ(·).
Proposition 3. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration number is T .
No matter k1 in Proposition 1 exists or not, we always have

Φ(xt+1)− Φ(xt) ≤− 1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2
]∥∥∇yg(xt, yt)

∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
.

If in addition, k1 in Proposition 1 exists, then for t ≥ k1, we further have

Φ(xt+1)− Φ(xt) ≤− 1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

4αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2
]∥∥∇yg(xt, yt)

∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
,

where L̄ := max
{
2(C2

fy
L2
g,2/µ

2 + L2
f,1)

1
2 ,
√
2Cgyy

}
.

It can be seen from Proposition 1 that we derive two distinct forms of descent results for the objective
function based on the relationship between αt+1 and Cα (whose form is specified in eq. (41) in
the appendix). Their key difference is that the second inequality is tighter for the case t ≥ k1 by
eliminating a term of LΦ

2α2
t+1φ

2
t+1
∥∇̄f(xt, yt, vt)∥2. Both upper bounds consist of two parts: (i) the

approximation errors O(∥∇yg(xt, yt)∥2 + ∥∇vR(xt, yt, vt)∥2)/(αt+1φt+1) induced by the updates on
y and v; (ii) the descent term −∥∇Φ(xt)∥2/(αt+1φt+1). It can be seen that there exists a trade-off: a
smaller αtφt leads to a more notable descent, but larger approximation errors. However, due to the
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lack of information about the problem parameters, the value of αtφt remains unknown, making it
infeasible to determine the optimal trade-off. Instead, we adjust this trade-off based on an overall
bound on the descent and approximation errors, derived by telescoping all descent inequalities.

Next, we investigate the upper bounds on the summations of the positive error terms in Proposition 3.
Proposition 4. Under Assumptions 1, 2, for any 0 ≤ k0 < t, for the positive error terms in
Proposition 3, we have the upper bounds in terms of logarithmic functions as

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤ a2 log(t+ 1) + b2,

t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
≤ a3 log(t+ 1) + b3,

where a2, b2, a3, b3 are defined in eq. (75) in the Appendix.
Proposition 5. Under Assumptions 1, 2, 3, suppose the total iteration rounds is T . For any case in
Proposition 1, we have the upper-bound of φt and αt in Algorithm 2 as

φt ≤ a1 log(t) + b1, αt ≤Cα +
(
a4 log(t) + b4 + 4(Φ(x0)− inf

x
Φ(x))

)
φt,

where a1, b1 are defined in eq. (65) and a4, b4 are defined in eq. (79) in the Appendix.

Proposition 4 provides the upper bounds on the accumulated positive error terms in Proposition 3, and
Proposition 5 shows that the cumulative gradient norms for all variables increase only logarithmically.
By rearranging the terms and taking the average, we have the upper bound for the average squared
hypergradient norm 1

T

∑T−1
t=0 ∥∇Φ(xt)∥2, establishing the final convergence rate of Algorithm 2, as

shown in the following theorem and corollary.
Theorem 2. Suppose Assumptions 1,2,3 are satisfied. The iterates generated by Algorithm 2 satisfy

1

T

T∑
t=0

∥∇Φ(xt)∥2 ≤
1

2T

[(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))2(
a1 log(T ) + b1

)2
+ Cα

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))(
a1 log(T ) + b1

)]
= O

( log4(T )
T

)
,

where {Cα, a1, b1, a4, b4} = O(1) are defined in eq. (41), eq. (65), eq. (79) in the Appendix.
Corollary 2. Under the same setting Theorem 2, to achieve an ϵ-accurate stationary point, Algo-
rithm 2 needs T = O

(
1
ϵ log

4( 1ϵ )
)

and the gradient complexity is Gc(ϵ) = O
(
1
ϵ log

4( 1ϵ )
)
.

Theorem 2 shows that the proposed Algorithm 2 achieves a convergence rate of O(log4(T )/T ) and a
gradient complexity of O

(
1
ϵ log

4( 1ϵ )
)
, both of which nearly match the results in Ji et al. (2022) of

the standard well-tuned bilevel optimization methods up to polylogarithmic factors.
Remark 4. Note that the difference of 1

ϵ in gradient complexity between double-loop and single-loop
methods has not been observed in previous works on well-tuned bilevel optimization. This difference
stems from the design of the sub-loops. In previous double-loop works, carefully selected stepsizes
are used to ensure that the iterates of each sub-loop converge linearly, up to an approximation error
caused by the shift in x. However, due to the precise control of stepsizes, tuning-free approaches can
only guarantee a sub-linear convergence for each sub-loop (as shown in Proposition 2).

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed algorithm on practical applications
including regularization selection, data hyper-cleaning (Franceschi et al., 2017), and coreset selection
for continual learning (Hao et al., 2024). Our implementation is based on the benchmark provided in
Dagréou et al. (2022) and Hao et al. (2024), respectively. Please refer to Appendix B for more details
about practical implementation, experiment configurations, and additional plots.

5.1 REGULARIZATION SELECTION

The selection of regularization can be framed as a bilevel optimization problem, where the inner objec-
tive focuses on optimizing the model parameters θ on the training set ST = {(dtraini , ytraini )}1≤i≤n,
while the outer objective aims to determine the best regularization term λ on the validation set

8
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SV = {(dvalj , yvalj )}1≤j≤m. Denote the model parameters by θ ∈ Rp and regularization term by
λ ∈ Rp, then the outer and inner problems can be formulated as

f(θ, λ) =
1

m

m∑
j=1

l
(
(dvalj , yvalj ), θ

)
; g(θ, λ) =

1

n

n∑
i=1

l
(
(dtraini , ytraini ), θ

)
+R(θ, λ),

where the loss l((di, yi), θ) = log(1 + exp(−yid⊤i θ), andR(θ, λ) = 1
2

∑p
k=1 exp(λk)θ

2
k represents

the regularization, where each element θk is regularized with strength exp(λk). We compare our
proposed algorithm with benchmark bilevel algorithms including AmIGO (Arbel & Mairal, 2022),
BSA (Ghadimi & Wang, 2018), FSLA (Li et al., 2022), MRBO (Yang et al., 2021), SOBA (Dagréou
et al., 2022), StocBiO (Ji et al., 2021), SUSTAIN (Khanduri et al., 2021), TTSA (Hong et al., 2023b),
VRBO (Yang et al., 2021) on the Covtype dataset. More details are provided in Appendix B.
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Figure 1: Comparison with other bilevel methods. (a) Regularization selection on Covtype dataset.
(b) Data hyper-cleaning on MNIST dataset.

As shown in Figure 1a, our D-TFBO achieves the fastest convergence rate, while S-TFBO converges
slightly more slowly but remains comparable to other well-tuned methods.

5.2 DATA HYPER-CLEANING

The training set ST = {(dtraini , ytraini )}1≤i≤n have been corrupted in this scenario, where the label
of a data sample could be replaced by a random label with a certain probability p. It is important
to note that we do not have prior knowledge about which data samples have been corrupted. The
objective is to develop a model that can effectively fit the corrupted training set while performing
well on the clean validation set SV = {(dvalj , yvalj )}1≤j≤m. We conduct experiments on the MNIST
dataset, where we aim to learn a set of weights λ, one for each training sample, in addition to the
model parameters θ. Hence, the outer and inner problems are

f(θ, λ) =
1

m

m∑
j=1

l
(
(dvalj , yvalj ), θ

)
; g(θ, λ) =

1

n

n∑
i=1

σ(λi)l
(
(dtraini , ytraini ), θ

)
+ C∥θ∥2,

where σ(·) is sigmoid function, C is a regularization constant, and loss function l((di, yi), θ) =
1/(1 + exp(−yid⊤i θ)). Ideally, we would like the weights to be 0 for the corrupted sample and 1 for
the clean sample. More details can be found in Appendix B. We compare the performance with other
bilevel optimization methods including AmIGO (Arbel & Mairal, 2022), BSA (Ghadimi & Wang,
2018), FSLA (Li et al., 2022), MRBO (Yang et al., 2021), SOBA (Dagréou et al., 2022), StocBiO (Ji
et al., 2021), SUSTAIN (Khanduri et al., 2021), VRBO (Yang et al., 2021). The results presented in
Figure 1b demonstrate that our algorithms achieve a convergence rate comparable to other baselines.

5.3 CORESET SELECTION FOR CONTINUAL LEARNING

Coreset selection aims to improve training efficiency by selecting a subset of the most informative
data samples, which can be used as an approximation of the entire dataset. Thus, the model that
minimizes the loss on the coreset can also minimize the loss on the entire dataset. Following the
design in Hao et al. (2024), we apply the proposed algorithms to coreset selection for continual
learning. The inner problem learns model parameters θ, and the outer problem determines the
distribution λ (0 ≤ λ(i) ≤ 1 and ∥λ∥1 = 1) over the entire dataset

f(θ, λ) =

n∑
i=1

li(θ) + CR(λ); g(θ, λ) =

n∑
i=1

λ(i)li(θ),

9
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Table 1: Results on Split CIFAR100. The best and second best results are in bold and underlined.

Method Balanced Imbalanced

AT FGTT AT FGTT

k-means features 57.82±0.69 0.070±0.003 45.44±0.76 0.037±0.002
k-means embedding 59.77±0.24 0.061±0.001 43.91±0.15 0.044±0.001
Uniform Sampling 58.99±0.54 0.074±0.004 44.73±0.11 0.033±0.007
iCaRL 60.74±0.09 0.044±0.026 44.25±2.04 0.042±0.019
Grad Matching 59.17±0.38 0.067±0.003 45.44±0.64 0.038±0.001
GCR 58.73±0.43 0.073±0.013 44.48±0.05 0.035±0.005
Greedy Coreset 59.39±0.16 0.066±0.017 43.80±0.01 0.039±0.007
PBCS 55.64±2.26 0.062±0.001 39.87±1.12 0.076±0.011
BCSR 61.60±0.14 0.051±0.015 47.30±0.57 0.022±0.005

S-TFBO 58.90±0.75 0.046±0.009 45.78±0.70 0.036±0.005
D-TFBO 59.54±0.45 0.041±0.005 46.68±0.72 0.029±0.002

Table 2: Experiment results of sensitivity analysis on Split CIFAR100. The initial values refer to the
constant learning rates in BCSR or α0,β0,γ0 in S-TFBO and D-TFBO.

Method initial = 2 initial = 4 initial = 6 initial = 8 Relative Average Change

BCSR 59.42 56.25 58.75 57.55 5.8%
S-TFBO 58.85 58.55 58.69 58.47 0.4%
D-TFBO 59.71 59.62 59.11 59.08 0.3%

where n is the sample size, C is a constant, λ(i) is the i-th entry. R(λ) = −
∑K

i=1 E(λ + δz)[i]
denotes the smoothed top-K regularizer, where δ is a constant and z ∼ N (0, 1), λ[i] is the i-th largest
component. The regularizer encourages the distribution to have K non-zero entries, corresponding to
the size of the selected coreset. Following Zhou et al. (2022), we use the Split CIFAR100 dataset and
conduct experiments in the balanced and imbalanced scenarios. We compare the proposed algorithms
with various methods, including k-means features (Nguyen et al., 2018), k-means embedding (Sener
& Savarese, 2018), Uniform Sampling, iCaRL (Rebuffi et al., 2017), Grad Matching (Campbell &
Broderick, 2019), GCR (Tiwari et al., 2022), Greedy Coreset (Borsos et al., 2020), PBCS (Zhou et al.,
2022), and BCSR (Hao et al., 2024), with the last three being bilevel optimization-based methods.
We evaluate the performance using the average accuracy and forgetting measure across all tasks after
learning task T . The former is defined as AT = 1

T

∑T
i=1 aT,i, where aT,i is the test accuracy of the i-

th task after learning task T . The latter is defined as FGTT = 1
T

∑T
i=1[maxj∈1,··· ,T−1(aj,i− aT,i)].

The results are shown in Table 1. Each experiment is repeated three times and the average is reported.
It can be observed that our D-TFBO achieves the best FGTT under the balanced setting and the
second-best performance under the imbalanced setting.

Sensitivity analysis w.r.t. different initial learning rates. The tuning-free design provides another
benefit. The proposed algorithms demonstrate more robustness compared to the Hao et al. (2024).
We conduct a simple sensitivity analysis under the balanced setting, regarding the learning rates in
the inner and outer loops. Specifically, we set the initial learning rates in Hao et al. (2024) and α0, β0,
γ0 in S-TFBO and D-TFBO for the inner and outer loops to {2, 4, 6, 8}, where the original values are
set to 5. We run one experiment for each learning rate. Further, we compare the changes in average
accuracy AT . We also compute the average and report the relative change compared to the results
presented in Table 1.

6 CONCLUSION

We introduce two fully tuning-free bilevel optimization algorithms, D-TFBO and S-TFBO. Both
methods adaptively update stepsizes without requiring prior knowledge of problem parameters, while
achieving convergence rates comparable to their well-tuned counterparts. The experimental results
show that our tuning-free design performs comparably to existing well-tuned methods and is more
robust to initial stepsizes. We anticipate that the proposed algorithms and the developed analysis can
be extended to the stochastic setting, and the proposed algorithms may be applied to other applications
such as meta-learning, few-shot learning, and fair machine learning.
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Supplementary material
A ADDITIONAL DISCUSSION ON RELATED WORK

A.1 COMPARISON WITH THE EXISTING BILEVEL METHODS

We compare the proposed D-TFBO and S-TFBO with standard bilevel methods in Table 3. Notably,
both D-TFBO and S-TFBO achieve a (nearly) equivalent convergence rate to other methods without
requiring additional tuning.

Algorithm Sub-loop K
Convergence

Rate T
Gradient

Complexity
Hyperparameters

to Tune

AID-BiO (Ji et al., 2021) O(1) O( 1ϵ ) O( 1ϵ ) 5
ITD-BiO (Ji et al., 2021) O(log( 1ϵ )) O( 1ϵ ) O( 1ϵ log(

1
ϵ )) 3

SOBA (Dagréou et al., 2022) O(1) O( 1ϵ ) O( 1ϵ ) 3
D-TFBO (this paper) O( 1ϵ ) O( 1ϵ ) O( 1

ϵ2 ) 0
S-TFBO (this paper) O(1) O( 1ϵ log

4( 1ϵ )) O( 1ϵ log
4( 1ϵ )) 0

Table 3: Comparison of the proposed tuning-free methods with existing standard bilevel optimization
methods.

A.2 THE NECESSITY OF THE ITERATION NUMBER T

It is possible to eliminate the dependence on the knowledge of iteration T in S-TFBO. In detail, we
can modify the "for" loop in S-TFBO (Algorithm 2) to a "repeat until convergence" structure, as in
Marumo & Takeda (2024), and this allows S-TFBO to converge to any targeted ϵ-stationary point
without the knowledge of total iteration number T . However, D-TFBO (Algorithm 1) requires the
sub-loop stopping criteria to be set as ϵy = O( 1

T ), ϵv = O( 1
T ), which depends on prior knowledge

of T . Thus, D-TFBO may not be feasible.

A.3 SUPPLEMENTARY RELATED WORK ON BILEVEL OPTIMIZATION

Initially introduced by Bracken & McGill (1973), bilevel optimization has been extensively studied
for decades. Early works (Hansen et al., 1992; Shi et al., 2005; Gould et al., 2016; Sinha et al., 2017)
solved the bilevel problem from a constrained optimization perspective. More recently, gradient-based
bilevel methods have gained significant attention for their efficiency and effectiveness in addressing
machine learning problems. Among them, approaches based on Approximate Implicit Differentiation
(AID) (Domke, 2012; Liao et al., 2018; Pedregosa, 2016; Lorraine et al., 2020; Grazzi et al., 2020;
Ji et al., 2021; Arbel & Mairal, 2022; Hong et al., 2023b) exploit the implicit derivation of the
hypergradient, approximating it by solving a linear system.

On the other hand, approaches based on Iterative Differentiation (ITD) (Maclaurin et al., 2015;
Franceschi et al., 2017; Finn et al., 2017; Shaban et al., 2019; Grazzi et al., 2020) estimate the
hypergradient by employing automatic differentiation, utilizing either forward or reverse mode.

A series of stochastic bilevel approaches has been developed and analyzed recently, utilizing Neumann
series (Chen et al., 2022; Ji et al., 2021; Arbel & Mairal, 2022), recursive momentum (Yang et al.,
2021; Huang & Huang, 2021; Guo & Yang, 2021), and variance reduction (Yang et al., 2021;
Dagréou et al., 2022), etc. For the lower-level problem with multiple solutions, several approaches
were proposed based on upper- and lower-level gradient aggregation (Sabach & Shtern, 2017; Liu
et al., 2020; Li et al., 2020), barrier types of regularization (Liu et al., 2021a; 2022), penalty-based
formulations (Shen & Chen, 2023), primal-dual techniques (Sow et al., 2022), and dynamic system-
based methods (Liu et al., 2021b). Another class of approaches formulated the lower-level problem
as a value-function-based constraint (Kwon et al., 2023; Wang et al., 2023) to solve bilevel problems
without second-order gradients.
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B SPECIFICATIONS OF EXPERIMENTS

B.1 PRACTICAL GUIDELINE

In practice, D-TFBO ensures higher accuracy, as shown in most of our experiments but is harder to
implement and the sub-loops cause the waiting time to update x; S-TFBO achieves slightly worse
performance but it has advantages such as simple implementation and no waiting time for updating x.

As practical guidance for practitioners, D-TFBO is well-suited for scenarios requiring high accuracy,
while S-TFBO is preferable for its simpler implementation and no waiting time when updating the
objective variable.

B.2 PRACTICAL IMPLEMENTATION

For regularization selection and data hyper-cleaning, we use the benchmark provided in Dagréou et al.
(2022). For coreset selection, we use the codebase from Hao et al. (2024). We implement D-TFBO
using “for loops” as an approximation, since the magnitude of ∥∇vR(x, y, v)∥ in Algorithm 1 varies
across different experiments. Specifically, the number of loops for updating y and v in regularization
selection and data hyper-cleaning are both set to 10, while the numbers of loops for updating y and v
in coreset selection are 5 and 3, respectively.

0 5 10 15 20 25 30 35 40
Time [sec]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

AmIGO
BSA
FSLA
MRBO
SOBA
StocBiO
SUSTAIN
TTSA
VRBO
S-TFBO
D-TFBO

(a) Covtype

0 20 40 60 80 100
Time [sec]

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Lo
ss

AmIGO
BSA
FSLA
MRBO
SOBA
StocBiO
SUSTAIN
VRBO
S-TFBO
D-TFBO

(b) MNIST

Figure 2: Comparison of running time on regularization selection and data hyper-cleaning.

B.3 CONFIGURATION

We adopt the default configuration for regularization selection and data hyper-cleaning. The batch
size is 64. The maximum iterations are 2048 and 512, respectively. The data corruption ratio in
hyper-cleaning is 0.1. For coreset selection, we also use the default configuration except for the
leaning rates, due to the tuning-free design. The α0, β0, and γ0 values are set to 5.
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Figure 3: The upper loss of coreset selection.
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B.4 ADDITIONAL RESULTS

For regularization and data hyper-cleaning, we also present the loss curves regarding running time
in Figure 2. Our methods exhibit a faster running time than other baselines on the Covtype dataset.
For coreset selection, we adopt the default settings of initial values, such as the constant learning
rates in BCSR and α0, β0, γ0 in S-TFBO and D-TFBO, all set to 5. We re-ran the methods on
Split-CIFAR100 under the balanced scenarios and recorded the loss and running time. The loss
curves regarding task and running time are shown in Figure 3. Following Hao et al. (2024), we plot
the loss value every 5 mini-batches. The loss decreases gradually but increases when a new task is
encountered. Additionally, S-TFBO converges faster than BCSR (Hao et al., 2024), while D-TFBO
performs comparably to BCSR (Hao et al., 2024).

C PROOF SKETCH

The proofs of Propositions 1, 2, 3, 4 and 5 can be found in Lemma 4, 9, 11, 15,17, respectively.
In this section, we present a high level proof sketch that outlines the convergence and gradient
complexity analysis of Algorithm 1 and Algorithm 2, emphasizing the key challenges and our
technical innovations.

Proof sketch of Algorithm 1:

Step 1: We first discuss the two-stage framework in our problem in Lemma 4 and we develop two
forms of descent lemma of the objective function in Lemma 7 based on the two stages of αt in
Lemma 4.

Step 2: We developed upper bounds of αt under the two stages in Lemma 4.

Step 3: We provide the maximum iteration numbers for the sub-loops approximating y∗(xt) and
v∗(xt).

Step 4: Combining the results in Step 1 and Step 2, we telescope and take the average of the
inequalities in the descent lemma of the objective function, then we obtain the convergence rate.

Step 5: Combining the maximum iteration numbers in Step 3 and convergence rate in Step 4, we
obtain the gradient computation complexity to find ϵ-stationary point. Then the proof is complete.

Proof sketch of Algorithm 2:

Step 1: We first discuss the two-stage framework in our problem in Lemma 4 and we develop two
forms of descent lemma of the objective function in Lemma 11 based on the two stages of αt in
Lemma 4.

Step 2: We develop a rough upper bound of two important components in the descent lemma in
Lemma 11:

∑t
k=k2

∥∇yg(xk,yk)∥2

βk+1
and

∑t
k=k3

∥∇vR(xk,yk,vk)∥2

φk+1
, where k2 and k3 represents the

second stage in Lemma 4.

Step 3: Following the results in Step 2 and the upper bound of vt in Lemma 10, we obtain a two-way
relationship between φt+1 and

∑t
k=0

∥∇̄f(xk,yk,vk)∥2

α2
k+1

, which further indicates the logarithmic upper
bounds of both terms in Lemma 15 and Lemma 16, respectively.

Step 4: Incorporating the results from Step 3 into the rough bounds from Step 2, we can also obtain
the logarithmic upper bounds of

∑t
k=k2

∥∇yg(xk,yk)∥2

βk+1
and

∑t
k=k3

∥∇vR(xk,yk,vk)∥2

φk+1
in Lemma 16.

Step 5: We rearrange the terms in Lemma 11 and incorporate in the results in Step 4, we obtain two
forms of the upper bound of αt in Lemma 17.

Step 6: Combining the results in Steps 3, 4, 5, we telescope and take the average of the inequalities
in the descent lemma of the objective function, then we obtain the convergence rate.

Step 7: Without sub-loops, via the convergence rate in Step 6, we can directly obtain the gradient
computation complexity to find ϵ-stationary point. Then the proof is complete.
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D PROOFS OF PRELIMINARY LEMMAS

Lemma 1 (Ward et al. (2020) Lemma 3.2). For any non-negative a1, ..., aT , and a1 ≥ 1, we have

T∑
l=1

al∑l
i=1 ai

≤ log

(
T∑
l=1

al

)
+ 1. (4)

Lemma 2. Under Assumptions 1, 2, we have basic properties as follows:

(a) Φ(x) is LΦ-smooth w.r.t x, where LΦ :=
(
Lf,1 +

Lg,2Cfy

µ

)(
1 +

Cgxy

µ

)2
;

(b) y∗(x) is Ly-Lipschitz continuous w.r.t. x, where Ly :=
Cgxy

µ ;

(c) the gradient estimator ∇̄f(x, y, v) is (Lg,2∥v∥+ Lf,1) -Lipschitz continuous w.r.t. (x, y),
and Lg,1-Lipschitz continuous w.r.t. v;

(d) ∇̄f(x, y, v) can be bounded as ∥∇̄f(x, y, v)∥ ≤ Cgxy
∥v∥+ Cfx .

Proof. The proof of (a) and (b) can refer to Ghadimi & Wang (2018). For (c), under Assumption 2,
we have

∥∇̄f(x1, y1, v)− ∇̄f(x2, y2, v)∥ ≤∥∇x∇yg(x1, y1)−∇x∇yg(x2, y2)∥ · ∥v∥
+ ∥∇xf(x1, y1)−∇xf(x2, y2)∥
≤(Lg,2∥v∥+ Lf,1)(∥x1 − x2∥+ ∥y1 − y2∥)

∥∇̄f(x, y, v1)− ∇̄f(x, y, v2)∥ ≤∥∇x∇yg(x, y)∥ · ∥v1 − v2∥ ≤ Lg,1∥v1 − v2∥.

By Assumption 2 and Remark 3, we can easily prove (d) as

∥∇̄f(x, y, v)∥ ≤ ∥∇x∇yg(x, y)∥ · ∥v∥+ ∥∇xf(x, y)∥ ≤ Cgxy
∥v∥+ Cfx .

Then the proof is complete.

Lemma 3. Under Assumptions 1, 2, we have basic properties of linear system function R in eq. (2)
as follows:

(a) R(x, y, v) is µ-strongly convex and Cgyy -smooth w.r.t. v;

(b) ∇vR(x, y, v) is (Lg,2∥v∥+ Lf,1)-Lipschitz continuous w.r.t. (x, y);

(c) ∇vR(x, y, v) can be bounded as ∥∇vR(x, y, v)∥ ≤ Cgyy∥v∥+ Cfy ;

(d) v∗(x) in eq. (2) can be bounded as ∥v∗(x)∥ ≤ Cfy

µ , and v̂∗(x, y) := argminv R(x, y, v) can

also be bounded as ∥v̂∗(x, y)∥ ≤ Cfy

µ ;

(e) v∗(x) is Lv-Lipschitz continuous w.r.t. x and v̂∗(x, y) is L̄v-Lipschitz continuous w.r.t. y,

where Lv :=
(

Lf,1

µ +
CfyLg,2

µ2

)
(1 + Ly) and L̄v :=

Lf,1

µ +
CfyLg,2

µ2 .

Proof. First of all, since ∇v∇vR(x, y, v) = ∇y∇yg(x, y), we know µI ⪯ ∇y∇yg(x, y). Thus,
according to Assumption 1,2, we have

∥∇v∇vR(x, y, v1)−∇v∇vR(x, y, v2)∥ ≤ ∥∇y∇yg(x, y)∥∥v1 − v2∥ ≤ Cgyy
∥v1 − v2∥.

Then (a) is proved. Next, by using Lipschitz continuity in Assumption 2, we have

∥∇vR(x1, y1, v)−∇vR(x2, y2, v)∥ ≤∥∇y∇yg(x1, y1)−∇y∇yg(x2, y2)∥ · ∥v∥
+ ∥∇yf(x1, y1)−∇yf(x2, y2)∥

≤(Lg,2∥v∥+ Lf,1)(∥x1 − x2∥+ ∥y1 − y2∥).
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Then (b) is proved. By Assumption 2, we can easily prove (c) as

∥∇vR(x, y, v)∥ ≤ ∥∇y∇yg(x, y)∥ · ∥v∥+ ∥∇yf(x, y)∥ ≤ Cgyy
∥v∥+ Cfy .

Next, for v̂∗(x, y), we have

∇vR
(
x, y, v̂∗(x, y)

)
= ∇y∇yg(x, y)v̂

∗(x, y)−∇yf(x, y) = 0,

which indicates that

∥v̂∗(x, y)∥ =
∥∥[∇y∇yg(x, y)

]−1∇yf(x, y)
∥∥ ≤ ∥∥[∇y∇yg(x, y)

]−1∥∥ · ∥∇yf(x, y))∥ ≤
Cfy

µ
.

Since v∗(x) is a special case as v∗(x) = v̂∗(x, y∗(x)), (d) is proved. The proof of the first part of (e)
can refer to Lemma 4 in Yang et al. (2024); for the second part, we have

∥v̂∗(x, y1)− v̂∗(x, y2)∥
=
∥∥[∇y∇yg(x, y1)]

−1∇yf(x, y1)− [∇y∇yg(x, y2)]
−1∇yf(x, y2)

∥∥
≤
∥∥[∇y∇yg(x, y1)]

−1(∇yf(x, y1)−∇yf(x, y2)
)∥∥

+
∥∥([∇y∇yg(x, y1)]

−1 − [∇y∇yg(x, y2)]
−1)∇yf(x, y2)

∥∥
≤Lf,1

µ
∥y1 − y2∥+ Cfy

∥∥([∇y∇yg(x, y1)]
−1(∇y∇yg(x, y2)−∇y∇yg(x, y1)

)
[∇y∇yg(x, y2)]

−1)∥∥
≤
(
Lf,1

µ
+

CfyLg,2

µ2

)
∥y1 − y2∥.

Thus, the second part of (e) is proved and the proof of Lemma 3 is complete.

Lemma 4. Suppose the iteration rounds to update {x, y, v} are {T1, T2, T3} and {αt, βt, γt} are
generated by Algorithm 1 or 2. For any Cα ≥ α0, Cβ ≥ β0, Cγ ≥ γ0, we have

(a) either αt ≤ Cα for any t ≤ T1, or ∃k1 ≤ T1 such that αk1
≤ Cα, αk1+1 > Cα;

(b) either βt ≤ Cβ for any t ≤ T2, or ∃k2 ≤ T2 such that βk2
≤ Cβ , βk2+1 > Cβ;

(c) either γt ≤ Cγ for any t ≤ T3, or ∃k3 ≤ T3 such that γk3
≤ Cγ , γk3+1 > Cγ .

Proof. The proof resembles the Lemma 4.1 in Ward et al. (2020). Here we only prove part (a), and
the other two are similar. Note that if αT1

> Cα, then there must exist k1 ≤ T1 such that αk1
≤ Cα,

αk1+1 > Cα, because Cα ≥ α0 and the sequence {αk} is monotonically increasing. Otherwise, we
have αt ≤ αT1

≤ Cα for any t ≤ T1. This completes the proof of part (a).
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E PROOF OF THEOREM 1

We define some notation for convenience before proving Theorem 1.

E.1 NOTATION

Here, we define the following constants as thresholds for parameters βp, γq , αt in Algorithm 1 as

Cα := max
{
2LΦ, α0

}
, Cβ := max

{
Lg,1, β0

}
, Cγ := max

{
Cgyy , γ0

}
. (5)

E.2 PROOFS OF PRELIMINARY LEMMAS

Lemma 5. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 1, we have

∥yPt
t − y∗(xt)∥2 ≤

ϵy
µ2

,
∥∥vQt

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ ϵv

µ2
,

where ϵy and ϵv are sub-loop stopping criteria in Algorithm 1.

Proof. For the kth iteration, according to the stop criteria of the sub-loops, we have

∥∇yg(xt, y
Pt
t )∥2 ≤ ϵy, ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv.

By using Assumptions 1,2, we have

∥yPt
t − y∗(xt)∥2 ≤

1

µ2

∥∥∇yg(xt, y
Pt
t )−∇yg

(
xt, y

∗(xt)
)∥∥2 ≤ ϵy

µ2
,∥∥vQt

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ 1

µ2

∥∥∇vR(xt, y
Pt
t , vQt

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2 ≤ ϵv

µ2
,

since ∥∇yg(xt, y
∗(xt))∥2 = 0 and

∥∥∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2 = 0. Thus, the proof is complete.

Lemma 6. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 1, we have ∥∇̄f(xt, y
Pt
t , vQt

t )∥2 ≤

C2
f , where Cf :=

(
2C2

gxy
ϵv

µ2 +
4C2

gxy
C2

fy

µ2 + 4C2
fy

) 1
2

.

Proof. For the kth iteration, we have

∥∇̄f(xt, y
Pt
t , vQt

t )∥2

≤2
∥∥∇̄f(xt, y

Pt
t , vQt

t )− ∇̄f
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )

)∥∥2
+ 2

∥∥∇̄f
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )

)∥∥2

=2
∥∥∇x∇yg(xt, y

Pt
t )

(
vQt
t − v̂∗(xt, y

Pt
t )

)∥∥2
+ 2∥∇x∇yg(xt, y

Pt
t )v̂∗(xt, y

Pt
t )−∇yf(xt, y

Pt
t )∥2

≤2
∥∥∇x∇yg(xt, y

Pt
t )

∥∥2 · ∥vQt
t − v̂∗(xt, y

Pt
t )∥2 + 2∥∇x∇yg(xt, y

Pt
t )v̂∗(xt, y

Pt
t )−∇yf(xt, y

Pt
t )∥2

(a)

≤
2C2

gxy
ϵv

µ2
+

4C2
gxy

C2
fy

µ2
+ 4C2

fy ,

where (a) uses Assumption 1, Remark 3, Lemma 3 and Lemma 5. Then, the proof is complete.

E.3 DESCENT IN OBJECTIVE FUNCTION

Lemma 7. Under Assumptions 1, 2, for Algorithm 1, suppose the total iteration number is T . No
matter k1 in Lemma 4 exists or not, we always have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1
∥∇Φ(xt)∥2 −

1

2αt+1

(
1− LΦ

2αt+1

)
∥∇̄f(xt, y

Pt
t , vQt

t )∥2 + ϵ′

2αt+1
.

(6)

If in addition, k1 in Lemma 4 exists, then for t ≥ k1, we further have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1
∥∇Φ(xt)∥2 −

1

4αt+1
∥∇̄f(xt, y

Pt
t , vQt

t )∥2 + ϵ′

2αt+1
, (7)

where ϵ′ := L̄2

µ2 (ϵy + ϵv) and L̄ := max
{
2
(C2

fy
L2

g,2

µ2 + L2
f,1 + C2

gyy
L̄2
v

) 1
2 ,
√
2Cgyy

}
.
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Proof. From Lemma 2, we have Φ(x) is LΦ-smooth. So we can apply the descent lemma to Φ as

Φ(xt+1) ≤Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
LΦ

2
∥xt+1 − xt∥2

=Φ(xt)−
1

αt+1

〈
∇Φ(xt), ∇̄f

(
xt, y

Pt
t , vQt

t

)〉
+

LΦ

2α2
t+1

∥∥∇̄f(xt, y
Pt
t , vQt

t

)∥∥2
=Φ(xt)−

1

2αt+1
∥∇Φ(x)∥2 − 1

2αt+1

∥∥∇̄f(xt, y
Pt
t , vQt

t

)∥∥2
+

1

2αt+1

∥∥∇Φ(xt)− ∇̄f
(
xt, y

Pt
t , vQt

t

)∥∥2 + LΦ

2α2
t+1

∥∥∇̄f(xt, y
Pt
t , vQt

t

)∥∥2, (8)

where the approximation error∥∥∇Φ(xt)− ∇̄f
(
xt, y

Pt
t , vQt

t

)∥∥2

=
∥∥∇̄f

(
xt, y

∗(xt), v
∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , vQt

t

)∥∥2

≤2
∥∥∇̄f

(
xt, y

∗(xt), v
∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , v∗(xt)

)∥∥2

+ 2
∥∥∇̄f

(
xt, y

Pt
t , v∗(xt)

)
− ∇̄f

(
xt, y

Pt
t , vQt

t

)∥∥2

≤4
∥∥∇y∇yg(xt, y

∗(xt))v
∗(xt)−∇y∇yg

(
xt, y

Pt
t

)
v∗(xt)

∥∥2

+ 4
∥∥∇yf

(
xt, y

∗(xt)
)
−∇yf(xt, y

Pt
t )

∥∥2
+ 2

∥∥∇y∇yg(xt, y
Pt
t )

(
v∗(xt)− vQt

t

)∥∥2

(a)

≤4
(C2

fyL
2
g,2

µ2
+ L2

f,1

)
∥yPt

t − y∗(xt)∥2 + 2C2
gyy

∥vQt
t − v∗(xt)∥2

≤4
(C2

fyL
2
g,2

µ2
+ L2

f,1

)
∥yPt

t − y∗(xt)∥2 + 4C2
gyy

∥vQt
t − v̂∗(xt, y

Pt
t )∥2 + 4C2

gyy
∥v̂∗(xt, y

Pt
t )− v∗(xt)∥2

(b)

≤4

(
C2

fyL
2
g,2

µ2
+ L2

f,1 + C2
gyy

L̄2
v

)
∥yPt

t − y∗(xt)∥2 + 4C2
gyy

∥vQt
t − v̂∗(xt, y

Pt
t )∥2

≤L̄2(∥yPt
t − y∗(xt)∥2 + ∥vQt

t − v̂∗(xt, y
∗(xt))∥2

)
, (9)

where (a) uses Assumption 2, Remark 3 and Lemma 3; (b) uses v∗(xt) = v̂∗
(
xt, y

∗(xt)
)

and
Lemma 3. By using Lemma 5, we have∥∥∇Φ(xt)− ∇̄f

(
xt, y

Pt
t , vQt

t

)∥∥2 ≤ L̄2

µ2
(ϵy + ϵv) =: ϵ′. (10)

By plugging eq. (10) into eq. (8), we obtain (6).

Now if in addition, k1 in Lemma 4 exists, then for t ≥ k1, we have αt+1 > Cα ≥ 2LΦ. From (6) we
can immediately obtain (7). Thus, the proof is complete.

E.4 THE BOUND OF αt

Lemma 8. Under Assumptions 1, 2, 3, suppose the number of total iteration rounds in Algorithm 1
is T . If there exists k1 ≤ T described in Lemma 4, we have

αt ≤Cα, t ≤ k1;

αt ≤Cα + 2c0 +
2tϵ′

α0
, t ≥ k1,

where we define

c0 := 2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

. (11)

When such k1 does not exist, we have αt ≤ Cα for any t ≤ T .

Proof. According to Lemma 4, the proof can be split into the following three cases.

Case 1: if αT ≤ Cα, for any t < T , we have the upper bound of αt+1 as αt+1 ≤ Cα.
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Case 2: if αT > Cα, there exists k1 ≤ T described in Lemma 4. Then we have the upper bound of
αt+1 as αt+1 ≤ Cα for any t < k1.

Case 3: in the remaining proof, we only consider and explore the case k1 ≤ t ≤ T when αT > Cα.

From Lemma 7, for k ≥ k1, we have

Φ(xk+1) ≤Φ(xk)−
1

2αk+1
∥∇Φ(xk)∥2 −

1

4αk+1
∥∇̄f(xk, y

Pk

k , vQk

k )∥2 + ϵ′

2αk+1
,

which indicates that

∥∇̄f(xk, y
Pk

k , vQk

k )∥2

αk+1
≤ 4
(
Φ(xk)− Φ(xk+1)

)
+

2ϵ′

αk+1
.

By taking summation over k = k1, . . . , t, we have

t∑
k=k1

∥∇̄f(xk, y
Pk

k , vQk

k )∥2

αk+1
≤4

t∑
k=k1

(
Φ(xk)− Φ(xk+1)

)
+

t∑
k=k1

2ϵ′

αk+1

=4
(
Φ(xk1

)− Φ(xt+1)
)
+

t∑
k=k1

2ϵ′

αk+1
. (12)

For Φ(xk1
), by telescoping (6), we get

Φ(xk1
) ≤Φ(x0) +

k1−1∑
k=0

LΦ

4α2
k+1

∥∇̄f(xk, y
Pk

k , vQk

k )∥2 +
k1−1∑
k=0

ϵ′

2αk+1
. (13)

Plugging eq. (13) into eq. (12), we obtain

t∑
k=k1

∥∇̄f(xk, y
Pk
k , v

Qk
k )∥2

αk+1
≤4

(
Φ(x0)− inf

x
Φ(x)

)
+

k1−1∑
k=0

LΦ

α2
k+1

∥∇̄f(xk, y
Pk
k , v

Qk
k )∥2 +

t∑
k=0

2ϵ′

αk+1

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦ

∑k1−1
k=0 ∥∇̄f(xk, y

Pk
k , v

Qk
k )∥2

α2
0

+

t∑
k=0

2ϵ′

αk+1

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦα
2
k1

α2
0

+
2(t+ 1)ϵ′

α0

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2(t+ 1)ϵ′

α0
. (14)

Inspired by Ward et al. (2020) and using telescoping, we have

αt+1 =αt +
∥∇̄f(xt, y

Pt
t , vQt

t )∥2

αt+1 + αt

≤αt +
∥∇̄f(xt, y

Pt
t , vQt

t )∥2

αt+1

≤αk1 +

t∑
k=k1

∥∇̄f(xk, y
Pk

k , vQk

k )∥2

αk+1

≤Cα + 4
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2(t+ 1)ϵ′

α0
.

Thus, the proof is complete.
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E.5 CONVERGENCE ANALYSIS OF SUB-LOOPS

Lemma 9. Recall that for the tth iteration, the sub-loops in Algorithm 1 aim to find yPt
t and vQt

t

such that ∥∇yg(xt, y
Pt
t )∥2 ≤ ϵy and ∥∇vR(xt, y

Pt
t , vQt

t )∥2 ≤ ϵv . Here we prove that

Pt ≤ P ′ :=
log(C2

β/β
2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
, (15a)

Qt ≤ Q′ :=
log(C2

γ/γ
2
0)

log(1 + ϵv/C2
γ)

+
γmax

µ
log
(C2

gyy
(γmax − Cγ)

ϵv

)
, (15b)

where βmax := Cβ + Lg,1

( 2ϵy
µ2 +

2C2
gxy

C2
f

µ2α2
0

+ 2 log(Cβ/β0) + 1
)

and γmax := Cγ + Cgyy

( 2ϵy
µ2 +

8C2
fy

µ2 + 2 log(Cγ/γ0) + 1
)
.

Proof. The proof is split into the following two parts.

Part I: maximum number for convergence of g(xt, y
Pt
t ).

Inspired by Xie et al. (2020), we split the analysis into the following two cases.

Case 1: k2 does not exist before we find Pt. This indicates βPt
< Cβ . Referring to Lemma 2 in Xie

et al. (2020), we have Pt <
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

and therefore the desired upper bound for Pt holds. This

can be proved as follows. If Pt ≥
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

, we have the following result.

β2
Pt

=β2
Pt−1 + ∥∇yg(xt, y

Pt−1
t )∥2

=β2
Pt−1

(
1 +
∥∇yg(xt, y

Pt−1
t )∥2

β2
Pt−1

)
≥β2

0

Pt−1∏
p=0

(
1 +
∥∇yg(xt, y

p
t )∥2

β2
p

)
≥β2

0

(
1 +

ϵy
C2

β

)Pt

≥ C2
β . (16)

This contradicts βPt < Cβ .

Case 2: k2 exists and Pt ≥ k2. Here we have βk2
≤ Cβ and βk2+1 > Cβ .

Firstly, we prove k2 ≤
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

. Similar to Case 1, if k2 >
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

, following eq. (16)by

replacing Pt with k2, we have

β2
k2
≥ β2

0

(
1 +

ϵy
C2

β

)k2

> C2
β ,

which contradicts βk2
≤ Cβ .

Secondly, referring to Lemma 3 in Xie et al. (2020), we have the bound of ∥yk2
t − y∗(xt)∥2 as

∥yk2
t − y∗(xt)∥2

=

∥∥∥∥yk2−1
t − ∇yg(xt, y

k2−1
t )

βk2

− y∗(xt)

∥∥∥∥2
=∥yk2−1

t − y∗(xt)∥2 +
∥∥∥∥∇yg(xt, y

k2
t )

βk2

∥∥∥∥2 − 2

〈
yk2−1
t − y∗(xt),

∇yg(xt, y
k2−1
t )

βk2

〉
(a)

≤∥yk2−1
t − y∗(xt)∥2 +

∥∥∥∥∇yg(xt, y
k2−1
t )

βk2

∥∥∥∥2 − 2

βk2Lg,1

∥∥∇yg(xt, y
k2−1
t )−∇yg

(
xt, y

∗(xt)
)∥∥2
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≤∥yk2−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
k2−1
t )∥2

β2
k2

≤∥y0t − y∗(xt)∥2 +
k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
p+1

(b)

≤∥yPt−1

t−1 − y∗(xt)∥2 +
k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2/β2

0∑p
k=0 ∥∇yg(xt, ykt )∥2/β2

0

(c)

≤2∥yPt−1

t−1 − y∗(xt−1)∥2 + 2∥y∗(xt−1)− y∗(xt)∥2 + log

( k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
0

)
+ 1

(d)

≤ 2ϵy
µ2

+
2C2

gxy
∥∇̄f(xt−1, y

Pt−1

t−1 , v
Qt−1

t−1 )∥2

µ2α2
t

+ log

( k2−1∑
p=0

∥∇yg(xt, y
p
t )∥2

β2
0

)
+ 1

(e)

≤ 2ϵy
µ2

+
2C2

gxy
C2

f

µ2α2
0

+ 2 log(Cβ/β0) + 1, (17)

where (a) uses Assumptions 1,2; (b) refers to the warm start of y0t ; (c) uses Lemma 1; (d) uses
Lemmas 2 and 5; (e) follows from Lemma 6 and βk2 ≤ Cβ .

Last, following Xie et al. (2020), for all P > k2, we have the bound of ∥yPt − y∗(xt)∥2 as

∥yPt − y∗(xt)∥2 =∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

−
2
〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
βP

≤∥yP−1
t − y∗(xt)∥2 −

1

βP

(
2− Lg,1

βP

)〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
(a)

≤∥yP−1
t − y∗(xt)∥2 −

1

βP

〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
(b)

≤
(
1− µ

βP

)
∥yP−1

t − y∗(xt)∥2

(c)

≤e−µ(P−k2)/βP ∥yk2
t − y∗(xt)∥2

(d)

≤e−µ(P−k2)/βP

(
2ϵy
µ2

+
2C2

gxy
C2

f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
, (18)

where (a) uses βP ≥ Cβ ≥ Lg,1; (b) uses Assumption 1; (c) follows from βP ≥ Cβ ≥ Lg,1 ≥ µ
and 1−m ≤ e−m for 0 < m < 1; (d) refers to eq. (17). Inspired by Lemma 4 in Xie et al. (2020),
we have the upper-bound of βP as

βP = βP−1 +
∥∇yg(xt, y

P−1
t )∥2

βP + βP−1
≤ βk2

+

P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1
. (19)

To further bound the last term of the right-hand side of eq. (19), using Assumption 2, we have the
following result:
∥yPt − y∗(xt)∥2

=∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

−
2
〈
yP−1
t − y∗(xt),∇yg(xt, y

P−1
t )

〉
βP

(a)

≤∥yP−1
t − y∗(xt)∥2 +

∥∇yg(xt, y
P−1
t )∥2

β2
P

− 2∥∇yg(xt, y
P−1
t )−∇yg(xt, y

∗(xt))∥2

βPLg,1

(b)

≤∥yP−1
t − y∗(xt)∥2 −

∥∇yg(xt, y
P−1
t )∥2

βPLg,1

≤∥yk2
t − y∗(xt)∥2 −

P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1Lg,1
, (20)
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where (a) uses Assumptions 1,2 ; (b) refers to βP ≥ Cβ ≥ Lg,1. By rearranging eq. (20) and using
eq. (17), we have

P−1∑
p=k2

∥∇yg(xt, y
p
t )∥2

βp+1
≤Lg,1

(
∥yk2

t − y∗(xt)∥2 − ∥yPt − y∗(xt)∥2
)

≤Lg,1∥yk2
t − y∗(xt)∥2

≤Lg,1

(
2ϵy
µ2

+
2C2

gxy
C2

f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
. (21)

Plugging eq. (21) into eq. (19), we obtain the upper-bound of βP as

βP ≤ Cβ + Lg,1

(
2ϵy
µ2

+
2C2

gxy
C2

f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
=: βmax. (22)

Then, by plugging eq. (22) into eq. (18), we have the upper bound of ∥yPt − y∗(xt)∥2 as

∥yPt − y∗(xt)∥2 ≤ e−µ(P−k2)/βmax

(
2ϵy
µ2

+
2C2

gxy
C2

f

µ2α2
0

+ 2 log(Cβ/β0) + 1

)
. (23)

Recall we have the upper bound k2 ≤
log(C2

β/β
2
0)

log(1+ϵy/C2
β)

. Note that P ′ defined in (15a) satisfies

P ′ ≥ k2 +
βmax

µ
log
(
L2
g,1(βmax − Cβ)/ϵy

)
.

By replacing P with P ′ in eq. (23), we have

∥∇yg(xt, y
P ′

t )∥2 ≤ L2
g,1∥yP

′

t − y∗(xt)∥2 ≤ e−µ(P ′−k2)/βmaxL2
g,1(βmax − Cβ) ≤ ϵy.

Therefore, Pt ≤ P ′ and this completes the proof of (15a).

Part II: maximum number for convergence of R(xt, y
Pt
t , vQt

t ).

Similarly to Part I, we split the analysis into the following two cases.

Case 1: k3 does not exist before we find Qt. This indicates γQt
< Cγ . Then we have Qt <

log(C2
γ/γ

2
0)

log(1+ϵv/C2
γ)

. Otherwise, if Qt ≥
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

, we have the following result.

γ2
Qt

=γ2
Qt−1 + ∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

=γ2
Qt−1

(
1 +
∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

γ2
Qt−1

)
≥γ2

0

Qt−1∏
q=0

(
1 +
∥∇vR(xt, y

Pt
t , vQt−1

t )∥2

γ2
Qt−1

)
≥γ2

0

(
1 +

ϵv
C2

γ

)Qt

≥ C2
γ .

This contradicts γQt
< Cγ .

Case 2: k3 exists and Qt ≥ k3. Here we have γk3
≤ Cγ and γk3+1 > Cγ .

Firstly, we have k3 ≤
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

. Similar to Case 1, if k3 >
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

, following eq. (16), by
replacing Qt with k3, we have

γ2
k3
≥ γ2

0

(
1 +

ϵv
C2

γ

)k3

> C2
γ ,

which contradicts γk3 ≤ Cγ .
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Secondly, referring to Lemma 3 in Xie et al. (2020), we have the bound of ∥vk3
t − v∗(xt)∥2 as

following:∥∥vk3
t − v̂∗(xt, y

Pt
t )
∥∥2 =

∥∥∥∥vk3−1
t − ∇vR(xt, y

Pt
t , vk3−1

t )

γk3

− v̂∗(xt, y
Pt
t )

∥∥∥∥2
=
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
− 2

γk3

〈
vk3−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vk3−1

t )
〉

(a)

≤
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
− 2

γk3
Cgyy

∥∥∇vR(xt, y
Pt
t , vk3−1

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2

≤
∥∥vk3−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∥∥∇vR(xt, y

Pt
t , vk3−1

t )

γk3

∥∥∥∥2
≤
∥∥v0t − v̂∗(xt, y

Pt
t )
∥∥2 + k3−1∑

q=0

∥∥∥∥∇vR(xt, y
Pt
t , vqt )

γk3

∥∥∥∥2
(b)

≤
∥∥v0t − v̂∗(xt, y

Pt
t )
∥∥2 + k3−1∑

q=0

∥∇vR(xt, y
Pt
t , vqt )∥2/γ2

0∑q
k=0 ∥∇vR(xt, y

Pt
t , vkt )∥2/γ2

0

(c)

≤2
∥∥vPt−1

t−1 − v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 2

∥∥v̂∗(xt−1, y
Pt−1

t−1 )− v̂∗(xt, y
Pt
t )
∥∥2

+ log

( k3−1∑
q=0

∥∇vR(xt, y
Pt
t , vkt )∥2/γ2

0

)
+ 1

≤2
∥∥vPt−1

t−1 − v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 4

∥∥v̂∗(xt−1, y
Pt−1

t−1 )
∥∥2 + 4

∥∥v̂∗(xt, y
Pt
t )
∥∥2

+ log

( k3−1∑
q=0

∥∇vR(xt, y
Pt
t , vkt )∥2/γ2

0

)
+ 1

(d)

≤ 2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1, (24)

where (a) uses Lemma 3 and ∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)
= 0; (b) refers to the warm start of v0t ; (c)

uses Lemma 1; (d) follows from Lemma 3,5 and γk3
≤ Cγ .

Last, similar to Part I, for all Q > k3, we explore the bound of ∥vQt − v∗(xt)∥2 as∥∥vQt − v̂∗(xt, y
Pt
t )
∥∥2

=
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2
Q

−
2
〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

γQ
(a)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − 1

γQ

(
2−

Cgyy

γQ

)〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

(b)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − 1

γQ

〈
vQ−1
t − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

(c)

≤
(
1− µ

γQ

)∥∥vQ−1
t − v̂∗(xt, y

Pt
t )
∥∥2

(d)

≤e−µ(Q−k3)/γQ
∥∥vk3

t − v̂∗(xt, y
Pt
t )
∥∥2
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(e)

≤e−µ(Q−k3)/γQ

(2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
, (25)

where (a) uses Lemma 3; (b) follows from γQ > Cγ ≥ Cgyy
; (c) uses∇vR

(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)
= 0

and Lemma 3; (d) follows from γQ ≥ Cγ ≥ Cgyy ≥ µ and 1−m ≤ e−m for 0 < m < 1; (e) uses
eq. (24). Similar to eq. (19), we have the upper-bound of γQ as

γQ = γQ−1 +
∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γQ + γQ−1
≤ γk3

+

Q−1∑
q=k3

∥∇vR(xt, y
Pt
t , vqt )∥2

γq+1
. (26)

To further bound the last term on the right-hand side of eq. (26), we can have the following result:∥∥vQt − v̂∗(xt, y
Pt
t )
∥∥2 =

∥∥vQ−1
t − v̂∗(xt, y

Pt
t )
∥∥2 + ∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2
Q

−
2
〈
vQt − v̂∗(xt, y

Pt
t ),∇vR(xt, y

Pt
t , vQ−1

t )
〉

γQ
(a)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 + ∥∥∇vR(xt, y

Pt
t , vQ−1

t )∥2

γ2
Q

−
2
∥∥∇vR(xt, y

Pt
t , vQ−1

t )−∇vR
(
xt, y

Pt
t , v̂∗(xt, y

Pt
t )
)∥∥2

γQCgyy

(b)

≤
∥∥vQ−1

t − v̂∗(xt, y
Pt
t )
∥∥2 − ∥∥∇vR(xt, y

Pt
t , vQ−1

t )
∥∥2

γQCgyy

≤
∥∥vk3

t − v̂∗(xt, y
Pt
t )
∥∥2 − Q−1∑

q=k3

∥∥∇vR(xt, y
Pt
t , vqt )

∥∥2
γq+1Cgyy

, (27)

where (a) uses Lemma 3; (b) refers to γQ ≥ Cγ ≥ Cgyy
. By rearranging eq. (27) and using eq. (24),

we have
Q−1∑
q=k3

∥∥∇vR(xt, y
Pt
t , vqt )

∥∥2
γq+1

≤Cgyy

(∥∥vk3
t − v̂∗(xt, y

Pt
t )
∥∥2 − ∥∥vQt − v̂∗(xt, y

Pt
t )
∥∥2)

≤Cgyy

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
. (28)

Plugging eq. (23) into eq. (20), we obtain the upper-bound of γQ as

γQ ≤ Cγ + Cgyy

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
=: γmax. (29)

Then, we have the upper bound of ∥vQt − v̂∗(xt, y
Pt
t )∥2 as

∥∥vQt − v̂∗(xt, y
Pt
t )
∥∥2 ≤ e−µ(Qt−k3)/γmax

(
2ϵy
µ2

+
8C2

fy

µ2
+ 2 log(Cγ/γ0) + 1

)
. (30)

Recall we have the upper bound k3 ≤
log(C2

γ/γ
2
0)

log(1+ϵv/C2
γ)

. Note that Q′ defined in (15b) satisfies

Q′ ≥ k3 +
γmax

µ
log
(
C2

gyy
(γmax − Cγ)/ϵv

)
.

By replacing Q with Q′ in eq. (30), we have

∥∇vR(xt, y
Pt
t , vQ

′

t )∥2 ≤ C2
gyy

∥∥vQ′

t − v̂∗(xt, y
Pt
t )
∥∥2 ≤ e−µ(Q′−k3)/γmax(γmax − Cγ) ≤ ϵv.

Therefore, Qt ≤ Q′ and this completes the proof of (15b). Thus, the proof is complete.
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E.6 PROOF OF THEOREM 1

Here we suppose the total iteration round is T . According to Lemma 4, the proof can be split into the
following two cases.

Case 1: k1 does not exist. Based on Lemma 4, we have αT ≤ Cα. Then by Lemma 7 we have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

2α2
t+1

∥∇̄f(xt, y
Pt
t , vQt

t )∥2 + ϵ′

αt+1
,

where ϵ′ is defined in Lemma 7. By taking the average, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
≤ 2

T

(
Φ(x0)− Φ(xT )

)
+

LΦ

2α2
0

1

T

T−1∑
t=0

∥∥∇̄f(xt, y
Pt
t , vQt

t )
∥∥2 + 1

T

T−1∑
t=0

ϵ′

αt+1

≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
=

c0
T

+
ϵ′

α0
, (31)

where c0 is defined by eq. (11) in Lemma 8.

Case 2: k1 exists. For t < k1, according to Lemma 7, we still have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

2α2
t+1

∥∇̄f(xt, y
Pt
t , vQt

t )∥2 + ϵ′

αt+1
. (32)

For t ≥ k1, we have αt ≥ Cα. Using Lemma 7, we have

∥∇Φ(xt)∥2

αt+1
≤ 2
(
Φ(xt)− Φ(xt+1)

)
+

ϵ′

αt+1
. (33)

By merging eq. (32) and eq. (33), and taking an average from t = 0, ..., T − 1, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
=

1

T

k1−1∑
t=0

∥∇Φ(xt)∥2

αt+1
+

1

T

T−1∑
t=k1

∥∇Φ(xt)∥2

αt+1

≤ 2

T

(
Φ(x0)− Φ(xT )

)
+

LΦ

2α2
0

1

T

k1−1∑
t=0

∥∥∇̄f(xt, y
Pt
t , vQt

t )
∥∥2 + 1

T

T−1∑
t=0

ϵ′

αt+1

≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
=

c0
T

+
ϵ′

α0
, (34)

where c0 is defined in Lemma 8. This result is the same as eq. (31). Thus, for both Case 1 and Case
2, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αT
≤ 1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1
≤ 1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0
,

which indicates that

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
[
1

T

(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

ϵ′

α0

]
αT

(a)

≤ 1

T

[(
2
(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

2α2
0

)
+

Tϵ′

α0

]
×
[
Cα + 4

(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

α2
0

+
2Tϵ′

α0

]
, (35)

where (a) uses Lemma 8. To achieve theO(1/T ) convergence rate, we need ϵ′ = O(1/T ) in eq. (35).
This can be guaranteed by taking ϵy = 1/T and ϵv = 1/T , which implies (see Lemma 7)

ϵ′ =
1

T

[( 2

µ2

(Lg,2Cfy

µ
+ Lf,1

)
+ 1
)
L2
g,1L̄

2 +
2L̄2

µ2

]
. (36)
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For symbol convenience, here we define

c1 := c0 +
1

α0

[( 2

µ2

(Lg,2Cfy

µ
+ Lf,1

)
+ 1
)
L2
g,1L̄

2 +
2L̄2

µ2

]
, (37)

where c0 is defined in eq. (11). Thus, we can obtain

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
= O

( 1

T

)
.

Thus, Theorem 1 is proved.

E.7 COMPLEXITY ANALYSIS OF ALGORITHM 1 (PROOF OF COROLLARY 1)

Recall in Theorem 1, we take ϵy = 1/T , ϵv = 1/T , and we obtain

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
.

To achieve ϵ-accurate stationary point, we need

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
c1(Cα + 2c1)

T
≤ ϵ i.e., T = O(1/ϵ). (38)

Recall in Lemma 9, we have

Pt ≤
log(C2

β/β
2
0)

log(1 + ϵy/C2
β)

+
βmax

µ
log
(L2

g,1(βmax − Cβ)

ϵy

)
≤

log(C2
β/β

2
0)

log(1 + 1/C2
βT )

+
βmax

µ
log
(TL2

g,1(βmax − Cβ)

1

)
= O

(
1

log(1 + ϵ)
+ log

(1
ϵ

))
.

When ϵ is sufficiently small, we have

Pt = O
(

1

log(1 + ϵ)
+ log

(1
ϵ

))
= O

(
1

ϵ
+ log

(1
ϵ

))
= O(1/ϵ). (39)

Similarly, we have

Qt = O
(

1

log(1 + ϵ)
+ log

(1
ϵ

))
= O

(
1

ϵ
+ log

(1
ϵ

))
= O(1/ϵ). (40)

We denote Gc(ϵ) as the gradient complexity, then we have

Gc(ϵ) = T ·max
t
{Pt +Qt} = O(1/ϵ2).

Therefore Corollary 1 is proved.
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F PROOF OF THEOREM 2

We define some notation for convenience before proving Theorem 2.

F.1 NOTATION

Below, we define several preset constants for notational convenience at their first use. We first define
some Lipschitzness parameters for Φ(x) as

LΦ :=
(
Lf,1 +

Lg,2Cfy

µ

)(
1 +

Cgxy

µ

)2
L̄ :=max

{
2
(C2

fy
L2
g,2

µ2
+ L2

f,1

) 1
2

,
√
2Cgyy

}
.

Next, we define the following constants as thresholds for parameters βk, γk, αk as

Cα :=max
{2LΦ

φ0
, α0

}
,

Cβ :=max
{
µ+ Lg,1,

2µLg,1

µ+ Lg,1
, β0, 64a

2
0, 1
}
,

Cγ :=max
{
2(µ+ Cgyy ),

µCgyy

µ+ Cgyy

, γ0, 64a
2
0, 1, Cgyy

}
,

Cφ :=Cβ + Cγ , (41)

where the constant α0 is defined as

a0 :=
((4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

) (µ+ Lg,1)
2L2

y

µLg,1Cβ

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )

2L2
v

µCgyyγ0
.

F.2 A ROUGH BOUND OF vk

Lemma 10. Under Assumptions 1, 2, for any t ≥ 0 in Algorithm 2, we have ∥vt∥ ≤
√
2

µ φt+1 +
√
2Cfy

µ

√
t.

Proof. By strong convexity of g in Assumption 1, we have

t∑
k=1

µ2∥vk∥2 ≤
t∑

k=1

∥∇y∇yg(xk, yk)vk∥2

≤
t∑

k=1

2∥∇y∇yg(xk, yk)vk −∇yf(xk, yk)∥2 +
t∑

k=1

2∥∇yf(xk, yk)∥2

=

t∑
k=1

2∥∇vR(xk, yk, vk)∥2 +
t∑

k=1

2∥∇yf(xk, yk)∥2

≤2γ2
t+1 + 2tC2

fy ,

which indicates that for any t ≥ 0, ∥vt∥ can be bounded as

∥vt∥ ≤
(
2γ2

t+1 + 2tC2
fy

) 1
2

µ
≤
(
2φ2

t+1 + 2tC2
fy

) 1
2

µ
≤
√
2
(
φt+1 +

√
tCfy

)
µ

. (42)

Then the proof is complete.
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F.3 DESCENT IN OBJECTIVE FUNCTION

Lemma 11. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration number is T . No
matter k1 in Lemma 4 exists or not, we always have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2

αt+1φt+1
.

(43)

If in addition, k1 in Lemma 4 exists, then for t ≥ k1, we further have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

4αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

L̄2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2

αt+1φt+1
,

(44)

where L̄ := max
{
2
(C2

fy
L2

g,2

µ2 + L2
f,1

) 1
2 ,
√
2Cgyy

}
.

Proof. From Lemma 2, we have Φ(x) is LΦ-smooth. So we can apply the descent lemma to Φ as

Φ(xt+1) ≤Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
LΦ

2
∥xt+1 − xt∥2

=Φ(xt)−
1

αt+1φt+1
⟨∇Φ(xt), ∇̄f(xt, yt, vt)⟩+

LΦ

2α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2

=Φ(xt)−
1

2αt+1φt+1
∥∇Φ(x)∥2 − 1

2αt+1φt+1
∥∇̄f(xt, yt, vt)∥2

+
1

2αt+1φt+1
∥∇Φ(xt)− ∇̄f(xt, yt, vt)∥2 +

LΦ

2α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2, (45)

and the approximation error

∥∇Φ(xt)− ∇̄f(xt, yt, vt)∥2

=
∥∥∇̄f(xt, y

∗(xt), v
∗(xt)

)
− ∇̄f(xt, yt, vt)

∥∥2
≤2
∥∥∇̄f(xt, y

∗(xt), v
∗(xt)

)
− ∇̄f

(
xt, yt, v

∗(xt)
)∥∥2 + 2

∥∥∇̄f(xt, yt, v
∗(xt)

)
− ∇̄f(xt, yt, vt)

∥∥2
≤4
∥∥∇y∇yg

(
xt, y

∗(xt)
)
v∗(xt)−∇y∇yg(xt, yt)v

∗(xt)
∥∥2

+ 4
∥∥∇yf

(
xt, y

∗(xt)
)
−∇yf(xt, yt)

∥∥2 + 2
∥∥∇y∇yg(xt, yt)

(
v∗(xt)− vt

)∥∥2
≤4
(C2

fy
L2
g,2

µ2
+ L2

f,1

)
∥yt − y∗(xt)∥2 + 2C2

gyy
∥vt − v∗(xt)∥2

≤L̄2
(
∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2

)
, (46)

where the third inequality used results from Lemma 3. By plugging eq. (46) into eq. (45), we have

Φ(xt+1) ≤Φ(xt)−
1

2αt+1φt+1
∥∇Φ(xt)∥2 −

1

2αt+1φt+1

(
1− LΦ

αt+1φt+1

)
∥∇̄f(xt, yt, vt)∥2

+
L̄2

2αt+1φt+1

(
∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2

)
. (47)

Note that g(x, y) is µ-strongly convex in y and R(x, y, v) is µ-strongly convex in v. So here
we can bound the approximation gaps ∥yt − y∗(xt)∥2 + ∥vt − v∗(xt)∥2 by ∥∇yg(xt, yt)∥2 and
∥∇vR(xt, yt, vt)∥2 as

∥yt−y∗(xt)∥2 + ∥vt − v∗(xt)∥2

32



Published as a conference paper at ICLR 2025

(a)

≤ 1

µ2

∥∥∇yg(xt, yt)−∇yg
(
xt, y

∗(xt)
)∥∥2 + 1

µ2

∥∥∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)∥∥2

(b)

≤ 1

µ2

∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)∥2

+
2

µ2

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
(c)

≤ 1

µ2

∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)∥2 +
2

µ2

(
Lg,2Cfy

µ
+ Lf,1

)2

∥yt − y∗(xt)∥2

(d)

≤
[
1

µ2
+

2

µ4

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2 + 2

µ2

∥∥∇vR(xt, yt, vt)
∥∥2, (48)

where (a) and (d) use the strong convexity; (b) and (d) result from ∇yg
(
x, y∗(x)

)
= 0 and

∇vR
(
x, y∗(x), v∗(x)

)
= 0; (c) uses Lemma 3. By plugging eq. (48) into eq. (47), we obtain

eq. (43).

Now if in addition, k1 in Lemma 4 exists, then for t ≥ k1, we have αt+1 > Cα ≥ 2LΦ/φ0. From
(43) we can immediately obtain (44). Thus, the proof is complete.

Note that to further explore the bounds of the right-hand side of eq. (43) and eq. (44) in the above
lemma, we next show the (summed) bounds of ∥∇yg(xt,yt)∥2

βt+1
and ∥∇vR(xt,yt,vt)∥2

φt+1
.

Lemma 12. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration rounds is T . If k2
in Lemma 4 exists within T iterations, for all integer t ∈ [k2, T ], we have

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
≤

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

.

Proof. For k2 ≤ t < T , we have βk2
≤ Cβ and βt+1 > Cβ . For any positive scalar λ̄t+1, using

Young’s inequality, we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1 + λ̄t+1)∥yt+1 − y∗(xt)∥2 +
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2. (49)

For the first term on the right hand side of eq. (49), we have

∥yt+1 − y∗(xt)∥2

=
∥∥∥yt − 1

βt+1
∇yg(xt, yt)− y∗(xt)

∥∥∥2
=∥yt − y∗(xt)∥2 +

1

β2
t+1

∥∇yg(xt, yt)∥2 −
2

βt+1

〈
yt − y∗(xt),∇yg(xt, yt)

〉
(a)

≤
(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 +

1

βt+1

(
1

βt+1
− 2

µ+ Lg,1

)
∥∇yg(xt, yt)∥2

(b)

≤
(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 −

1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2, (50)

where (a) uses Lemma 3.11 in Bubeck et al. (2015); (b) follows from βt+1 ≥ Cβ ≥ µ+ Lg,1. By
plugging eq. (50) into eq. (49), we have

∥yt+1 − y∗(xt+1)∥2

≤(1 + λ̄t+1)

(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 − (1 + λ̄t+1)

1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2

+
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2. (51)

By rearranging the terms in eq. (51), we have

(1+λ̄t+1)
1

βt+1(µ+ Lg,1)
∥∇yg(xt, yt)∥2
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≤(1 + λ̄t+1)

(
1− 2µLg,1

βt+1(µ+ Lg,1)

)
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

+
(
1 +

1

λ̄t+1

)
∥y∗(xt)− y∗(xt+1)∥2.

We take λ̄t+1 :=
2µLg,1

βt+1(µ+Lg,1)
. Since βt+1 > Cβ ≥ 2µLg,1

µ+Lg,1
in eq. (41), we have λ̄t+1 ≤ 1. Then

we have

∥∇yg(xt, yt)∥2

βt+1
≤(1 + λ̄t+1)

∥∇yg(xt, yt)∥2

βt+1

≤(µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

2(µ+ Lg,1)

λ̄t+1
∥y∗(xt)− y∗(xt+1)∥2

=(µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

(µ+ Lg,1)
2βt+1

µLg,1
∥y∗(xt)− y∗(xt+1)∥2

(a)

≤ (µ+ Lg,1)
(
∥yt − y∗(xt)∥2 − ∥yt+1 − y∗(xt+1)∥2

)
+

(µ+ Lg,1)
2L2

yβt+1

µLg,1
∥xt − xt+1∥2,

where (a) uses Lemma 2. Summing the above inequality over k = k2, . . . , t, we have

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

≤
t∑

k=k2−1

∥∇yg(xk, yk)∥2

βk+1

≤(µ+ Lg,1)∥yk2−1 − y∗(xk2−1)∥2 +
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2−1

βk+1∥xk − xk+1∥2

(a)

≤ µ+ Lg,1

µ2

∥∥∇yg(xk2−1, yk2−1)−∇yg
(
xk2−1, y

∗(xk2−1)
)∥∥2

+
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2−1

βk+1

α2
k+1φ

2
k+1

∥∇̄f(xk, yk, vk)∥2

≤µ+ Lg,1

µ2
∥∇yg(xk2−1, yk2−1)∥2 +

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

(b)

≤
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

(c)

≤
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0
+

(µ+ Lg,1)
2L2

y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

, (52)

where (a) uses Assumption 1; (b) results from ∥∇yg(xk2−1, yk2−1)∥2 ≤ β2
k2
≤ C2

β ; (c) denotes
φ0 = max{β0, γ0}. Then, the proof is complete.

Lemma 13. Under Assumptions 1, 2, for Algorithm 2, suppose the total iteration rounds is T . If k3
in Lemma 4 exists within T iterations, for all integer t ∈ [k3, T ), we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
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≤
4(µ+ Cgyy

)C2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy

)2L2
v

µCgyy
Cγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
.

Proof. For k3 ≤ t < T , we have γt+1 > Cγ . For any positive scalar λ̂t+1, using Young’s inequality,
we have

∥vt+1 − v∗(xt+1)∥2 ≤ (1 + λ̂t+1)∥vt+1 − v∗(xt)∥2 +
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (53)

For the first term on the right hand side of eq. (53), we have

∥vt+1 − v∗(xt)∥2

=
∥∥∥vt − 1

φt+1
∇vR(xt, yt, vt)− v∗(xt)

∥∥∥2
=∥vt − v∗(xt)∥2 +

1

φ2
t+1

∥∇vR(xt, yt, vt)∥2 −
2

φt+1

〈
vt − v∗(xt),∇vR(xt, yt, vt)

〉
. (54)

For the last term of the right-hand side of eq. (54), we have

−⟨vt − v∗(xt),∇vR(xt, yt, vt)
〉

=− ⟨vt − v∗(xt),∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)〉

− ⟨vt − v∗(xt),∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)〉
(a)

≤ − 1

µ+ Cgyy

∥∥∇vR(xt, yt, vt)−∇vR
(
xt, yt, v

∗(xt)
)∥∥2 − µCgyy

µ+ Cgyy

∥vt − v∗(xt)∥2

+
µ+ Cgyy

2µCgyy

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
+

µCgyy

2(µ+ Cgyy )
∥vt − v∗(xt)∥2

(b)

≤ − 1

2(µ+ Cgyy )
∥∇vR(xt, yt, vt)∥2 +

1

µ+ Cgyy

∥∇vR
(
xt, yt, v

∗(xt)
)
∥2

+
µ+ Cgyy

2µCgyy

∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
−

µCgyy

2(µ+ Cgyy
)
∥vt − v∗(xt)∥2

(c)
= − 1

2(µ+ Cgyy
)
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy
)
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)∥∥∇vR
(
xt, yt, v

∗(xt)
)
−∇vR

(
xt, y

∗(xt), v
∗(xt)

)∥∥2
(d)

≤ − 1

2(µ+ Cgyy )
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy )
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)(
Lg,2∥v∗(xt)∥+ Lf,1

)2∥yt − y∗(xt)∥2

35



Published as a conference paper at ICLR 2025

(e)

≤ − 1

2(µ+ Cgyy )
∥∇vR(xt, yt, vt)∥2 −

µCgyy

2(µ+ Cgyy )
∥vt − v∗(xt)∥2

+

(
1

µ+ Cgyy

+
µ+ Cgyy

2µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2

∥yt − y∗(xt)∥2, (55)

where (a) follows from Lemma 3.11 in Bubeck et al. (2015); (b) uses −∥a− b∥2 ≤ − 1
2∥a∥

2 + ∥b∥2
since ∥a− b+ b∥2 ≤ 2∥a− b∥2 + 2∥b∥2; (c) uses∇vR

(
xt, y

∗(xt), v
∗(xt)

)
= 0; (d) and (e) follow

from Lemma 3. Plugging eq. (55) into eq. (54), we have

∥vt+1 − v∗(xt)∥2

≤
(
1−

µCgyy

(µ+ Cgyy )φt+1

)
∥vt − v∗(xt)∥2 +

1

φt+1

(
1

φt+1
− 1

µ+ Cgyy

)∥∥∇vR
(
xt, yt, vt

)∥∥2
+

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

φt+1
∥yt − y∗(xt)∥2

(a)

≤
(
1−

µCgyy

(µ+ Cgyy
)φt+1

)
∥vt − v∗(xt)∥2 −

1

2(µ+ Cgyy
)φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
+

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

φt+1
∥yt − y∗(xt)∥2, (56)

where (a) follows from φt+1 ≥ γt+1 ≥ Cγ ≥ 2(µ+ Cgyy ). Combining eq. (56) with eq. (53), we
have

∥vt+1 − v∗(xt+1)∥2

≤(1 + λ̂t+1)

(
1−

µCgyy

(µ+ Cgyy
)φt+1

)
∥vt − v∗(xt)∥2

− (1 + λ̂t+1)
1

2(µ+ Cgyy )φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
+ (1 + λ̂t+1)

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

φt+1
∥yt − y∗(xt)∥2

+
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (57)

By rearranging the terms in eq. (57), we have

(1 + λ̂t+1)
1

2(µ+ Cgyy )φt+1

∥∥∇vR
(
xt, yt, vt

)∥∥2
≤(1 + λ̂t+1)

(
1−

µCgyy

(µ+ Cgyy )φt+1

)
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

+ (1 + λ̂t+1)

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

φt+1
∥yt − y∗(xt)∥2

+
(
1 +

1

λ̂t+1

)
∥v∗(xt)− v∗(xt+1)∥2. (58)

We now take λ̂t+1 :=
µCgyy

(µ+Cgyy )φt+1
. Since φt+1 ≥ γt+1 ≥ Cγ ≥

µCgyy

µ+Cgyy
in eq. (41), we have

λ̂t+1 ≤ 1. Then we get

∥∇vR(xt, yt, vt)∥2

φt+1
<(1 + λ̂t+1)

∥∇vR(xt, yt, vt)∥2

φt+1

(a)

≤2(µ+ Cgyy )
(
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

)
+ 4(µ+ Cgyy )

(
2

µ+ Cgyy

+
µ+ Cgyy

µCgyy

)(
Lg,2Cfy

µ
+ Lf,1

)2 ∥yt − y∗(xt)∥2

φt+1
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+ 2(µ+ Cgyy )

(
1 +

(µ+ Cgyy )φt+1

µCgyy

)
L2

v∥xt − xt+1∥2

(b)

≤2(µ+ Cgyy )
(
∥vt − v∗(xt)∥2 − ∥vt+1 − v∗(xt+1)∥2

)
+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 ∥yt − y∗(xt)∥2

φt+1

+
4(µ+ Cgyy )

2L2
vφt+1

µCgyy

∥xt − xt+1∥2, (59)

where (a) multiplies both sides of eq. (58) by 2(µ + Cgxy
) and uses λ̂t+1 ≤ 1; (b) uses φt+1 ≥

γt+1 ≥ Cγ ≥
µCgyy

µ+Cgyy
. Take summation of eq. (59) and we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤
t∑

k=k3−1

∥∇vR(xk, yk, vk)∥2

φk+1

≤2(µ+ Cgyy )∥vk3−1 − v∗(xk3−1)∥2 +
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

φk+1∥xk − xk+1∥2

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

φk+1

≤2(µ+ Cgyy )∥vk3−1 − v∗(xk3−1)∥2 +
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

φk+1

≤2(µ+ Cgyy )∥vk3−1 − v∗(xk3−1)∥2 +
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2 t∑
k=k3−1

∥yk − y∗(xk)∥2

βk+1

(a)

≤2(µ+ Cgyy )∥vk3−1 − v∗(xk3−1)∥2 +
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∥∇yg(xk, yk)−∇yg
(
xk, y

∗(xk)
)∥∥2

βk+1

(b)

≤2(µ+ Cgyy )∥vk3−1 − v∗(xk3−1)∥2 +
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(c)

≤
2(µ+ Cgyy )

µ2

∥∥∇vR
(
xk3−1, yk3−1, vk3−1

)
−∇vR

(
xk3−1, yk3−1, v

∗(xk3−1)
)∥∥2

+
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(d)

≤
4(µ+ Cgyy )

µ2

∥∥∇vR
(
xk3−1, y

∗(xk3−1), v
∗(xk3−1)

)
−∇vR

(
xk3−1, yk3−1, v

∗(xk3−1)
)∥∥2
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+
4(µ+ Cgyy )

µ2

∥∥∇vR(xk3−1, yk3−1, vk3−1)−∇vR
(
xk3−1, y

∗(xk3−1), v
∗(xk3−1)

)∥∥2

+
4(µ+ Cgyy )

2L2
v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(e)

≤
4(µ+ Cgyy )

µ2

(
Lg,2Cfy

µ
+ Lf,1

)2

∥yk3−1 − y∗(xk3−1)∥2

+
4(µ+ Cgyy )

µ2
∥∇vR(xk3−1, yk3−1, vk3−1)∥2 +

4(µ+ Cgyy )
2L2

v

µCgyy

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
, (60)

where (a) uses Assumption 1; (b) results from ∇yg
(
x, y∗(x)

)
= 0; (c) uses the strong convexity in

Lemma 3; (d) uses∇vR
(
x, y∗(x), v∗(x)

)
= 0; (e) follows from Lemma 3.

Our next step is bounding ∥yk3−1− y∗(xk3−1)∥2 on the right hand side of eq. (60) in two cases. The
first case is βk3

≤ Cβ . In this case, by using strong convexity of g and the definition of βk3
, we can

easily have

∥yk3−1 − y∗(xk3−1)∥2 ≤
1

µ2

∥∥∇yg
(
xk3−1, yk3−1)−∇yg(xk3−1, y

∗(xk3−1)
)∥∥2

=
1

µ2
∥∇yg(xk3−1, yk3−1))∥2 ≤

β2
k3

µ2
≤

C2
β

µ2
. (61)

The second case is βk3 > Cβ . This indicates that k2 exists and k3 > k2 based on Lemma 4. By
plugging λ̄k3−1 :=

2µLg,1

βk3−1(µ+Lg,1)
into eq. (51), and noting λ̄k3−1 ≤ 1, we have

∥yk3−1 − y∗(xk3−1)∥2 ≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)βk3−1

µLg,1
∥y∗(xk3−2)− y∗(xk3−1)∥2

(a)

≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
yβk3−1

µLg,1
∥xk3−2 − xk3−1∥2

=∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
yβk3−1

µLg,1

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1φ

2
k3−1

≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
y

µLg,1

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1φk3−1

≤∥yk3−2 − y∗(xk3−2)∥2 +
(µ+ Lg,1)L

2
y

µLg,1φ0

∥∇̄f(xk3−2, yk3−2, vk3−2)∥2

α2
k3−1

≤∥yk2−1 − y∗(xk2−1)∥2 +
(µ+ Lg,1)L

2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

(b)

≤
C2

β

µ2
+

(µ+ Lg,1)L
2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, (62)

where (a) uses Lemma 2; (b) uses eq. (61) by replacing k3 by k2 since βk2 ≤ Cβ (see Lemma 4). By
combining eq. (61) and eq. (62), we obtain a general upper bound of ∥yk3−1 − y∗(xk3−1)∥2 as

∥yk3−1 − y∗(xk3−1)∥2 ≤
C2

β

µ2
+

(µ+ Lg,1)L
2
y

µLg,1φ0

k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, (63)
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where we define
∑n

k=m lk = 0 for any m > n and non-negative sequence {lk}. By plugging eq. (63)
into eq. (60) and using ∥∇vR(xk3−1, yk3−1, vk3−1)∥2 ≤ γ2

k3
≤ C2

γ , we have

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤
4(µ+ Cgyy

)C2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
4(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy )

2L2
v

µCgyy
Cγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy

)2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1
.

Then, the proof is complete.

Supported by Lemma 12 and Lemma 13, we derive upper bounds of βt and φt.
Lemma 14. Suppose the total iteration rounds of Algorithm 2 is T . Under Assumptions 1, 2, if k2 in
Lemma 4 exists within T iterations, we have
βt+1 ≤Cβ , t < k2;

βt+1 ≤
(
Cβ +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
+

(µ+ Lg,1)
2L2

y

µLg,1Cβ

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1

, t ≥ k2.

When such k2 does not exist, βt+1 ≤ Cβ holds for any t < T .

Proof. According to Lemma 4, the proof can be split into the following three cases.

Case 1: k2 does not exist: In this case, based on Lemma 4, we have βT ≤ Cβ , and hence βt+1 ≤ Cβ

for any t < T because βt is non-decreasing with t.

Case 2: k2 exists and t < k2: In this case, based on Lemma 4, we have βt+1 ≤ Cβ .

Case 3: k2 exists and t ≥ k2: Inspired by Ward et al. (2020) and using telescoping, we have

βt+1 =βt +
∥∇yg(xt, yt)∥2

βt+1 + βt

≤βt +
∥∇yg(xt, yt)∥2

βt+1

≤βk2
+

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1

(a)

≤
(
Cβ +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
+

(µ+ Lg,1)
2L2

y

µLg,1Cβ

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1

,

(64)

where (a) uses lemma 12. Thus, the proof is complete.

Lemma 15. Under Assumptions 1, 2, suppose the total iteration rounds of Algorithm 2 is T . If at
least one of k2 and k3 in Lemma 4 exists, we denote kmin := min{k2, k3}. Then we have the upper
bound of φt as {

φt ≤Cφ, t ≤ kmin;

φt ≤a1 log(t) + b1, t > kmin,
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where a1, b1 are defined as

a1 := 6a0, b1 := 4a0 log
(
1 +

Cgxy b̄+ Cfx + α0

Cgxy
ā

)
+ 4a0 log(Cgxy

ā) + 4a0 + 2b0, (65)

in which we define constants

ā :=

√
2

µ
, b̄ :=

√
2Cfy

µ
,

a0 :=

((4(µ+ Cgyy )
2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

)
(µ+ Lg,1)

2L2
y

µLg,1Cβ

+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )

2L2
v

µCgyyγ0
,

b0 :=Cβ + Cγ +
4(µ+ Cgyy )C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
+

[(4(µ+ Cgyy )
2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

](
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
. (66)

When such k2 and k3 do not exist, we have φt ≤ Cφ for all t ≤ T .

Proof. To begin with, we first show the following result as the first two lines of eq. (64): since βt and
γt are positive and increasing monotonically with t, we can easily have

0 ≤min{β2
t+1, γ

2
t+1} −min{β2

t , γ
2
t }

=
(
β2
t+1 + γ2

t+1 −max{β2
t+1, γ

2
t+1}

)
−
(
β2
t + γ2

t −max{β2
t , γ

2
t }
)

(a)
=(β2

t+1 + γ2
t+1)− (β2

t + γ2
t )− (φ2

t+1 − φ2
t ),

where (a) uses the definition φt := max{βt, γt}. Similar to eq. (64), we have

φ2
t+1 − φ2

t ≤(β2
t+1 − β2

t ) + (γ2
t+1 − γ2

t ) = ∥∇yg(xt, yt)∥2 + ∥∇vR(xt, yt, vt)∥2,

which indicates that

φt+1 ≤φt +
∥∇yg(xt, yt)∥2

φt+1 + φt
+
∥∇vR(xt, yt, vt)∥2

φt+1 + φt

≤φt +
∥∇yg(xt, yt)∥2

βt+1 + βt
+
∥∇vR(xt, yt, vt)∥2

φt+1

≤φt +
∥∇yg(xt, yt)∥2

βt+1
+
∥∇vR(xt, yt, vt)∥2

φt+1
. (67)

Note that, to simplify the proof, we define
∑n

k=m lk = 0 for any m > n and non-negative sequence
{lk}. According to the definitions of k2 and k3 in Lemma 4, the proof can be split into the following
four cases.

Case 1: neither k2 nor k3 exists: for any t ∈ (0, T ), we can easily have φt = max{βt, γt} ≤
max{Cβ , Cγ} ≤ Cφ.

Case 2: k2 exists but k3 does not: by using the third line of eq. (64), for any t ∈ (0, T ), we have

φt+1 ≤ βt+1 + γt+1 ≤ Cβ +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+ Cγ , (68)

where we take
∑t

k=k2

∥∇yg(xk,yk)∥2

βk+1
= 0 for any t < k2.
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Case 3: k3 exists but k2 does not: from the second line of eq. (67), for any t ∈ (0, T ), we have

φt+1

(a)

≤φt +
∥∇yg(xt, yt)∥2

βt+1 + βt
+
∥∇vR(xt, yt, vt)∥2

φt+1

≤φk3
+

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1 + βk
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤βk3
+ γk3

+

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1 + βk
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(b)
=βt+1 + γk3

+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤βt+1 + Cγ +

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

≤Cβ + Cγ +

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
, (69)

where (a) uses the second line of eq. (67); and we take
∑t

k=k3

∥∇vR(xk,yk,vk)∥2

φk+1
= 0 for any t < k3;

(b) uses the first line of eq. (64).

Case 4: both k2 and k3 exist: from the third line of eq. (69), for any t ∈ (0, T ), we have

φt+1 ≤βk3 + γk3 +

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(a)

≤βk2
+

k3−1∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+ Cγ +

t∑
k=k3

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

=Cβ + Cγ +

t∑
k=k2

∥∇yg(xk, yk)∥2

βk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1
, (70)

where (a) uses the third line of eq. (64); and we take
∑k3−1

k=k2

∥∇yg(xk,yk)∥2

βk+1
= 0 when k2 ≥ k3,∑t

k=k2

∥∇yg(xk,yk)∥2

βk+1
= 0 for any t < k2 and

∑t
k=k3

∥∇vR(xk,yk,vk)∥2

γk+1
= 0 for any t < k3. It is

easy to see that the upper bound of φt+1 in eq. (70) is the largest among all cases. Thus, in the
remaining proof, we only explore the upper bound of φt in Case 4.

To further explore the bound of φt, we need to use some auxiliary results and bounds. So we split
them into three parts as follows.

Part I: an auxiliary bound of
∑ ∥∇̄f(xk,yk,vk)∥2

α2
k+1

.

To further explore Case 4, we begin with a common term
∑t

k=k0

∥∇̄f(xk,yk,vk)∥2

α2
k+1

for any k0 ≤ t.
Recall in Lemma 10, we have

∥vk∥ ≤
√
2

µ
φk+1 +

√
2Cfy

µ

√
k =: āφk+1 + b̄

√
k,

where ā and b̄ refer to eq. (66). According to Lemma 1, since α0 ≥ 1, for any integer t > 0, we have
t∑

k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤
t∑

k=0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤ log

( t∑
k=0

∥∇̄f(xk, yk, vk)∥2 + α2
0

)
+ 1
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(a)

≤ log

( t∑
k=0

(
Cgxy āφk+1 + Cgxy b̄

√
k + Cfx

)2
+ α2

0

)
+ 1

≤ log

(( t∑
k=0

Cgxy
āφk+1 + Cgxy

b̄
√
k + Cfx + α0

)2)
+ 1

=2 log

( t∑
k=0

Cgxy
āφk+1 + Cgxy

b̄
√
k + Cfx + α0

)
+ 1

≤2 log
(
(t+ 1)(Cgxy āφt+1 + Cgxy b̄

√
t+ Cfx + α0)

)
+ 1

=2 log(t+ 1) + 2 log
(
Cgxy āφt+1 + Cgxy b̄

√
t+ Cfx + α0

)
+ 1

≤2 log(t+ 1) + 2 log
(
(Cgxy

āφt+1 + Cgxy
b̄+ Cfx + α0)

√
t
)
+ 1

≤3 log(t+ 1) + 2 log(Cgxy āφt+1 + Cgxy b̄+ Cfx + α0) + 1, (71)

where (a) follows from Remark 3 and Lemma 10. Therefore, we obtain the upper bound of∑t
k=k0

∥∇̄f(xk,yk,vk)∥2

α2
k+1

for any k0 ≤ t in eq. (71). Part I is completed.

Part II: a more general bound of
∑ ∥∇yg(xk,yk)∥2

βk+1
.

In Lemma 12, we show the bound of
∑t

k=k2

∥∇yg(xk,yk)∥2

βk+1
when k2 exists. In Part II, we further

provide a rough bound of
∑t

k=k̃
∥∇yg(xk,yk)∥2

βk+1
for any potential k̃ ≤ T . Firstly, if k̃ ≥ k2, it is easy

to have
t∑

k=k̃

∥∇yg(xk, yk)∥2

βk+1
≤

t∑
k=k2

∥∇yg(xk, yk)∥2
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;

secondly, if k̃ < k2, we have

t∑
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≤
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+
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≤
∑k2−1

k=k̃
∥∇yg(xk, yk)∥2
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+
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≤
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β0
+
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0
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β
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.

Combining these two situations, since Cβ ≥ β0, for any k̃ ≤ t, we have

t∑
k=k̃

∥∇yg(xk, yk)∥2

βk+1
≤
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β
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+

(µ+ Lg,1)
2L2

y

µLg,1φ0

+
(µ+ Lg,1)

2L2
y

µLg,1

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1φk+1

, (72)
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where (a) uses Lemma 12. Thus, Part II is completed.

Part III: the bound of φt in Case 4.

Here, we explore the upper bound of φt in Case 4. Recalling eq. (70), we have

φt+1 ≤Cβ + Cγ +

t∑
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∥∇yg(xk, yk)∥2
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+
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for t ≤ kmin := min{k2, k3}. For t > kmin, we have
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+
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2] t∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy )

2L2
v

µCgyyγ0

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ Cβ + Cγ +
4(µ+ Cgyy )C

2
β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2

(C2
β

β0
− β0

)
+

[(4(µ+ Cgyy )
2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 1

µ2
+ 1

](
(µ+ Lg,1)C

2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
(d)
=:a0

t∑
k=min{k2−1,k3−1}

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ b0

≤a0

t∑
k=min{k2,k3}

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+ a0 + b0

(e)

≤a0

[
3 log(t+ 1) + 2 log

(
φt+1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0, (73)

where (a) uses Lemma 13; (b) uses the first line in eq. (72) by replacing k̃ with k3 − 1; (c)
results from eq. (52); (d) refers to eq. (66); (e) uses eq. (71). Since min{k2, k3} ≤ T , we have
φt+1 ≥ min{Cβ , Cγ} ≥ max{64a20, 1}, which indicate that

(i) if 8a0 ≤ 1, we have

4a0 log(φt+1) ≤
log(φt+1)

2
≤ φt+1

2
≤ φt+1;

(ii) if 8a0 > 1, we have

φt+1 − 4a0 log(φt+1) = φt+1 − 8a0 log(
√
φt+1) ≥ 8a0

(√
φt+1 − log(

√
φt+1)

)
≥ 0.

Combining (i) and (ii), we have 4a0 log(φt+1) ≤ φt+1. Then we obtain

φt+1 ≤a0

[
3 log(t+ 1) + 2 log

(
φt+1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0

≤a0

[
3 log(t+ 1) + 2 log(φt+1) + 2 log

(
1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0

≤1

2
φt+1 + a0

[
3 log(t+ 1) + 2 log

(
1 +

Cgxy b̄+ Cfx + α0

Cgxy ā

)
+ 2 log(Cgxy ā) + 1

]
+ a0 + b0,

which indicates that

φt+1 ≤6a0 log(t+ 1) + 4a0 log
(
1 +

Cgxy
b̄+ Cfx + α0

Cgxy
ā

)
+ 4a0 log(Cgxy

ā) + 4a0 + 2b0

(a)
=:a1 log(t+ 1) + b1, (74)

where (a) refers to eq. (65). Thus, Part III is completed and the proof of this lemma is completed.

Lemma 16. Under Assumptions 1, 2, for any integer k0 ∈ [0, t), we have the upper bounds in terms
of logarithmic functions as

t∑
k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤ 5 log(t+ 1) + c2,

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤ a2 log(t+ 1) + b2,
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t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
≤ a3 log(t+ 1) + b3,

where referring to eq. (65), eq. (66), c2, a2, b2, a3, b3 are defined as

c2 :=2 log
(
Cgxy āa1 + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1,

a2 :=
5(µ+ Lg,1)

2L2
y

µLg,1Cβ
, b2 :=

(µ+ Lg,1)
2L2

y

µLg,1Cβ
c2 +

(C2
β

β0
− β0 +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
,

a3 :=
20(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2

+
20(µ+ Cgyy )

2L2
v

µCgyyCγ

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 a2

µ2
,

b3 :=
C2

γ

γ0
− γ0 +

4(µ+ Cgyy )C
2
β

µ4

(Lg,2Cfy

µ
+ Lf,1

)2
+

4(µ+ Cgyy )C
2
γ

µ2

+

(
4(µ+ Cgyy )(µ+ Lg,1)L

2
y

µ3Lg,1φ0

(Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )

2L2
v

µCgyyCγ

)
c2

+
(4(µ+ Cgyy )

2

µCgyy

+ 8
)(Lg,2Cfy

µ
+ Lf,1

)2 b2
µ2

. (75)

Proof. Based on the logarithmic-function form bound in Lemma 15, we can further have the
logarithmic-function form bounds of the components in Lemma 11 as the following 3 parts.

Part I: the bound of
∑ ∥∇̄f(xk,yk,vk)∥2

α2
k+1

in terms of logarithmic function.

Firstly, we bound
∑t

k=k0

∥∇̄f(xk,yk,vk)∥2

α2
k+1

for arbitrary k0 < t. Back to eq. (71), by plugging in
eq. (74), we have

t∑
k=k0

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤3 log(t+ 1) + 2 log(Cgxy āφt+1 + Cgxy b̄+ Cfx + α0) + 1

(a)

≤3 log(t+ 1) + 2 log
(
Cgxy

āa1 log(t+ 1) + Cgxy
āb1 + Cgxy

b̄+ Cfx + α0

)
+ 1

≤3 log(t+ 1) + 2 log
(
Cgxy āa1(t+ 1) + Cgxy āb1 + Cgxy b̄+ Cfx + α0

)
+ 1

≤3 log(t+ 1) + 2 log
(
(Cgxy

āa1 + Cgxy
āb1 + Cgxy

b̄+ Cfx + α0)(t+ 1)
)
+ 1

≤5 log(t+ 1) + 2 log
(
Cgxy

āa1 + Cgxy
āb1 + Cgxy

b̄+ Cfx + α0

)
+ 1

(b)
=:5 log(t+ 1) + c2, (76)

where (a) results from eq. (74); (b) refers to eq. (75).

Part II: the bound of
∑ ∥∇yg(xk,yk)∥2

βk+1
in terms of logarithmic function.

Secondly, we bound
∑t

k=k0

∥∇yg(xk,yk)∥2

βk+1
. We split this part into two cases using Lemma 4.

Case 1: If βt+1 ≤ Cβ , we have

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
≤
∑t

k=k0
∥∇yg(xk, yk)∥2

β0
≤

β2
t+1 − β2

k0

β0
≤

C2
β − β2

0

β0
=

C2
β

β0
− β0 ≤ b2.

Case 2: If βt+1 > Cβ , we have k2 ≤ t, where k2 refers to Lemma 4. Then we can use eq. (72),
which indicates

t∑
k=k0

∥∇yg(xk, yk)∥2

βk+1
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≤
(
C2

β

β0
− β0 +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
+

(µ+ Lg,1)
2L2

y

µLg,1Cβ

t∑
k=k2

∥∇̄f(xk, yk, vk)∥2

α2
k+1

≤
5(µ+ Lg,1)

2L2
y

µLg,1Cβ
log(t+ 1) +

(µ+ Lg,1)
2L2

y

µLg,1Cβ
c2 +

(
C2

β

β0
− β0 +

(µ+ Lg,1)C
2
β

µ2
+

(µ+ Lg,1)
2L2

y

µLg,1φ0

)
(a)
=:a2 log(t+ 1) + b2, (77)

where the second inequality uses (76), and (a) refers to eq. (75). Since the upper bound of Case 2 is
larger, we take eq. (77) as our final result.

Part III: the bound of
∑ ∥∇vR(xk,yk,vk)∥2

φk+1
in terms of logarithmic function.

Last, we bound
∑t

k=k0

∥∇vR(xk,yk,vk)∥2

φk+1
. We split this part into two cases using Lemma 4.

Case 1: If γt+1 ≤ Cγ , we have

t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
≤
∑t

k=k0
∥∇vR(xk, yk, vk)∥2

φ0
≤

C2
γ − γ2

0

γ0
≤

C2
γ

γ0
− γ0 ≤ b3.

Case 2: If γt+1 > Cγ , we have k3 ≤ t, where k3 refers to Lemma 4.

t∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1

(a)

≤
k3−1∑
k=k0

∥∇vR(xk, yk, vk)∥2

φk+1
+

t∑
k=k3

∥∇vR(xk, yk, vk)∥2

φk+1

(b)

≤
C2

γ

γ0
− γ0 +

4(µ+ Cgyy
)C2

β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy

)C2
γ

µ2

+
4(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(
Lg,2Cfy

µ
+ Lf,1

)2 k3−2∑
k=k2−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+
4(µ+ Cgyy

)2L2
v

µCgyyCγ

t∑
k=k3−1

∥∇̄f(xk, yk, vk)∥2

α2
k+1

+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

t∑
k=k3−1

∥∇yg(xk, yk)∥2

βk+1

(c)

≤
C2

γ

γ0
− γ0 +

4(µ+ Cgyy
)C2

β

µ4

(
Lg,2Cfy

µ
+ Lf,1

)2

+
4(µ+ Cgyy )C

2
γ

µ2

+

(
4(µ+ Cgyy

)(µ+ Lg,1)L
2
y

µ3Lg,1φ0

(Lg,2Cfy

µ
+ Lf,1

)2
+

4(µ+ Cgyy
)2L2

v

µCgyyCγ

)(
5 log(t+ 1) + c2

)
+

(
4(µ+ Cgyy )

2

µCgyy

+ 8

)(
Lg,2Cfy

µ
+ Lf,1

)2
1

µ2

(
a2 log(t+ 1) + b2

)
(d)
=:a3 log(t+ 1) + b3, (78)

where (a) allows
∑k3−1

k=k0

∥∇vR(xk,yk,vk)∥2

φk+1
= 0 when k0 ≥ k3; (b) uses Cγ ≥ γ0 and Lemma 13; (c)

follows from eq. (76) and eq. (77); (d) refers to eq. (75). Since the upper bound of Case 2 is larger,
we take eq. (78) as our final result.

Thus, the proof is complete.

Next, we show the upper bound of αt.
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Lemma 17 (The upper bound of αt). Under Assumptions 1, 2, 3, suppose the number of total
iteration rounds in Algorithm 2 is T . If there exists k1 ≤ T described in Lemma 4, we haveαt ≤Cα, t ≤ k1;

αt ≤Cα +
(
a4 log(t) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
φt, t ≥ k1,

where a4, b4 are defined as

a4 :=
2L̄2a2
µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]
+

4L̄2a3
µ2Cα

b4 :=
2L̄2b2
µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]
+

4L̄2b3
µ2Cα

+
2LΦ

φ2
0

C2
α

α2
0

, (79)

and the upper bound of φt := max{βt, γt} refers to Lemma 15. When such k1 does not exist, we
have αt ≤ Cα for any t ≤ T .

Proof. According to Lemma 4, the proof can be split into the following three cases.

Case 1: if αT ≤ Cα, for any t < T , we have the upper bound of αt+1 as αt+1 ≤ Cα.

Case 2: if αT > Cα, there exists k1 ≤ T described in Lemma 4. Then we have the upper bound of
αt+1 as αt+1 ≤ Cα for any t < k1.

Case 3: in the remaining proof, we only consider and explore the case k1 ≤ t ≤ T when αT > Cα.

From Lemma 11, for k ≥ k1, we have

Φ(xk+1) ≤Φ(xk)−
1

2αk+1φk+1
∥∇Φ(xk)∥2 −

1

4αk+1φk+1
∥∇̄f(xk, yk, vk)∥2

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xk, yk)
∥∥2

αk+1φk+1
+

L̄2

µ2

∥∥∇vR(xk, yk, vk)∥2

αk+1φk+1

which indicates that
∥∇̄f(xk, yk, vk)∥2

αk+1φk+1
≤ 4
(
Φ(xk)− Φ(xk+1)

)
+

2L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xk, yk)
∥∥2

αk+1φk+1
+

4L̄2

µ2

∥∥∇vR(xk, yk, vk)∥2

αk+1φk+1
.

By taking summation, we have
t∑

k=k1

∥∇̄f(xk, yk, vk)∥2

αk+1φk+1

≤4
(
Φ(xk1)− inf

x
Φ(x)

)
+

2L̄2

µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] t∑
k=k1

∥∥∇yg(xk, yk)
∥∥2

φk+1

+
4L̄2

µ2Cα

t∑
k=k1

∥∥∇vR(xk, yk, vk)∥2

φk+1
. (80)

For Φ(xk1), by telescoping eq. (43) in Lemma 11, we get

Φ(xk1
) ≤Φ(x0) +

LΦ

2

k1−1∑
k=0

∥∇̄f(xt, yt, vt)∥2

α2
t+1φ

2
t+1

+
L̄2

2µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] k1−1∑
k=0

∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1

+
L̄2

µ2

k1−1∑
k=0

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
. (81)
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By plugging eq. (81) into eq. (80), we have
t∑

k=k1

∥∇̄f(xk, yk, vk)∥2

αk+1φk+1

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

2L̄2

µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] t∑
k=0

∥∥∇yg(xk, yk)
∥∥2

φk+1

+
4L̄2

µ2Cα

t∑
k=0

∥∥∇vR(xk, yk, vk)∥2

φk+1
+

2LΦ

φ2
0

C2
α

α2
0

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

2L̄2

µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] t∑
k=0

∥∥∇yg(xk, yk)
∥∥2

βk+1

+
4L̄2

µ2Cα

t∑
k=0

∥∥∇vR(xk, yk, vk)∥2

φk+1
+

2LΦ

φ2
0

C2
α

α2
0

(a)

≤4
(
Φ(x0)− inf

x
Φ(x)

)
+

2L̄2

µ2Cα

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2](
a2 log(t+ 1) + b2

)
+

4L̄2

µ2Cα

(
a3 log(t+ 1) + b3

)
+

2LΦ

φ2
0

C2
α

α2
0

(b)
=:a4 log(t+ 1) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

)
, (82)

where (a) plugs in eq. (77) and eq. (78); (b) refers to eq. (79). This immediately implies
t∑

k=k1

∥∇̄f(xk, yk, vk)∥2

αk+1
≤
(
a4 log(t+ 1) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
φt+1. (83)

Similarly, we can have the upper bound of αt+1 as

αt+1 ≤αk1
+

t∑
k=k1

∥∇̄f(xk, yk, vk)∥2

αk+1

≤Cα +
(
a4 log(t+ 1) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
φt+1. (84)

Then the upper bound of αt+1 is proved.

F.4 PROOF OF THEOREM 2

Here we still assume the total iteration rounds of Algorithm 2 is T . According to Lemma 4, the proof
can be split into the following two cases.

Case 1: If αT ≤ Cα, then by Lemma 11 and Lemma 17, we have

∥∇Φ(xt)∥2

αt+1φt+1
≤2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2

+
L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

2L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
,

By taking the average, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1φt+1
≤ 2

T

(
Φ(x0)− Φ(xT )

)
+

LΦ

α2
0φ

2
0

1

T

T−1∑
t=0

∥∇̄f(xt, yt, vt)∥2

+
L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] 1
T

T−1∑
t=0

∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
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+
2L̄2

µ2

1
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t=0

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1

≤ 2
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)
+

LΦC
2
α
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2
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µ
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(a)

≤ 2

T
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)
+

LΦC
2
α
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µ2α0T
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1 +
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1

2T

(
a4 log(T ) + b4 + 4
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Φ(x0)− inf

x
Φ(x)
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, (85)

where (a) uses Lemma 16 with k0 = 0.

Case 2: If αT > Cα, by Lemma 4, there exists k1 ≤ T0 such that αk1
≤ Cα, αk1+1 > Cα.

Then for t < k1 when αT > Cα, from Lemma 11, we have

∥∇Φ(xt)∥2

αt+1φt+1
≤2
(
Φ(xt)− Φ(xt+1)

)
+

LΦ

α2
t+1φ

2
t+1

∥∇̄f(xt, yt, vt)∥2

+
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1 +

2
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+
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∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
.

For t ≥ k1 when αT > Cα, from Lemma 11, we have

∥∇Φ(xt)∥2

αt+1φt+1
≤2
(
Φ(xt)− Φ(xt+1)

)
+

L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2]∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
+

2L̄2

µ2

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1
.

By taking the average, we can merge t < k1 and t ≥ k1 as

1

T

T−1∑
t=0

∥∇Φ(xt)∥2

αt+1φt+1
=

1

T

k1−1∑
t=0

∥∇Φ(xt)∥2

αt+1φt+1
+

1

T

T−1∑
t=k1

∥∇Φ(xt)∥2

αt+1φt+1

≤ 2

T

(
Φ(x0)− Φ(xk1

)
)
+

LΦ

α2
0φ

2
0

1

T

k1−1∑
t=0

∥∇̄f(xt, yt, vt)∥2

+
L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] 1
T

k1−1∑
t=0

∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1

+
2L̄2

µ2

1

T

k1−1∑
t=0

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1

+
2

T

(
Φ(xk1)− Φ(xT )

)
+

L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] 1
T

T−1∑
t=k1

∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1
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+
2L̄2

µ2

1

T

T−1∑
t=k1

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1

≤ 2

T

(
Φ(x0)− inf

x
Φ(x)

)
+

LΦ

α2
0φ

2
0

1

T

k1−1∑
t=0

∥∇̄f(xt, yt, vt)∥2

+
L̄2

µ2

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] 1
T

T−1∑
t=0

∥∥∇yg(xt, yt)
∥∥2

αt+1φt+1

+
2L̄2

µ2

1

T

T−1∑
t=0

∥∥∇vR(xt, yt, vt)∥2

αt+1φt+1

≤ 2

T

(
Φ(x0)− inf

x
Φ(x)

)
+

LΦ

α2
0φ

2
0

1

T

k1−1∑
t=0

∥∇̄f(xt, yt, vt)∥2

+
L̄2

µ2α0T

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2] T−1∑
t=0

∥∥∇yg(xt, yt)
∥∥2

φt+1

+
2L̄2

µ2α0T

T−1∑
t=0

∥∥∇vR(xt, yt, vt)∥2

φt+1

(a)

≤ 2

T

(
Φ(x0)− inf

x
Φ(x)

)
+

LΦC
2
α

Tα2
0φ

2
0

+
L̄2

µ2α0T

[
1 +

2

µ2

(Lg,2Cfy

µ
+ Lf,1

)2](
a2 log(T ) + b2

)
+

2L̄2

µ2α0T

(
a3 log(T ) + b3

)
=

1

2T

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
, (86)

where (a) uses Lemma 16 by plugging in k0 = 0.

Note that Case 1 and Case 2 indicate the same result. Thus, we have

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
1

2T

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
αTφT

(a)

≤ 1

2T

[(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))2
φ2
T

+ Cα

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))
φT

]
(b)

≤ 1

2T

[(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))2(
a1 log(T ) + b1

)2
+ Cα

(
a4 log(T ) + b4 + 4

(
Φ(x0)− inf

x
Φ(x)

))(
a1 log(T ) + b1

)]
=O

(
log4(T )

T

)
.

where (a) follows from Lemma 17; (b) results from Lemma 15. Thus, the proof is finished.

F.5 COMPLEXITY ANALYSIS OF ALGORITHM 2 (PROOF OF COROLLARY 2)

Recall in Theorem 2, we know that there exist a constant M such that

1

T

T−1∑
t=0

∥∇Φ(xt)∥2 ≤
M log4(T )

T
.
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When we set the iteration number T = MN
ϵ log4(Mϵ ) and assume the constant N = 124, we have

M log4(T )

T
=
M log4(MN

ϵ
log4(M

ϵ
))

MN
ϵ

log4(M
ϵ
)

≤
[log(N) + log(M

ϵ
) + 4 log(log(M

ϵ
))]4

N log4(M
ϵ
)

· ϵ

(a)

≤
(
log(N) + 2 log(M

ϵ
)

N
1
4 log(M

ϵ
)

)4

· ϵ
(b)

≤ ϵ,

where (a) follows from the inequality log(log(Mϵ )) ≤
1
4 log(

M
ϵ ) for sufficiently small ϵ; (b) holds

because log(N) + 2 log(Mϵ ) ≤ N
1
4 log(Mϵ ) for N = 124 and ϵ is sufficiently small. Thus, to

achieve ϵ-accurate stationary point, we require T = MN
ϵ log4(Mϵ ) = O

(
1
ϵ log

4( 1ϵ )
)
, and the gradient

complexity is given by Gc(ϵ) = Ω(T ) = O
(
1
ϵ log

4( 1ϵ )
)
.
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