
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GRAPH ENHANCED SYMBOLIC DISCOVERY FRAME-
WORK FOR EFFICIENT LOGIC OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficiency of Logic Optimization (LO) has become one of the key bottlenecks
in chip design. To prompt efficient LO, previous studies propose using a key scor-
ing function to predict and prune a large number of ineffective nodes of the LO
heuristics. However, the existing scoring functions struggle to balance inference
efficiency, interpretability, and generalization performance, which severely hin-
ders their application to modern LO tools. To address this challenge, we propose
a novel data-driven circuit symbolic learning framework, namely CMO, to learn
lightweight, interpretable, and generalizable scoring functions. The major chal-
lenge of developing CMO is to discover symbolic functions that can well general-
ize to unseen circuits, i.e., the circuit symbolic generalization problem. Thus, the
major technical contribution of CMO is the novel Graph Enhanced Symbolic Dis-
covery framework, which distills dark knowledge from a well-designed graph neu-
ral network (GNN) to enhance the generalization capability of the learned sym-
bolic functions. To the best of our knowledge, CMO is the first graph-enhanced
approach for discovering lightweight and interpretable symbolic functions that can
well generalize to unseen circuits in LO. Experiments on three challenging cir-
cuit benchmarks show that the interpretable symbolic functions learned by CMO
outperform previous state-of-the-art (SOTA) GPU-based and human-designed ap-
proaches in terms of inference efficiency and generalization capability. Moreover,
we integrate CMO with the Mfs2 heuristic—one of the most time-consuming LO
heuristics. The empirical results demonstrate that CMO significantly improves its
efficiency while keeping comparable optimization performance when executed on
a CPU-based machine, achieving up to 2.5× faster runtime.

1 INTRODUCTION

The modern chip design workflow has incorporated multiple Electronic Design Automation (EDA)
tools to synthesize, simulate, test, and verify different circuit designs efficiently and reliably (Huang
et al., 2021). Logic Optimization (LO) is one of the most important EDA tools in the front-end work-
flow (Berndt et al., 2022; Pasandi et al., 2023). A key task in LO is Circuit Optimization, which aims
to optimize circuits—modeled by directed acyclic graphs—with functionality-equivalent transfor-
mations and reduced size and/or depth. It is crucial to well tackle the LO task as it can significantly
improve the Quality of Results (QoR), i.e., various metrics that evaluate the quality of designed
chips, such as size, level, and edge (De Abreu et al., 2021; Bertacco et al., 1997). However, the
LO task can be extremely hard to tackle as it is a NP-hard problem (Micheli, 1994; Farrahi & Sar-
rafzadeh, 1994). To approximately tackle the LO task, many effective LO heuristics such as Mfs2
(Mishchenko et al., 2011), Resub (Brayton, 2006), and Rewrite (Bertacco et al., 1997) have been
developed. Specifically, these heuristics usually apply transformations to subgraphs rooted at each
node—that is, the node-level transformations—sequentially for all nodes on the input circuit.

The efficiency of LO heuristics in LO tools has become one of the key bottlenecks in chip design,
thus significantly impacting the final circuit performance, power, area (PPA), and Time-to-Market,
i.e., the overall duration for developing and commercializing new chips (Neto et al., 2021; Sab-
bavarapu et al., 2014; Reddy et al., 2014). However, executing LO heuristics can be highly time-
consuming due to a large number of ineffective and redundant transformations. To prompt efficient
LO, previous works propose a prediction and prune framework, which applies a key scoring function
to reduce a large number of ineffective node-level transformations (Li et al., 2023; Wang et al.).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, the existing scoring functions struggle to balance inference efficiency, interpretability, and
generalization performance, which severely hinders their application to modern LO tools. First,
(Wang et al.) proposes using a well-designed graph neural network (GNN) model as the scoring
function, which offers a promising approach to well tackle the LO task. However, the limited in-
ference efficiency of deep learning models leads to higher runtime costs for LO heuristics, as most
current industrial LO tools are purely CPU-based. Moreover, the ’black-box’ nature of deep learning
methods raises concerns among researchers about the reliability of deploying such models in practi-
cal applications. In contrast, (Li et al., 2023) proposes a human-designed hard-coded mathematical
expression as the scoring function, which aligns with human intuition and is thus regarded to be
reliable. However, designing and developing these functions is extremely challenging as it requires
extensive expert knowledge. Moreover, this function cannot achieve high generalization perfor-
mance due to the lack of adoption of machine learning from existing data , which could significantly
degrade the QoR of the optimized circuits.

To address the aforementioned challenges, we propose a novel data-driven circuit symbolic learning
framework, namely CMO, which learns a symbolic scoring function that combines the advantages of
the two paradigms. An appealing feature of the CMO is its greater potential to discover lightweight
and interpretable symbolic functions from a decomposed symbolic space. However, we found that
the learned symbolic functions cannot generalize well to unseen circuits, i.e., the circuit symbolic
generalization problem. The poor generalization performance could significantly degrade the op-
timization performance compared to default heuristics. Thus, the major challenge of developing
CMO is how to learn symbolic functions that can well generalize to unseen circuits.

To enhance generalization, the major technical contribution of CMO is the novel Graph Enhanced
Symbolic Discovery (GESD) framework, which leverages a well-designed GNN to guide the gen-
eration of symbolic trees. Specifically, GESD establishes a teacher-student framework in which
the GNN functions as the teacher while a Monte-Carlo Tree Search (MCTS) based symbolic learn-
ing model serves as the student. The core idea of GESD is to utilize the teacher GNN’s output,
which encapsulates domain-invariant information crucial for circuit generalization (Wang et al.), to
strategically guide the generation of the student symbolic trees. Consequently, GESD is adept at
discovering symbolic functions with strong generalization capabilities. Experiments on the open-
source and industrial benchmarks show that the symbolic functions learned by CMO outperform
previous state-of-the-art (SOTA) GPU-based and human-designed approaches in terms of inference
efficiency and generalization capability. Moreover, we incorporate CMO with the Mfs2 heuristic—
the most time-consuming one among commonly used LO heuristics. The empirical results on very
large-scale circuits demonstrate that CMO achieves up to 2.5× faster runtime compared with the de-
fault Mfs2 heuristic while keeping comparable optimization performance. Furthermore, our GESD
learned symbolic functions are all concise expressions that exhibit good interpretability.

We summarize our major contributions as follows: (1) we propose a novel circuit symbolic learn-
ing framework, namely CMO, to learn efficient, interpretable, and generalizable symbolic functions
that are reliable and simple to deploy in modern LO tools. (2) The major technical contribution of
CMO is the novel graph-enhanced symbolic discovery framework which employs a well-designed
GNN to enhance the generalization capability of the learned symbolic functions. (3) To the best
of our knowledge, CMO is the first graph-enhanced approach for discovering lightweight and in-
terpretable symbolic functions that can well generalize to unseen circuits in LO. (4) Experiments
demonstrate that the interpretable learned symbolic functions outperform previous SOTA GPU-
based and human-designed approaches in terms of inference efficiency and generalization capability.
Moreover, it significantly improves the efficiency of the Mfs2 heuristic with comparable optimiza-
tion performance on a purely CPU-based machine, achieving up to 2.5× faster runtime.

2 BACKGROUND

The prediction and prune framework for LO Heuristics Many effective LO heuristics have been
developed to tackle the LO task. These LO heuristics follow the same paradigm as shown in Figure
5. Specifically, they apply transformations to subgraphs rooted at each node (i.e., the node-level
transformations) sequentially for all nodes on an input circuit. Note that the major differences among
these heuristics lie in the node-level transformation mechanism. Recently, (Wang et al.) found that
a large number of node-level transformations in many LO heuristics are ineffective, which makes
applying these heuristics highly time-consuming. To address this challenge, Wang et al. proposes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Normalized Inference Time

COG

Effisyn

GDSR(Ours)

275.32

1.80
1.00
1.00

Inference Time Comparision

(a)

Top 40% Top 50% Top 60%
The Top x% Metric

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

COG
Effisyn
SPL
DSR

Generalization performance comparison

(b)

Structural Semantic Default
Feature Categories

70

80

90

100

Ac
cu

ra
cy

 (%
)

92.31
90.90

91.93

Motivations for Feature Decomposition

(c)

Figure 1: (a) The inference time of the GNN model is significantly larger than other approaches
when executed on CPU-based machines. (b) The human-designed approach and existing SOTA
symbolic learning approaches cannot generalize well to unseen circuits, i.e., the circuit symbolic
generalization problem, while the GNN model exhibits good generalization capability. (c) The
circuit node features exhibit separability without compromising the predictive performance.

a prediction and prune framework that incorporates a scoring function to select those nodes with
top k scores as predicted effective samples and avoid applying transformations on those ineffective
samples to improve the efficiency of LO heuristics. However, the scoring function could significantly
degrade the optimization performance compared to default heuristics when inaccurately classifying
effective nodes in unseen circuits. Therefore, it is essential for the scoring function to achieve high
generalization performance for comparable optimization performance.

Symbolic Expression Tree for Learning Symbolic Functions Given a dataset D, symbolic learn-
ing approaches aim to learn a symbolic function f that best fits the dataset. To this end, sym-
bolic functions are often represented by an algebraic expression tree, where internal nodes are
operators and terminal nodes are input variables and/or constants (Sun et al., 2023). We assume
τ = [τ1, . . . , τn] is a pre-order traversal of such an expression tree. Each τi is an operator, input
variable, or constant selected from a library of possible tokens and there is a one-to-one correspon-
dence between an expression tree and its pre-order traversal. An expression tree is also used to
express mathematical functions with operators such as [+,−,×,÷, sin].
Monte Carlo Tree Search (MCTS) MCTS is an effective method for game-playing bots and se-
quential decision-making problems (Świechowski et al., 2023). It builds a search tree of possible
states and uses stochastic simulations to assess node values, allowing efficient exploration of com-
plex decision spaces. The MCTS algorithm follows four steps: (a) Selection: The agent navigates
through the search tree based on a policy until it reaches an expandable or terminal node. (b) Expan-
sion: At an expandable node, a new child node is added to the tree. (c) Simulation: The agent runs
simulations from the current node to a terminal state. (d) Backpropagation: The results are used
to update the statistics of nodes along the path to the root. To balance exploration and exploitation,
MCTS always selects the action based on the Upper Confidence Bound for Trees (UCT) (Kocsis
& Szepesvári, 2006): UCT (s, a) = Q(s, a) + c ln[N(s)]

N(s,a) . where Q(s, a) is the average reward for
action a in state s, N(s) is the visit count of s, and N(s, a) is the count for choosing a in s.

3 MOTIVATING RESULTS

Problem Challenge: Limitations For Existing Scoring Functions To learn a scoring function that
can accurately identify ineffective transformations for efficient LO, (Wang et al.) proposes a well-
designed graph neural network, i.e., COG. However, we observe two limitations that severely limit
their wide application to modern LO tools:

• Limited inference efficiency on CPUs. We compare the inference time of COG, the human-
designed approach Effisyn (Li et al., 2023), and our symbolic discovery method GESD on
a CPU-based machine. The results in Figure1a support the observation above.

• The ’black nature’ of the learned scoring function. Deep learning models like GNN are of-
ten considered uninterpretable, which hinders a deeper understanding of the learned func-
tions and raises safety concerns among researchers.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To alleviate the two aforementioned limitations, a one-step further idea is to employ lighter mod-
els. (Li et al., 2023) proposes a human-designed nonlinear scoring function to replace the time-
consuming GNNs. However, this method faces a significant limitation:

• The poor generalization performance. The results in Figure1b demonstrate that the human-
designed approach struggles to achieve high generalization performance on the open-source
and industrial benchmarks, which significantly degrades the QoR of the optimized circuits.

Therefore, how to find a lightweight, interpretable, and generalizable scoring function is the key
problem for efficient LO.

Technical Challenge: The Circuit Symbolic Generalization Problem in LO In this subsection,
we first illustrate the motivation for symbolic discovery. Then we provide a detailed description of
the circuit symbolic generalization problem in LO.

Firstly, we found that lightweight and high-performance symbolic functions exist in the circuit data.
Specifically, we employ a state-of-the-art (SOTA) symbolic learning approach (Sun et al., 2023) on
a widely-used benchmark. The results in Figure 6 demonstrate that among all of the 15 circuits,
the prediction recall of 14 circuits exceeds 99%, which further demonstrates the existence of high-
performance symbolic functions. Moreover, the results in Figure 1a show that the learned symbolic
functions are very efficient. Therefore, there exist lightweight and high-performance symbolic func-
tions in our LO task, which motivate our circuit symbolic learning framework.

However, we found it challenging to learn a symbolic function that can well generalize to unseen
circuits from the training dataset. Specifically, we evaluate a well-designed GNN (Wang et al.) and
two SOTA symbolic learning methods, i.e., SPL (Sun et al., 2023) and DSR (Petersen et al., 2020)
on the open-source and industrial benchmarks under the same generalization evaluation strategy (see
Section 5). The results in Figure 1b show that the predictive performance of the learned symbolic
functions is significantly lower than that of the GNN, demonstrating the poor generalization capa-
bilities of existing symbolic learning approaches. Thus, the major challenge of developing CMO is
to learn symbolic functions that can well tackle the circuit symbolic generalization problem.

4 METHOD

In this section, we first provide a detailed description of the novel data-driven circuit symbolic
learning framework (CMO) (see Figure 2). Then, we present our graph enhanced symbolic discovery
(GESD) framework that can enhance the generalization ability of the learned symbolic functions via
graph distillation (see Figure 3). Finally, we demonstrate how we deploy the learned lightweight
and interpretable symbolic functions in modern LO tools.

4.1 THE DATA-DRIVEN CIRCUIT SYMBOLIC LEARNING FRAMEWORK

As shown in Figure 1a and Figure 1b, we found that existing GNN-based and human-designed ap-
proaches struggle to balance inference efficiency, interpretability, and generalization performance.
To address this problem, we propose a novel data-driven circuit symbolic learning framework,
namely CMO, to discover symbolic functions that combine the advantages of the two paradigms.

Data Collection To generate the circuit dataset, we apply a LO heuristic to optimize the circuit,
which applies various node-level transformations to each node in the input circuit. For each node
in the circuit, we generate a data pair (xi, yi), where xi ∈ Rd denotes the i-th node feature and
yi ∈ R denotes the corresponding label. Specifically, if the node-level transformation is effective
at the node xi, then we set yi = 1. Otherwise, yi = 0. Given the LO heuristic and N samples, we
generate a datasetD = {xi, yi}Ni=1 and aim to find a lightweight and interpretable symbolic function
from this dataset that can well generalize to unseen circuits.

Structural-Semantic Feature Decomposition Given an input circuit, we choose the node features
that contain as much as possible information about the LO task. Therefore, we use the feature vec-
tor employed in (Wang et al.), which contains abundant structural and semantic (i.e., functionality)
information of the circuit nodes (see Appendix E.4). However, the high dimensionality of the ap-
plied features increases the search space and makes it challenging to discover lightweight symbolic
functions that effectively capture information from the circuit data. To address this challenge, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

node labeloptimized node

1. Data Collection for Symbolic Discovery

CS
Heuristic

semantic
feature 𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑚

structural
feature

score𝑠𝑡𝑟

ADD

scorenode

3. Feature Information Fusion

𝑓𝑠𝑒𝑚 𝑓𝑠𝑡𝑟

2. Structural-Semantic Feature Decomposition

node feature
node
labels

semantic
features

𝑓𝑠𝑒𝑚

GESD for semantic
function learning

structural
features

GESD for structural
function learning

node
labels

𝑓𝑠𝑡𝑟

node labels node features node labels

Figure 2: Illustration of the novel data-driven circuit symbolic learning Framework.

propose a structural-semantic feature decomposition mechanism, which separates the node features
xi into structural (xstr

i) and semantic (xsem
i) components for symbolic discovery. The rationale

behind this feature decomposition is based on a key observation—the circuit features exhibit separa-
bility without compromising the predictive performance of the scoring model as shown in Figure 1c.
Specifically, we decompose the node features into structural and semantic components to train the
GNN model, and the results show that the GNN trained on decomposed features could achieve com-
parable prediction performance to that trained on default features. By applying this decomposition,
the original sixty-nine feature variables are reduced to five structural features, thereby significantly
shrinking the symbolic search space and enabling lightweight symbolic function discovery.

GESD for Symbolic Function Learning After decomposing the init feature into structural and se-
mantic components, we collect structural data Dstr = {xstri , yi}Ni=1 and semantic data Dsem =
{xsem

i , yi}Ni=1, where xstr
i refers to structural node feature and xsemi refers to semantic node feature.

To capture structural information, we employ our Graph Enhanced Symbolic Discovery (GESD)
framework to learn a mathematical symbolic function fstr : Rd → R (see Section 4.2), as the
values of structural features can be approximated as continuous data, making them suitable for con-
tinuous mathematical symbolic regression. In contrast, learning mathematical functions for semantic
information is challenging due to the discrete and binary nature of both feature values and labels.
Thus, to capture semantic information, we formulate the semantic function as a Boolean symbolic
learning problem, i.e., employing our GESD framework to learn a boolean function fsem : Bd → B
that can accurately identify the effective nodes, where B = {0, 1} denotes the boolean feature do-
main.

Feature Information Fusion After discovering the structural and functional symbolic functions, we
get the score si for a node in an unseen circuit using the following equation:

si = fstr(xstr
i) + w ∗ fsem(xsemi) (1)

w is a weight value in the range [0, 1] that balances the two types of information. Due to limited
space, please refer to Algorithm 3 for a detailed explanation of the derivation process of si.

4.2 GRAPH ENHANCED SYMBOLIC DISCOVERY FRAMEWORK

To address the circuit symbolic generalization problem (shown in Figure 1b), we introduce the
Graph Enhanced Symbolic Discovery (GESD) framework (see Figure 3) which incorporates the
strong generalization capability of a well-designed GNN model into our symbolic tree searching
process. Note that both the structural and semantic functions follow the same symbolic discovery
framework, differing only in training details. Therefore, we provide the implementation details of
the semantic symbolic learning process in Appendix E.3.

Symbolic Operators In our task, we use an expression tree to express the symbolic functions. The
mathematical operators used to generate the expression tree are {+,−,×,÷, log, exp, sin, cos}.
We didn’t employ placeholders to generate constants while introducing an inner optimization loop
generally requires higher training costs (Sun et al., 2023; Xu et al., 2024). Moreover, we found that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

structural
features

Expression Tree

Repeat

Selection Expansion Simulation Propagation

Simulation

10 simulations
Reward = 0.1

Q = 0.5
N = 60

𝑧𝑣

𝑦′𝑣

Distillation
Loss (L)

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝜌𝑛

(1 − 𝐿)

Max
UCT

Q = 0.4
N = 50

Q = 0.3
N = 20

Q = 0.1
N = 10

+

×

𝑥

?

𝑥

+

×

𝑥 𝑥

𝑙𝑜𝑔 𝑠𝑖𝑛

+

×

𝑥 𝑥

Randomly
Pick

+

×

𝑥 𝑥

+

×

𝑥 𝑥

𝑠𝑖𝑛

𝑠𝑖𝑛

−

+

×

𝑥 𝑥 −

𝑠𝑖𝑛

𝑥 y

L = λ 𝑳𝒍𝒂𝒃𝒆𝒍(ෝ𝒚𝒗, 𝒚𝒗)+(1-λ)𝑳𝒕𝒆𝒂𝒄𝒉𝒆𝒓(ෝ𝒚𝒗, 𝒛𝒗)

+

×

𝑥 𝑥

+

×

𝑥 𝑥

𝑠𝑖𝑛

𝑠𝑖𝑛

−

+

×

𝑥 𝑥 −

𝑠𝑖𝑛

𝑥 y

Q = 0.4
N = 30

Q = 0.1
N = 10

+

×

𝑥 𝑥

𝑠𝑖𝑛

+

×

𝑥 𝑥

𝑠𝑖𝑛

−

Enhance the symbolic function via graph distillation symbolic operators

𝑠𝑖𝑛 𝑐𝑜𝑠 𝑒𝑥𝑝 𝑙𝑜𝑔

GNN Teacher

Randomly
Pick

+ − × ÷

𝑦𝑣

Figure 3: Overview of GESD. GESD employs a Monte Carlo Tree Search algorithm to search in
the large and discrete symbolic space. The major novelty of GESD is that we distill dark knowledge
from a well-designed GNN into the symbolic tree searching process, thus enhancing the generaliza-
tion capability of the learned symbolic functions.

some complex operators like exp, sin, cos could achieve high prediction performance for the five
dimension structural features. Therefore, we use the aforementioned operators.

Generator of the Symbolic Tree Motivated by the strengths of Monte Carlo Tree Search (MCTS) in
efficiently exploring large and complex symbolic spaces (Sun et al., 2023; Xu et al., 2024), we em-
ploy MCTS to generate symbolic trees. We define the state s as the pre-order traversal of the current
expression tree and action a as the symbolic operators or variables added to the state. Specifically,
our MCTS includes four steps: selection, expansion, simulation, and propagation. (1) Selection.
In the selection phase, our MCTS agent traverses the current expression tree and selects an action
with the maximum UCT. To ensure the legalization of generated expressions, at the current state
st = [a1, a2, . . . , at], the MCTS agent masks out the invalid action for the current non-terminal
node and on that basis selects a valid action as action at+1. (2) Expansion. Once the selection
phase reaches an expandable node—a node that not all of its children have been visited—our MCTS
agent expands it by randomly selecting one of its unvisited valid children. (3) Simulation. Given
the current state and the expanded node, we perform simulations by randomly selecting the next
node until the expression tree is completed. Specifically, we perform 10 simulations and return the
maximum simulated reward rather than the average reward for Q(s, a) to find the unique optimal
symbolic solution, which is a greedy search heuristic different from traditional MCTS algorithm
Świechowski et al. (2023). (4) Backpropogation After the simulation, we update the maximum
rewards Q and visited time of nodes N along the path from the current node to the root. The search
algorithm repeatedly cycles through the aforementioned steps until the stopping criterion is met.

Reward Function To evaluate the symbolic function projected from an expression tree in the simu-
lation phase, we define a reward r based on the function and circuit data. Specifically, we define the
reward as r = ηn

(1−L) . Here, L is the loss function shown in eq 2. To maintain the conciseness of the
learned symbolic functions for high efficiency and good interpretability, we follow Sun et al. (2023)
to incorporate a penalty factor into the reward. Specifically, η denotes the penalty constant range in
(0, 1) and n is the length of the pre-order traversal of the current expression tree.

Enhancing the symbolic function via graph distillation Previous studies (Wang et al.) proposed a
carefully designed, complex GNN model that effectively addresses the challenge of poor generaliza-
tion caused by large distribution shifts in circuit domains. However, we found it hard for a symbolic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

function to capture this crucial generalization information, i.e., the circuit symbolic generalization
problem (shown in Figure 1b). The main reason is that, to maintain the simplicity of the learned
symbolic functions, we use node features as input instead of subgraphs, which inherently contain
less domain-invariant information. To address this challenge, we establish a teacher-student frame-
work that distills the dark knowledge, i.e., the generalization information, from the teacher GNN’s
output to strategically guide the student symbolic tree generation. Specifically, we first train a GNN
on the training dataset and then employ the prediction output (ŷ), the output of GNN (z), and true
labels (y) to evaluate every complete expression tree. The evaluation metric is defined as

L = λLlabel(ŷ, y) + (1− λ)Lteacher(ŷ, z) (2)

Llabel is introduced to incorporate label information, while Lteacher is used to bring in teacher
knowledge, providing additional guidance for symbolic function learning. Different from previ-
ous works which use KL-divergence for Lteacher (Zhang et al., 2022) to learn the distribution of the
teacher’s output, we employ the mean squared error (MSE) to directly learn the generalization in-
formation from the GNN. The key motivation lies in the discovery of a simple nonlinear mapping
between circuit features and the GNN’s output, which achieves a generalization performance com-
parable to that of the GNN itself (see Figure 8). Moreover, note that the number of effective nodes
is far fewer than ineffective nodes, which brings a severe imbalance between positive and negative
samples in the circuit data. Therefore, we follow Wang et al. to leverage the focal loss (Lin et al.,
2017) as the Lstudent. Due to limited space, please refer to Appendix E.5 for more implementation
details of our graph distillation approach.

4.3 THE DEPLOYMENT TO MODERN LO TOOLS

After the training process, we obtain a pair of symbolic functions that score and prune the effective
transformations. Intuitively, this symbolic function can be regarded as a data-driven version of the
human-designed function (Effisyn) in modern LO tools. Moreover, our learned symbolic functions
are concise one-line functions that are easy and reliable for deployment. Thus, similar to Effisyn Li
et al. (2023), we directly compile the learned policy to a lightweight shared object using a simple
script and then integrate it into the LO tools package.

5 EXPERIMENT

We conduct extensive experiments to evaluate CMO, which have four main parts: Experiment 1.
To demonstrate the superior performance of our CMO in terms of generalization performance and
efficiency. Experiment 2. To demonstrate that our approach can not only prompt the efficiency of
the Mfs2 heuristic but also improve the Quality of Results (QoR). Experiment 3. Perform care-
fully designed ablation studies to provide further insight into CMO. Experiement 4. To show the
appealing features of CMO in terms of online inference efficiency and interpretability.

Benchmarks We evaluate CMO on two widely-used public benchmarks, EPFL (Amarú et al., 2015)
and IWLS (Albrecht, 2005), and one industrial benchmark from an anonymous semiconductor com-
pany. These benchmarks consist of 69 circuits in total, including very large-scale circuits with up to
twenty million nodes. Due to limited space, we defer more details to Appendix D.1.

Experimental setup Throughout all experiments, we use ABC (Brayton et al., 2010) as the backend
LO framework. ABC is a state-of-the-art open-source LO framework and is widely used in research
of machine learning for LO (Pasandi et al., 2023). Moreover, we choose the Mfs2 (Mishchenko et al.,
2011)—one of the most time-consuming LO heuristics—as the backend heuristic to optimize. The
teacher graph learning model for symbolic distillation is a well-designed 2-layer graph convolutional
neural network (GCNN) (Wang et al.). Experiments are performed on a single machine that contains
32 Intel XeonR E5-2667 v4 CPUs. More details are provided in Appendix E.1.

Evaluation Metrics and Evaluated Methods Throughout all experiments, we evaluate our method
in two separate phases, i.e., the offline and online phases. In the offline phase, we evaluate the
prediction recall of the effective nodes. We empirically show that the QoR improves with increased
prediction recall in Appendix C.2. Thus, it is important to achieve high recall for comparable QoR
with the default heuristics. Specifically, we present details as follows. (1) Evaluation metrics Under
the prediction and prune framework (see Figure 5),

we view the prediction task as a scoring task and predict nodes with top k scores to be positive.
Under this prediction, we define a top k accuracy metric by the fraction of true positive nodes

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Our CMO achieves comparable prediction recall with the well-designed GNN, i.e. COG,
and significantly outperforms the human-designed approach, i.e., Effisyn.

Open-source
Circuits Hyp Multiplier Square DesPerf Ethernet Conmax

Method Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑
COG 0.99 0.97 1.00 0.74 0.68 0.92

Effisyn 0.94 0.44 0.46 0.51 0.32 0.68
CMO(Ours) 0.99 0.97 0.98 0.80 0.72 0.85

Very Large-scale &
Industrial Circuits Sixteen Twenty Ci1 Ci2 Ci3 Ci4

Method Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑
COG 0.86 0.90 0.89 0.85 1.00 0.94

Effisyn 0.1 0.1 0.79 0.91 0.98 0.82
CMO(Ours) 0.86 0.85 1.00 1.00 0.99 0.96

Hyp Multiplier Square Desperf Ethernet Conmax Sixteen Twenty Ci1 Ci2 Ci3 Ci4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 R
un

ti
m

e

Online Evaluation on Open-source and Industiral Benchmarks

CMO-Mfs2 (Ours) COG-Mfs2 Effisyn-Mfs2

Figure 4: We compare our CMO with the COG and Effisyn on online runtime. The results demon-
strate that our approach achieves significant runtime improvement with the baselines.

that are predicted to be positive, i.e., prediction recall. We defer details on this metric to Appendix
E.1.2. (2) Evaluated methods In the offline phase, we evaluate the well-designed GNN approach
COG (Wang et al.), the human-designed approach Effisyn (Li et al., 2023), and our CMO. COG
is a well-designed 2-layer graph convolutional neural network. Effisyn is a human-designed non-
linear function with key parameters manually derived from circuit features. CMO is our proposed
graph enhanced symbolic discovery framework. Moreover, we compare our CMO with the other
five lightweight baselines. The baselines include two state-of-the-art (SOTA) searching-based SR
approaches, two traditional lightweight ML models, and a Random approach. Please refer to Ap-
pendix E.2 for the implementation details of these baselines. In the Online phase, we evaluate the
efficiency and QoR of CMO. Specifically, we present details as follows. (1) Evaluation metrics In
terms of the efficiency of the heuristics, we use the runtime metric. In terms of QoR, we mainly use
the optimized node, i.e., the number of the optimized circuit nodes, which has a significant impact
on the final chip area. Moreover, we also use the depth (i.e., level) of the optimized circuits, which
is a proxy metric for the delay of the designed chip. (2) Evaluated methods In the online phase,
we introduce a new heuristic called X-Mfs2, which integrates the learned scoring function ”X” into
the default Mfs2 heuristic. In our experiments, ”X” refers to the COG, Effisyn, the five lightewight
baselines and our CMO.

Evaluation Strategy In real industrial scenarios, we hope that the trained model can generalize to
many unseen circuits. Inspired by the leave-one-domain-out cross-validation strategy commonly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: We compare the Default Mfs2 heuristic with our 2CMO-Mfs2 heuristic with the hyperpa-
rameter k set as 30%, 40% and 50% on open-source and industrial circuits. Optimized Nd denotes
the node number (size) of circuits, and Lev denotes the level (depth) of circuits. We define an
Improvement metric by M(Default)−M(Ours)

M(Default) , where M(·) denotes the Nd, Lev, or Time.

Open-source Circuits Hyp Desperf

Method Lev ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 8259.00 NA 319.33 NA 30853.00 NA 36.76 NA
CMO-Mfs (0.5, Ours) 8259.00 0 158.49 50.37 30910.00 -0.18 26.40 28.19

2CMO-Mfs (0.3, Ours) 5762.00 30.23 127.51 60.07 29392.00 2.31 30.16 17.96
2CMO-Mfs (0.4, Ours) 5762.00 30.23 170.45 46.62 29175.67 2.50 38.20 -3.92

very Large-scale Circuits Sixteen Twenty

Method Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 6017631.00 NA 78784.04 NA 7693089.00 NA 108735.49 NA
CMO-Mfs2 (0.5, Ours) 6018729.00 -0.001 32001.27 59.38 7694455.00 -0.002 56965.94 47.61
2CMO-Mfs2 (0.3, Ours) 5434092.00 9.70 36425.15 53.77 6877483.00 10.60 59786.55 45.02
2CMO-Mfs2 (0.4, Ours) 5433745.00 9.70 46572.91 40.80 6877158.00 10.61 75956.18 30.15

Industrial Circuits Ci1 Ci2

Method Lev ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 47.00 NA 180.35 NA 99245.00 NA 78.07 NA
CMO-Mfs2 (0.5, Ours) 47.00 0.00 113.08 37.30 99245.00 0.00 45.61 41.58
2CMO-Mfs2 (0.3, Ours) 45.00 4.26 142.96 20.73 94240.00 5.04 64.37 17.55
2CMO-Mfs2 (0.4, Ours) 45.00 4.26 177.04 1.84 93184.00 6.11 81.07 -3.84

used in previous literature (Wang et al., 2022), we design twelve leave-one-out datasets for evalu-
ation. Specifically, given a benchmark, we construct a dataset by setting one circuit as the testing
dataset, and the other circuits as the training dataset. Please refer to D.2 for more details.

Experiment 1. Comparitive Evaluation In this subsection, we compare our CMO with state-of-
the-art GPU-based (COG) and human-designed (Effisyn) methods in terms of generalization perfor-
mance. The evaluation follows the proposed generalization strategy and is conducted on two widely
used open-source benchmarks and one industrial benchmark. We use the offline prediction recall
as the evaluation metrix. Results in Table 1 shows that our CMO outperforms the GNN on half of
the circuits in terms of the prediction recall, demonstrating the strong generalization capability of
our CMO. Moreover, our CMO achieves an average improvement of 36% in prediction recall when
compared to Effisyn. Additionally, CMO achieves a prediction recall exceeding 85% across most
test circuits, indicating it can maintain applying most of the effective transformations. In the online
phase, we mainly focus on the efficiency of the X-Mfs2 heuristics. To ensure a fair comparison
for efficiency, we maintain comparable optimization performance across all comparison methods.
However, due to the significant prediction shift between Effisyn and our CMO as shown in Table 1,
we have to adjust a higher k for Effisyn to achieve comparable optimization performance (see Ap-
pendix C.3 for the optimization results). Thus, we maintain the top 50% accuracy for our CMO and
COG and apply the top 70% for Effisyn. The results in Figure 4 show that our CMO-Mfs2 signifi-
cantly outperforms the baselines in terms of efficiency. Specifically, our CMO achieves an average
improvement of 21.05% and 15.07% over the COG and Effisyn on the open-source and industrial
benchmarks. Overall, the offline and online results demonstrate that our CMO can not only achieve
comparable prediction performance to the well-designed teacher GNN but also outperform all of the
baselines in terms of heuristic efficiency. Due to limited space, we provide the online optimization
results and more comparison results with other lightweight baselines in Appendix C.3.

Experiment 3. Improving Efficiency and QoR of the LO heuristic In this subsection, we con-
duct experiments on six challenging circuits to demonstrate that our method can not only reduce
runtime but also improve QoR, such as the sizes and depths of optimized circuits. The size and
depth are critical metrics in chip design, as they are proxies for the final area and delay of chips. We
first show that our CMO could improve the efficiency of the Mfs2 heuristic with comparable opti-
mization performance. Specifically, the results in Table 2 demonstrate that our CMO significantly
achieves an average runtime improvement of 44.07% with marginal node degradation. In particu-
lar, our CMO achieves 2.5× faster runtime on the very large-scale circuit Sixteen (about 13 hours).
Then, we can sequentially apply CMO-Mfs2 multiple times rather than once to improve the QoR
(i.e., 2CMO-Mfs2), as the runtime of CMO-Mfs2 is significantly shorter than that of Default Mfs2
heuristic. To achieve faster runtime, we set the hyperparameter k as 30% and 40% rather than 50%
to achieve faster runtime. Table 2 shows that 2CMO-Mfs2 significantly reduces the size and depth of
optimized circuits while achieving faster runtime compared with the Default Mfs2 heuristic. Specif-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ically, 2CMO-Mfs2 with k = 40% reduces the size/depth by 10.57% on average while reducing
the runtime by 18.60% on the test circuits. Furthermore, suppose we want to achieve faster runtime
in certain real-world scenarios, then we can set k as a smaller value such as 30%. Table 2 shows
that 2CMO-Mfs2 with k = 30% reduces the size/depth by 10.36% on average with 35.85% runtime
reduction on the open-source and industrial circuits. In particular, our method achieves a significant
reduction over the depth on Hyp, improving the level by 30.23%. Overall, the results suggest that
our efficient CMO-Mfs2 can significantly improve the QoR while achieving faster runtime, yielding
a substantial economic value in chip design. Please refer to Appendix C.4 for more results.

Table 3: The ablation study results.
Circuit Multiplier Square Hyp

Method Recall ↑ Recall ↑ Recall ↑
CMO 0.96 0.98 0.99

CMO without GESD 0.91 0.96 0.67
CMO without SFD and GESD 0.52 0.72 0.93

Circuit DesPerf Ethernet Conmax

Method Recall ↑ Recall ↑ Recall ↑
CMO 0.80 0.72 0.84

CMO without GESD 0.80 0.44 0.76
CMO without SFD and GESD 0.60 0.42 0.45

Experiment 4. Ablation Study In this subsection,
we conduct an ablation study to understand the indi-
vidual contribution of each component of our CMO.
To this end, we compare our CMO with its variants,
i.e., CMO without GESD and CMO without SFD
on two widely-used open-source benchmarks. The
results in Table 3 suggest the following two con-
clusions. First, CMO without GESD significantly
outperforms CMO without GESD and SFD in terms
of offline prediction recall, demonstrating the impor-
tance of structural-semantic symbolic learning formulation. Second, CMO also significantly outper-
forms CMO without GESD. This demonstrates that GESD can effectively distill a high-performance
symbolic function from the teacher GNN. We defer detailed results in Appendix C.5.

Experiment 5. Strengths for Deployment In this subsection, we conduct extensive experiments
to demonstrate the appealing features of our CMO on high optimization performance, inference
efficiency, and interpretability. Specifically, we present a detailed analysis as follows.

Table 4: The model inference results show that
our CMO are extremely efficient for inference
compared to the other approaches when executed
on CPU-based LO tools.

Hyp DesPerf Sixteen Twenty Ci1 Ci2

Method Time(s) ↓ Time(s) ↓ Time(s) ↓ Time(s) ↓ Time(s) ↓ Time(s) ↓
COG 28.28 6.24 1377.66 1787.07 30.00 18.23

Effisyn 0.15 0.06 9.67 12.19 0.48 0.22
CMO(Ours) 0.06 0.05 4.16 4.96 0.17 0.06

Inference Efficiency We compare the model
inference time of our CMO with the GNN ap-
proach and human-designed approach on open-
source circuits and industrial circuits. Results
in Table 4 demonstrate that CMO learned scor-
ing functions are extremely efficient on purely
CPU-based machines, achieving a speedup
of several hundred times compared to GNN.
The efficiency comes from both the graph-
independency inference and the concise sym-
bolic functions. Moreover, while the human-designed scoring function demonstrates notable infer-
ence efficiency, our method achieves superior speed as we learn a simpler scoring function.

Interpretability Compared to GNN, CMO generates a concise symbolic function with better inter-
pretability, enhancing simplicity and reliability for employment. We report the learned structural
functions and boolean semantic functions in Table 16. We observed that x2, which represents the
node level, is approximately positively correlated with the node scores, indicating its significance in
ineffective node prediction. Furthermore, some critical hyperparameters in the traditional human-
designed scoring function heavily rely on the node level (Li et al., 2023). The intuition behind the
design of this scoring function is highly similar to the learned symbolic policies in Table 16. Thus,
we believe our CMO can help researchers further understand and design effective scoring functions.

6 CONCLUSION

To enable efficient LO, previous studies use scoring functions to predict and prune ineffective nodes
in LO heuristics. However, existing functions struggle to balance inference efficiency, interpretabil-
ity, and generalization performance. To address this, we propose CMO, a novel Circuit Symbolic
Learning Framework that learns efficient, interpretable, and high-performance symbolic functions.
The key contribution of CMO is a graph-enhanced symbolic learning framework that distills dark
knowledge from a well-designed GNN to improve the generalization of learned functions. Extensive
experiments on three challenging benchmarks show that the interpretable learned functions outper-
form previous SOTA GPU-based and human-designed methods in terms of efficiency and gener-
alization. Moreover, CMO significantly improves the Mfs2 heuristic’s efficiency with comparable
optimization performance on a CPU-based machine, achieving up to 2.5× faster runtime.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christoph Albrecht. Iwls 2005 benchmarks. 2005.

Luca Amarú et al. The epfl combinational benchmark suite. (CONF), 2015.

Augusto André Souza Berndt et al. A review of machine learning in logic synthesis. Journal of
Integrated Circuits and Systems, 17(3):1–12, 2022.

Valeria Bertacco et al. The disjunctive decomposition of logic functions. In iccad, volume 97, pp.
78–82, 1997.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In International Conference on Machine Learning,
pp. 936–945. Pmlr, 2021.

Alan Mishchenko Robert Brayton. Scalable logic synthesis using a simple circuit structure. 6:15–22,
2006.

Alan Mishchenko Satrajit Chatterjee Robert Brayton and Xinning Wang Timothy Kam. Technology
mapping with boolean matching, supergates and choices.

Robert Brayton et al. Abc: An academic industrial-strength verification tool. In Computer Aided
Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings 22, pp. 24–40. Springer, 2010.

Robert K Brayton. The decomposition and factorization of boolean expressions. ISCA-82, pp.
49–54, 1982.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. Advances
in neural information processing systems, 33:17429–17442, 2020a.

Miles D. Cranmer, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Rui Xu, Kyle Cranmer, David N.
Spergel, and Shirley Ho. Discovering symbolic models from deep learning with inductive biases.
CoRR, abs/2006.11287, 2020b. URL https://arxiv.org/abs/2006.11287.

Stéphane d’Ascoli, Samy Bengio, Josh Susskind, and Emmanuel Abbé. Boolformer: Symbolic
regression of logic functions with transformers. arXiv preprint arXiv:2309.12207, 2023.

Brunno A De Abreu, Augusto Berndt, Isac S Campos, Cristina Meinhardt, Jonata T Carvalho, Ma-
teus Grellert, and Sergio Bampi. Fast logic optimization using decision trees. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2021.

Amir H Farrahi and Majid Sarrafzadeh. Complexity of the lookup-table minimization problem for
fpga technology mapping. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(11):1319–1332, 1994.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Arthur E Hoerl and Robert W Kennard. Ridge regression: applications to nonorthogonal problems.
Technometrics, 12(1):69–82, 1970.

Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 581–586. IEEE, 2020.

Guyue Huang et al. Machine learning for electronic design automation: A survey. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 26(5):1–46, 2021.

11

https://arxiv.org/abs/2006.11287

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

Brucek Khailany. Accelerating chip design with machine learning. In Proceedings of the 2020
ACM/IEEE Workshop on Machine Learning for CAD, pp. 33–33, 2020.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, HAO Jianye, and Feng Wu. Towards
general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In Forty-first International Conference on Machine Learning.

Xing Li, Chen Lei, et al. Effisyn: Efficient logic synthesis with dynamic scoring and pruning. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, and
Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pp. 1–6. IEEE, 2021.

Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Higher Education,
1994.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Alan Mishchenko, Sungmin Cho, Satrajit Chatterjee, and Robert Brayton. Combinational and se-
quential mapping with priority cuts. In 2007 IEEE/ACM International Conference on Computer-
Aided Design, pp. 354–361. IEEE, 2007.

Alan Mishchenko, Robert Brayton, Jie-Hong R Jiang, and Stephen Jang. Scalable don’t-care-based
logic optimization and resynthesis. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 4(4):1–23, 2011.

Walter Lau Neto, Matheus Trevisan Moreira, Luca Amaru, Cunxi Yu, and Pierre-Emmanuel Gaillar-
don. Read your circuit: leveraging word embedding to guide logic optimization. In Proceedings
of the 26th Asia and South Pacific Design Automation Conference, pp. 530–535, 2021.

Michael O’Neill. Riccardo poli, william b. langdon, nicholas f. mcphee: A field guide to genetic
programming: Lulu. com, 2008, 250 pp, isbn 978-1-4092-0073-4, 2009.

Ghasem Pasandi, Sreedhar Pratty, and James Forsyth. Aisyn: Ai-driven reinforcement learning-
based logic synthesis framework. arXiv preprint arXiv:2302.06415, 2023.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on Learning
Representations, 2020.

Shubham Rai, Walter Lau Neto, Yukio Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi,
Masahiro Fujita, Guilherme B Manske, Matheus F Pontes, Leomar S da Rosa, et al. Logic syn-
thesis meets machine learning: Trading exactness for generalization. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1026–1031. IEEE, 2021.

Basireddy Karunakar Reddy, Srinivas Sabbavarapu, and Amit Acharyya. A new vlsi ic design
automation methodology with reduced nre costs and time-to-market using the npn class represen-
tation and functional symmetry. In 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 177–180. IEEE, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoxing Ren and Jiang Hu. Machine Learning Applications in Electronic Design Automation.
Springer Nature, 2023.

Srinivas Sabbavarapu, Karunakar Reddy Basireddy, and Amit Acharyya. A new dynamic library
based ic design automation methodology using functional symmetry with npn class representation
approach to reduce nre costs and time-to-market. In 2014 Fifth International Symposium on
Electronic System Design, pp. 115–119. IEEE, 2014.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discov-
ering governing equations via monte carlo tree search. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
ZTK3SefE8_Z.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh Chawla. NOSMOG: Learn-
ing noise-robust and structure-aware MLPs on graphs. In NeurIPS 2022 Workshop: New Frontiers
in Graph Learning, 2022. URL https://openreview.net/forum?id=nT897hw-hHD.

Jindong Wang, Cuiling Lan, et al. Generalizing to unseen domains: A survey on domain general-
ization. IEEE Transactions on Knowledge and Data Engineering, 2022.

Zhihai Wang, Lei Chen, Jie Wang, Yinqi Bai, Xing Li, Xijun Li, Mingxuan Yuan, HAO Jianye,
Yongdong Zhang, and Feng Wu. A circuit domain generalization framework for efficient logic
synthesis in chip design. In Forty-first International Conference on Machine Learning.

Nan Wu, Yingjie Li, et al. Gamora: Graph learning based symbolic reasoning for large-scale boolean
networks. arXiv preprint arXiv:2303.08256, 2023.

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=PJVUWpPnZC.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching
old MLPs new tricks via distillation. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=4p6_5HBWPCw.

A RELATED WORK

Learning-based Methods for Symbolic Discovery Several recent approaches utilize deep learn-
ing for symbolic discovery. These methods generally fall into three categories—Evolutionary, Pre-
trained, and Searching-based. Genetic programming (GP) (O’Neill, 2009) is one of the classic
evolutionary symbolic regression methods, operating by maintaining a population of expression
“individuals” that evolve using evolutionary operations such as selection, crossover, and mutation.
While GP can be effective, it tends to struggle with scalability for larger problems. In recent years,
pre-trained symbolic regression methods have shown advantages in fast inference and have success-
fully discovered large input (with up to twelve) symbolic functions (d’Ascoli et al., 2023; Biggio
et al., 2021; Kamienny et al., 2022). However, these methods are limited by high training costs and
data generalization challenges. Unlike the methods mentioned above, the searching-based method
explores the discrete symbolic operator space and finds the best function that maximizes the fitness
of the given dataset. The mainstream symbolic regression frameworks are based on Monte Carlo
tree search (Sun et al., 2023; Xu et al., 2024) and sequence prediction models such as RNN (Petersen
et al., 2020). These methods have achieved state-of-the-art performance on multiple benchmarks.

Symbolic Distillation from the Trained GNNs Motivated by the high expressive capacity but
opaque nature of GNNs, previous studies have sought to distill interpretable symbolic functions
from GNNs to approximate their mapping functions. First, (Cranmer et al., 2020a) introduces a
framework that distills interpretable symbolic functions from trained GNNs for scientific discovery.
This approach initially trains the neural network models and then utilizes a symbolic learning model

13

https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=nT897hw-hHD
https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=4p6_5HBWPCw

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

to iteratively approximate both the message-passing and aggregation functions with symbolic repre-
sentations. However, (Kuang et al.) found that distilling trained GNNs layer by layer often results
in suboptimal performance. To address this, they propose learning interpretable symbolic policies
directly from the general bipartite graph representation in an end-to-end manner. Nonetheless, the
symbolic functions produced in this way can become complex, as they must map the relationships
between graph inputs and outputs. In contrast, our work focuses on using only the node features as
input to enhance inference efficiency and ensure better interpretability.

B MORE DETAILS ON THE BACKGROUND

Y

N

Y

N

Input: Original Circuit

i=N[0]

i=|N|?

Trans node N[i] Gain>0?

Update circuit

i+=1

Output: Optimized Circuit

Extract node id set N

Node features extraction

Scoring function

Effective node id set N

Prediction and Prune

Collect all nodes

Default LS heuristics

Full node id set N

Start

End

Optimization For Loop

Figure 5: The Prediction and Prune framework.

Logic Optimization (LO) Driven by Moore’s law, the complexity of chip design has grown expo-
nentially (Khailany, 2020; Lopera et al., 2021; Huang et al., 2021; Mirhoseini et al., 2021; Ren &
Hu, 2023). To manage this complexity, chip design workflows have incorporated multiple Electronic
Design Automation (EDA) tools to synthesize, simulate, test, and verify different circuit designs ef-
ficiently and reliably. Among these tools, A LO tool–which aims to optimize the circuit represented
by a Boolean network–is one of the most important modules in the EDA tools. LO typically involves
two stages: pre-mapping optimization and post-mapping optimization (Hosny et al., 2020; Ren &
Hu, 2023). During the pre-mapping optimization phase, LO heuristics such as Rewrite (Bertacco
et al., 1997), Resub (Brayton, 2006), and Refactor (Brayton, 1982) are used to improve the input cir-
cuit. Following this, in the technology mapping phase, the optimized logic circuit is mapped to the
available technology library, e.g., a standard-cell netlist (Brayton & Kam) or k-input lookup tables
(Mishchenko et al., 2007). Finally, the post-mapping optimization phase applies LO heuristics like
Mfs2 (Mishchenko et al., 2011) to further refine and enhance the mapped circuit.

Logic Optimization heuristics To tackle the LO task, many researchers have developed a rich set
of LO heuristics. For instance, researchers have developed Rewrite(Bertacco et al., 1997) and Re-
sub(Brayton, 2006) for pre-mapping optimization, while Mfs2(Mishchenko et al., 2011) is designed
for post-mapping optimization. These LO heuristics follow the paradigm as shown in Figure 5.
Specifically, these heuristics traverse the Boolean network in a topological order from PIs to POs
and apply transformations to subgraphs rooted at each node sequentially for all nodes. However,
previous literature(Wang et al.) found that these heuristics can be highly time-consuming due to a
large number of ineffective transformations. To address this problem, we follow the new heuristics
paradigm proposed by (Wang et al.) that can significantly improve the efficiency of LO heuristics
by learning a classifier to predict nodes with ineffective transformations and avoid applying trans-
formations on these nodes. In this paper, we focus on optimizing the post-mapping operator Mfs2
(Mishchenko et al., 2011), which stands out as the most time-consuming one among all commonly
used LO heuristics.

Background on Circuit Representation In the LO stage, a circuit is usually modeled by a Boolean
network. In this paper, we use the terms Boolean network and circuit interchangeably. A Boolean
network is a directed acyclic graph (DAG), where nodes correspond to Boolean functions and di-
rected edges correspond to wires connecting these functions. A Boolean function takes the form
f : Bn → B, where B = {0, 1} denotes the Boolean domain. Given a node, its fanins are nodes
connected by incoming edges of this node, and its fanouts are nodes connected by outgoing edges
of this node. The primary inputs (PIs) are nodes with no fanin, and the primary outputs (POs) are

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

nodes with no fanout. The size of a circuit denotes the number of nodes in the DAG. The depth
(level) of a circuit denotes the maximal length of a path from a PI to a PO in the DAG. The size and
depth of a circuit are proxy metrics for the area and delay of the circuit, respectively.

Graph Neural Network (GNN) Recently, many researchers have achieved remarkable success
in applying Graph Neural Networks (GNNs) to extract abundant node information from circuit
graphs(Wu et al., 2023). As far as we are aware, (Wang et al.) applies GNN to predict nodes
with ineffective transformations for the LO task. The input of GNN is a heuristic-designed subgraph
rooted as the node, and the output is a continuous score ranging from 0 to 1 for the node. Based on
the scores, nodes in circuits are ranked and the top k nodes are selected to be positive. However,
despite achieving a high accuracy on ineffective node prediction, GNN heavily relies on a GPU for
efficient inference while many EDA developers may not have access to high-end GPUs, which thus
severely limits its application into purely CPU-based LO tools.

Graph-based Knowledge Distillation Knowledge Distillation (KD) aims to transfer knowledge
from a large, complex teacher model to a smaller, more efficient student model (Gou et al., 2021).
The main idea is that the student model mimics the teacher model in order to obtain a competitive
or even superior performance. Recently, Graph-based Knowledge Distillation has emerged as a sig-
nificant research direction within KD research. This process involves distilling knowledge from a
Graph Neural Network (GNN), into a more lightweight student model, such as a Multilayer Per-
ceptron (MLP) (Zhang et al., 2022; Tian et al., 2022) or symbolic functions (Cranmer et al., 2020b;
Kuang et al.), which only relies on node features as input. By eliminating the graph dependency
during inference, this approach enables a more efficient and faster student model while retaining the
high predictive performance learned by the GNN.

C ADDITIONAL RESULTS

C.1 MORE MOTIVATING RESULTS

93.3%

6.7%

Top 50% Accuracy Distribution

Categories
Acc>=99%
Acc>=85%

Figure 6: High-performance sym-
bolic functions exist in the open-
source benchmarks.

Existence of high-performance symbolic functions To ver-
ify whether concise and high-performance symbolic func-
tions exist in our computational synthesis (LO) task, we
apply the symbolic tree search algorithm to all valid cir-
cuits—specifically, those with effective nodes—in the EPFL
benchmark. In this evaluation, we utilize the top 50% accu-
racy metric as the simulated rewards to gauge performance.
As shown in Figure 6, an impressive 93.3% of the circuits (14
out of 15) achieve a top 50% accuracy exceeding 99%. Fur-
thermore, our analysis indicates that all learned symbolic func-
tions are not only short but also remarkably concise. This ob-
servation suggests a strong potential for leveraging symbolic
learning approaches in our LO task, indicating that such meth-
ods could efficiently enhance performance while maintaining
clarity and simplicity in the symbolic representations.

C.2 THE IMPORTANCE OF THE PREDICTION RECALL ON OPTIMIZATION PERFORMANCE

To analyze the relationship between the prediction recall of effective nodes and the optimization
performance of heuristics, we evaluate the optimization performance of the Random method with
different values of the hyperparameter k. Note that Random is a baseline that randomly predicts a
score between [0, 1] for each node, and selects the top k nodes to apply node-level transformations.
Specifically, we report the recall and optimization performance (i.e., And Reduction) of Random
with different values of k in Table 5. The results indicate that the value of k is approximately linearly
positively correlated with the recall, and the recall is approximately linearly positively correlated
with the optimization performance as well. Therefore, to maintain the optimization performance of
heuristics, the prediction recall of our model should be as high as possible.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.3 MORE RESULTS FOR COMPARATIVE EVALUATION

Due to the significant Top 50% accuracy shift between Effisyn and our CMO shown in Table 1, we
have to adjust a higher k for the Effisyn to achieve comparable prediction recall and thus compara-
ble online optimization performance (shown in Table 5). Specifically, we choose k as 70% for the
Effisyn as too large k will bring higher time cost. Results shown in Table 6 demonstrate that our
CMO achieves an average improvement of 21.05% compared to COG while maintaining compara-
ble optimization performance (normalized And reduction is 0.92 versus 0.91). Additionally, when
compared to Effisyn, our CMO shows an average improvement of 15.07% while preserving similar
optimization performance across most circuits. Note that Effisyn exhibits very low optimization
performance on two very large-scale circuits, even with k set to 70%. For these circuits,k may need
to be adjusted to 90% or higher, which would result in significantly increased time costs. Moreover,
we compare our CMO with the other five lightweight baselines on open-source circuits. The re-
sults in Tables 8 and 9 demonstrate that our CMO significantly outperforms these baselines in both
generalization performance and efficiency.

C.4 MORE IMPROVING EFFICIENCY AND QOR RESULTS

In this subsection, we provide more results about the improving efficiency and QoR results in Table
18. We first show that our CMO could improve the efficiency of the Mfs2 heuristic with comparable
optimization performance. Specifically, the results in Table 2 demonstrate that our CMO signif-
icantly achieves an average runtime improvement of 44.54% with marginal node degradation. In
particular, our CMO achieves 2.5× faster runtime on the very large-scale circuit Sixteen (about 13
hours). Then, we can sequentially apply CMO-Mfs2 multiple times rather than once to improve the
QoR (i.e., 2CMO-Mfs2), as the runtime of CMO-Mfs2 is significantly shorter than that of Default
Mfs2 heuristic. To achieve faster runtime, we set the hyperparameter k as 30% and 40% rather than
50% to achieve faster runtime. Table 2 shows that 2CMO-Mfs2 significantly reduces the size and
depth of optimized circuits while achieving faster runtime compared with the Default Mfs2 heuris-
tic. Specifically, 2CMO-Mfs2 with k = 40% reduces the size/depth by 5.82% on average while
reducing the runtime by 7.99% on the test circuits. Furthermore, suppose we want to achieve faster
runtime in certain real-world scenarios, then we can set k as a smaller value such as 30%. Table 2
shows that 2CMO-Mfs2 with k = 30% reduces the size/depth by 5.60% on average with 26.16%
runtime reduction on the open-source and industrial circuits. In particular, our method achieves a
significant reduction over the depth on Hyp, improving the level by 30.23%. Overall, the results sug-
gest that our efficient CMO-Mfs2 can significantly improve the QoR while achieving faster runtime,
yielding a substantial economic value in chip design.

C.5 MORE ABLATION STUDY RESULTS

In this subsection, we provide more ablation combinations and corresponding results. Specifically,
CMO without structural-semantic feature decomposition denotes that we apply our graph distillation
module directly to the original high-dimensional circuit data. The results in Table 7 show that CMO
without SFD outperforms CMO without SFD and GSD in terms of the offline prediction recall,
indicating the robustness and ability of our graph distillation module.

C.6 MORE RESULTS OF STRENGTHS FOR DEPLOYMENT

In this subsection, we provide more results of our method’s deployment strengths in terms of opti-
mization performance and inference efficiency.

High Optimization Performance There are many lightweight and interpretable models suitable for
industrial deployment. Compared to these models, our symbolic discovery framework take advan-
tage in achieving higher optimization performance. We compare our CMO with five lightweight
baselines on all of the test circuits. The results in Table ?? demonstrate that our method significantly
outperforms all of the baselines in prediction recall. Specifically, it achieves an average improvement
of 24% and 21% to the state-of-the-art symbolic discovery approach SPL and a powerful traditional
machine learning approach XGBoost.

More results for inference efficiency We provide detailed model inference time results for all test
circuits. Table 10 demonstrates that the runtime of the GNN model for COG is hundreds of times

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

greater than that of CMO when executed on purely CPU-based machines. Additionally, results in
Table 11 show that the inference time of the GNN model accounts for up to 29% of the total end-to-
end heuristic execution time, which significantly impacts the efficiency of LO heuristics. Therefore,
while the graph-based machine learning model achieves optimization performance comparable to
that of CMO, these methods are limited to deployment in modern CPU-based LO tools due to the
high inference costs.

D DETAILS OF DATASETS USED IN THIS PAPER

D.1 DESCRIPTION OF THREE USED BENCHMARKS

We provide detailed statistics of the circuits from EPFL and IWLS in Tables 12 and 13, respectively.
Additionally, statistics for the very large-scale circuits and industrial circuits are shown in Tables 14
and 15. The industrial circuits consist of 27 circuits. In general, nodes correspond to logic gates
and edges represent the wires connecting them. The fanins of a node are the nodes supplying input
to it, while the fanouts are the nodes that it drives. Primary inputs (PIs) are nodes without fanins,
and primary outputs (POs) are a subset of the network’s nodes. Latches are specialized nodes in
sequential circuits, and cubes represent subsets of input variables in Boolean functions. Lev refers
to the depth of the DAG, measured by the maximum number of edges between PIs and POs.

D.2 DATASETS FOR EVALUATION ON OPEN-SOURCE BENCHMARKS

For each circuit and a given X heuristic, we collect the circuit dataset by applying the X heuristic
to optimize the circuit and collecting the node features {xi}ni=1 and labels {yi}ni=1. We found that
there are a small number of circuits with no effective nodes. We discard these circuits, as we can
directly avoid applying transformations to these circuits without learning a model.

Specifically, using the leave-one-out evaluation strategy with the EPFL benchmark, we construct
three datasets for evaluation. One of the three circuit datasets—collected from Hyp, Multiplier, and
Square—serves as the testing dataset, while the remaining datasets are used for training. Similarly,
under the leave-one-out evaluation strategy with the IWLS benchmark, we create three datasets,
selecting one of the four circuit datasets from Ethernet, Conmax, and Desperf as the testing dataset
and using the others for training. To foster the machine learning community in Logic Optimization,
we will release the datasets once the paper is accepted for publication.

D.3 DATASETS FOR EVALUATION ON INDUSTRIAL CIRCUITS AND VERY LARGE-SCALE
CIRCUITS

In terms of the industrial circuits, we report a statistical description of the training and testing circuits
in Table 15. As shown in Tables 15, 12, and 13, the industrial circuits consist of 27 industrial circuits,
where the circuit sizes range from 2, 775 to 788, 288, which are much larger in size than open-source
circuits. Using the leave-one-out evaluation strategy, we evaluate our method with 23 circuits for
training and 4 circuits for testing.

For very large-scale circuits (up to twenty million nodes), we provide a detailed description in Table
14. Given the limited number of very large-scale circuits, we utilize circuits from the EPFL dataset
outlined in Table 12 along with two additional very large-scale circuits to construct our datasets.
Specifically, we adopt the following approach: (1) The Sixteen circuit is designated as the testing
dataset, while the remaining circuits serve as the training dataset. (2) The Twenty circuit is set as the
testing dataset, with the rest used for training. To support the machine learning community in Logic
Optimization, we will release these datasets upon acceptance of the paper for publication.

D.4 VISUALIZATION OF THE CIRCUIT GRAPH

In the LO stage, a circuit is usually modeled by a DAG. Common types of DAGs for LO include
And-Inverter Graphs (AIGs) for pre-mapping optimization and K-Input Look-Up Tables (K-LUTs)
for post-mapping optimization. In the pre-mapping optimization phase, an AIG is a DAG containing
four types of nodes: the constant, PIs, POs, and two-input And (And2) nodes. A graph edge is either
complemented or not. A complemented edge indicates that the signal is complemented. In the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

post-mapping optimization phase, a K-LUT is a DAG with nodes corresponding to Look-Up Tables
and directed edges corresponding to wires. A Look-Up Table in a K-LUT is a digital memory that
implements the Boolean function of the node. To further illustrate the circuit graph, we visualize
the AIG, K-LUT look-up table, and the circuit optimization process of a small circuit selected from
IWLS2020 (Rai et al., 2021) in Figure 7.

(a). Init AIG (b). The optimized AIG

(c). Init K-Luts (d). The optimized K-Luts

Pre-mapping optimization phase

Post-mapping optimization phase

Resub

Heuristics

Mfs2

Heuristics

Node Number=24 Node Number=18

Figure 7: Visualization of the And-Inverter Graph (AIG) and K-Input Look-Up Tables (K-LUTs).
In the pre-mapping circuit optimization phase, LO heuristics such as resub, are applied to optimize
the AIG. In the post-mapping phase, LO heuristics such as mfs2, are used to optimize the K-LUTs.

E DETAILS OF METHODS AND EXPERIMENTAL SETTINGS

E.1 DETAILS OF EXPERIMENTAL SETUP

E.1.1 OPTIMIZATION SEQUENCE FLOWS

Optimization Sequence Flows for Collecting Data and Evaluation In the industrial setting, we
usually apply a sequence of Logic Optimization (LO) heuristics to optimize an input circuit. Thus,
we follow the setting throughout all experiments unless mentioned otherwise. Specifically, in terms
of the Mfs2 heuristic, we apply the sequence of heuristics, i.e., strash; dch; if -C 12; mfs2 -W 4 -M
5000, to collect data and evaluate the performance of the Default Mfs2 heuristic and our CMO. Note
that the optimization sequence flow is a standard academic flow for evaluating the Default Mfs2
heuristic, which follows previous work (Mishchenko et al., 2011).

Optimization Sequence Flows for Evaluating 2CMO-Mfs2 To apply our CMO twice, we apply
the sequence of heuristics, i.e., strash; dch; if -C 12; mfs2 -W 4 -M 5000; strash; if -C 12; mfs2 -W
4 -M 5000, to evaluate the performance of 2CMO. Note that the mfs2 heuristic is a post-mapping
optimization heuristic, whose input DAG is a k-input look-up table graph (K-LUTs). Moreover, the
strash heuristic transforms the current circuit representation into an And-Inverter Graph (AIG) by

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

one-level structural hashing. Then, the if (Mishchenko et al., 2007) heuristic maps an AIG into a
K-LUTs. Finally, the Mfs2 heuristic optimizes the input K-LUTs.

E.1.2 TOP K ACCURACY METRIC

The ineffective Node-Level Transformations problem in many LO heuristics—–that is, the number
of effective nodes is far fewer than ineffective nodes—–leads to an extreme class imbalance in the
training dataset. Therefore, the learned classifiers always suffer from negative bias and thus 0.5 is
an inappropriate threshold for evaluating whether a sample is positive. To tackle this problem, we
follow (Wang et al.) to view the prediction task as a scoring function. Specifically, we sort all the
nodes according to the prediction scores given by our learned symbolic functions and select the top
k nodes. That is, the top k nodes are predicted positive, and the other nodes are predicted negative.
Then, the top k accuracy metric is defined by the recall, i.e., the fraction of true positive nodes that
are predicted to be positive.

E.1.3 IMPLEMENTATION OF THE TRAINING DETAILS

In our implementation, we configured the weight factor λ between Lteacher and Lstudent as 0.5 to
balance the objective functions. We averaged the results over three different random seeds during
training. Additionally, a regularization factor ρ = 0.99 was employed to penalize excessive expres-
sion length, encouraging more compact and interpretable solutions. The training process utilized
Monte Carlo Tree Search (MCTS), running 10,000 episodes per iteration across 20 iterations. After
training, the best-performing model on the training set from all 20 iterations was selected, ensuring
both stability and optimal performance. After discovering structural and semantic functions from
the training dataset, we fuse their scores by setting the w as the median of the structural features’
outputs.

E.2 IMPLEMENTATION OF THE BASELINES

In this part, we present a detailed description of all the baselines used in this paper.

COG. COG is a well-designed 2-layer graph convolutional neural network that can achieve high
optimization performance (Wang et al.). Specifically, it constructs a bipartite graph as input and
learns domain-invariant representation to achieve high generalization capability.

Effisyn. Effisyn is a human-designed nonlinear symbolic function (Li et al., 2023). Specifically, in
human-designed symbolic scoring functions, experts manually design the structure of the function
and extract key parameters from training circuit data to form a complete symbolic scoring function.
This process involves identifying relevant characteristics of the circuit and carefully selecting or
engineering the symbolic terms that best capture the underlying behavior of the system. However,
designing and developing these functions is extremely challenging as it requires extensive expert
knowledge and manual tuning.

SPL. SPL (Sun et al., 2023) is a search-based symbolic regression method that employs a Monte
Carlo tree search (MCTS) agent to explore optimal expression trees based on measurement data.
SPL is one of the SOTA symbolic learning methods.

DSR. DSR (Petersen et al., 2020) is a leading deep learning-based symbolic learning method that
employs a gradient-based risk-seeking RL approach combined with a recurrent neural network
(RNN) to generate a probability distribution over expressions.

RidgeLR. RidgeLR (Hoerl & Kennard, 1970) is a regularized version of linear regression that adds
an L2 penalty to the loss function to prevent overfitting. This regularization term helps reduce the
model’s sensitivity to multicollinearity and large coefficients by shrinking them, making RidgeLR
effective for regression tasks, especially when dealing with high-dimensional or highly correlated
features. It is commonly used in regression problems where overfitting needs to be controlled.

XGBoost. XGBoost Chen & Guestrin (2016) is a machine learning algorithm that builds an ensem-
ble of decision trees using gradient boosting, optimizing accuracy by iteratively correcting errors
from previous trees. It includes regularization to prevent overfitting and is highly efficient, making it
well-suited for both regression and classification problems, especially with large-scale and complex
datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Random. Random is a baseline that randomly predicts a score between [0, 1] for each node, and
selects the top k nodes as positive samples to apply node-level transformations.

E.3 IMPLEMENTATION OF THE SEMANTIC FUNCTION LEARNING PROCESS

Once decomposing the init feature into structural and semantic components, we collect structural
data Dstr = {xstri , yi}Ni=1 and semantic data Dsem = {xsemi , yi}Ni=1, where xstri refers to structural
node feature and xsemi refers to semantic node feature. To capture structural information, we model
it as a mathematical symbolic learning problem, as the values of structural features can be approxi-
mated as continuous data, making them suitable for continuous mathematical symbolic regression.
In contrast, learning mathematical functions for semantic information is challenging due to the dis-
crete and binary nature of both feature values and labels. Thus, we formulate the semantic function
as a Boolean symbolic learning problem, i.e., learning a boolean function fsem : Bd → B that
can accurately identify the effective nodes, where B = {0, 1} denotes the boolean feature domain.
Given the binary outputs of Boolean functions, we can select 0.5 as the classification threshold and
model it directly as a classification problem. This significantly reduces the difficulty of symbolic
function learning compared to treating it as a function regression problem.

we have discussed the details of the structural function learning process in Section 4.2. Here we
give a detailed implementation of the semantic boolean function learning process. Specifically,
the semantic function follows the same symbolic tree search paradigm as the structural function
learning. However, the difference mainly lies in the symbolic operator and designed reward function.
The symbolic operators include three basic logic operators and, or, not, which are always used to
represent the mapping from binary values to binary values. Moreover, due to the binary nature
of the boolean function’s output, we can model it as a classification problem and use 0.5 as the
classification threshold. The loss function designed for the boolean function learning is:

L =
TP

FP + TP
− λ ∗ FP =

∑N
i=1 1(yi = 1 ∧ pi ≥ 0.5)∑N

i=1 1(yi = 1)
− λ

N∑
i=1

1(pi ≥ 0.5) (3)

The reason for the loss function is to let the scoring model identify more effective nodes. The term
λ ∗FP is used as the regularization to prevent the boolean function predicts all of the nodes as pos-
itive. Once the boolean function accurately identifies all of the effective nodes, it could significantly
improve the predictive performance of the final fusion symbolic functions.

0 20 40 60 80 100
Recall(%)

NN_10

NN_16

GNN_128

M
et

ho
d

Motivations for teacher loss

Figure 8: We use two simple multilayer perceptrons (MLP) to fit the relationship between the node
features and the GNN’s output. The results demonstrate that the MLP achieves comparable gener-
alization performance to GNN.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.4 MORE DETAILS ABOUT THE NODE FEATURE DESIGNED

As shown in Table 17, the designed features for each node contain semantic information and struc-
tural information. Specifically, for the Mfs2 heuristic, the semantic features are designed with the
truth table of the node (i.e., a 6-input look-up table) (Wang et al.). Moreover, the structural feature
is a five-dimension vector that contains structural information of the circuit such as fanin/fanout
number and level of the node. Overall, the node feature for the Mfs2 heuristic is a 69-dimensional
vector.

E.5 MORE DETAILS ABOUT THE GRAPH DISTILLATION APPROACH

We use equation 2 to evaluate every expression tree. Specifically, we use mean squared error and
focal loss for the Lteacher and Lstudent. That is,

Lteacher =
1

N

N∑
i=1

(zi − ŷi)
2 (4)

and

Lstudent =− αy(1− ŷ)γ log(ŷ)

− (1− α)ŷγ log(1− ŷ),

ŷ denotes the prediction output, z denotes the soft output of GNN, and y is the true labels. The
motivation for the loss type of Lteacher mainly comes from an observation that there exists a simple
nonlinear mapping relationship from the circuit feature to the output of GNN that achieves compa-
rable generalization performance. Specifically, we found that we can use a simple MLP to greatly
fit the mapping relationship from the circuit feature to the output of GNN as shown in Figure 8.
Thus, we use MSE to directly learn information from the GNN outputs. Moreover, note that the
number of effective nodes is far fewer than ineffective nodes, which poses a substantial challenge to
the classification task. Therefore, we leverage the focal loss as the Lteacher, which has been shown
successful in addressing the class imbalance for object detection tasks.

Discussions on advantages From the perspective of distillation, our approach allows for the dis-
tillation of GNNs into simplified symbolic functions. This represents a more thorough form of
distillation compared to the conventional transformation from GNNs to MLPs. By reducing GNNs
to symbolic functions, we not only preserve the essential predictive capabilities but also enhance
interpretability and reduce computational complexity. From the viewpoint of symbolic learning, our
symbolic search method leverages the design of fitness measures to discover symbolic functions with
superior generalization capabilities. Unlike traditional machine learning models, which often strug-
gle with overfitting and lack of interpretability, symbolic functions are derived through our method.
offer a robust alternative. These functions are designed to effectively capture the underlying patterns
in data, leading to better generalization in various applications.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 The training process

Input: Training dataset D = {xi, yi}Ni=1;
Output: Semantic function fsem, Structural function fstr;

Step 1: Separate the initial dataset D into structural data Dstr = {xstri , yi}Ni=1 and semantic data
Dsem = {xsemi , yi}Ni=1;
Step 2: Apply GESD (Algorithm 2) to learn the structural function fstr from Dstr;
Step 3: Apply GESD (Algorithm 2) to learn the semantic function fsem from Dsem;

Algorithm 2 GESD

Input: Training dataset D = {xi, yi}Ni=1, Trained GNN model fGNN ;
Output: Optimal function f∗;

1: for each episode do do
2: Selection: Initialize s0 = ∅, t = 0;
3: while st is expandable and t < tmax do
4: Choose at+1 = argmaxa UCT(st, a);
5: Take action at+1, observe s′, NT ;
6: st+1 ← s′; mark as visited, t← t+ 1;
7: end while
8: Expansion: Randomly take an unvisited path with action a, observe s′;
9: st+1 ← s′; mark as visited, t← t+ 1;

10: Simulation: Fix the starting point st;
11: for each simulation do do
12: while st is non-terminal and t < tmax do
13: Randomly take an action a, observe s′;
14: st+1 ← s′; t← t+ 1;
15: end while
16: if st+1 forms a complete expression tree then
17: Project f ;
18: Calculate the function prediction ŷ = f(x);
19: Calculate the GNN prediction z = fGNN (x);
20: Calculate the simulation reward:

rt+1 =
ηn

1− λLlabel(ŷ, y)− (1− λ)Lteacher(ŷ, z)

21: end if
22: end for
23: Backpropagate the maximum simulation results and visited count;
24: end for

Algorithm 3 The Inference process

Input: Test dataset Dtest = {xi, yi}Ni=1, structural function fstr, semantic function fsem;
Output: The scores s for all nodes in Dtest;

step 1: Separate the test dataset Dtest into structural data Dstr = {xstr
i , yi}Ni=1 and semantic data

Dsem = {xsem
i , yi}Ni=1;

step 2: Calculate the structural scores sstr with sstri = fstr(xstri) and semantic scores ssem with
ssemi = fsem(xsemi);
step 3: Calculate the weight w = Median(sstr);
step 4: Calculate the final scores s = sstr + w ∗ ssem for all nodes in Dtest;

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: We report the recall and optimization performance of the Mfs2 heuristic incorporated with
Random models. And Reduction denotes the reduced number of nodes, i.e., optimization perfor-
mance. Percent denotes the hyperparameter k, i.e., the percent of nodes to apply transformations.

Hyp Multiplier

Percent Recall And Reduction (AR) Percent Recall And Reduction (AR)

0.10 0.11 33.33 0.10 0.10 3.00
0.20 0.20 69.00 0.20 0.18 5.33
0.30 0.30 111.33 0.30 0.28 6.67
0.40 0.40 164.67 0.40 0.39 9.33
0.50 0.50 225.33 0.50 0.44 10.00
0.60 0.60 295.00 0.60 0.56 12.33
0.70 0.70 374.33 0.70 0.67 14.00
0.80 0.80 464.33 0.80 0.78 16.67
0.90 0.90 561.33 0.90 0.89 19.00
1.00 1.00 664.00 1.00 1.00 22.00

Desperf Ethernet

Percent Recall And Reduction (AR) Percent Recall And Reduction (AR)

0.10 0.10 114.67 0.10 0.11 6.00
0.20 0.21 210.33 0.20 0.18 8.00
0.30 0.31 318.33 0.30 0.29 10.00
0.40 0.41 421.33 0.40 0.38 13.00
0.50 0.50 529.67 0.50 0.47 15.00
0.60 0.60 657.67 0.60 0.56 16.33
0.70 0.70 790.00 0.70 0.67 21.00
0.80 0.80 904.67 0.80 0.79 26.67
0.90 0.90 1001.33 0.90 0.89 29.67
1.00 1.00 1118.00 1.00 1.00 38.00

Conmax Square

Percent Recall And Reduction (AR) Percent Recall And Reduction (AR)

0.10 0.10 95.00 0.10 0.11 0.00
0.20 0.20 188.00 0.20 0.19 0.00
0.30 0.30 251.00 0.30 0.28 0.33
0.40 0.40 330.67 0.40 0.38 1.33
0.50 0.50 411.67 0.50 0.48 2.33
0.60 0.59 493.33 0.60 0.56 3.00
0.70 0.69 557.67 0.70 0.65 3.67
0.80 0.78 625.00 0.80 0.75 4.33
0.90 0.90 718.67 0.90 0.89 6.67
1.00 1.00 782.00 1.00 1.00 8.00

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: We compare CMO with a well-designed GNN COG and the human-designed approach
Effisyn. Specifically, we set the hyperparameter k as 50% for COG and our CMO and 70% for
Effisyn. And Reduction (AR) denotes the reduced number of nodes, i.e., optimization performance.
Normalized AR denotes the ratio of the AR to that of the default heuristic.

Hyp Multiplier

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 661.33 1.00 247.26 COG 21.00 0.95 18.14

Effisyn 662.00 1.00 270.50 Effisyn 18.00 0.82 16.17
CMO(Ours) 661.00 1.00 213.39 CMO(Ours) 20.00 0.91 14.32

Square Desperf

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 8.00 1.00 16.11 COG 890.67 0.80 29.97

Effisyn 1.00 0.13 16.73 Effisyn 895.00 0.80 26.59
CMO(Ours) 7.33 0.92 12.54 CMO(Ours) 983.00 0.95 22.38

Ethernet Conmax

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 27.33 0.72 20.01 COG 730.67 0.93 19.03

Effisyn 27.00 0.71 32.85 Effisyn 704.00 0.90 25.29
CMO(Ours) 30.67 0.82 16.25 CMO(Ours) 703.33 0.90 15.27

Ci1 Ci2

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 9.67 0.81 327.05 COG 15.50 0.67 61.89

Effisyn 9.00 0.75 275.58 Effisyn 19.00 0.83 59.14
CMO(Ours) 12.00 1.00 255.90 CMO(Ours) 23.00 1.00 45.61

Ci3 Ci4
Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 1040.00 1.00 145.12 COG 98.00 0.99 161.19

Effisyn 1040.00 1.00 126.31 Effisyn 99.00 1.00 84.29
CMO(Ours) 1040.00 1.00 113.08 CMO(Ours) 96.00 0.97 109.42

Sixteen Twenty

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
COG 1031.00 0.94 61905.96 COG 1291.00 0.95 86112.80

Effisyn 9.00 0.01 47078.07 Effisyn 9.00 0.01 73853.64
CMO(Ours) 1000.00 0.91 32001.27 CMO(Ours) 1251.00 0.92 56965.94

Table 7: We present more ablations results on open-source circuits.

Circuit Hyp Multiplier Square DesPerf Ethernet Conmax

Method Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑
CMO 0.96 0.98 0.99 0.80 0.72 0.84

CMO without GSD 0.91 0.96 0.67 0.80 0.44 0.76
CMO without SFD 0.99 0.80 0.80 0.73 0.66 0.42

CMO without SFD and GSD 0.52 0.72 0.93 0.60 0.42 0.45

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: We compare our CMO with five lightweight baselines. The results demonstrate that our
approach outperforms all of the baselines in terms of generalization capability.

Hyp Multiplier Square Desperf Ethernet Conamx

Method Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑
SPL 0.93 0.52 0.72 0.60 0.42 0.45
DSR 0.20 0.11 0.46 0.76 0.72 0.88

XGBoost 0.91 0.86 0.46 0.79 0.33 0.68
RidgeLR 0.81 0.62 0.88 0.79 0.33 0.54
Random 0.50 0.44 0.48 0.50 0.47 0.50

CMO(Ours) 0.99 0.96 0.98 0.80 0.72 0.84

Sixteen Twenty Ci1 Ci2 Ci3 Ci4

Method Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑ Recall ↑
SPL 0.43 0.44 0.85 0.91 0.98 0.80
DSR 0.63 0.63 0.85 0.83 0.95 0.94

XGBoost 0.62 0.58 0.78 0.81 0.77 0.79
RidgeLR 0.79 0.84 0.85 0.95 0.71 0.37
Random 0.50 0.50 0.51 0.50 0.50 0.49

CMO(Ours) 0.86 0.85 1.00 1.00 0.99 0.96

Table 9: We compare our CMO with five lightweight baselines. The results demonstrate that our
approach outperforms all of the lightweight baselines in terms of online heuristics efficiency and
optimization performance.

Hyp Multiplier

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
SPL 659.33 0.99 234.88 SPL 20.67 0.91 15.63
DSR 527.67 0.79 257.61 DSR 4.00 0.18 14.41

XGBoost 650.00 0.98 246.79 XGBoost 20.00 0.91 14.28
RidgeLR 646.00 0.97 228.22 RidgeLR 20.00 0.91 11.52
Random 374.33 0.57 228.51 Random 14.00 0.64 13.74

GESD(Ours) 661.00 1.00 213.39 GESD(Ours) 20.00 0.91 14.32

Square Desperf

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
SPL 5.33 0.67 14.17 SPL 927.67 0.83 31.27
DSR 1.00 0.13 20.63 DSR 865.00 0.77 26.42

XGBoost 1.00 0.13 19.73 XGBoost 1026.00 0.92 29.97
RidgeLR 3.00 0.38 14.90 RidgeLR 942.00 0.84 33.26
Random 3.67 0.46 17.82 Random 790.00 0.71 29.42

GESD(Ours) 7.33 0.92 12.54 GESD(Ours) 983.00 0.95 22.38

Ethernet Conmax

Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓ Method And Reduction (AR) ↑ Normalized AR ↑ Time (s) ↓
SPL 17.67 0.46 32.39 SPL 681.67 0.87 25.25
DSR 31.00 0.82 28.49 DSR 767.00 0.98 22.70

XGBoost 30.00 0.79 34.57 XGBoost 751.00 0.96 23.28
RidgeLR 18.00 0.47 34.49 RidgeLR 638.00 0.82 24.96
Random 21.00 0.55 28.96 Random 557.67 0.71 22.31

GESD(Ours) 30.67 0.82 16.25 GESD(Ours) 703.33 0.90 15.27

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 10: we report more results about the Model Inference Time. Note that all of the experiments
are tested on purely CPU-based machines.

Hyp Multiplier Square Desperf Ethernet Conamx

Method Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓
COG 16.730 3.415 2.383 6.238 2.771 3.557

Effisyn 0.152 0.015 0.010 0.056 0.018 0.023
CMO(Ours) 0.059 0.009 0.007 0.049 0.018 0.010

Sixteen Twenty Ci1 Ci2 Ci3 Ci4

Method Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓ Time (s) ↓
COG 1377.657 1787.070 31.710 18.230 30.540 38.770

Effisyn 9.670 12.189 0.320 0.220 0.290 0.160
CMO(Ours) 4.156 4.956 0.170 0.060 0.140 0.160

Table 11: We present the inference times for the GNN model COG and its integrated LO heuristic,
COG-Mfs2, on open-source and industrial circuits. Ratio denotes the proportion of the COG model’s
time accounted for by COG-Mfs2. The results demonstrate that the runtime of the GNN accounts
up to 29.46% to that of COG-Mfs2, which significantly impacts the efficiency of the Mfs2 heuristic
in purely CPU-based LO tools.

Hyp Multiplier

COG(time, s) COG-Mfs2(time, s) ratio(%) COG(time, s) COG-Mfs2(time, s) ratio(%)

16.73 247.26 6.77 18.14 3.42 18.83

Square Desperf

COG(time, s) COG-Mfs2(time, s) ratio(%) COG(time, s) COG-Mfs2(time, s) ratio(%)

2.38 16.11 14.79 6.24 29.97 20.82

Ethernet Conmax

COG(time, s) COG-Mfs2(time, s) ratio(%) COG(time, s) COG-Mfs2(time, s) ratio(%)

2.77 20.01 13.85 3.56 19.03 18.69

Ci1 Ci2

COG(time, s) COG-Mfs2(time, s) ratio(%) COG(time, s) COG-Mfs2(time, s) ratio(%)

31.71 327.05 9.70 18.23 61.89 29.46

Ci3 Ci4

COG(time, s) COG-Mfs2(time, s) ratio(%) COG(time, s) COG-Mfs2(time, s) ratio(%)

30.54 145.12 21.04 38.77 161.19 24.05

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: A detailed description of circuits from the EPFL benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO Latch Nodes Edge Cube Lev

Adder 256 129 0 1020 2040 1020 255
Barrel shifter 135 128 0 3336 6672 3336 12

Divisor 128 128 0 57247 114494 57247 4372
Hypotenuse 256 128 0 214335 428670 214335 24801

Log2 32 32 0 32060 64120 323060 444
Max 512 130 0 2865 5730 2865 287

Multiplier 128 128 0 27062 54124 27062 274
Sin 24 25 0 5416 10832 5416 225

Square-root 128 64 0 24618 49236 24618 5058
Square 64 128 0 18486 36969 18485 250

Round-robin ariter 256 129 0 11839 23678 11839 87
Alu control unit 7 26 0 175 348 174 10

Coding-cavlc 10 11 0 693 1386 693 16
Decoder 8 256 0 304 608 304 3

i2c controller 147 142 0 1357 2698 1356 20
Int to float converter 11 7 0 260 520 260 16
Memory controller 1204 1230 0 47110 93945 47109 114

Priority encoder 128 8 0 978 1956 978 250
Lookahead XY router 60 30 0 284 514 257 54

Voter 1001 1 0 13758 27516 13758 70

Table 13: A detailed description of circuits from the IWLS benchmark. Nodes denotes the sizes of
circuits, and Lev denotes the depths of circuits.

Circuit PI PO latch nodes edge cube lev

aes core 259 129 530 20797 40645 24444 28
des area 240 64 128 5005 9882 5889 35
des perf 234 64 8808 98463 180542 108666 28
ethernet 98 115 10544 46804 113378 72850 37

i2c 19 14 128 1147 2299 1375 15
mem ctrl 115 152 1083 11508 26436 14603 31

pci bridge32 162 207 3359 16897 34607 23130 29
pci conf cyc addr dec 32 32 0 109 212 128 6

pci spoci ctrl 25 13 60 1271 2637 1557 19
sasc 16 12 117 552 1148 766 10

simple spi 16 12 132 823 1694 1089 14
spi 47 45 229 3230 6904 4054 32

steppermotordrive 4 4 25 228 397 253 11
systemcaes 260 129 670 7961 18236 11648 44
systemcdes 132 65 190 3324 6304 3791 33

tv80 14 32 359 7166 16280 9352 50
usb funct 128 121 1746 12871 27102 16378 25
usb phy 15 18 98 559 1001 638 12
vga lcd 89 109 17079 124050 242332 146201 25

wb conmax 1130 1416 770 29036 77185 39619 26
wb dma 217 215 263 3495 7052 4496 26

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 14: A detailed description of two very large-scale circuits from the EPFL benchmark. Nodes
denotes the sizes of circuits, and Lev denotes the depths of circuits.

Circuit PI PO Latch Nodes Lev

twenty 137 60 0 20732893 162
sixteen 117 50 0 16216836 140

Table 15: A statsical description of 27 industrial circuits (23 training circuits and 4 testing circuits)
from Huawei HiSilicon. Nodes denotes the sizes of circuits, and Lev denotes the depths of circuits.

Traning Circuits PI PO Latch Nodes Lev

mean 8410.5 5978.682 0 104229.4 55.95455
max 59974 29721 0 788288 104
min 41 107 0 2775 18

Testing Circuits PI PO Latch nodes lev

mean 18540.67 18015 0 356111.2 103.3333
max 42257 33849 0 655243 185
min 523 483 0 24778 40

Table 16: We present the structural and semantic scoring functions of the industiral circuits to illus-
trate the interpretability of CMO. Here x represents node feature.

Ci1 structural sin(x0 ∗ x2 + x0 − cosx1)/x0

semantic ¬(x64 ∧ x20 ∧ x24) ∧ ¬(x6 ∧ x63 ∧ x26 ∧ x47 ∧ x27)

Ci2 structural expx3 − cos(x3/x0)− x3 + x2

semantic ¬(x32 ∧ x56 ∧ x36) ∧ ¬(x47 ∧ ¬x33 ∧ x57)

Ci3 structural sin(x0 − cos(x2)− x3)/x0

semantic (x52 ∨ ¬x65) ∧ ¬(x17 ∧ x44)

Ci4 structural x0 − exp(x1)/ exp(x2)/ sin(x0 + x3) + x3

semantic ¬(x26 ∧ x62 ∧ x5 ∧ x55) ∧ ¬(x20 ∧ x32 ∧ x26)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 17: We provide our manually designed node features.

heuristic Node features

Mfs2 Semantic information Structure information

Input: 6-LUTs Truth table of the node
the node is 6-input LUT
(64-dimensional vector)

Fanin number
Fanout number

Level
LevelR

Node ID

Table 18: We compare the Default Mfs2 heuristic with our 2CMO-Mfs2 heuristic with the hyperpa-
rameter k set as 30%, 40% and 50% on open-source and industrial circuits. Optimized Nd denotes
the node number (size) of circuits, and Lev denotes the level (depth) of circuits. We define an
Improvement metric by M(Default)−M(Ours)

M(Default) , where M(·) denotes the Nd, Lev, or Time.

Open-source Circuits Hyp Multiplier

Method Lev ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 8259.00 NA 319.33 NA 7799.00 NA 22.58 NA
CMO-Mfs (0.5, Ours) 8259.00 0 158.49 50.37 7801.00 -0.03 14.28 36.77

2CMO-Mfs (0.3, Ours) 5762.00 30.23 127.51 60.07 7661.00 7.27 18.06 20.00
2CMO-Mfs (0.4, Ours) 5762.00 30.23 170.45 46.62 7659.00 7.36 20.81 7.85

Open-source Circuits Square Ethernet

Method Optimized Nd ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 5701.00 NA 27.55 NA 13638.00 NA 34.48 NA
CMO-Mfs (0.5, Ours) 5701.67 -0.01 12.54 54.47 13645.00 -0.08 21.73 36.99

2CMO-Mfs (0.3, Ours) 5518.67 3.26 15.04 45.42 13516.67 4.19 15.57 54.84
2CMO-Mfs (0.4, Ours) 5515.33 3.32 19.06 30.80 13516.33 4.20 24.38 29.28

Open-source Circuits Conmax Desperf

Method Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 16509 NA 23.78 NA 30853.00 NA 36.76 NA
CMO-Mfs (0.5, Ours) 16587.67 -0.48 15.27 35.81 30910 -0.18 26.40 28.19

2CMO-Mfs (0.3, Ours) 15723.33 2.00 18.24 23.32 29392.00 2.31 30.16 17.96
2CMO-Mfs (0.4, Ours) 15666.67 2.08 21.65 8.95 29175.67 2.50 38.20 -3.92

very Large-scale Circuits Sixteen Twenty

Method Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 6017631 NA 78784.04 NA 7693089 NA 108735.49 NA
CMO-Mfs2 (0.5, Ours) 6018729 -0.001 32001.27 59.38 7694455 -0.002 56965.94 47.61

2CMO-Mfs2 (0.3, Ours) 5434092 9.70 36425.15 53.77 6877483 10.60 59786.55 45.02
2CMO-Mfs2 (0.4, Ours) 5433745 9.70 46572.91 40.80 6877158 10.61 75956.18 30.15

Industrial Circuits Ci1 Ci2

Method Lev ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 47 NA 180.35 NA 99245 NA 78.07 NA
CMO-Mfs2 (0.5, Ours) 47 0.00 113.08 37.30 99245 0.00 45.61 41.58

2CMO-Mfs2 (0.3, Ours) 45 4.26 142.96 20.73 94240 5.04 64.37 17.55
2CMO-Mfs2 (0.4, Ours) 45 4.26 177.04 1.84 93184 6.11 81.07 -3.84

Industrial Circuits Ci3 Ci4

Method Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Optimized Nd ↓ Improvement ↑
(Optimized Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 196565 NA 458.31 NA 215708 NA 201.43 NA
CMO-Mfs2 (0.5, Ours) 196565 0.00 255.90 44.16 215711 -0.001 109.42 45.68

2CMO-Mfs2 (0.3, Ours) 194516 1.042 402.67 12.140 215476 0.11 182.60 9.35
2CMO-Mfs2 (0.4, Ours) 194516 1.042 515.15 -12.402 215476 0.11 202.72 -0.64

29

	Introduction
	Background
	Motivating Results
	Method
	The Data-driven Circuit Symbolic Learning Framework
	Graph Enhanced Symbolic Discovery Framework
	The deployment to modern LO Tools

	Experiment
	Conclusion
	Related Work
	More details on the Background
	Additional Results
	More Motivating Results
	The Importance of the Prediction Recall on Optimization Performance
	More Results for Comparative Evaluation
	More Improving efficiency and QoR results
	More Ablation Study Results
	More results of Strengths for Deployment

	Details of Datasets Used in This Paper
	Description of Three Used Benchmarks
	Datasets for Evaluation on Open-Source Benchmarks
	Datasets for Evaluation on Industrial Circuits and Very Large-Scale Circuits
	Visualization of The Circuit Graph

	Details of Methods and Experimental Settings
	Details of Experimental Setup
	Optimization Sequence Flows
	Top k Accuracy Metric
	implementation of the training details

	implementation of the baselines
	implementation of the semantic function learning process
	More details about the node feature designed
	More Details about the graph distillation approach

