
Under review as a conference paper at ICLR 2023

HIERARCHICAL GAUSSIAN MIXTURE BASED TASK
GENERATIVE MODEL FOR ROBUST META-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-learning enables quick adaptation of machine learning models to new tasks
with limited data. While tasks could come from varying distributions in real-
ity, most of the existing meta-learning methods consider both training and testing
tasks as from the same uni-component distribution, overlooking two critical needs
of a practical solution: (1) the various sources of tasks may compose a multi-
component mixture distribution, and (2) novel tasks may come from a distribu-
tion that is unseen during meta-training. In this paper, we demonstrate these two
challenges can be solved jointly by modeling the density of task instances. We
develop a meta-training framework underlain by a novel Hierarchical Gaussian
Mixture based Task Generative Model (HTGM). HTGM extends the widely used
empirical process of sampling tasks to a theoretical model, which learns task em-
beddings, fits the mixture distribution of tasks, and enables density-based scoring
of novel tasks. The framework is agnostic to the encoder and scales well with large
backbone networks. The model parameters are learned end-to-end by maximum
likelihood estimation via an Expectation-Maximization algorithm. Extensive ex-
periments on benchmark datasets indicate the effectiveness of our method for both
sample classification and novel task detection.

1 INTRODUCTION

Training models in small data regimes is of fundamental importance. It demands a model’s ability
to quickly adapt to new environments and tasks. To compensate for the lack of training data for each
task, meta-learning (a.k.a. learning to learn) has become an essential paradigm for model training
by generalizing meta-knowledge across tasks (Snell et al., 2017; Finn et al., 2017). While most
existing meta-learning approaches were built upon an assumption that all training/testing tasks are
sampled from the same distribution, a more realistic scenario should accommodate training tasks
that lie in a mixture of distributions, and testing tasks that may belong to or deviate from the learned
distributions. For example, in recent medical research, a global model is typically trained on the
historical medical records of a certain set of patients in the database (Shukla & Marlin, 2019; Wu
et al., 2021). However, due to the uniqueness of individuals (e.g., gender, age, genetics), patients’
data have a substantial discrepancy, and the pre-trained model may demonstrate significant demo-
graphic or geographical biases when testing on a new patient (Purushotham et al., 2017). This issue
can be mitigated by personalized medicine approaches (Chan & Ginsburg, 2011; Ni et al., 2022)
where each patient is regarded as a task, and the pre-trained model is fine-tuned (i.e., personalized)
on a support set of a few records collected in a short period (e.g., a few weeks) from every patient
for adaptation. In this case, the training tasks (i.e., patients) could be sampled from a mixture of
distributions (e.g., different age groups), and a testing task may or may not belong to any of the
observed groups. As such, a meta-training strategy that is able to fit a mixture of task distributions
and identify novel tasks is desirable for making meta-learning a practical solution.

One way to tackle the mixture distributions of tasks is to tailor the transferable knowledge to each
task by learning a task-specific representation (Oreshkin et al., 2018; Vuorio et al., 2018; Lee &
Choi, 2018), but as discussed in (Yao et al., 2019a), the over-customized knowledge prevents its
generalization among closely related tasks (e.g., tasks from the same distribution). The more recent
methods try to balance the generalization and customization of the meta-knowledge by promoting
local generalization either among a cluster of related tasks (Yao et al., 2019a), or within a neighbor-
hood of a meta-knowledge graph of tasks (Yao et al., 2019b). Neither of them explicitly learns the

1

Under review as a conference paper at ICLR 2023

underlying distribution from which the tasks are generated, rendering them infeasible for detecting
novel tasks that are out-of-distribution. However, detecting novel tasks is crucial in high-stake do-
mains, such as medicine and finance, which provides users (e.g., physicians) confidence on whether
to trust the results of a testing task or not, and facilitates the downstream decision-making.

In (Lee et al., 2019a), a task-specific tuning variable was introduced to modulate the initial param-
eters learned by MAML (Finn et al., 2017), so that the impacts of the meta-knowledge on different
tasks are adjusted differently, e.g., novel tasks receive less impact than known tasks do. Whereas,
this method focuses on improving model performance on different tasks (either known or novel), but
neglects the critical mission of detecting which tasks are novel. In practice, providing an unreliable
accuracy on a novel task, without differentiating it from other tasks may be meaningless and risky.

Since the aforementioned methods cannot simultaneously handle the mixture distribution of tasks
and novel tasks, a practical solution is in demand. In this work, we consider tasks as instances, and
demonstrate the dual problem of modeling the mixture of task distributions and detecting novel tasks
are two sides of the same coin, i.e., density estimation on task instances. To this end, we propose a
new Hierarchical Gaussian Mixture based Task Generative Model (HTGM) to explicitly model the
generative process of task instances. Our contributions are summarized as follows.

• For the first time, the widely used empirical process of generating a task is theoretically extended
to and specified by a hierarchy of Gaussian mixture (GM) distributions. HTGM generates a task
embedding from a task-level GM, and uses it to define the task-conditioned mixture probabilities
for a class-level GM, from which samples are drawn, for instantiating the generated task. To allow
realistic classes per task, a new Gibbs distribution is proposed to underlie the class-level GM.

• HTGM is an encoder-agnostic framework, thus is flexible to different domains. It inherits metric-
based meta-learning methods, and only introduces a small overhead to an encoder for parameter-
izing its distributions, thus is efficient, and enables large-scale backbone networks. The model pa-
rameters are learned end-to-end by maximum likelihood estimation via a principled Expectation-
Maximization (EM) algorithm. The bounds of our likelihood function is theoretically analyzed.

• In the experiments, we evaluated HTGM on benchmark image datasets for validating its ability to
take advantage of large backbone networks, its effectiveness in modeling the mixture distribution
of tasks, and its usefulness in identifying novel tasks. The results demonstrate HTGM outperforms
the state-of-the-art (SOTA) baselines with significant improvements in most cases.

2 RELATED WORK

To the best of our knowledge, this is the first work to explicitly model the generative process of task
instances from a mixture of distributions for meta-learning with novel task detection. Meta-learning
aims to handle the few-shot learning problem, which derives memory-based (Mishra et al., 2018),
optimization-based (Finn et al., 2017; Li et al., 2017), and metric-based methods (Vinyals et al.,
2016; Snell et al., 2017), which often consider an artificial scenario where training/test tasks are
sampled from the same distribution. To enable more varying tasks, task-adaptive methods facilitates
the customization of meta-knowledge by learning task-specific parameters (Rusu et al., 2018; Lee
& Choi, 2018), temperature scaling parameters (Oreshkin et al., 2018), and task-specific modulation
on model initialization (Vuorio et al., 2018; Yao et al., 2019a;b; Lee et al., 2019a). Among them,
there are methods tackling the mixture distribution of tasks by clustering tasks (Yao et al., 2019a) or
learning task graphs (Yao et al., 2019b), and method relocating the initial parameters for different
tasks so that they use the meta-knowledge differently (Lee et al., 2019a). As discussed before, none
of these methods jointly handle the mixture of task distributions and the detection of novel tasks.

Our model is built upon metric-based methods, and learns task embeddings for modeling task dis-
tributions. Achille et al. (2019) also proposed to learn embeddings for tasks and introduced a meta-
learning method, but not for few-shot learning. Its embeddings are from a pre-specified set of tasks
(rather than episode-wise sampling), and the meta-learning framework is for model selection. The
model in (Yao et al., 2019a) has an augmented encoder for task embedding, but it does not explicitly
model task generation, and is not designed for novel task detection (empirical comparison in 4.1).

Conventional novelty detection aims to identify and reject samples from unseen classes (Cheng &
Vasconcelos, 2021). It relates to open-set recognition (Vaze et al., 2022), which aims to simulta-
neously identify unknown samples and classify samples from known classes. Out-of-distribution

2

Under review as a conference paper at ICLR 2023

(OOD) detection (Liang et al., 2018; Liu et al., 2020) can be seen as a special case of novelty de-
tection where novel samples are from other problem domains or datasets, thus are considered to
be easier to detect than novelties (Cheng & Vasconcelos, 2021). These methods are for large-scale
training. In contrast, we want to detect novel tasks, which is a new problem in the small data regime.

Hierarchical Gaussian Mixture (HGM) model has appeared in some traditional works (Goldberger
& Roweis, 2005; Olech & Paradowski, 2016; Athey et al., 2019) for hierarchical clustering by ap-
plying GM agglomeratively or divisively, which do not pre-train models for meta-learning, and is
remarkably different from the topic in this paper. The differences are elaborated in Appendix B.1.
Moreover, we discuss the relevant multi-task learning methods with task grouping in Appendix B.2.

3 HIERARCHICAL GAUSSIAN MIXTURE BASED TASK GENERATIVE MODEL

Meta-learning methods typically use an episodic learning strategy, where the meta-training set Dtr

consists of a batch of episodes. Each episode samples a task τ from a distribution p(τ). Task τ has a
support set Ds

τ = {(xs
i, y

s
i)}

ns
i=1 for training, and a query set Dq

τ = {(xq
i , y

q
i)}

nq
i=1 for testing, where

ns is a small number to denote a few training samples. In particular, in a commonly used N -way
K-shot Q-query task (Vinyals et al., 2016), Ds

τ and Dq
τ contain N classes, with K and Q samples

per class respectively, i.e., ns = NK and nq = NQ.

Let fθ(x∗
i) → y∗i be a base model (∗ denotes s or q), and fθ(·;Ds

τ) be the adapted model on
Ds

τ . The training objective on τ is to minimize the average test error of the adapted model, i.e.,
E(x

q
i ,y

q
i)∈Dq

τ
ℓ(yq

i , fθ(x
q
i ;Ds

τ)), where ℓ(·, ·) is a loss function (e.g., cross-entropy loss), and the meta-
training process aims to find the parameter θ that minimizes this error over all episodes in Dtr. Then,
fθ is evaluated on every episode of a meta-test set Dte that samples a task from the same distribution
p(τ). Usually, p(τ) is a simple distribution (Finn et al., 2017; Lee et al., 2019a). In this work, p(τ)
is generalized to a mixture distribution consisting of multiple components p1(τ), ..., pr(τ), and a
test episode may sample a task either in or out of any component of p(τ). As such, given the training
tasks in Dtr, our goal is to estimate the underlying density of p(τ), so that once a test task is given,
we can (1) identify if it is a novel task, and (2) adapt fθ to it with optimal accuracy.

Specifically, the base model fθ can be written as a combination of an encoder gθe and a predictor
hθp , i.e., fθ(x∗

i) = hθp(gθe(x
∗
i)) (Tian et al., 2020). In this work, we focus on a metric-based non-

parametric learner, i.e., θp = ∅ (e.g., prototypical networks (Snell et al., 2017)), not only because
metric-based classifiers were confirmed as more effective than probabilistic classifiers for novelty
detection (Jeong et al., 2021), but also for its better training efficiency that fits large-scale backbone
networks than the costly nested-loop training of optimization-based methods (Tian et al., 2020).

Formally, our goal is to find the model parameter θ that maximizes the likelihood of observing a
task τ . In other words, let fθ(x∗

i) = e∗i ∈ Rd be the sample embedding, we want to maximize the
likelihood of the joint distribution pθ(e

∗
i , y

∗
i) on the observed data in Dτ = {Ds

τ ,Dq
τ}. We consider

each task τ as an instance, with a representation vτ ∈ Rd in the embedding space (the method
to infer vτ is described in Sec. 3.2). To model the unobserved mixture component, we associate
every task with a latent variable zτ to indicate to which component it belongs. Suppose there are r
possible components, and let n = ns + nq be the total number of samples in Dτ , the log-likelihood
to maximize can be written by hierarchically factorizing it on y∗i and marginalizing out vτ and zτ .

ℓ(Dτ ;θ) =
1

n

n∑
i=1

log [pθ(e
∗
i , y

∗
i)] =

1

n

n∑
i=1

log [pθ(e
∗
i |y∗

i)p(y
∗
i)]

=
1

n

n∑
i=1

log
[
pθ(e

∗
i |y∗

i)[

∫
vτ

p(y∗
i |vτ)p(vτ)dvτ]

]
=

1

n

n∑
i=1

log

[
pθ(e

∗
i |y∗

i)
[∫

vτ

p(y∗
i |vτ)

[r∑
zτ=1

p(vτ |zτ)p(zτ)
]
dvτ

]]
(1)

where pθ(e∗i |y∗i) specifies the probability of sampling e∗i from the y∗i -th class, p(y∗i |vτ) is the prob-
ability of sampling the y∗i -th class for task τ , and p(vτ |zτ) indicates the probability of generating a
task τ from the zτ -th mixture component. p(zτ) is a prior on the zτ -th component. Hence, Eq. (1)
implies a generative process of task τ : zτ → vτ → y∗i → e∗i . Next, we define each of the afore-
mentioned distributions and propose our HTGM method.

3

Under review as a conference paper at ICLR 2023

3.1 MODEL SPECIFICATION AND PARAMETERIZATION

In Eq. (1), the class-conditional distribution pθ(e
∗
i |y∗i), the task-conditional distribution p(y∗i |vτ),

and the mixture distribution of tasks defined by {p(vτ |zτ), p(zτ)} are not specified. To make Eq. (1)
optimizable, we introduce our HTGM that models the generative process of tasks. Because Ds

τ and
Dq

τ follow the same distribution, in the following, we ignore the superscript ∗ for simplicity.

Class-Conditional Distribution. First, similar to (Lee et al., 2018; 2019b), we use Gaussian distri-
bution to model the embeddings ei’s in every class. Let µc

yi
and Σc

yi
be the mean and variance of

the distribution of the yi-th class, then pθ(ei|yi) = N (ei|µc
yi
,Σc

yi
). In fact, the samples in all of the

classes of task τ comprise a Gaussian mixture distribution, where p(yi) is the mixture probability
of the yi-th class. In Eq. (1), p(yi) is factorized to be task-specific, i.e., p(yi|vτ), which resorts to
another mixture distribution p(vτ) of tasks, and establishes a structure of hierarchical mixture.

Task-Conditional Distribution. A straightforward definition of p(yi|vτ) is the density at µc
yi

in a
Gaussian distribution with vτ as the mean, where µc

yi
is the mean (or prototype) of the yi-th class.

However, doing so exposes two problems: (1) the density function of Gaussian distribution is log-
concave with one global maximum. Given the mean and variance, maximizing its log-likelihood
tends to collapse the prototypes µc

yi
’s of all classes in τ , making them indistinguishable and impair-

ing classification; (2) given vτ , this method tends to sample classes with small Dvτ
(µc

yi
), where

Dvτ
(·) measures the Mahalanobis distance between a data point and the Gaussian distribution cen-

tered at vτ . However, in most of the existing works, classes are often uniformly sampled from a
domain without any prior on distances (Finn et al., 2017). Fitting the distance function with such
“uniform” classes naively leads to an ill-posed learning problem with degenerated solutions. In light
of these issues, we seek to define p(yi|vτ) as a (parameterized) density function with at least N
global optimums so that it can distinguish the N different class prototypes of N -way tasks. The N
equal (global) optimums also allow it to fit N classes uniformly sampled from a domain. To this end,
let µc

k be the surrogate embedding of the k-th class, we propose a Gibbs distribution π(µc
k|vτ ,ω)

defined by vτ and trainable parameters ω with an energy function. Then we write p(yi = k|vτ) as

pω(yi = k|vτ) = π(µc
k|vτ ,ω) =

exp [−Eω(µ
c
k;vτ)]∫

µc
k
exp [−Eω(µc

k;vτ)]
(2)

where Eω(µ
c
k;vτ) = min ({||µc

k −Wjvτ ||22}Nj=1) is our energy function, and the denominator in
Eq (2) is a normalizing constant (with respect to µc

k), a.k.a. the partition function in an energy-
based model (EBM) (LeCun et al., 2006). ω = {W1, ...,WN} are trainable parameters, with
Wi ∈ Rd×d. Given ω and vτ , Eq. (2) has N global maximums at µc

k = W1vτ , ..., µc
k = WNvτ .

More interpretations of the proposed task-conditional distribution can be found in Appendix B.3.

Mixture Distribution of Tasks. In Eq. (1), the task distribution p(vτ) is factorized as a mixture
of p(vτ |zτ = 1), ..., p(vτ |zτ = r), weighted by their respective mixture probability p(zτ). Thus
we specify p(vτ) as a Gaussian mixture distribution, and introduce µt

zτ and Σt
zτ as the mean and

variance for each component, i.e., p(vτ |zτ) = N (vτ |µt
zτ ,Σ

t
zτ). Then the generation of vτ involves

two steps: (1) draw a latent variable zτ from a categorical distribution on [p(zτ = 1), ..., p(zτ = r)],
which can be Uniform(r), and (2) draw vτ from N (µt

zτ ,Σ
t
zτ) (Bishop, 2006).

As such, our HTGM generative process of an N -way K-shot Q-query task τ can be summarized as
1. Draw a latent task variable zτ ∼ Categorical([p(zτ = 1), ..., p(zτ = r)])

2. Draw a task embedding vτ ∼ N (µt
zτ
,Σt

zτ)

3. For k = 1, ..., N :

(a) Draw a class prototype µc
k ∼ π(µc

k|vτ ,ω) from the proposed Gibbs distribution in Eq. (2)
(b) For i = 1, ...,K +Q:

i. Set yi = k, draw a sample embedding ei ∼ N (ei|µc
yi
,Σc

yi)

ii. Allocate (ei, yi) to the support set Ds
τ if i ≤ K; else allocate (ei, yi) to the query set Dq

τ

To reduce complexity, we investigate the feasibility of using isotropic Gaussian with tied variance,
i.e., Σc

1 = ... = Σc
N = σ2I, for class distributions, which turned out to be efficient in our experi-

ments. Here, I is the identity matrix, σ is a hyperparameter. Tied variance is also a commonly used
trick in Gaussian discriminate analysis (GDA) for generative classifiers (Lee et al., 2018). For task
distributions, the variances Σt

1, ...,Σ
t
r can be automatically inferred by our algorithm in Sec. 3.2.

4

Under review as a conference paper at ICLR 2023

𝜋 𝝁!!
' |𝐯", 𝝎

𝑝 𝐯"|𝑧"

𝑝 𝑧"

𝐖#, … ,𝐖$

𝐯"

𝑝 𝐞%|𝑦%

𝐯"&

𝐖#, … ,𝐖$

𝐖#𝐯"&, … ,𝐖$𝐯"&

Training task embeddings Novelty?

Classification
Query set 𝓓𝝉"

𝒒

(a)

(b)

Query set {𝐱&
#}&'(
)!

Support set {𝐱&*}&'(
)"

Cl
as

s-
po

ol
in

g

𝑓!

𝑓!

{𝐞&*}&'(
)"

Task-level GMM
Class means
𝝁(- , … , 𝝁+- *

Class means

Adapted class means

Adaptation

Gibbs distribution

3

2

1{𝐞&
#}&'(
)!

𝑞. 𝐯!|𝒟!*

Support set {𝐱&*}&'(
)" {𝐞&*}&'(

)"

Data flow

Pooling

Sampling

Part of training loss

𝝁(/ , … , 𝝁,/

Model parameters 𝝓
Ta

sk
-p

oo
lin

g
Cl

as
s-

po
ol

in
g

Cl
as

s-
po

ol
in

g

Ta
sk

-p
oo

lin
g

Training process

Testing process

Class means
𝝁(- , … , 𝝁+- #

𝑞. 𝐯!"|𝒟!"*

𝝁0#
1

𝝁0#$
1

Figure 1: An illustration of HTGM on its (a) the training process, and (b) the testing process. In (a),
1⃝ 2⃝ 3⃝ are the three parts of the training loss in Eq. (3). In (b), the training task embeddings contain

the embeddings of all training tasks, i.e. the outputs of the task-pooling in (a).

Finally, substituting pθ(ei|yi) = N (ei|µc
yi
, σ2I), pω(yi|vτ) = π(µc

yi
|vτ ,ω) (yi = k), p(vτ |zτ) =

N (vτ |µt
zτ ,Σ

t
zτ) and p(zτ) = Uniform(r) in Eq. (1), whose probabilities are specified and param-

eterized, we get our HTGM induced loss ℓHTGM(Dτ ;θ,ω). The class means µc
yi

, task means µt
zτ

and variances Σt
zτ are inferred in the E-step of our EM algorithm (details are in Sec. 3.2 and A.4).

3.2 MODEL OPTIMIZATION

It is hard to directly optimize ℓHTGM(Dτ ;θ,ω), because the exact posterior inference is intractable
(due to the integration over vτ). To solve it, we resort to variational methods, and introduce an
approximated posterior qϕ(vτ |Ds

τ), which is defined by an inference network ϕ, and implies we
want to infer vτ from its observed support set Ds

τ . The query set Dq
τ is not included because it is

unavailable during model testing. Then we propose to maximize a lower-bound of Eq. (1), which is
derived as (the details are in Appendix A.1)

ℓHTGM(Dτ ;θ,ω) ≥ ℓHTGM-ELBO(Dτ ;θ,ω) =
1

n

n∑
i=1

log pθ,ω(ei|yi)

+
1

n

n∑
i=1

Evτ∼qϕ(vτ |Ds
τ)

[
log pω(yi|vτ) + log

(r∑
zτ=1

p(vτ |zτ)p(zτ)
)]

+H
(
qϕ(vτ |Ds

τ)
) (3)

where H(qϕ(vτ |Ds
τ)) = −

∫
vτ

qϕ(vτ |Ds
τ) log qϕ(vτ |Ds

τ)dvτ is the entropy function. Similar to
VAE (Kingma & Welling, 2013), Eq. (3) estimates the expectation (in the second term) by sampling
vτ from qϕ(vτ |Ds

τ), instead of the integration in Eq. (1), hence facilitates computation. Next, we
elaborate on the inference network, the challenges of maximizing Eq. (3), and our workarounds.

Inference Network. Similar to VAE, qϕ(vτ |Ds
τ) is defined as a Gaussian distribution N (µa

zτ , σ̄
2I),

where µa
zτ is the output of the inference network, which approximates µt

zτ in Step 2 of the generative
process, and σ̄ is a hyperparameter for the corresponding variance. As illustrated by Fig. 1(a), the
inference network is built upon the base model fθ(·) with two non-parametric aggregation (i.e., mean
pooling) functions, thus ϕ = θ. The first function aggregates class-wise embeddings to prototypes
µc

yi
’s, similar to prototypical networks (Snell et al., 2017). Differently, the second aggregates all

prototypes to µa
zτ . During model training, we use the reparameterization trick (Kingma & Welling,

2013) to sample vτ from N (µa
zτ , σ̄

2I). It is noteworthy that H(qϕ(vτ |Ds
τ)) in Eq. (3) becomes a

constant now because σ̄2 is a constant.

5

Under review as a conference paper at ICLR 2023

Challenge 1: Trivial Solution. In Eq. (3), since the first term log pθ,ω(ei|yi) = − 1
2σ2d ∥ei −µc

yi
∥22

(constants are ignored) only penalizes the distance between a sample ei and its own class mean µc
yi

(i.e., intra-class distances) without considering inter-class relationships, different class means µc
1,

..., µc
N in task τ could collide, drawing all sample embeddings to the same spot. To avoid such

a trivial solution and improve the stability of optimization, we apply negative sampling (Mikolov
et al., 2013)

ℓneg(Dτ ; yi,θ,ω) = − logEej∼Dτ

[
exp (− 1

2σ2d
∥ej − µc

yi
∥22)

]
(4)

where ej is a negative sample embedding from any class in the support set, and µc
yi

is the mean of
the positive class. In practice, we found it is beneficial to integrate ℓneg with our likelihood ℓHTGM in
Eq. (1) during training, i.e. ℓHTGM + 1

n

∑n
i=1 ℓneg. Correspondingly, from Eq. (3) we have

ℓ(Dτ ;θ,ω) = ℓHTGM-ELBO(Dτ ;θ,ω) +
1

n

n∑
i=1

ℓneg(Dτ ; yi,θ,ω) (5)

which does not only serve as a robust training loss, but also helps solve the next challenge.

Challenge 2: The Partition Function in Eq. (2). The second term pω(yi|vτ) in Eq. (3) involves
computing the partition function in Eq. (2) (i.e., the denominator), which is intractable because
of the integration over all possible µc

k’s. To solve it, we propose an upper bound of the partition
function

∫
µk

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≤ N
√
2d−1πd (the derivation is in Appendix A.2), which

is a constant with a specific N . By replacing the partition function in Eq. (2) with N
√
2d−1πd, we

got a lower bound of pω(yi|vτ), which in turn relaxes the lower bound in Eq. (3). The following
theorem (the proof is in Appendix A.3) states the tightness of the relaxed bound is controllable.
Theorem 1. Among the N global maximums W1vτ , ..., WNvτ of Eq. (2), let Whvτ and Wlvτ

(1 ≤ h, l ≤ N) be the pair with the smallest Euclidean distance D(Whvτ ,Wlvτ), we have

lim
D(Whvτ ,Wlvτ)→∞

∫
µk

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k = N
√
2d−1πd (6)

This theorem indicates the partition function approximates N
√
2d−1πd when all pairs of the global

maximums are far apart. It is noteworthy that during training (i.e., maximizing the likelihood) we
fit W1vτ , ..., WNvτ to the different class prototypes µc

1, ..., µc
N in N -way tasks. Because ℓneg in

Eq. (4) tends to maximize the distances between different prototypes through the negative samples,
maximizing the joint loss ℓ in Eq. (5) tends to separate W1vτ , ..., WNvτ , thus tighten the relaxed
bound after using N

√
2d−1πd according to Theorem 1. This is another benefit of negative sampling.

Optimization via Expectation-Maximization. In the third term of ℓHTGM-ELBO in Eq. (3), we need
to estimate the mixture distribution p(zτ). Similar to optimizing Gaussian mixture models, we
alternately infer p(zτ) and solve the model parameters {θ,ω} through an Expectation-Maximization
algorithm. In E-step, we infer p(zτ) when fixing model parameters. In M-step, when fixing p(zτ),
{θ,ω} can be efficiently solved by optimizing Eq. (5) with stochastic gradient descent (SGD). The
formula to infer p(zτ) and the detailed training algorithm of HTGM can be found in Appendix A.4.

3.3 MODEL ADAPTATION

Fig. 1(b) illustrates the adaptation process of HTGM. Given a new N -way task τ ′ from the meta-
test set Dte, its support set Ds

τ ′ is fed to the inference network to generate (1) class prototypes µc
1,

..., µc
N (similar to prototypical networks), and (2) distribution qϕ(vτ ′ |Ds

τ ′), from which we draw
the average task embedding vτ ′ = µa

zτ′ . Recall that the inference network is the base model fθ(·)
with class-pooling and task-pooling layers, as illustrated in Fig. 1(b), and ϕ = θ. Then vτ ′ is
projected to W1vτ ′ , ..., WNvτ ′ which represent the N optimal choices of class prototypes for task
τ ′ as learned by the Gibbs distribution in Eq. (2) from the training tasks. They are used to adapt
µc

1, ..., µc
N so that the adapted prototypes are drawn towards the closest classes from the mixture

component that task τ ′ belongs to. The adaptation is performed by selecting the closest optimum
for each prototype, i.e., µ̄c

j = αµc
j + (1 − α)Wl∗vτ ′ where l∗ = argmin1≤l≤N D(µc

j ,Wlvτ ′)

using Euclidean distance D(·, ·) and α is a hyperparameter. Finally, we (1) assess if τ ′ is a novelty
by computing the likelihood of vτ ′ in a pre-fitted GMM on the embeddings vτ ’s of the training
tasks in Dtr, and (2) perform classification on each sample x′

i in the query set Dq
τ ′ using the adapted

prototypes by p(y′i = j′|x′
i) =

exp (−D(fθ(x
′
i),µ̄

c
j′))∑N

j=1 exp (−D(fθ(x′
i),µ̄

c
j))

.

6

Under review as a conference paper at ICLR 2023

Setting Model Bird Texture Aircraft Fungi Average
TAML 55.77±1.43 31.78±1.30 48.56±1.37 41.00±1.50 44.28
MAML 53.94±1.45 31.66±1.31 51.37±1.38 42.12±1.36 44.77
Meta-SGD 55.58±1.43 32.38±1.32 52.99±1.36 41.74±1.34 45.67
MUMOMAML 56.82±1.49 33.81±1.36 53.14±1.39 42.22±1.40 46.50

5-way HSML 60.98±1.50 35.01±1.36 57.38±1.40 44.02±1.39 49.35
1-shot ARML 62.33±1.47 35.65±1.40 58.56±1.41 44.82±1.38 50.34

ProtoNet 61.54±1.27 38.84±1.42 73.42±1.23 46.52±1.42 55.08
MetaOptNet 62.80±1.29 44.30±1.45 68.64±1.29 47.04±1.38 55.70
ProtoNet-Aug 65.04±1.29 44.68±1.43 70.44±1.32 49.30±1.40 57.37
NCA 62.58±1.25 40.98±1.44 68.70±1.26 46.36±1.34 54.66
FEATS 62.60±1.31 44.12±1.49 68.86±1.28 47.92±1.34 55.88
HTGM (ours) 70.12±1.28 47.76±1.49 75.52±1.24 52.06±1.41 61.37
TAML 69.50±0.75 45.11±0.69 65.92±0.74 50.99±0.87 57.88
MAML 68.52±0.79 44.56±0.68 66.18±0.71 51.85±0.85 57.78
Meta-SGD 67.87±0.74 45.49±0.68 66.84±0.70 52.51±0.81 58.18
MUMOMAML 70.49±0.76 45.89±0.69 67.31±0.68 53.96±0.82 59.41

5-way HSML 71.68±0.73 48.08±0.69 73.49±0.68 56.32±0.80 62.39
5-shot ARML 73.34±0.70 49.67±0.67 74.88±0.64 57.55±0.82 63.86

ProtoNet 78.88±0.72 57.93±0.75 86.42±0.57 62.52±0.79 71.44
MetaOptNet 81.66±0.71 61.97±0.78 84.03±0.56 63.80±0.81 72.87
ProtoNet-Aug 80.62±0.71 58.30±0.77 87.05±0.53 63.62±0.81 72.39
NCA 79.16±0.75 58.69±0.76 85.27±0.53 61.68±0.80 71.20
FEATS 78.37±0.72 57.02±0.73 85.55±0.54 61.56±0.80 70.63
HTGM (ours) 82.27±0.74 60.67±0.78 88.48±0.52 65.70±0.79 74.28

Table 1: Results (accuracy±95% confidence) of the compared methods on Plain-Multi dataset.

4 EXPERIMENTS

In this section, we evaluate HTGM’s effectiveness on few-shot classification and novel task detection
on benchmark datasets, and compare it with SOTA methods.

Datasets. The first is the Plain-Multi benchmark proposed in (Yao et al., 2019a). It includes four
fine-grained image classification datasets, i.e., CUB-200-2011 (Bird), Describable Textures Dataset
(Texture), FGVC of Aircraft (Aircraft), and FGVCx-Fungi (Fungi). In each episode, a task samples
classes from one of the four datasets, so that different tasks are from a mixture of the four domains.
The second is the Art-Multi benchmark from (Yao et al., 2019b), whose distribution is more complex
than Plain-Multi. Similar to (Jerfel et al., 2019), each image in Plain-Multi was applied with two
filters, i.e., blur filter and pencil filter, respectively, to simulate a changing distribution of few-shot
tasks. Afterward, together with the original four datasets, a total of 12 datasets comprise Art-Multi,
and each task is sampled from one of them. Both benchmarks were divided into the meta-training,
meta-validation, and meta-test sets by following their corresponding papers.

Baselines. We compare HTGM with the most relevant SOTA methods on meta-learning, including
(1) optimization-based methods: MAML (Finn et al., 2017) and Meta-SGD (Li et al., 2017) learn
globally shared initialization among tasks. MUMOMAML (Vuorio et al., 2018) is a task-specific
method. TAML (Lee et al., 2019a) handles imbalanced tasks. HSML (Yao et al., 2019a) and ARML
(Yao et al., 2019b) learn locally shared initial parameters in clusters of tasks and neighborhoods of a
meta-graph of tasks, respectively; and (2) Metric-based methods: ProtoNet (Snell et al., 2017) learns
prototypes with distance-based classifier. MetaOptNet (Lee et al., 2019c) uses an SVM classifier
with kernel metrics. ProtoNet-Aug (Su et al., 2020), FEATS (Ye et al., 2020) and NCA (Laenen &
Bertinetto, 2021) were built upon ProtoNet by augmenting images (e.g., rotation, jigsaw), adding
prototype aggregator (e.g., Transformer), and using contrastive training loss, (instead of prototype-
based loss), respectively. The detailed setup of these methods is deferred to Appendix C.1.

Implementation. Following (Tian et al., 2020), optimization-based baselines use the standard four-
block convolutional layers as the base learner, and metric-based methods use ResNet-12 as the
base learner. The output dimension of these networks is 640 (MetaOptNet uses 16000 as in its
paper). In our experiments, we observed the optimization-based methods have out-of-memory issues
when using ResNet-12, indicating their limitation in using large backbone networks. To test them

7

Under review as a conference paper at ICLR 2023

Setting Model Original Blur Pencil Average
TAML 42.22±1.39 40.02±1.41 35.11±1.34 39.11
MAML 42.70±1.35 40.53±1.38 36.71±1.37 39.98
Meta-SGD 44.21±1.38 42.36±1.39 37.21±1.39 41.26
MUMOMAML 45.63±1.39 41.59±1.38 39.24±1.36 42.15
HSML 47.92±1.34 44.43±1.34 41.44±1.34 44.60

5-way,1-shot ARML 45.68±1.34 42.62±1.34 39.78±1.34 42.69
ProtoNet 55.23±1.31 51.70±1.42 49.22±1.44 52.05
MetaOptNet 56.10±1.35 52.33±1.43 49.08±1.45 52.50
ProtoNet-Aug 57.63±1.34 55.00±1.40 49.73±1.53 54.12
NCA 56.12±1.35 50.80±1.49 47.99±1.45 51.64
FEATS 54.33±1.33 50.90±1.48 47.96±1.48 51.07
HTGM (ours) 61.18±1.34 58.80±1.42 53.23±1.48 57.74
TAML 58.54±0.73 55.23±0.75 49.23±0.75 54.33
MAML 58.30±0.74 55.71±0.74 49.59±0.73 54.50
Meta-SGD 57.82±0.72 55.54±0.73 50.24±0.72 54.53
MUMOMAML 58.60±0.75 56.29±0.72 51.15±0.73 55.35
HSML 60.63±0.73 57.91±0.72 53.93±0.72 57.49

5-way,1-shot ARML 61.78±0.74 58.73±0.75 55.27±0.73 58.59
ProtoNet 71.34±0.73 67.28±0.75 64.32±0.76 67.65
MetaOptNet 72.33±0.72 68.90±0.78 63.89±0.71 68.37
ProtoNet-Aug 72.87±0.71 70.50±0.72 63.98±0.73 68.78
NCA 72.44±0.72 67.33±0.71 62.98±0.78 67.58
FEATS 71.99±0.71 67.54±0.72 63.09±0.76 67.54
HTGM (ours) 74.67±0.70 71.24±0.73 65.22±0.77 70.37

Table 2: Results (accuracy±95% confidence) of the compared methods on Art-Multi dataset.

on ResNet-12, we followed the ANIL method (Raghu et al., 2020) by pre-training ResNet-12 via
ProtoNet, freezing the encoder, and fine-tuning the last fully-connected layer. In this case, HSML
and ARML cannot work properly as they require joint training of the encoder and other layers. The
details are in Appendix D.5. For training, Adam optimizer was used. Each batch contains 4 tasks.
Each model was trained with 20000 episodes. The learning rate of metric-based methods is 1e−3.
The learning rates for inner- and outer-loops for optimization-based methods are 1e−3 and 1e−4.
The weight decay was 1e−4. For HTGM, we set σ = 1.0, σ̄ = 0.1, α = 0.5 (0.9) for 1-shot (5-shot)
tasks. The number of mixture components r varies w.r.t. different datasets, and was grid-searched
within [2, 4, 8, 16, 32]. All hyperparameters were set according to the meta-validation sets.

4.1 EXPERIMENTAL RESULTS

Few-shot classification. Following (Tian et al., 2020), we report the mean accuracy and 95% con-
fidence interval of 1000 random tasks with 5-way 1-shot/5-shot, 5/25-query tests. Following (Yao
et al., 2019b), we report the accuracy of each domain (Bird, Texture, Aircraft and Fungi) and the
overall average accuracy for Plain-Multi, and report the accuracy of each image filtering strategy
and the overall average accuracy for Art-Multi.

Table 1 and 2 summarize the results. From the tables, we have several observations. First, metric-
based methods generally outperform optimization-based methods. This is because of the efficiency
of metric-based methods, enabling them to fit a larger backbone network, which is consistent with
the results in (Tian et al., 2020). Built upon the metric-based method, HTGM only introduces a few
distribution-related parameters and thus has the flexibility to scale with the encoder size. Second,
baselines designed for dealing with mixture distributions of tasks, i.e., HSML and ARML, outper-
form their counterparts without such design, demonstrating the importance to consider mixture task
distribution in practice. Finally, HTGM outperforms the SOTA baselines in most cases by large
margins, suggesting its effectiveness in modeling the generative process of task instances.

Novel task detection. We also evaluate HTGM on the task of detecting novel N -way-K-shot tasks
(N = 5, K = 1) that are drawn out of the training task distributions. To this end, we train each
comapred model in the Original domain in Art-Multi dataset, and test the model on tasks drawn
from either Original domain (i.e., known tasks), or {Blur, Pencil} domains (i.e., novel tasks), and
evaluate if the model can tell whether a testing task is known or novel.

8

Under review as a conference paper at ICLR 2023

(a) HSML (b) MetaOptNet (c) ProtoNet-Aug (d) HTGM

Figure 2: The frequency of tasks w.r.t. the normalized likelihood for (a) HSML (b) MetaOptNet (c)
ProtoNet-Aug (d) HTGM. The x-axis ranges vary as only 95% tasks with top scores were preserved.

For comparison, since none of the baselines detects novel tasks, we adapt them as follows. For
metric-based methods, since they use a fixed encoder for all training/testing tasks, we averaged the
sample embeddings in each task to represent the task. Then a separate GMM model was built upon
the training task embeddings, and its likelihood was adapted to score the novelty of testing tasks
(some details of setup are in Appendix C.2. However, optimization-based models perform gradient
descent on the support set of each task, leading to varying encoders per task. As such, sample
embeddings of different tasks are not comparable, and we cannot obtain task embeddings in the same
way as before. Among them, only HSML has an augmented task-level encoder for task embedding,
allowing us to include it for comparison. For a fair comparison, our HTGM also trains a GMM
on its task embeddings for detecting novel tasks. Moreover, two HTGM variants were included
for ablation analysis to understand some design choices: (1) HTGM-Gaussian replaces the Gibbs
distribution in Eq. (2) with a Gaussian distribution; (2) HTGM w/o GMM removes the task-level
GM, i.e., the third term in Eq. (3). The classification results of the ablation variants are in Appendix
D.4. Following (Cheng & Vasconcelos, 2021; Vaze et al., 2022; Sharma et al., 2021), we report Area
Under ROC (AUROC), Average Precision (AP), and Max-F1 for performance evaluation.

Model AUROC AP Max-F1
HSML 55.96 37.94 50.17
ProtoNet 65.17 41.51 56.07
MetaOptNet 72.71 63.77 58.33
NCA 66.28 51.45 52.74
ProtoNet-Aug 72.67 57.93 59.07
FEATS 59.35 42.57 49.31
HTGM w/o GMM 70.24 62.45 57.75
HTGM-Gaussian 74.06 66.18 60.62
HTGM 75.66 68.03 60.51

Table 3: Comparison between HTGM and its variants
and the applicable baselines on novel task detection.

Table 3 summarize the results, from which
we observe HTGM outperforms all base-
lines over all evaluation metrics, indicat-
ing the superior quality of task embeddings
learned by our model. The embeddings
follow the specified mixture distribution of
tasks p(vτ) as described in Sec. 3.1, which
fits the mixture data well hence allowing
to detect novel tasks that are close to the
boundary. Since the baselines learn em-
beddings without explicit constraint, they
even don’t fit the post-hoc GMM very well.
Moreover, HTGM outperforms HTGM w/o
GMM, which is even worse than some other
baselines. This further validates the neces-
sity to introduce the regularization of task-level mixture distribution p(vτ). Also, the drops of
AUROC and AP of HTGM-Gaussian demonstrate the importance of our unique design of the Gibbs
distribution for the task-conditional distribution in Eq. (2). Similar to (Vaze et al., 2022), in Fig. 2,
we visualized the normalized likelihood histogram of known and novel tasks for HSML, MetaOpt-
Net (the best baseline), ProtoNet-Aug (the near-best baseline), and HTGM. The figures indicate the
likelihoods (i.e., novelty scores) of HTGM are more distinguishable for known and novel tasks than
the baselines. We also analyzed the hyperparameters of HTGM, which are in D.1, D.2, D.3.

5 CONCLUSION

In this paper, we propose a novel Hierarchical Gaussian Mixture based Task Generative Model
(HTGM). HTGM models the generative process of task instances, and performs maximum likeli-
hood estimation to learn task embeddings, which can help adjust prototypes acquired by the feature
extractor and thus achieve better performance. Moreover, by explicitly modeling the mixture dis-
tribution of tasks in the embedding space, HTGM can effectively detect the tasks that are drawn
from distributions unseen in the meta-training stage. The extensive experimental results indicate the
advantage of the proposed method on both few-shot classification and novel task detection.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
In ICCV, pp. 6430–6439, 2019.

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In ICML, volume 70 of Proceedings of Machine Learning Research, pp. 136–145. PMLR, 2017.

Thomas L Athey, Benjamin D Pedigo, Tingshan Liu, and Joshua T Vogelstein. Autogmm: Auto-
matic and hierarchical gaussian mixture modeling in python. arXiv preprint arXiv:1909.02688,
2019.

M. Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.

Isaac S Chan and Geoffrey S Ginsburg. Personalized medicine: progress and promise. Annual
review of genomics and human genetics, 12:217–244, 2011.

Jiacheng Cheng and Nuno Vasconcelos. Learning deep classifiers consistent with fine-grained nov-
elty detection. In CVPR, pp. 1664–1673, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, pp. 1126–1135. PMLR, 2017.

Jacob Goldberger and Sam T Roweis. Hierarchical clustering of a mixture model. In NeurIPS, pp.
505–512, 2005.

Laurent Jacob, Jean-philippe Vert, and Francis Bach. Clustered multi-task learning: A convex
formulation. In NIPS, 2008.

Minki Jeong, Seokeon Choi, and Changick Kim. Few-shot open-set recognition by transformation
consistency. In CVPR, pp. 12566–12575, 2021.

Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. NeurIPS, 32, 2019.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature
learning. In ICML, 2011.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learning. In
ICML, pp. 1723–1730, 2012.

Steinar Laenen and Luca Bertinetto. On episodes, prototypical networks, and few-shot learning.
NeurIPS, 34:24581–24592, 2021.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and Sung Ju
Hwang. Learning to balance: Bayesian meta-learning for imbalanced and out-of-distribution
tasks. arXiv preprint arXiv:1905.12917, 2019a.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. NeurIPS, 31, 2018.

Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin. Robust inference via
generative classifiers for handling noisy labels. In ICML, pp. 3763–3772. PMLR, 2019b.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In CVPR, pp. 10657–10665, 2019c.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In ICML, pp. 2927–2936. PMLR, 2018.

10

Under review as a conference paper at ICLR 2023

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image detec-
tion in neural networks. In ICLR, 2018.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. pp. 21464–21475, 2020.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In NeurIPS, 2013.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

Jingchao Ni, Wei Cheng, Zhengzhang Chen, Takayoshi Asakura, Tomoya Soma, Sho Kato, and
Haifeng Chen. Superclass-conditional gaussian mixture model for learning fine-grained embed-
dings. In ICLR, 2022.

Łukasz P Olech and Mariusz Paradowski. Hierarchical gaussian mixture model with objects at-
tached to terminal and non-terminal dendrogram nodes. In Proceedings of the 9th International
Conference on Computer Recognition Systems CORES 2015, pp. 191–201. Springer, 2016.

Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information processing systems, 31,
2018.

Alexandre Passos, Piyush Rai, Jacques Wainer, and Hal Daumé III. Flexible modeling of latent task
structures in multitask learning. In ICMl, pp. 1283–1290, 2012.

Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent adver-
sarial deep domain adaptation. In ICLR, 2017.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In ICLR, 2020.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2018.

Ketan Rajshekhar Shahapure and Charles Nicholas. Cluster quality analysis using silhouette score.
In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA),
pp. 747–748. IEEE, 2020.

Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
on social media through hidden influence and group behaviours. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1441–1451, 2021.

Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly sam-
pled time series. In ICLR, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When does self-supervision improve few-
shot learning? In ECCV, pp. 645–666. Springer, 2020.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking few-
shot image classification: a good embedding is all you need? In ECCV, pp. 266–282. Springer,
2020.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need. In ICLR, 2022.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. NIPS, 29, 2016.

11

Under review as a conference paper at ICLR 2023

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Toward multimodal model-agnostic
meta-learning. arXiv preprint arXiv:1812.07172, 2018.

Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu,
Xuchao Zhang, Haifeng Chen, and Susan B Davidson. Dynamic gaussian mixture based deep
generative model for robust forecasting on sparse multivariate time series. In AAAI, volume 35,
pp. 651–659, 2021.

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for classifica-
tion with dirichlet process priors. Journal of Machine Learning Research, 8(1), 2007.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
In ICML, pp. 7045–7054. PMLR, 2019a.

Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li. Automated
relational meta-learning. In ICLR, 2019b.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In CVPR, pp. 8808–8817, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX FOR DETAILS OF DERIVING HTGM

A.1 THE LOWER-BOUND OF THE LIKELIHOOD FUNCTION

In this section, we provide the details of the lower-bound in Eq. (3). By introducing the approximated
posterior qϕ(vτ |Ds

τ), the likelihood in Eq. (1) becomes (the superscript ∗ is neglected for clarity)

ℓ(Dτ ,θ) =
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

p(yi|vτ)p(vτ)dvτ

)

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

p(yi|vτ)p(vτ)
qϕ(vτ |Ds

τ)

qϕ(vτ |Ds
τ)

dvτ

)

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

qϕ(vτ |Ds
τ)

p(yi|vτ)p(vτ)

qϕ(vτ |Ds
τ)

dvτ

)

≥ 1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

∫
vτ

qϕ(vτ |Ds
τ)
[
log p(yi|vτ) + log p(vτ)− log qϕ(vτ |Ds

τ)
]
dvτ

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

∫
vτ

qϕ(vτ |Ds
τ)
[
log p(yi|vτ) + log p(vτ)

]
dvτ −

∫
vτ

qϕ(vτ |Ds
τ) log qϕ(vτ |Ds

τ)dvτ

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

Evτ∼qϕ(vτ |Ds
τ)

[
log p(yi|vτ) + log p(vτ)

]
+H(qϕ(vτ |Ds

τ))

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

Evτ∼qϕ(vτ |Ds
τ)

[
log p(yi|vτ) + log

(r∑
zτ=1

p(vτ |zτ)p(zτ)
)]

+H(qϕ(vτ |Ds
τ))

(7)
where the fourth step uses Jensen’s inequality. This completes the derivation of Eq. (3).

A.2 THE UPPER-BOUND OF THE PARTITION FUNCTION

In Sec. 3.2, we apply an upper bound on the partition function in Eq. (2) for solving the challenging
2. The derivation of the upper bound is as follows.∫

µc
yi

exp
[
− Eω(µ

c
yi
;vτ)

]
dµc

yi
=

∫
µc

yi

exp
[
−min ({||µc

yi
−Wjvτ ||22}Nj=1)

]
dµc

yi

=

∫
µc

yi

max
({

exp
[
− ||µc

yi
−Wjvτ ||22

]}N

j=1

)
dµc

yi
<

∫
µc

yi

N∑
j=1

exp
[
− ||µc

yi
−Wjvτ ||22

]
dµc

yi

=

N∑
j=1

∫
µc

yi

exp
[
− ||µc

yi
−Wjvτ ||22

]
dµc

yi
=
√
2d−1πd

(8)

where the last equation is from the multidimensional Gaussian integral. This completes the deriva-
tion of the upper bound of the partition function.

A.3 THE PROOF OF THEOREM 1

Proof. Let Bj denote a ball in Rd. Its center is at Wjvτ and its radius is D(Whvτ ,Wlvτ)/3.
Because Whvτ and Wlvτ (1 ≤ h, l ≤ N) is the pair with the smallest Euclidean distance
D(Whvτ ,Wlvτ), for any pair of balls Bj and Bm we have Bj ∪Bm = ∅.

In other words, there is no overlap between any pair of balls. Therefore, if we compute the integral
over the joint of all balls, we have∫

µc
k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =

N∑
m=1

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k (9)

Also, because there is no overlap between any pair of balls, for each point µc
k ∈ Bm, we have

−min
(
{||µc

k −Wjvτ ||22}Nj=1

)
= −||µc

k −Wmvτ ||22 (10)

13

Under review as a conference paper at ICLR 2023

Therefore, we have the following derivation from Eq. (9).∫
µc

k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =

N∑
m=1

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k

=

N∑
m=1

∫
µc

k
∈Bm

exp
[
− ||µc

k −Wmvτ ||22
]
dµc

k = N

∫
µk∈Bm

exp
[
− ||µc

k −Wmvτ ||22
]
dµc

k

(11)

Meanwhile, since
⋃N

m=1 Bm is a sub-area of the entire Rd space, we have∫
µc

k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≤
∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k (12)

According to the multidimensional Gaussian integral, we have

lim
D(Whvτ ,Wlvτ)→∞

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =
√
2d−1πd (13)

Therefore,

lim
D(Whvτ ,Wlvτ)→∞

∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≥ N
√
2d−1πd (14)

Since N
√
2d−1πd is its upper bound, based on the squeeze theorem, we have

lim
D(Whvτ ,Wlvτ)→∞

∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k = N
√
2d−1πd (15)

which completes the proof of Theorem 1.

A.4 THE TRAINING ALGORITHM OF HTGM

The training algorithm of HTGM is summarized in Algorithm 1.

B APPENDIX FOR FURTHER DISCUSSION

B.1 DISCUSSION ABOUT THE RELATIONSHIP BETWEEN HTGM AND HGM MODEL

To the best of our knowledge, the Hierarchical Gaussian Mixture (HGM) model has appeared in
the traditional works (Goldberger & Roweis, 2005; Olech & Paradowski, 2016; Athey et al., 2019)
for hierarchical clustering by applying Gaussian Mixture model agglomeratively or divisively on
the input samples. They are unsupervised methods that infer clusters of samples, but do not pre-
train embedding models (or parameter initializations) that could be fine-tuned for the adaptation to
new tasks in meta-learning. Therefore, these methods are remarkably different from meta-learning
methods, and we think it is a non-trivial problem to adapt the concept of HGM to solve the meta-
learning problem. To this end, we need to (1) identify the motivation; and (2) solve the new technical
challenges. For (1), we found the hierarchical structure of mixture distributions naturally appears
when we want to model the generative process of tasks from a mixture of distributions, where each
task contains another mixture distribution of classes (as suggested by Eq. (1)). In other words, the
motivating point of our method is more on meta-learning than HGM. However, we think drawing
such a connection between meta-learning and HGM is a novel contribution. For (2), our method is
different from traditional HGM in (a) its generative process of tasks (Sec. 3.1), which is a theoretical
extension of the widely used empirical process of generating tasks in meta-learning; (b) its Gibbs-
style task-conditional distribution (Eq. (2)) for fitting uniformly sampled classes; (c) the metric-
based end-to-end meta-learning framework (Fig. 1) (note the traditional HGM is not for learning
embeddings); (d) the non-trivial derivation of the optimization algorithm in Sect. 3.2 and Alg. 1;
and (e) the novel model adaptation process in Sec. 3.3. Solving the technical challenges in the new
generative model is another novel contribution of the proposed method.

14

Under review as a conference paper at ICLR 2023

Algorithm 1: Hierarchical Gaussian Mixture based Task Generative Model (HTGM)
Input: encoder fθ , training dataset Dtr, hyperparameters r, σ, σ̄
Output: model parameters {θ, ω}

1 Pre-train the encoder fθ via ProtoNet with augmentations.
2 Pre-train the energy function in Eq. (2) by maximizing 1

n

∑n
i=1 log pθ,ω(ei|yi) + log pω(yi|vτ)

3 for i← 1 to MaxEpoch do
/* E-step */

4 V = ∅
5 for {Ds

τ = {(xs
i , y

s
i)}

ns
i=1,D

q
τ = {(xq

i , y
q
i)}

nq
i=1} in Dataloader(Dtr) do

/* load a task episode */
6 {es

i}
ns
i=1 = {fθ(xs

i)}
ns
i=1 // embeddings of the support set

7 µa
zτ

= Task-Pooling(Class-Pooling({(es
i , y

s
i)}

ns
i=1)) // the mean of qϕ(vτ |Ds

τ)

8 Sample a task embedding vτ from qϕ(vτ |Ds
τ) = N (µa

zτ
, σ̄2I)

9 V = V ∪ {vτ}
10 end
11 {zτ}|V|

τ=1, {µt
1, ...,µ

t
r,Σ

t
1, ...,Σ

t
r} = GMM(V). // fit a GMM to V, where {zτ}|V|

τ=1

represents the labeling of the vτ’s in V
/* M-step */

12 for {Ds
τ = {(xs

i , y
s
i)}

ns
i=1,D

q
τ = {(xq

i , y
q
i)}

nq
i=1} in Dataloader(Dtr) do

/* load a task episode */
13 {es

i}
ns
i=1 = {fθ(xs

i)}
ns
i=1 // forward pass

14 {eq
i}

nq
i=1 = {fθ(xq

i)}
nq
i=1 // forward pass

15 {µc
1, ...,µ

c
N}s = Class-Pooling({(es

i , y
s
i)}

ns
i=1)

16 µa
zτ

= Task-Pooling({µc
1, ...,µ

c
N}s) // the mean of qϕ(vτ |Ds

τ)

17 Sample a task embedding vτ from qϕ(vτ |Ds
τ) = N (µa

zτ
, σ̄2I)

18 for j = 1, ..., N do
19 µ̄c

j = αµc
j + (1− α)Wl∗vτ ′ where l∗ = argmin1≤l≤N D(µc

j ,Wlvτ ′)

20 end
21 Calculate ℓ({eq

i}
nq
i=1,V, {µ̄

c
j}Nj=1, {µt

1, ...,µ
t
r,Σ

t
1, ...,Σ

t
r}, σ,ω) // calculate the

loss in Eq. (5) using Eq. (3) and Eq. (4)
22 θ,ω = SGD(ℓ,θ,ω) // update model parameters
23 end
24 end

B.2 DISCUSSION ABOUT THE RELATED MULTI-TASK LEARNING METHODS

The modeling of the clustering/grouping structure of tasks or the mixture of distributions of tasks
has been studied in multi-tasking learning (MTL). In (Xue et al., 2007; Jacob et al., 2008), tasks are
assumed to have a clustering structure, and the model parameters of the tasks in the same cluster
are drawn to each other via optimization on their L2 distances. In (Kang et al., 2011), a subspace
based regularization framework was proposed for grouping task-specific model parameters, where
the tasks in the same group are assumed to lie in the same low dimensional subspace for parameter
sharing. The method in (Kumar & Daumé III, 2012) also uses the subspace based sharing of task
parameters, but allows two tasks from different groups to overlap by having one or more bases in
common. The method in (Passos et al., 2012) introduces a generative model for task-specific model
parameters that encourages parameter sharing by modeling the latent mixture distribution of the
parameters via the Dirichlet process and Beta process.

The key difference between these methods and our method HTGM lies in the difference between
MTL and meta-learning. In an MTL method, all tasks are known a priori, i.e., the testing tasks are
from the set of training tasks, and the model is non-inductive at the task-level (but it is inductive at
the sample-level). In HTGM, testing tasks can be disjoint from the set of training tasks, thus the
model is inductive at the task-level. In particular, we aim to allow testing tasks that are not from the
distribution of the training tasks by enabling the detection of novel tasks, which is an extension of
the task-level inductive model. The second difference lies in the generative process. The method
in (Passos et al., 2012) models the generative process of the task-specific model parameters (e.g.,
the weights in a regressor). In contrast, HTGM models the generative process of each task by

15

Under review as a conference paper at ICLR 2023

generating the classes in it, and the samples in the classes hierarchically, i.e., the (x, y)’s (in Eq. (1)
and Sec. 3.1). In this process, we allow our model to fit uniformly sampled classes given a task
(without specifying a prior on the distance function on classes) by the proposed Gibbs distribution
in Eq. (2). Other remarkable differences to the aforementioned MTL methods include the inference
network (Fig. 1(b)), which allows the inductive inference on task embeddings and class prototypes;
the optimization algorithm (Sec. 3.2) to our specific loss function in Eq. (3), which is from the
likelihood in Eq. (1); and the model adaptation algorithm (Sec. 3.3) for performing predictions in
a testing task, and detecting novel tasks. As such, the MTL methods can not be trivially applied to
solve our problem.

B.3 FURTHER INTERPRETATION OF THE TASK-CONDITIONAL DISTRIBUTION

The task-conditional class distribution pω(yi = k|vτ) in Eq. (2) is defined through an energy func-
tion Eω(µ

c
k;vτ) = min ({||µc

k −Wjvτ ||22}Nj=1) with trainable parameters ω = {W1, ...,WN},
for allowing uniformly sampled classes per task. The conditional distribution p(yi|vτ) represents
how classes distribute for a given task τ . The reason for its definition in Eq. (2) is as follows. If it is a
Gaussian distribution with vτ (i.e., task embedding) as the mean, p(yi = k|vτ) can be interpreted as
the density at the representation of the k-th class in this Gaussian distribution, i.e., the density at µk,
which is the mean/surrogate embedding of the k-th class. One problem of this Gaussian p(yi|vτ)
is that different classes, i.e., different µyi

’s, are not uniformly distributed, contradicting the practice
that given a dataset (e.g., images), classes are often uniformly sampled for constituting a task in the
empirical studies. Using a uniformly sampled set of classes to fit the Gaussian distribution p(yi|vτ)
will lead to an ill-posed learning problem, as described in Sec. 3.1. To solve it, we introduced
ω = {W1, ...,WN} in the energy function Eω(µ

c
k;vτ) in Eq. (2). Wj ∈ Rd×d (1 ≤ j ≤ N)

can be interpreted as projecting vτ to the j-th space spanned by the basis (i.e., columns) of Wj .
There are N different spaces for j = 1, ..., N . Thus, the N projected task means W1vτ , ...,WNvτ

are in N different spaces. Fitting the energy function Eω(µ
c
k;vτ) to N uniformly sampled classes

µc
1, ...,µ

c
N , which tend to be far from each other because they are uniformly random, tends to learn

W1, ...,WN that project vτ to N far apart spaces that fit each of the µc
1, ...,µ

c
N by closeness, due

to the min-pooling operation. This mitigates the aforementioned ill-posed learning problem.

C APPENDIX FOR IMPLEMENTATION DETAILS

C.1 THE SETUP OF THE COMPARED MODELS

Encoder of Metric-based Meta-Learning. For fairness, for all metric-based methods, includ-
ing ProtoNet (Snell et al., 2017), MetaOptNet (Lee et al., 2019c), ProtoNet-Aug (Su et al., 2020),
FEATS (Ye et al., 2020) and NCA (Laenen & Bertinetto, 2021), following (Tian et al., 2020; Lee
et al., 2019c), we apply ResNet-12 as the encoder. ResNet-12 has 4 residual blocks, each has 3
convolutional layers with a kernel size of 3 × 3. ResNet-12 uses dropblock as a regularizer, and its
number of filters is (60, 160, 320, 640). For MetaOptNet, following its paper (Lee et al., 2019c),
we flattened the output of the last convolutional layer to acquire a 16000-dimensional feature as
the image embedding. For other baselines, following (Tian et al., 2020), we used a global average-
pooling layer on the top of the last residual block to acquire a 640-dimensional feature as the image
embedding.

Further Details. Following (Snell et al., 2017), ProtoNet, ProtoNet-Aug, and NCA use Adam op-
timizer with β1 = 0.9 and β2 = 0.99. We did grid-search for the initial learning rate of the Adam
within {1e−2, 1e−3, 1e−4}, where 1e−3 was selected, which is the same as the official implementa-
tion provided by the authors. For FEATS, we chose transformer as the set-to-set function based on
the results reported by (Ye et al., 2020). When pre-training the encoder in FEATS, following its pa-
per (Ye et al., 2020), we applied the same setting as ProtoNet, which is to use Adam optimizer with
an initial learning rate of 1e−3, β1 = 0.9 and β2 = 0.99. When training its aggregation function,
we grid-searched the initial learning rate in {1e−4, 5e−4, 1e−5} since a larger learning rate leads to
invalid results on our datasets. The optimal choice is 1e−4. For MetaOptNet, following its paper
(Lee et al., 2019c), we used SGD with Nesterov momentum of 0.9, an initial learning rate of 0.1 and
a scheduler to optimize it, and applied the quadratic programming solver OptNet (Amos & Kolter,
2017) for the SVM solution in it.

16

Under review as a conference paper at ICLR 2023

C.2 THE DETAILS OF THE SETUP FOR NOVEL TASK DETECTION

In the experiments on novel task detection in Sec. 4.1, the number of in-distribution tasks (from the
Original domain) in the test set is 4000 (1000 per task cluster) and the number of novel tasks (from
the Blur and Pencil domains) in the test set is 8000 (4000 for the Blur and 4000 for the Pencil).

D APPENDIX FOR EXPERIMENTAL RESULTS

D.1 ANALYSIS OF σ

Setting of σ Bird Texture Aircraft Fungi
0.1 69.33 46.92 75.20 50.78
0.5 70.00 47.98 75.38 52.38

1.0 (Ours) 70.12 47.76 75.52 52.06
10.0 69.4 47.28 75.32 51.5

Table 4: Analysis of different σ

Tabel 4 report the effect of different σ on the classification performance (5-way-1-shot classification
on Multi-Plain dataset). As shown in the table, although the too low or too high setting of this
hyper-parameter will hurt the performance, in general the model is robust toward the setting of σ.

D.2 ANALYSIS OF σ̄

Setting of σ̄ Bird Texture Aircraft Fungi
0.05 69.78 48.36 74.36 51.34

0.1(Ours) 70.12 47.76 75.52 52.06
0.2 70.02 47.50 75.30 51.74
0.5 69.02 46.66 74.46 51.00

Table 5: Analysis of different σ̄

Tabel 5 summarize how different σ̄ influence classification performance (5-way-1-shot classification
on Multi-Plain dataset). In general, different settings of σ̄ will influence the model performance at a
marginal level, indicating our model’s robustness toward this hyper-parameter.

D.3 IMPACT OF GMM COMPONENT NUMBER

Number of components r 2 4 8 16 32
Silhouette score 47.70 57.61 12.76 7.81 6.19

Table 6: Analysis on the number of mixture components

Different choices of the number of mixture components does not significantly influence the model
classification performance. However, the clustering quality may vary due to the different numbers
of components. Here, we report the Silhouette score (Shahapure & Nicholas, 2020; Sharma et al.,
2021) w.r.t. the number in Table 6. From Table 6, we can see that selecting a component number
close to the ground-truth component number of the distribution can benefit the clustering quality.

D.4 CLASSIFICATION PERFORMANCE OF THE ABLATION VARIANTS

We summarize the classification performance of the two Ablation Variants HTGM w/o GMM and
HTGM-Gaussian in Table 7. As we can see, our unique designs improve the novel task detection
performance without significantly decreasing the classification performance.

17

Under review as a conference paper at ICLR 2023

Ablation Variants Bird Texture Aircraft Fungi
HTGM w/o GMM 68.86 48.00 75.74 52.28
HTGM-Gaussian 69.52 47.3 75.38 51.34

HTGM 70.12 47.76 75.52 52.06

Table 7: Ablation study of different variants of our proposed method.

Setting Model Bird Texture Aircraft Fungi Average
ANIL-MAML 62.64±0.90 43.86±0.78 70.03±0.85 48.34±0.89 56.22

5-way-1-shot ANIL-HSML 64.33±0.87 43.77±0.79 69.71±0.84 47.75±0.89 56.39
ANIL-ARML 65.98±0.87 43.57±0.78 70.28±0.84 48.48±0.92 57.08
HTGM (ours) 70.12±1.28 47.76±1.49 75.52±1.24 52.06±1.41 61.37
ANIL-MAML 74.38±0.73 55.36±0.74 79.78±0.63 59.57±0.79 67.27

5-way-5-shot ANIL-HSML 78.18±0.71 57.70±0.75 81.32±0.62 59.83±0.81 69.26
ANIL-ARML 78.79±0.71 57.61±0.73 81.86±0.59 60.19±0.81 69.61
HTGM (ours) 82.27±0.74 60.67±0.78 88.48±0.52 65.70±0.79 74.28

Table 8: More results (accuracy±95% confidence) of the optimization-based methods.

D.5 ABLATION ANALYSIS OF OPTIMIZATION-BASED METHODS

Table 8 summarizes the performance of MAML, HSML and ARML trained in ANIL method (Raghu
et al., 2020), i.e., we pre-trained the ResNet-12 by ProtoNet, froze the encoder, and fine-tuned the
last fully-connected layers using MAML, HSML and ARML on Plain-Multi dataset. From Table
8, the performance of ANIL-MAML is better than MAML in Table 1, similar to the observation
in (Raghu et al., 2020), indicating the effectiveness of ANIL method. However, ANIL-HSML and
ANIL-ARML perform similarly to ANIL-MAML, losing their superiority of modeling the mixture
distribution of tasks achieved when implemented without ANIL as in Table 1 (up to 5.6% average
improvement). This is because the cluster layer in HSML and the graph layer in ARML both affect
the embeddings learned through backpropagation, i.e., they were designed for joint training with
the encoder. When the encoder is frozen, they cannot work properly. For this reason, to be con-
sistent with the existing researches (Yao et al., 2019a;b) that demonstrated the difference between
HSML/ARML and MAML, we used their original designs in Sec. 4. Meanwhile, we observe the
proposed HTGM outperforms MAML, HSML, and ARML trained in ANIL method, this is because
MAML cannot model the mixture distribution of tasks, while HSML and ARML cannot work prop-
erly when trained in ANIL method.

D.6 LIMITATIONS OF THE PROPOSED METHOD

Model 5-way-1-shot 5-way-5-shot
ProtoNet-Aug 59.40±0.93 74.68±0.45

HTGM 61.80±0.95 74.55±0.45

Table 9: Comparison of our proposed method with other models on mini-imagenet dataset.

In the case when the task distribution is not a mixture, our model would degenerate to and perform
similarly to the general metric-based meta-learning methods, e.g., ProtoNet, which only considers
a uni-component distribution. To confirm this, we added an experiment that compares our model
with ProtoNet-Aug on Mini-Imagenet (Vinyals et al., 2016), which does not have the same explicit
mixture distributions as in the Plain-Multi and Art-Multi datasets in Section 4. The results are
summarized in Table 9. From the table, we observe our method performs comparably to ProtoNet,
which validates the aforementioned guess. Meanwhile, together with the results in Table 1 and Table
2, the proposed method could be considered as a generalization of the metric-based methods to the
mixture of task distributions.

18

	Introduction
	Related Work
	Hierarchical Gaussian Mixture based Task Generative Model
	Model Specification and Parameterization
	Model Optimization
	Model Adaptation

	Experiments
	Experimental Results

	Conclusion
	Appendix for Details of Deriving HTGM
	The lower-bound of the likelihood function
	The upper-bound of the partition function
	The proof of Theorem 1
	The training algorithm of HTGM

	Appendix for Further Discussion
	Discussion about the relationship between HTGM and HGM model
	Discussion about the related multi-task learning methods
	Further interpretation of the task-conditional distribution

	Appendix for Implementation Details
	The setup of the compared models
	The details of the setup for novel task detection

	Appendix for Experimental Results
	Analysis of
	Analysis of
	Impact of GMM Component Number
	Classification performance of the ablation variants
	Ablation analysis of optimization-based methods
	Limitations of the Proposed Method

