
1 

 

Optimization Method Design and Implementation of 

Transformer Model for Long Sequence Data 

First A. Author, WeiweiZhao 
 

  

Abstract—The Transformer model, while effective in capturing 

long-range dependencies, faces significant challenges in 

processing ultra-long sequence data (e.g., 10k+ time steps) due to 

its quadratic computational complexity 𝑶(𝒏^𝟐)  and excessive 

memory demands. To address these limitations, this paper 

proposes a novel optimization framework that integrates a 

dynamic sparse attention mechanism and hierarchical chunking 

techniques. The dynamic sparse attention employs a learnable 

gating module to adaptively prune redundant attention heads, 

reducing redundant computations. The hierarchical chunking 

strategy divides sequences into localized blocks and introduces 

lightweight cross-block interactions, balancing efficiency and 

global dependency modeling. Experiments on translation (WMT 

2014 En-De), time-series forecasting (ETTh1), and text 

classification (IMDb) demonstrate that the proposed method 

achieves a 2.19× training speedup and 25% reduction in peak 

GPU memory usage compared to the vanilla Transformer, while 

maintaining competitive accuracy (e.g., BLEU-4 score drops by 

only 0.2 in translation). Ablation studies validate the synergistic 

benefits of combining dynamic sparsity and chunking. 

Additionally, adaptive block size adjustment further optimizes 

memory efficiency without compromising performance. This 

work provides a scalable solution for deploying Transformer-

based models in resource-constrained scenarios, such as edge 

computing for healthcare and financial analytics. 
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I. INTRODUCTION 

He exponential growth of long-sequence data—

spanning domains such as healthcare monitoring, 

financial forecasting, and industrial sensor analytics—

has intensified the demand for scalable deep learning models 

capable of capturing complex spatiotemporal dependencies. 

Traditional architectures like recurrent neural networks 

(RNNs) and their variants (e.g., LSTM, GRU) [1] struggle 

with long-range dependencies due to gradient 

vanishing/explosion and inefficient serial computation. The 

advent of Transformer models [2], with their self-attention 

mechanisms and parallel processing capabilities, marked a 

paradigm shift in sequence modeling. However, vanilla 

Transformers exhibit quadratic computational complexity 

𝑂(𝑛2) and memory overhead proportional to sequence length, 

severely limiting their applicability to ultra-long sequences 

(e.g., 10,000+ time steps). 

Recent efforts to mitigate these limitations include sparse 

attention patterns [3], linear-time approximations [4], and 

memory-efficient architectures [5]. For instance, Sparse 

 
 

Transformer [3] restricts attention to local windows but relies 

on heuristic rules, risking the omission of critical global 

interactions. Reformer [4] employs locality-sensitive hashing 

(LSH) for chunked attention but introduces fragmentation in 

long-context modeling. Linformer [6] projects attention 

matrices into low-rank subspaces, yet suffers from precision-

efficiency trade-offs in dynamic scenarios. These methods 

often prioritize computational efficiency at the expense of 

adaptive dependency modeling, particularly in heterogeneous 

long-sequence tasks. 

This paper proposes a hybrid optimization framework that 

synergizes dynamic sparse attention and hierarchical chunking 

to address these challenges. First, a learnable gating 

mechanism dynamically prunes redundant attention heads 

based on input-specific relevance scores, reducing redundant 

computations while preserving task-critical interactions. 

Second, sequences are partitioned into localized blocks with 

lightweight cross-block attention, enabling efficient long-

range dependency modeling. Adaptive block size adjustment 

further optimizes memory usage without sacrificing accuracy. 

Extensive experiments on translation (WMT 2014 En-De), 

time-series forecasting (ETTh1), and text classification 

(IMDb) validate the framework’s efficacy. Compared to 

vanilla Transformers, our method achieves a 2.19× training 

acceleration and 25% reduction in peak GPU memory 

consumption, with minimal accuracy degradation (e.g., 

BLEU-4 score drops by 0.2). Ablation studies confirm the 

complementary benefits of dynamic sparsity and chunking, 

while adaptive chunking strategies demonstrate robustness 

across varying sequence lengths. 

The contributions of this work are threefold: 

 

⚫ Dynamic Sparse Attention: A gating module that 

adaptively selects attention heads, reducing computation 

by 40% while maintaining model expressiveness. 

⚫ Hierarchical Chunking: A memory-efficient blockwise 

attention mechanism with learnable cross-block 

interactions, balancing local and global dependency 

modeling. 

⚫ Practical Scalability: Demonstrated applicability to 

resource-constrained edge devices, enabling real-time 

long-sequence analytics in healthcare and finance. 

 

The remainder of this paper is organized as follows: Section 

II reviews related work, Section III details the proposed 

methodology, Section IV presents experimental results, and 

Section V concludes with future directions. 
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II. RELATED WORK 

The optimization of Transformer models for long-sequence 

data has been extensively explored, focusing primarily on 

reducing computational complexity while preserving global 

dependency modeling. This section reviews foundational 

advancements and recent innovations in efficient attention 

mechanisms. 

A. Transformer Architecture and Self-Attention[2] 

 
Fig. 1 The overall architecture of Transformer. 

 

The original Transformer [2] introduced self-attention as a 

mechanism to capture global dependencies without 

recurrence: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

 Its multi-head attention mechanism projects input 

sequences into multiple subspaces, enabling parallel 

computation and enhanced feature diversity. However, the 

quadratic complexity 𝑂(𝑛2) of self-attention and the memory-

intensive storage of attention matrices remain critical 

bottlenecks for long sequences. 

Positional encoding schemes, such as sinusoidal functions: 

𝑃𝐸𝑝𝑜𝑠,2𝑖 = sin⁡(𝑝𝑜𝑠 10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙⁄ ) 

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = cos⁡(𝑝𝑜𝑠 10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙⁄ ) 

further enable sequence order awareness but lack adaptability 

to dynamic long-range interactions. 

 

B. Sparse Attention Mechanisms[3] 

The Informer introduces ProbSparse Attention, which 

selectively focuses on the most relevant parts of sequences 

while reducing computational load. By employing a heuristic 

strategy to select the most crucial queries and keys, it reduces 

complexity to 𝑂(𝑛⁡𝑙𝑜𝑔𝑛) , significantly enhancing long-

sequence processing capability. 

𝐴(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
�̅�𝐾𝑇

√𝑑𝑘
)𝑉 

Here, Q̄ denotes a sparse matrix composed of top-u queries 

selected through sparsity testing. However, the selection of 

attention regions to retain involves a degree of subjectivity and 

lacks intelligence. Additionally, specific programming 

optimizations are required to achieve an efficient 

implementation. 

 

C. Linear-Time Approximations[6] 

Traditional self-attention computes pairwise token 

similarity, while Linear Transformer employs techniques (e.g., 

kernel tricks or low-rank approximations) to convert 

conventional dot-product computations into linear operations. 

This dramatically reduces computational costs, making it 

highly efficient for long sequences: 

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐸𝑖𝐾𝑊𝑖

𝐾 , 𝐹𝑖𝑉𝑊𝑖
𝑉) 

= {𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑊𝑖

𝑄(𝐸𝑖𝐾𝑊𝑖
𝐾)𝑇

√𝑑𝑘
)}

𝑛×𝑘

⁡{𝐹𝑖𝑉𝑊𝑖
𝑉}𝑘×𝑑 

 

This operation requires only 𝑂(𝑛𝑘) time-space complexity. 

If a small projection dimension 𝑘⁡ << ⁡𝑛 (e.g., 𝑘 = 𝑂(
𝑑

𝜀2
)) is 

chosen, self-attention computation approximates linearity. 

However, prediction errors surge significantly when sequence 

lengths exceed a threshold, creating a precision-efficiency 

trade-off. Notably, the original paper only tested on MLM 

tasks, which inherently require less long-range dependency 

modeling.  

  

D. Positional Encoding Enhancements 

Standard Transformers using absolute positional encoding 

struggle to model long-range dependencies due to fixed 

sequence lengths. Transformer-XL[7] addresses this by 

directly incorporating positional offsets during self-attention 

computation to represent relative distances between tokens: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇 + 𝑃

√𝑑𝑘
)𝑉 

Here, P denotes a relative positional encoding matrix 

derived from precomputed relative offsets. This enables 

effective modeling of sequences with arbitrary lengths. 

 

III. PROPOSED METHODOLOGY 

This section details the proposed optimization framework for 

Transformer models, which integrates dynamic sparse attention 

and hierarchical chunking to address the computational and 

memory bottlenecks of processing ultra-long sequences. The 

overall architecture is illustrated in Figure 2. 

 
Fig. 2 Overview of the proposed framework. 
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A. Dynamic Sparse Attention Mechanism 

1) Core Idea 

Traditional multi-head self-attention computes interactions 

across all tokens, leading to 𝑂(𝑛2)  complexity. To reduce 

redundancy, we introduce a learnable gating module that 

dynamically prunes less important attention heads based on input-

specific relevance scores. This enables adaptive sparsity without 

manual pattern design. 

 

2) Dynamic Gating Module 

For each attention head ℎ, the input query 𝑄ℎ and key 𝐾ℎ are 

concatenated and fed into a gating network to compute an 

importance score 𝑠ℎ: 

𝑠ℎ = 𝜎(𝑊𝑔 ⋅ 𝑐𝑜𝑛𝑐𝑎𝑡(𝑄ℎ , 𝐾ℎ)) 

where 𝑊𝑔  is a trainable weight matrix and 𝜎  denotes the 

sigmoid function. Heads with scores below a threshold 𝜃 (e.g., 

𝜃 = 0.3) are deactivated. 

 

3) Sparse Attention Computation 

Only active heads participate in attention computation. For 

head ℎ, the masked attention weights 𝐴ℎ are calculated as: 

𝐴ℎ ⁡= ⁡𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
(𝑄ℎ𝐾ℎ

𝑇)𝑀ℎ

√𝑑𝑘
)𝑉 

where 𝑀ℎ ∈ {0,1}𝑛×𝑛 is a binary mask derived from the gating 

scores. The final output is obtained by concatenating and 

projecting the outputs of active heads. 

 

4) Implementation 

The gating module is jointly trained with the Transformer to 

ensure task-aware sparsity. During inference, inactive heads are 

skipped, reducing FLOPs by up to 40%. The key code is shown 

in Figure 3. 

 

 
Fig. 3 The key code of the Dynamic Sparse Attention. 

 

B. Hierarchical Chunking Strategy 

1) Sequence Partitioning 

The input sequence 𝑋 ∈ 𝑅𝑛×𝑑 is divided into 𝐵 = ⌈𝑛/𝑚⌉ non-

overlapping blocks, where 𝑚 is the block size. Each block 𝑋𝑖 ∈

𝑅𝑚×𝑑  undergoes intra-block attention to capture local 

dependencies. 

 

2) Intra-Block Attention 

For block 𝑋𝑖, the standard self-attention is applied within the 

block: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑖) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑋𝑖𝑊𝑄(𝑋𝑖𝑊𝐾)

𝑇

√𝑑
)𝑋𝑖𝑊𝑉 

This reduces complexity from 𝑂(𝑛2) to 𝑂(𝐵𝑚2). 
 

3) Cross-Block Interaction 

To preserve global dependencies, lightweight cross-block 

attention is introduced. Each block 𝑋𝑖  attends to its 

neighboring 𝑡 blocks (e.g., 𝑡 = 2): 

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑖)

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑋𝑖𝑊𝑄(𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑊𝐾)

𝑇

√𝑑
)𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑊𝑉 

Neighbors are selected via a sliding window or learned 

dynamically. 

 

4) Adaptive Block Size 

The block size 𝑚 is adjusted based on sequence length 𝑛: 

𝑚 = ⌊𝑙𝑜𝑔2(𝑛)⌋ 
This ensures memory efficiency while maintaining context 

coverage. 

 

C. Integration and Optimization 

1) Synergistic Design 

The dynamic sparse attention and hierarchical chunking are 

applied sequentially and the key code is shown in Figure 4: 

 

⚫ Chunking: Split the sequence into blocks. 

⚫ Intra-Block Sparse Attention: Compute attention within 

each block using active heads. 

⚫ Cross-Block Sparse Attention: Apply sparse attention to 

neighboring blocks. 

 

 
Fig. 4 The key code of the Hierarchical Block Attention. 

 

2) GPU Parallelization 

Blocks are processed in parallel on GPUs. Masked attention 

heads further reduce memory overhead by avoiding redundant 

computation. 

 

3) Complexity Analysis 

⚫ Time:  𝑂(𝑛𝑙𝑜𝑔𝑛)  for sparse attention and  𝑂(𝑛𝑚)  for 

chunking. 

⚫ Memory: Reduced by 25% due to block-wise computation 

and head pruning. 
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D. Theoretical Advantages 

⚫ Adaptivity: The gating mechanism tailors sparsity to input 

characteristics, unlike fixed patterns in Sparse Transformer 

[3]. 

 

⚫ Efficiency: Hierarchical chunking avoids the fragmentation 

issue of Reformer [4] by preserving local-global balance. 

 

⚫ Scalability: Adaptive block sizing ensures applicability to 

varying sequence lengths. 

 

IV. EXPERIMENTAL RESULTS 

This section evaluates the proposed framework on 

translation, time-series forecasting, and text classification 

tasks. We compare its efficiency and accuracy against state-of-

the-art baselines and conduct ablation studies to validate the 

contributions of each component. 

 

A. Experimental Setup 

1) Hardware and Software 

All experiments were conducted on an NVIDIA GTX 1650 

GPU (12GB VRAM) using PyTorch 2.5.1 and CUDA 12.4. 

 

2) Datasets 

 

⚫ WMT 2014 En-De[8]: Machine translation task with 

sequences of length 4,096. 

 

⚫ ETTh1[9]: Electricity load forecasting dataset with 

sequences of length 5,120. 

 

⚫ IMDb[10]: Text classification task with sequences 

truncated/padded to 4,096 tokens. 

 

3) Baselines 

 

⚫ Vanilla Transformer[2]: Original architecture with full 

self-attention. 

 

⚫ Sparse Transformer[3]: Fixed local and strided 

attention patterns. 

 

⚫ Reformer[4]: LSH-based chunked attention. 

 

⚫ Informer[5]: ProbSparse attention with entropy-driven 

query selection. 

 

4) Evaluation Metrics 

 

⚫ Efficiency: Training time acceleration ratio (vs. vanilla 

Transformer) and peak GPU memory usage. 

 

⚫ Accuracy: BLEU-4 (translation), MAE (forecasting), 

and F1-score (classification). 

 

B. Efficiency Optimization 

Table I compares training efficiency across models. The 

proposed method achieves a 2.19× speedup and 25% 

reduction in peak memory usage compared to the vanilla 

Transformer, outperforming all baselines. Hierarchical 

chunking contributes significantly to memory savings, while 

dynamic sparsity accelerates computation by pruning 40% of 

attention heads. 

 

Table I. Training Efficiency Comparison 

Model Training 

Time (h) 

Memory 

(GB) 

Speedup 

Vanilla 

Transformer 

12.5 9.8 1.00× 

Sparse 

Transformer 

8.2 6.5 1.52× 

Proposed 

(Full) 

5.7 4.3 2.19× 

Proposed 

(Chunking 

Only) 

7.1 5.2 1.76× 

Proposed 

(Dynamic 

Sparsity Only) 

6.9 5.8 1.81× 

 

C. Accuracy Performance 

Table II shows accuracy results. The proposed method 

maintains competitive performance across tasks, with minimal 

degradation: 

Table II. Accuracy Comparison 

Task Model BLEU-4 MAE F1-

score 

Translation Vanilla 

Transformer 

28.7 - - 

 Proposed              28.5 - - 

Forecasting Vanilla 

Transformer 

- 0.142 - 

 Proposed              - 0.146 - 

Classification Vanilla 

Transformer 

- - 92.3% 

 Proposed              - - 92.1% 

 

C. Ablation Studies 

 

1) Component Contributions 

Table III isolates the effects of dynamic sparsity and 

chunking. Combining both yields optimal efficiency gains: 

 

⚫ Dynamic Sparsity: Reduces memory by 18% and 

speeds up training by 1.81×. 
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⚫ Hierarchical Chunking: Reduces memory by 22% 

with a 1.76× speedup. 

 

⚫ Combined: Synergistically achieves 25% memory 

reduction and 2.19× speedup. 

 

Table III. Ablation Study on Component Contributions 

Component 
 

Memory Reduction Speedup 

Dynamic Sparsity 18% 1.81× 

Hierarchical Chunking 22% 1.76× 

Combined 25% 2.19× 

 

2) Adaptive Chunking Strategy 

Table IV evaluates block size impacts. Dynamic adjustment 

𝑚 = log2 𝑛balances memory efficiency (4.3GB) and accuracy 

(MAE = 0.146), outperforming fixed block sizes. 

 

Table IV. Block Size Impact on Memory and Accuracy 

Block Size Memory (GB) MAE (ETTh1) 

64 5.0 0.148 

128 4.3 0.146 

256 4.1 0.151 

Dynamic 4.3 0.146 

 

 

Table I compares training efficiency across models. The 

proposed method achieves a 2.19× speedup and 25% 

reduction in peak memory usage compared to the vanilla 

Transfor 

V. CONCLUSION AND FUTURE DIRECTIONS 

This paper presents a novel optimization framework for 

Transformers that addresses the computational and memory 

bottlenecks of processing ultra-long sequences. By 

integrating dynamic sparse attention and hierarchical 

chunking, our method reduces the quadratic complexity of 

self-attention to 𝑂(𝑛𝑙𝑜𝑔𝑛)  while preserving global 

dependency modeling. Experiments on translation, forecasting, 

and classification tasks demonstrate significant efficiency 

gains: 2.19× training acceleration and 25% lower peak 

memory usage compared to vanilla Transformers, with 

minimal accuracy degradation (e.g., BLEU-4 drops by 0.2). 

The synergy between adaptive sparsity and blockwise 

computation ensures scalability across diverse sequence 

lengths and domains. 

Future Directions: 

 

⚫ Generalization to Multimodal Data: Extending the 

framework to handle multimodal long sequences (e.g., 

video, sensor fusion) by designing modality-specific 

sparsity patterns. 

 

⚫ Hardware-Aware Optimization: Collaborating with 

compiler frameworks (e.g., Triton [11]) to tailor sparse 

attention kernels for emerging accelerators like TPUs 

and neuromorphic chips. 

⚫ Theoretical Analysis: Investigating the trade-offs 

between sparsity ratios and model expressiveness, 

particularly in low-resource scenarios. 

 

⚫ Dynamic Chunking Refinement: Developing 

reinforcement learning-based policies to optimize block 

size and overlap dynamically during inference. 

 

⚫ Real-World Deployment: Validating the framework on 

industrial-scale applications, such as real-time patient 

monitoring and high-frequency trading, where latency 

and memory constraints are critical. 

 

This work paves the way for efficient long-sequence 

modeling, bridging the gap between theoretical innovation and 

practical deployment in resource-constrained environments. 
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