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ABSTRACT

Optimal transport (OT) provides a principled framework for mapping between
probability distributions. Despite extensive progress in the field, OT remains
computationally demanding, and the resulting transport plans are often difficult
to interpret. Here, we propose Optimal Mixture Transport (OMT), an efficient
algorithm that leverages mixture modeling and entropic regularization to yield
interpretable transport plans. We show that transport between mixtures, in par-
ticular mixtures of Gaussians which are universal approximators in L2, can be
formulated as a biconvex optimization problem with a unique minimizer. This for-
mulation not only reduces computational cost, but also provides component-level
correspondences, offering insights into complex distributions. We demonstrate the
practicality and effectiveness of OMT across a diverse collection of synthetic bench-
marks and real-world datasets, including large-scale single-cell RNA sequencing
measurements.

1 INTRODUCTION

Optimal Transport (OT) offers a powerful mathematical framework for comparing probability distri-
butions and finding optimal mappings between them (Santambrogio, 2015). Its versatility has led to
advances in diverse fields, including domain adaptation (Grave et al., 2019; Struckmeier et al., 2023;
Chuang et al., 2023; Fernandes Montesuma et al., 2025), data integration and alignment (Demetci
et al., 2022), and predicting cell fates (Tong et al., 2020; Bunne et al., 2023; 2024). At its core,
OT seeks to find the most cost-effective way to transform one probability distribution into another,
subject to constraints on the total mass being transported (Peyré et al., 2019; Villani et al., 2008).

A major challenge in OT has been its high computational cost. Cuturi (2013) introduced an entropy
regularization term to the OT objective to obtain a strictly convex problem (EOT) and an elegant
solution known as the Sinkhorn algorithm. However, even with EOT, sample-to-sample transportation
remains limited by the curse of dimensionality and can be slow on large datasets (Genevay et al.,
2018). To mitigate this, mini-batch strategies have been developed to approximate the transport plan
by operating on subsets of the data (Fatras et al., 2021b;a). While computationally cheaper, these
methods often yield suboptimal transport plans, as cost estimation from subsets can be inaccurate
and satisfying the mass preservation constraint of balanced OT becomes difficult.

To improve transport accuracy over batches, one prominent class of methods approximates the OT
path by non-parametric interpolation within the Wasserstein space. These techniques range from
deterministic approaches, such as Progressive Optimal Transport (PROGOT) (Kassraie et al., 2024), to
stochastic methods based on gradient flows and Schrödinger bridges (Albergo & Vanden-Eijnden,
2023; Albergo et al., 2024). Stochastic methods, often employing neural networks such as those
based on gradient flows (Daniels et al., 2021) or Schrödinger bridges (Gushchin et al., 2023b;a), also
typically necessitate inner iterations to achieve accurate transport maps. Such methods construct
a sequence of intermediate distributions to bridge the source and target, often requiring numerous
intermediate steps, significant memory overhead, and many inner iterations to converge to an accurate
solution. Furthermore, simpler displacement strategies, like the McCann interpolation (McCann,
1997) used in PROGOT, do not always produce interpretable intermediate distributions. While
regularization techniques, can improve the robustness of the transport map approximation (Buzun
et al., 2024b), their performance is sensitive to the regularization parameters.
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In contrast to non-parametric and relaxation-based approaches, an effective strategy for large-scale
problems is to adopt a parametric model of the data, thereby simplifying the task. Following this
direction, we propose Optimal Mixture Transport (OMT), an efficient and scalable framework for
computing EOT between mixture models. While EOT is generally intractable for most parametric
families, a closed-form solution exists for transport between two Gaussian distributions in both
balanced and unbalanced settings (Janati et al., 2020). Building on this result, we tailor the framework
to the Gaussian family, focusing on Gaussian Mixture Models (GMMs). This specialization is
powerful as GMMs are universal function approximators capable of representing any sufficiently
smooth density with arbitrary precision (Goodfellow et al., 2016). Our formulation recasts the
transport problem as a uniquely solvable biconvex optimization, yielding a computationally efficient
and theoretically grounded alternative for large-scale transport tasks. Furthermore, we observe
that one limitation of many learned coupling transport maps or dual functions is their pronounced
directional bias (source → target), which leads to performance degradation when inverted. In contrast,
we show that OMT maps remain robust regardless of transport direction.

Our main contributions are summarized as follows:

• We propose a parametric EOT framework, called OMT, which operates by transporting
sub-populations rather than individual samples.

• We show that the OMT formulation is strictly biconvex and, when solved as part of a global
optimization algorithm, this subproblem converges to a unique solution in a single step.

• Building on closed-form results for entropic Gaussian transport, we propose a formulation
of OMT within Gaussian distributions, as a flexible and expressive parametric family.

• Through experiments on synthetic and real-world datasets, we demonstrate that OMT
consistently matches or surpasses the performance of state-of-the-art OT solvers, while
requiring substantially less computation and memory.

2 BACKGROUND

Optimal transport: For X ,Y ⊂ Rd, probability measures µ0, µ1 ∈ P(Rd) and c : X × Y → R,
a cost function associated with transporting a unit of mass from a point in X to a point in Y , the
minimum total cost of transport can be obtained as

inf
T♯µ0=µ1

∫
X
c(x, T (x)) dµ0(x), (1)

where T♯µ0 = µ1 denotes the pushforward of µ0 by T , defined as µ1(A) = µ0(T
−1(A)), ∀A ⊂ Y ,

ensuring mass conservation. Problem (1) is known as the Monge problem (Peyré et al., 2019) which
seeks a map T : Rd → Rd referred to as the transport map between µ0 and µ1. The Monge
formulation is often problematic because the optimization is over a non-convex set of maps, and a
deterministic map T may not exist. To bypass this, Kantorovich presented a relaxed formulation,
which seeks a distribution π ∈ Rd × Rd referred to as “coupling” of µ0 and µ1, as

inf
π∈

∏
(µ0,µ1)

∫
X×Y

c(x,y) dπ(x,y), (2)

where
∏
(µ0, µ1) := {π ∈ P(X × Y) | PX : π → µ0, PY : π → µ1}.

When X = Y and c(x,y) = d(x,y)p, p ≥ 1, where d is a distance on X , the Kantorovich problem
is equivalent to the Wasserstein p-distance between probability measures, Wp(µ0, µ1). Specifically,
for c(x,y) = ∥x− y∥22, the Kantorovich problem yields the squared Wasserstein-2 distance:

W2
2 (µ0, µ1) = inf

π∈
∏

(µ0,µ1)

∫
X×Y

∥x− y∥22 dπ(x,y). (3)

According to the Brenier Theorem (Santambrogio, 2015), in (3), if µ0 and µ1 are absolutely continu-
ous with respect to the Lebesgue measure, there exists a unique optimal solution that can be expressed
as π∗ = (Id × T ∗)♯µ0, where Id stands for the identity map, and T ∗ is the unique minimizer of (1).
Moreover, the unique optimal transport T (x) = ∇ϕ(x), where ϕ is a convex function.
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Entropic optimal transport: Entropic optimal transport introduces an entropic regularization term
to (3), transforming the problem into a strictly convex optimization that can be efficiently solved using
algorithms like the Sinkhorn-Knopp method (Cuturi, 2013; Janati et al., 2020). For a regularization
parameter ε > 0, the entropic optimal transport cost is defined as:

dε(µ0, µ1) = inf
π∈Π(µ0,µ1)

{∫
X×Y

∥x− y∥22 dπ(x,y)− 2εH(π)

}
. (4)

ConsideringDKL(P∥Q) =
∫
dP

(
log

dP

dQ
− 1

)
+dQ, minimizing the objective in (4) is equivalent

to minimizing

min
π∈

∏
(µ0,µ1)

∫
X×Y

∥x− y∥22 dπ(x,y) + 2εDKL(π∥µ0 ⊗ µ1).

Transport between Gaussian measures: When both mass measures are Gaussian distributions, i.e.,
µ0 = N (m0,Σ0) and µ1 = N (m1,Σ1), (3) is simplified as

W2
2 (N (m0,Σ0),N (m1,Σ1)) = ∥m0 −m1∥22 + tr{Σ0 +Σ1 − 2Γ}, (5)

where Γ =
(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

(Bhatia et al., 2019; Janati et al., 2020). Furthermore, the optimal transport

map T ∗ : Rd → Rd that pushes µ0 forward to µ1 admits a closed-form as follows.

T ∗(x) = A(x−m0) +m1, (6)

where A = Σ−1
0 #Σ1 = Σ

− 1
2

0

(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

Σ
− 1

2
0 = Σ

− 1
2

0 ΓΣ
− 1

2
0 , corresponding to the geometric

mean of the precision and covariance matrices at source and target points, respectively.

Gaussian mixture models: Gaussian mixture models (GMMs) are widely used for density estimation
due to several key advantages: (i) As a linear combination of Gaussian distributions, GMMs allow
for analytical tractability and have favorable asymptotic properties. (ii) GMMs are universal approx-
imators for continuous density functions: any smooth density can be approximated with arbitrary
accuracy by a mixture of Gaussians with enough number of components (Titterington et al., 1985;
Scott, 2015; Zeevi & Meir, 1997). (iii) Many real-world datasets are naturally organized into clusters
with unimodal distributions, making GMMs particularly effective for modeling such structures. These
motivate our exploration of the optimal transport problem for Gaussian mixtures.

Using GMMs for density approximation involves approximating density functions by a convex
combination of “basis” densities (Zeevi & Meir, 1997). Consider the set of square-integrable density
functions in Rd, denoted as F = {f | f ∈ L2(Rd), f ≥ 0,

∫
Rd f(x)dx = 1}. We define the set of

GMM densities with K components, GK , as:

GK =

{
fθK | fθK(·) =

K∑
i=1

αiϕ(·, µi,Σi), αi > 0,

K∑
i=1

αi = 1

}
, (7)

where θ = {αi,µi,Σi}Ki=1 represents the collection of parameters for the K components. GK ⊂ F
and the universal approximation property implies that for any f ∈ F , lim

K→∞
inf
θ
D(f, fθK) = 0, where

D denotes a distance (Titterington et al., 1985; Zeevi & Meir, 1997).

3 RELATED WORK

To address the limitations of Sinkhorn-based methods, researchers turned to deep learning, giving rise
to Neural Optimal Transport (Neural OT) (Makkuva et al., 2020; Korotin et al., 2023), which uses
neural networks to learn a continuous mapping between distributions, while enforcing theoretical
constraints (Genevay et al., 2018; Buzun et al., 2024b). Another direction directly learns the
transport map via neural networks, transforming samples from a source to a target distribution.
This approach is widely used in domain adaptation and generative modeling, where models such as
normalizing flows learn invertible maps from simple to complex distributions. A prominent example
of Neural OT connects diffusion models with the theory of Schrödinger Bridges, a classic stochastic

3
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transport problem. This establishes a learning framework for diffusion models equivalent to solving a
Schrödinger Bridge problem, which can be viewed as a form of neural EOT (Gushchin et al., 2024).

Alongside neural methods, other strategies tackle scalability through iterative, mini-batch frameworks.
PROGOT (Kassraie et al., 2024), constructs the transport map sequentially. While this approach
can be parallelized and accelerated using modern frameworks like OTT-Jax (Cuturi et al., 2022),
it requires substantial memory and computational resources. Similarly, stochastic and neural OT
methods require extensive training with many samples, making the process time-consuming and
computationally expensive.

Parametric OT simplifies the transport problem by assuming data distributions belong to a parametric
family, which often yields computationally more efficient solutions. A prominent example involves
Gaussian distributions, for which both W2(µ0, µ1) and its entropically regularized version (Eq. 4)
admit closed-form solutions Kassraie et al. (2024). Building on this, the parametric formulation
has been extended to the more general case of Gaussian Mixture Models (GMMs). This body of
work approximates (bounds) the Wasserstein distance between Gaussian components, proposed
as the aggregated Wasserstein distance (Chen et al., 2019) or GW2 (Delon & Desolneux, 2020),
by considering the transport between their individual components. This approach reduces the
computational complexity from being dependent on the number of data points to the number of
mixture components, offering a scalable solution for high-density data. However, existing studies
have often been limited to simpler applications, such as simple 2D tasks and color transfer. A recent
extension leverages GW2 for unsupervised domain adaptation, facilitating label transfer from a
source domain to a target domain (Fernandes Montesuma et al., 2025).

A key challenge in using GW2 lies in optimizing the component weights, which reduces the task
to a discrete OT problem, a computationally challenging paradigm that may lack a unique solution.
In this work, we extend parametric OT to the entropic mixture transport setting. We show that this
formulation is strictly biconvex, yielding a strictly biconvex formulation that guarantees uniqueness
for both the transport plan over mixing weights and the individual component distributions. Moreover,
building on the findings of Kassraie et al. (2024), we specialize the proposed formulation to over-
parameterized GMM, a regime in which a global convergence of Expectation-Maximization can be
established (Xu et al., 2024), supporting practical viability across different tasks.

4 TRANSPORT PROBLEM FOR MIXTURE MODELS

Let ν ∈MK(Rd) denote a mixture model in Rd with K components:

ν =

K∑
i=0

αiµi, (8)

where µi are probability measures and
∑

i αi = 1, αi ≥ 0,∀i.

Definition 1 (Mixture transport coupling). Given two measures ν0 ∈MK0(Rd) and ν1 ∈MK1(Rd),
we define the mixture transport coupling as follows:

π∗
M := argmin

π∈
∏

(ν0,ν1)∩MK(R2d)

∫
X×Y

∥x− y∥22 dπ(x,y), (9)

where
∏
(ν0, ν1) := {π ∈ P(X × Y) | PX : π → ν0(x), PY : π → ν1(y)} and K ≤ K0K1.

Therefore, the transport policy belongs to the mixture model family and can be expressed as

dπ(x,y) =

K∑
i=1

ωidpi(x,y), where ∀i, pi ∈ P(Rd).

Note that the trivial choice of dp1 = . . . = dpK , ω1 = . . . = ωK = 1/K makes the solver in (9)
equal to W2(ν0, ν1) in (3). We next constrain that marginals of the components of the transport

4
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coupling are the same as the components of the source and target functions:

DM(ν0, ν1) = min
Ω,P

∑
i,j

ωij

∫
X×Y

∥x− y∥22 dpij(x,y),

s.t. 1TΩ = α0, ΩT1 = α1

∀i,
∑
j

∫
Y
dpij(x,y) = µ0i , ∀j,

∑
i

∫
X
dpij(x,y) = µ1j , (10)

where Ω = [wij ] denotes the matrix of mixture weights. With this constraint, DM(ν0, ν1) ≥
W2(ν0, ν1) and equality is achieved in the K → ∞ limit when the source and target functions are
over-parametrized by a dense mixture model family (e.g., GMM (Goodfellow et al., 2016)). The
problem in (10) is similar to minimizing the aggregated Wasserstein distance, which was proposed for
comparing hidden Markov models with Gaussian state conditional distributions (Chen et al., 2019).

4.1 REGULARIZED MIXTURE TRANSPORT

A common approach to ensure the uniqueness of solutions in optimal transport problems is to
introduce an entropy regularization term, which makes the objective function strictly convex and
improves the numerical stability of optimization. In the context of mixture transport optimization in
(10), we adopt a similar approach by incorporating a weighted average entropy term as a regularizer.
Definition 2 (Optimal Mixture Transport). We introduce two forms of regularization into the mixture
transport problem (9): (i) a component-wise regularizer, and (ii) a mixing-matrix regularizer, con-
trolled respectively by parameters ε1, ε2 > 0. The resulting problem is formulated as the following
optimization:

DOMT := min
ωij ,dpij

K∑
i,j

ωij

[∫
X×Y

∥x− y∥22 dpij(x,y)− ε1H(pij)

]
− ε2H(Ω) .

for Ω = [ωij ]K0×K1 ∈ SK−1, P = [pij ]K0×K1 ,where pij ∈
∏

(µ0i , µ1j ) (11)

Minimizing the objective in (11) is equivalent to minimizing Lε1,ε2(Ω, P ), defined as follows.

Lε1,ε2(Ω, P ) =

K∑
i,j

ωij

[∫
X×Y

∥x− y∥22 dpij(x,y) + ε1DKL(pij∥µ0i ⊗ µ1j )

]
+ ε2DKL(Ω∥α0 ⊗α1)

(12)

Remark 1. The problem in Eq. 11 is a generalization of entropic optimal transport in the sense that
Eq. 11 collapses to entropic optimal transport when K0 = K1 = 1.

Therefore, we consider an optimization problem of the form

min
Ω,P

Lε1,ε2(Ω, P ) (13)

s.t. 1Ω = α0, ΩT1 = α1,

∫
Y
dpij(x,y) = µ0i ,

∫
X
dpij(x,y) = µ1j , (14)

where Ω ∈ SK−1 and P ∈ PK(X × Y).

Eq. 13 no longer defines a convex program. However, as we show now in Lemma 2, the objective is
biconvex. Moreover, while biconvex problems don’t have unique solutions generally, Eq. 13 has a
unique minimizer that can be obtained efficiently (Theorem 2 and Corollary 2 below).
Lemma 1. For any ε1, ε2 > 0, Lε1,ε2(Ω, P ) is strictly biconvex.

Floudas & Visweswaran (1990) proposed the Global Optimization Algorithm (GOP) to solve
constrained biconvex problems. It decomposes the optimization into disjoint blocks similar to the
Alternate Convex Search(ACS) method and exploits the convex substructure of the problem by a
primal-relaxed dual approach (Gorski et al., 2007). The GOP algorithm is guaranteed to terminate
after a finite number of steps for an ϵ-global optimum solution, for any ϵ > 0 (Theorem 4.11,

5
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Figure 1: Transporting samples
from a normal distribution to vari-
ous target distributions with en-
tropic OMT. Top: target point
cloud distributions. Bottom: dis-
tributions generated by OMT af-
ter training with 10, 000 sam-
ples. MMD between the target
and OMT-generated samples ex-
pressed as a percentage.

Corollary 4.12, Ref. (Gorski et al., 2007)). As mentioned above, the uniqueness of this global
optimum is not guaranteed in the general case. However, by exploiting the structure of Eq. 13, we
show that its solution is unique and obtained in a single iteration:
Theorem 1. For the optimization problem defined in (13), the GOP algorithm converges to a unique
solution in a single iteration.

4.2 REGULARIZED MIXTURE TRANSPORT FOR GMMS

If the probability measures ν0 ∈ GK0
(Rd) and ν1 ∈ GK1

(Rd) are defined as mixtures of Gaussian
distributions, by using the results from the optimal mixture transport framework introduced in
Section 4.1, we can compute an optimal transport plan between the two GMMs. Notably, the resulting
optimal mixture transport between two GMMs can also be shown to be a GMM itself, thereby
preserving the Gaussian structure in the transported distribution.
Corollary 1. Let ν0 ∈ GK0

(Rd) and ν1 ∈ GK1
(Rd) be two Gaussian mixture models (GMMs) in

Rd with K0 and K1 components, respectively. Then, the optimal mixture transport map between ν0
and ν1 is itself a Gaussian mixture model with K components, where K ≤ K0K1.

5 EXPERIMENTS

Synthetic datasets. We conduct two sets of simulation experiments. The first set focuses on synthetic
2D tasks with multiple target distributions, designed to demonstrate the capability of the proposed
optimal mixture transport strategy. As shown in Figure 1, OMT successfully recovers the target
shapes across all cases. In these tasks, the source data is sampled from a normal distribution.

The second set of experiments evaluates our method on the W2-Benchmark tasks (Korotin et al.,
2021), which are widely adopted in recent studies on both neural and non-neural OT. We compare the
proposed OMT method against state-of-the-art approaches, including ExNOT (Buzun et al., 2024a),
ENOT (Gushchin et al., 2024), PROGOT (Kassraie et al., 2024), as well as the classical entropic
OT (EOT) solver. Figure 2 presents the comparative performance of OMT across three evaluation
metrics: Sinkhorn divergence (Dε), mean squared error (MSE), and runtime. In all experiments, OMT
was trained with Ks = 3, Kt = 15, ε1,2 = 0.01. For dimensions d > 64, we impose a diagonal
structure on the covariance matrix instead of using the full covariance. Appendix B reports the
transport cost (Tc) and total memory usage for each method. As shown in Figures 2 and 6(Appendix),
OMT consistently outperforms EOT, ENOT, and, in most cases, PROGOT. It also outperforms ExNOT
at higher latent dimensions. Note that methods like PROGOT and EOT are sample-based solvers,
whereas OMT, similar to neural OT, solves the continuous transport problem at the distribution level.
Despite this difference, OMT still performs reasonably well on sample-to-sample metrics such as
MSE. Considering all metrics along with transport costs, OMT achieves strong overall performance
while using substantially less resources, as reflected by shorter runtimes and smaller memory usage.

To investigate the stability of OMT under noise, we conduct an ablation study: noise is added to the
source data during training, while the original clean data is used for evaluation. We consider two
types of perturbations: white noise, controlled by σ and dropout noise with probability p. Figure 3
demonstrates that OMT produces the most robust OT plans under both noise models, considering the
relative change in MSE in response to input perturbations. Overall, OMT consistently delivers strong
performance across metrics, often matching or exceeding existing baselines, highlighting both the
robustness and competitiveness of our approach.

Single-cell RNA Sequencing Data. OT has emerged as a powerful tool in computational biology,
with applications such as aligning cell populations across conditions and inferring their trajectories

6
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Figure 2: Comparison of OMT against baseline methods on the Wasserstein-2 benchmark tasks in Korotin et al.
(2021). The reported plots are averaged over both forward and backward directions. All results are evaluated
on the test set with 10, 000 samples and averaged across five random initializations. MSE captures fidelity in
sample-to-sample transportation whereas Dε is more suitable for transportation between distributions. The
runtime is measured on allocated nodes of a cluster, each equipped with one NVIDIA A100 GPU, 4 Intel Xeon
Gold 6330N CPU cores, and 128 GB of RAM. The reported time corresponds to the optimization of the transport
plan, and the metric calculations are excluded
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Figure 3: Stability of OT solvers under noise in the W2 benchmark task. The performance of OMT together
with baseline methods is evaluated under two types of perturbations applied to the source data. The two left
panels illustrate the effect of additive Gaussian noise with increasing standard deviations, while the two right
panels show the effect of dropout noise. Reported values indicate performance changes relative to the noise-free
case, evaluated on the test set with 10,000 samples and averaged over five random initializations.

over time (Tong et al., 2020; Bunne et al., 2023; 2024). Here, we focus on single-cell RNA sequencing
(scRNA-seq) as our primary real-world application. This technology generates high-dimensional
molecular profiles by measuring the expression of thousands of genes at single-cell resolution. We
consider three scRNA-seq datasets: one human dataset, sci-Plex (Srivatsan et al., 2020), and two
10x Genomics mouse brain datasets, one collected during development (Gao et al., 2024) and the
other during aging (Jin et al., 2025). The sci-Plex data serves as a common benchmark for assessing
OT performance on real-world biological data (Cuturi et al., 2023; Janati et al., 2020). Consistent
with previous work, our analysis focuses on a subset of this dataset comprising three cell lines
(A549, K562, and MCF7) exposed to five different cancer treatments for 24 hours. Following the
preprocessing steps recommended in Cuturi et al. (2023), the final dataset contains 77, 920 cells and

Table 1: Average Dε ↓ values for the forward and backward OMT mappings compared to PROGOT on the
human scRNA-seq dataset (Srivatsan et al., 2020). The results correspond to dPCA = 16 and are reported as the
mean over 5 randomly initialized runs, with standard deviations. Additional results for other dimensions and
computational costs are provided in Appendix C.

Belinostat Dacinostat Givinostat Quisinostat Hesperadin

EOT 17.4± 0.01 18.4± 0.01 17.5± 0.01 17.6± 0.03 17.5± 0.01
PROGOT 8.43± 0.01 8.84± 0.03 8.82± 0.04 9.52± 0.01 8.06± 0.01
OMT 7.91± 0.06 8.12± 0.04 8.75± 0.14 8.72± 0.10 8.00± 0.30
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Figure 4: OPC–Oligo trajectories across the mouse lifespan. Top row: developmental dataset from the mouse
visual cortex. From left to right: (1) UMAP projection showing distinct neural cell subclasses. (2) The alignment
between the original measured data and the transferred data using OMT. (3) The inferred global developmental
trajectory at the cluster level, tracing paths from early progenitors like neuroepithelial cells (NEC) and radial
glia (RG). (4) The specific cellular pathway detailing the differentiation from OPC to oligodendrocytes. Bottom
row: mouse aging dataset. From left to right: (1) UMAP projection of cell subtypes within the oligodendrocyte
lineage. (2) The alignment of original and transferred data distributions. (3) The network graph illustrating the
stages of the myelination cycle in aged mice. (4) The inferred aging pathway.

34, 636 genes. Similarly, for the transport analysis, we perform dimensionality reduction using PCA,
retaining the same number of PCs as in Kassraie et al. (2024). Table 1 summarizes the results for
OMT against EOT and PROGOT, which is the top-performing baseline. The results indicate that our
OMT model outperforms PROGOT across all treatment conditions. For this comparison, PROGOT is
configured with the recommended scheduling parameters from its original publication, with K = 4.

We note that, here, the data subset for each task is relatively small (∼ 104 cells). While this scale is
computationally feasible for sample-based approaches like PROGOT, it does not represent the large-
scale datasets in modern single-cell studies. To extend our analysis beyond small-scale data, we apply
OMT to larger scRNA-seq datasets from the mouse brain, encompassing the entire lifespan from
development to aging. For brain development, we use data from the visual cortex spanning a wide
period from embryonic days to postnatal days (E11.5-P28) (Gao et al., 2024). For aging, we consider
data from Jin et al. (2025) collected from 108 mice, span six brain regions at two timepoints: adult
(P53–69) and aged (P540–553). Our analysis focuses on the cellular dynamics of the oligodendrocyte
lineage, including oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (Oligos).
These glial cells, which are responsible for myelinating axons to facilitate neural communication,
exhibit significant heterogeneity in their lifespan and function, making them a suitable candidate for
studying time-dependent cellular transitions (Marques et al., 2016; Jin et al., 2025).

After preprocessing (Appendix C), the data includes 32, 998 cells and 9, 900 highly variable genes
(HVGs) from the developmental data, alongside 253, 468 cells and 9, 359 HVGs from the ageing
dataset. We utilized a VAE model to learn a compressed representation of the cells. The OMT
model was then trained on these low-dimensional embeddings (dz = 10). OMT is applied across
11 consecutive time pairs between E11.5 and P28 for the developmental data, and between adult
and aged time points for ageing data. Figure 4 summarizes the analysis of the mouse datasets. The
UMAP plots show that the cell population transported by the model, whether forward or backward in
time, closely mirrors the empirical cell distribution at the target timepoints. This demonstrates the
model’s ability to learn the global distribution across cell subclasses. The right panels of the figure
illustrate the clear developmental and aging trajectories revealed by our OMT model. The transport
map reveals the known developmetnal pathway, beginning with neuroepithelial cells (NECs) that
mature into radial glia (RG). These cells subsequently differentiate into glioblasts (Gliob), which are
the common progenitors for both the astrocyte (Astro) and the OPC-Oligo lineages. This temporal
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Figure 5: Performance of
OMT for unpaired image-
to-image translation on the
MNIST and CIFAR-10 datasets.
For each dataset, the top row
shows original samples from
the source distribution, x ∼ ν0,
and the bottom row shows the
corresponding transported im-
ages T ν0→ν1

OMT .

progression is visually represented by a color gradient, transitioning from yellow (E11.5) to dark red
(P28). Focusing on the OPC-Oligo lineage, the rightmost column provides a detailed view of this
population during development (top) and aging (bottom). It highlights the specific cellular maturation
sequence from oligodendrocyte precursor cells (OPCs) to committed oligodendrocyte precursors
(COPs), newly formed oligodendrocytes (NFOLs), myelin-forming oligodendrocytes (MFOLs), and
finally, mature oligodendrocytes (MOLs).

Image Datasets. To further demonstrate the applicability of the the proposed OMT framework
beyond tabular data, we apply it to an unpaired image-to-image translation task using two benchmark
datasets: MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009). In MNIST, the task
involves translating images of one digit into another (e.g., learning transport maps such as T : 1 → 7).
Similarly, in CIFAR-10, the goal is to translate images from one semantic class (e.g., airplane) into
another (e.g., bird). Although OMT can in principle be applied directly to raw image data, the
resulting mappings are not semantically meaningful and fail to capture class-level translations. To
enable this, we first train an autoencoder on the entire dataset, covering all classes, to obtain compact
and semantically meaningful low-dimensional embeddings. Within this latent space, the OMT is then
applied to learn optimal transport maps across different classes.

Figures 5 and 11 illustrate representative examples of these class-to-class translations for test images
in MNIST and CIFAR-10, respectively. Quantitative evaluation of the generated translations is
reported in Table 2 using the widely adopted Fréchet Inception Distance (FID). These experiments
highlight that, OMT can be effectively extended to image-based applications as well. For context
and to benchmark our performance against established OT based approaches, we also report the FID
scores for WGAN (Arjovsky et al., 2017) and WGAN-GP (Gulrajani et al., 2017). The results show
that OMT performs in a similar range to WGAN on CIFAR-10, while outperforming both WGAN
and WGAN-GP on the MNIST dataset. See Appendix D for further implementation details, including
the autoencoder architectures used for dimensionality reduction and the hyperparameters for OMT.

MNIST CIFAR-10

WGAN 6.7± 0.4 55.2
WGAN-GP 7.43± 0.3 39.4
OMT 1.2± 0.1 56.13± 1.5

Table 2: FID ↓ values for unpaired image transla-
tion on the MNIST (grayscale) and CIFAR-10 (color)
datasets. Reported values for WGAN and WGAN-GP
are taken from previous studies (Choi et al., 2023;
Rout et al., 2022; Qian et al., 2021). Results for OMT
are computed over 10 random initializations.

6 CONCLUSION

In this work, we introduced OMT, a new family of EOT solvers that enhance performance by mov-
ing beyond sample-to-sample transportation toward subpopulation-level transportation, leveraging
mixture-model representations and the closed-form structure of Gaussian families. OMT achieves
computational efficiency through a strictly biconvex formulation which, when embedded in a global
optimization framework, ensures that each subproblem converges in a single step to a unique solution,
thereby providing a stable and reliable estimator of the OT plan. Empirically, we showed OMT
matches or exceeds the performance of state-of-the-art non-neural OT solvers, while remaining
competitive with neural approaches, but with substantially lower computational and memory require-
ments. One promising direction for future work is extending OMT to the unbalanced OT setting,
particularly for mixtures with unequal component masses. This is especially relevant for real-world
applications such as single-cell RNA-seq analysis, where unbalanced transport naturally arises. A
current limitation, however, lies in applying OMT to high-resolution image generation tasks, where
straightforward extensions are not yet practical. Another interesting avenue would be to explore a
neural extension of OMT, enabling scalable applications in such high-dimensional domains.
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Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced minibatch optimal
transport; applications to domain adaptation. In International conference on machine learning, pp.
3186–3197. PMLR, 2021a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
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Xiao, Huiliang Li, Martin Häring, Hannah Hochgerner, Roman A Romanov, et al. Oligodendrocyte
heterogeneity in the mouse juvenile and adult central nervous system. Science, 352(6291):1326–
1329, 2016.

Robert J McCann. A convexity principle for interacting gases. Advances in mathematics, 128(1):
153–179, 1997.
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APPENDIX

A PROOFS

Lemma 2. For any ε1, ε2 > 0, Lε1,ε2(Ω, P ) is strictly biconvex.

Proof. A function f : X × Y → R is called biconvex if, for fixed x ∈ X , the function f(x, y)
is convex in y, and for fixed y ∈ Y , it is convex in x. According to Theorem 3.1 Gorski et al.
(2007), f(x, y) is biconvex if and only if for all (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ X ×Y and all
λ, τ ∈ [0, 1], the following inequality holds:

f(xλ, yτ ) ≤ λτf(x1, y1) + (1− λ)τf(x2, y1) + λ(1− τ)f(x1, y2) + (1− λ)(1− τ)f(x2, y2),

where (xλ, yτ ) := (λx1 + (1− λ)x2, τy1 + (1− τ)y2).

Then, for given ωijλ = λω̃ij +(1−λ)≈
ωij and dpijτ = τ d̃pij +(1− τ)

≈
dpij , the following inequality

must hold.

Lε1,ε2(Ωλ, Pτ ) < λτLε1,ε2(Ω̃, P̃ )+(1−λ)τLε1,ε2(
≈
Ω, P̃ )+λ(1−τ)Lε1,ε2(Ω̃,

≈
P )+(1−λ)(1−τ)Lε1,ε2(

≈
ω,

≈
P )

(15)

Lε1,ε2(Ωλ, Pτ ) =

K∑
i,j

(
λω̃ij + (1− λ)

≈
ωij

) [∫
X×Y

∥x− y∥22
(
τ d̃pij(x,y) + (1− τ)

≈
dpij(x,y)

)]
+

ε2DKL(Ωλ∥α0 ⊗α1) +

K∑
i,j

(
λω̃ij + (1− λ)

≈
ωij

)
ε1DKL(pijτ ∥µ0i ⊗ µ1j )

= λτ
∑
i,j

ω̃ij

∫
∥x− y∥22d̃pij(x,y)︸ ︷︷ ︸

A

+(1− λ)τ
∑
i,j

≈
ωij

∫
∥x− y∥22d̃pij(x,y)︸ ︷︷ ︸
B

+

λ(1− τ)
∑
i,j

ω̃ij

∫
∥x− y∥22

≈
dpij(x,y)︸ ︷︷ ︸

C

+(1− λ)(1− τ)
∑
i,j

≈
ωij

∫
∥x− y∥22

≈
dpij(x,y)︸ ︷︷ ︸

D

+

ε1
∑
i,j

(
λω̃ij + (1− λ)

≈
ωij

)
DKL(pijτ ∥µ0i ⊗ µ1j )︸ ︷︷ ︸

E

+ε2DKL(Ωλ∥α0 ⊗α1)︸ ︷︷ ︸
F

. (16)

λτLε1,ε2(Ω̃, P̃ ) + (1− λ)τLε1,ε2(
≈
Ω, P̃ ) + λ(1− τ)Lε1,ε2(Ω̃,

≈
P ) + (1− λ)(1− τ)Lε1,ε2(

≈
ω,

≈
P ) =

λτ
∑
i,j

ω̃ij

∫
∥x− y∥22d̃pij(x,y)︸ ︷︷ ︸

A

+ε1
∑
i,j

λω̃ij

(
τDKL(p̃ijτ ∥µ0i ⊗ µ1j )

)
+

ε2τλDKL(Ω̃∥α0 ⊗α1) + (1− λ)τ
∑
i,j

≈
ωij

∫
∥x− y∥22d̃pij(x,y)︸ ︷︷ ︸
B

+

ε1
∑
i,j

(1− λ)
≈
ωij

(
τDKL(p̃ijτ ∥µ0i ⊗ µ1j )

)
+ ε2τ(1− λ)DKL(

≈
Ω∥α0 ⊗α1) +

λ(1− τ)
∑
i,j

ω̃ij

∫
∥x− y∥22

≈
dpij(x,y)︸ ︷︷ ︸

C

+
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ε1
∑
i,j

λω̃ij

(
(1− τ)DKL(

≈
pijτ ∥µ0i ⊗ µ1j )

)
+ ε2(1− τ)λDKL(Ω̃∥α0 ⊗α1) +

(1− λ)(1− τ)
∑
i,j

≈
ωij

∫
∥x− y∥22

≈
dpij(x,y)︸ ︷︷ ︸

D

+ε1
∑
i,j

(1− λ)
≈
ωij

(
(1− τ)DKL(

≈
pij∥µ0i ⊗ µ1j )

)
+

ε2(1− τ)(1− λ)DKL(
≈
Ω∥α0 ⊗α1),

= A+B + C +D + ε2

λDKL(Ω̃∥α0 ⊗α1) + (1− λ)DKL(
≈
Ω∥α0 ⊗α1)︸ ︷︷ ︸

G

+

ε1
∑
i,j

(
λω̃ij + (1− λ

≈
ωij)

)τDKL(p̃ij∥µ0i ⊗ µ1j ) + (1− τ)DKL(
≈
pij∥µ0i ⊗ µ1j )︸ ︷︷ ︸

H

. (17)

For any fixed q, DKL(p||q) is strictly convex in p. Consequently, we have E < H and F < G,
which together imply that inequality (15) holds.

Theorem 2. For the optimization problem defined in (13), the GOP algorithm converges to a unique
solution in a single iteration.

Proof. Consider the biconvex optimization problem defined as follows:

min {Lε1ε2(Ω, P ), (Ω, P ) ∈ Λ}.
Let’s begin by selecting an arbitrary initial point Z0 = (Ω0, P0) ∈ Λ and set the iteration index s = 0.
Without loss of generality, we assume that ω0

ij > 0, for all i, j. We then solve the following convex
optimization problem with respect to P , keeping Ωs fixed.

min
P

∑
i,j

ω0
ij

[∫
X×Y

∥x− y∥22 dpij(x,y) + ε1DKL(pij∥µ0i ⊗ µ1j )

]
s.t.

∫
Y
dP (x,y) = µ0,

∫
X
dP (x,y) = µ1 (18)

Since the objective function in (A) is convex in P for any fixed Ω and Slater’s condition is satis-
fied Floudas & Visweswaran (1993), strong duality holds. Accordingly, problem (A) admits the
following strong dual formulation:

max
Φ,Ψ

min
P

∑
i,j

ω0
ij

[∫
X×Y

∥x− y∥22 dpij(x,y) + ε1DKL(pij∥µ0i ⊗ µ1j )

]
− (19)

∑
i,j

ω0
ij

[∫
X
φij(x)

(∫
Y
dpij(x,y)− dµ0i(x)

)
+

∫
Y
ψij(y)

(∫
X
dpij(x,y)− dµ1j (y)

)]
.

(20)

Here, ϕij , ψij ≥ 0 are the Lagrange multipliers associated with the marginal constraints.

Denoting the inner minimization problem in (19) by min
P

f(P,Φ,Ψ), we seek the optimal policy that

minimizes the loss in (19). To do so, we compute the functional derivative of the loss with respect to
dpij(x,y).

df

dpij(x,y)
= ω0

ij

(
∥x− y∥22 + ε1 log

dpij(x,y)

dµ0i(x)dµ1j (y)
− φij(x)− ψij(y)

)
. (21)

Since the objective is strictly convex in P , it admits a unique solution that is independent of Ω.

dp∗ij(x,y) = exp

(
φij(x) + ψij(y)− ∥x− y∥22

ε1

)
dµ0i(x)dµ1j (y). (22)
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Substituting dp∗ij in (19), the dual form can be written as:

max
Φ,Ψ

∑
i,j

ω0
ij

[∫
X
φij(x)dµ0i(x)−

∫
Y
ψij(y)dµ0j (y)− ε1

(∫
X×Y

dp∗i,j(x,y)− 1

)]
. (23)

To determine the optimal Lagrange multipliers that maximize the dual objective, we differentiate the
loss function in (23), denoted as g(Φ,Ψ, P ∗) with respect to each multiplier as follows.

dg

φij(x)
= ω0

ij

(
dµ0i(x)−

∫
Y
exp (

φij(x) + ψij(y)− ∥x− y∥22
ε1

)dµ0i(x)dµ1j (y)

)
(24)

dg

ψij(x)
= ω0

ij

(
dµ1j (x)−

∫
X
exp (

φij(x) + ψij(y)− ∥x− y∥22
ε1

)dµ0i(x)dµ1j (y)

)
(25)

Assuming that, for all i, j, the measures µ0i and µ1j have finite second-order moments, the pair
(φij , ψij) is optimal if and only if the following conditions are satisfied.∫
Y
exp (

φij(x) + ψij(y)− ∥x− y∥22
ε1

)dµ1j (y) = 1,

∫
X
exp (

φij(x) + ψij(y)− ∥x− y∥22
ε1

)dµ0i(x) = 1,

(26)
which is equivalent to the following expressions for the optimal multipliers:

φij(x) = −ε1 log
∫
Y
exp

(
ψij(y)− ∥x− y∥22

ε1

)
dµ1j (y), (27)

ψij(y) = −ε1 log
∫
X
exp

(
φij(x)− ∥x− y∥22

ε1

)
dµ0i(x). (28)

As observed, the optimal Lagrange multipliers are also independent of Ω. Therefore, the unique
optimal solution of (19) remains the same for any fixed Ωs, implying

∀s, Lε1ε2(Ωs, P
∗) ≤ Lε1ε2(Ωs, P ),

∀s ̸= s′, Lε1ε2(Ωs, P
∗) = Lε1ε2(Ωs′ , P

∗),

∀s ̸= s′, Lε1ε2(Ωs, P
∗) = Lε1ε2(Ωs′ , Ps′), iff Ps′ = P ∗ (29)

Proceeding to the next step, we set s = 1, which gives P1 = P ∗. For a given ε2 > 0 , we solve the
following strictly convex optimization problem with respect to Ω, keeping P fixed.

min
Ω

∑
i,j

ωij

[∫
X×Y

∥x− y∥22 dp∗ij(x,y) + ε1DKL(p
∗
ij∥µ0i ⊗ µ1j )

]
+ ε2DKL(Ω∥α0 ⊗α1)

(30)

s.t. 1Ω = α0, ΩT1 = α1 (31)
This formulation, similar to equation (A), admits the following dual form:

max
λ,τ

min
Ω

∑
i,j

ωij

[∫
X×Y

∥x− y∥22 dp∗ij(x,y) + ε1DKL(p
∗
ij∥µ0i ⊗ µ1j )

]
+ ε2DKL(Ω∥α0 ⊗α1)−

(32)∑
i

λi

∑
j

ωij − α0i

−
∑
j

τj

(∑
i

ωij − α1j

)
. (33)

The inner minimization in (32), denoted f ′(Ω,λ, τ ), admits a unique solution for the optimal weights.
These weights can be derived by computing the functional derivative of the objective with respect to
ωij , yielding:

df ′

ωij
=

∫
X×Y

∥x− y∥22 dp∗ij(x,y) + ε1DKL(p
∗
ij∥µ0i ⊗ µ1j )︸ ︷︷ ︸

Lp∗
ij

+ε2 log
ωij

α0iα1j

− λi − τj(34)

ω∗
ij = exp

(
λi + τj − Lp∗

ij

ε2

)
α0iα1j (35)
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To obtain the optimal Lagrangian multipliers that maximize the loss in (32), denoted
max
λ,τ

g′(λ, τ ,Ω∗), we compute the partial derivatives of g′ with respect to each multiplier.

dg′

λi
= α0i −

∑
j

exp

(
λi + τj − Lp∗

ij

ε2

)
α0iα1j (36)

dg′

τj
= α1j −

∑
i

exp

(
λi + τj − Lp∗

ij

ε2

)
α0iα1j (37)

Solving these yields the optimal multipliers as:

λi = −ε2log
∑
j

exp

(
τj − Lp∗

ij

ε2

)
α1j , τj = −ε2log

∑
i

exp

(
λi − Lp∗

ij

ε2

)
α0i (38)

Since the optimal weight in (35) minimizes Lε1ε2(Ω, P1) uniquely for the fixed choice P1 = P ∗, it
follows that:

Lε1ε2(Ω
∗, P1) ≤ Lε1ε2(Ω0, P1) ≤ Lε1ε2(Ω0, P0) (39)

Now, lets update the optimization by setting Ω1 = Ω∗, and advancing to step s = 2. According to
(29), the next update satisfies:

Lε1ε2(Ω1, P
∗) = min

P
Lε1ε2(Ω1, P ). (40)

Since we find that P2 = P1 = P ∗ and consequently, Ω2 = Ω1 = Ω∗, the stopping criterion of the
overall alternating optimization procedure is met after just a single iteration.

Corollary 2. Let ν0 ∈ GK0
(Rd) and ν1 ∈ GK1

(Rd) be two Gaussian mixture models (GMMs) in
Rd with K0 and K1 components, respectively. Then, the optimal mixture transport map between ν0
and ν1 is itself a Gaussian mixture model with K components, where K ≤ K0K1.

Proof. According to Theorem 2, the optimal mixture transport policy between each pair
µi
0(x), µ

j
1(y), is independent of the weight variable and is given by:

dp∗ij(x,y) = exp

(
φij(x) + ψij(y)− ∥x− y∥22

ε1

)
dµ0i(x)dµ1j (y),

where ϕij and ψij are Lagrange multipliers defined by::

φij(x) = −ε1 log
∫
Y
exp

(
ψij(y)− ∥x− y∥22

ε1

)
dµ1j (y),

ψij(y) = −ε1 log
∫
X
exp

(
φij(x)− ∥x− y∥22

ε1

)
dµ0i(x).

For µi
0(x) = N (x|mix ,Σixx

) and µj
1(y) = N (y|mjy ,Σjyy

), it was shown in Janati et al. (2020) that
φij and ψij admit closed-form solutions in the form of quadratic functions as follows ( Proposition
1 in Janati et al. (2020)).

φij(x) = −(x−mix)
TUij(x−mix), Uij = Σjyy

(
Σε1

ij + ε1Id
)−1 − Id

ψij(y) = −(y −mjy )
TVij(y −mjy ), Vij =

(
Σε1

ij + ε1Id
)−1

Σixx
− Id (41)

where Σε1
ij = Σ

1
2
ixx

Γε1
ijΣ

− 1
2

ixx
− ε1

2
Id, and Γε1

ij = (Σ
1
2
ixx

ΣjyyΣ
1
2
ixx

+
ε21
4
Id)

1
2 .

Accordingly, the closed-form unique solution for dp∗ij can be obtained as:

p∗ij(x,y) = N

([
x
y

]
|
[
mix
miy

]
,

[
Σixx Σε1

ij

Σε1
T

ij Σiyy

])
Therefore, the optimal mixture transport policy is itself a GMM, given by:

π(x,y) =

K∑
i,j

ωijpij(x,y) =
∑
i,j

ωijN
([

x
y

]
|
[
mix
miy

]
,

[
Σixx

Σixy

ΣT
ixy

Σiyy

])
. (42)
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B W2-BENCHMARK TASK

B.1 EXPERIMENT

For the continuous Wasserstein-2 benchmark task, we adapted the experimental setup from the
publicly available repository of Korotin et al. (2021). We evaluated all models across a range of
dimensions (d) with corresponding training sample sizes (n). For each configuration, performance
was assessed on a separate test set of 10, 000 samples. To ensure statistical robustness, every
experiment was repeated five times with different random initializations. These same settings were
also used for the ablation study on the impact of noise.

The specific dimension and sample size pairs were as follows:

• for d ∈ {2, 4} with n = 10, 000,

• for d ∈ {8, 16, 32} with n = 20, 000,

• for d ∈ {8, 16, 32} with n = 20, 000,

• for d ∈ {8, 16, 32, 64} with n = 20, 000,

• for d ∈ {128, 256} with n = 50, 000.

B.2 TRAINING CONFIGURATIONS

We compared our OMT solver against several state-of-the-art baselines. We implemented EOT,
ExNOT, and PROGOT using their official versions in the OTT-JAX toolbox (Cuturi et al., 2022),
following the recommended settings from the tutorials.

• EOT: The entropy regularization was set to ε = 0.1, with a maximum of 106 iterations.

• PROGOT: We used the recommended schedulers with K = 4 steps.

• ExNOT: We employed the recommended network architecture, using a 5-layer MLP for
each potential function, with 128 nodes per hidden layer, and trained for a maximum of 105
iterations.

• ENOT: We employed the original code released by the authors for this benchmark, using the
same configuration as reported.

• OMT (proposed): We set the number of source components toK = 5 and target components
to K = 15. Gaussian mixture models (GMMs) were fitted to the source and target data
using Python’s scikit-learn, employing a full covariance structure for d ≤ 64. The model
was trained for a maximum of 105 iterations with ε = 0.01 for both entropy regularizers.

Table 3: Transportation costs for different methods.

Method Transportation Cost

OMT
K∑
i,j

ω∗
ij

∫
X×Y

∥x− y∥22 dp∗ij(x,y)

ExNOT
∫
X
f∗(x)dν0(x) +

∫
Y
g∗(y)dν1(y)

ENOT
∫
X
∥x− T ∗(x)∥22 dν0(x)

PROGOT
∫
X×Y

∥x− y∥22 dπ∗(x,y)

EOT
∫
X×Y

∥x− y∥22 dπ∗(x,y)
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Figure 6: Comparison of OT solvers on forward and backward paths in Wasserstein-2 benchmark tasks Korotin
et al. (2021). Results are computed on the test set with 10, 000 samples and averaged over five random
initializations. Transport cost Tc is defined in Table 3. Among the evaluated methods, PROGOT exhibits the
highest computational cost among OT solvers.

C SINGLE-CELL DATA ANALYSIS

C.1 DATA AVAILABILITY

• sci-Plex3 data can be downloaded from NCBI GEO (#GSE139944).

• Mouse developmental data is available through Neuroscience Multi-omic Data
Archive (NeMO), (RRID:SCR-016152). The 10x scRNA-seq dataset is available at
https://assets.nemoarchive.org/dat-0oyried.

• Mouse ageing scRNA-seq is also available through NeMO, https://nemoarchive.org/, and
can be accessed at https://assets.nemoarchive.org/dat-61kfys3.

C.2 PREPROCESSING

For human scRNA-seq data, sci-Plex, we followed the same processing steps recommended in Cuturi
et al. (2023). Genes which appear in less than 20cells, and cells with less that 20 gene expressed are
excluded. Then we normalized gene expression, by first normalized to counts per million (CPM) and
then transformed using the formula log (CPM + 1). Then we whiten the data and apply PCA.

For the mouse scRNA-seq datasets, we preprocessed the raw count matrix. First, we performed library
size normalization by converting counts to counts per million (CPM), followed by log-transformation.
For feature selection, we chose a subset of highly variable genes combined with a list of known
marker genes from the mouse brain atlas.

C.3 OMT TRAINING

For each dataset, we first performed dimensionality reduction and then trained the OMT model on the
resulting low-dimensional embeddings. The specific hyperparameters were tailored to each dataset.
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sci-Plex Dataset. As previously described, we used PCA for dimensionality reduction. On the
resulting PCA embeddings, we trained the OMT model with the number of source components set to
Ks = 3 and target components to Kt = 5. The entropy regularization parameter for both (Ω, P ) was
set to 0.01.

Mouse Brain Datasets. For the mouse scRNA-seq data, we first trained a variational autoencoder
(VAE) to learn a compressed cellular representation in a latent space of dimension dz = 10. We then
trained the OMT model on these VAE embeddings. The number of components was set within a
range of 5 to 25, with the specific value chosen based on the biological context; we typically used
approximately twice the number of known cell types present at the analyzed timepoints.

C.4 ADDITIONAL RESULTS
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Figure 7: Average Dε ↓ values for the forward and backward OMT mappings compared to PROGOT sci-Plex
dataset (Srivatsan et al., 2020). The results reported as the mean over 5 randomly initialized runs, with standard
deviations.
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Figure 8: Comparison of the average runtime per iteration for OMT and ProgOT on the sci-Plex dataset as a
function of latent space dimensionality dPCA. The sharp decrease in OMT’s runtime at d = 256 arises from
switching from a full covariance approximation to a diagonal structure. Results are shown as the mean ±
standard deviation over 5 randomly initialized runs.

D IMAGE TRANSLATION TASKS

D.1 OMT TRAINING

Similar to our approach with scRNA-seq data, our method for image datasets involves a two-stage
process. We first train a deep neural network to learn a low-dimensional representation of the images,
and then train the OMT model on these resulting embeddings. For the MNIST dataset, we employed
a convolutional VAE featuring a dual-decoder design, where each decoder reconstructs images for the
source and target domains, respectively. The latent dimension for this network was set to dz = 10.
The full architecture is detailed in Table 4.

For the CIFAR-10 dataset, we utilized the DoubleRessNet architecture, described in Table 5, with
a latent space dimension of dz = 32. For all experiments on these datasets, the subsequent OMT
model was trained using 10 components for both the source and target measure and ε = 0.01. We
found the number of components choice to be robust, as preliminary experiments with other values
did not yield significant changes in the final results.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: UMAP plots of the mouse scRNA-seq datasets. (Top) The developmental dataset from the visual
cortex, including 32, 998 cells and 9, 900 HVGs (Gao et al., 2024). (Bottom) The aging dataset, consisting of
253, 468 cells and 9, 359 HVGs from six brain regions (Jin et al., 2025). For each dataset, the subfigures from
left to right display the same embedding colored by cell subclass, cell type, and timepoint, respectively.

Figure 10: OMT-derived coupling matrices for the mouse developmental dataset. These heatmaps show the
learned transport coupling by OMT. (Left) The cluster-level coupling matrix for all analyzed non-neuronal cell
types. The strong diagonal indicates self-renewal or state maintenance at the developed stage, while off-diagonal
values highlight developmental transitions, such as from glioblasts (Gliob) to astrocyte and oligodendrocyte lin-
eages. (Right) A detailed view of the coupling matrix focused specifically on the OPC-Oligo lineage, illustrating
the sequential maturation pathway from oligodendrocyte precursor cells (OPCs) to mature oligodendrocytes
(MOLs). These findings should be considered in conjunction with the results reported in Figure 4.
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Table 4: Architecture of the VAE for MNIST.

Layer Configuration Details Activation
Encoder

Input Layer 2 x (Batch, 1, N, N) Image -
Dropout -
Conv2d (x2) 1 → 16 channels, kernel=(5,5), stride=2 ReLU
Norm2d 16 features -
Conv2d 16 → 32 channels, kernel=(3,3), stride=2 ReLU
Norm2d 32 features -
Conv2d 32 → 32 channels, kernel=(3,3), stride=2 ReLU
Norm2d 32 features -
Flatten Reshapes feature map to (Batch, 128) -
Linear 128 → 100 units ReLU

Decoders
Linear dz → 100 units ReLU
Linear 100 → 128 units ReLU
Unflatten Reshapes to (Batch, 32, 2, 2) -
ConvTranspose2d 32 → 32 channels, kernel=(3,3), stride=2 ReLU
Norm2d 32 features -
ConvTranspose2d 32 → 16 channels, kernel=(5,5), stride=2 ReLU
Norm2d 16 features -
ConvTranspose2d 16 → 1 channel, kernel=(5,5), stride=2 ReLU
Norm2d 1 feature -
ConvTranspose2d 1 → 1 channel, kernel=(4,4) ReLU

Figure 11: Additional results for unpaired image-to-image translation on the MNIST and CIFAR-10 datasets.
For each dataset, the top row shows samples from the target distribution x ∼ ν1, while the bottom row shows
the corresponding transported images T ν1→ν0

OMT , generated by OMT in the backward direction.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Architecture of the DoubleRessNet for CIFAR-10.

Layer Configuration Details Activation
Shared Encoder

Input Layer 2 x (Batch, 3, H, W) -
Conv2d 3 → 32 channels, kernel=9, stride=1 ReLU
Norm2d 32 features -
Conv2d 32 → 64 channels, kernel=3, stride=2 ReLU
Norm2d 64 features -
Conv2d 64 → 128 channels, kernel=3, stride=2 ReLU
Norm2d 128 features -
Residual Block 4 stacked blocks (128 channels) ReLU
Flatten Reshapes to (Batch, H × 64) -
Linear H × 64 → H × 16 units ReLU
Norm1d H × 16 features -

Latent Space
Linear H × 16 → H × 4 units Tanh

Decoders
Linear H × 4 → H × 16 units -
Norm1d H × 16 features -
Linear H × 16 → H × 64 units ReLU
Norm1d H × 64 features -
Unflatten Reshapes to (Batch, H , 8, 8) -
Upsample, Conv2d H → 64 channels, kernel=3, upsample=2 ReLU
Norm2d 64 features -
Upsample, Conv2d 64 → 32 channels, kernel=3, upsample=2 ReLU
Norm2d 32 features -
Upsample, Conv2d 32 → 3 channels, kernel=9, stride=1 Linear
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