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ABSTRACT

Recent advances in coding agents have made them capable of planning, editing,
running, and testing complex code bases. Despite their growing ability in cod-
ing tasks, these systems still struggle to infer and track user intent, especially
when instructions are underspecified or context-dependent. To bridge this gap,
we introduce ToM-SWE, a dual-agent architecture that pairs a primary software-
engineering (SWE) agent with a lightweight theory-of-mind (ToM) partner agent
dedicated to modeling the user’s mental state. The ToM agent infers user goals,
constraints, and preferences from instructions and interaction history, maintains a
persistent memory of the user, and provide user-related suggestions to the SWE
agent, while preserving privacy and minimizing context window load. In two soft-
ware engineering benchmarks (ambiguous SWE-bench and stateful SWE-bench),
ToM-SWE improves task success rates and user satisfaction. Notably, on stateful
SWE benchmark, a newly introduced evaluation that provides agents with a user
simulator along with previous interaction histories, ToM-SWE achieves a sub-
stantially higher task success rate of 59.7% compared to 18.1% for OpenHands,
a state-of-the-art SWE agent. Furthermore, in a three-week study with profes-
sional developers using ToM-SWE in their daily work, participants found it better
aligned with their intent and useful 86% of the time, underscoring the value of
stateful user modeling for practical coding agents.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled coding agents to perform complex
software engineering tasks, from code generation (Jiang et al., 2024) and debugging (Tian et al.,
2024) to system design (Kovacic et al., 2025) and optimization (Gao et al., 2024). However, despite
their impressive technical capabilities, coding agents often struggle with a fundamental aspect of
software development: effective communication and collaboration with human developers.

The core limitation is that current systems lack explicit mechanisms for modeling and predicting
human intent in long-horizon, multi-turn interactions (Kim et al., 2023). Unlike human developers
who naturally build mental models of their collaborators’ goals, preferences, and constraints through
various tasks (Tomasello, 2009), coding agents lack the mechanism to infer and acquire the under-
lying user intentions from the surface-level, which in real-world interactions are often ambiguous,
incomplete, or context-dependent (Levinson, 1983). Furthermore, current coding agents typically
operate in a stateless manner, treating each session as independent rather than maintaining persis-
tent context about the user’s evolving goals and conversation history. This paradigm often leads to
wasted effort and misunderstandings, and in high-stakes settings can result in erroneous, or even
unsafe outcomes.

To bridge the gap between current coding agents and the challenges of inferring user intent in long-
horizon interactions, we introduce ToM-SWE, a conceptual framework that integrates theory-of-
mind (ToM) reasoning into software engineering agents. Here, ToM refers specifically to the ability
to model a user’s mental state, including goals, preferences, and intentions, based on user instruc-
tions and interaction history. As shown in Figure 1, ToM-SWE operationalizes this idea through a
dual-agent architecture: a primary software engineering (SWE) agent remains focused on coding
tasks, while a dedicated ToM agent models the user’s mental state and supports the SWE agent
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Figure 1: An example of how the ToM-SWE framework can help the SWE agent to model the user’s
mental state and provide more useful suggestions. When facing a casual starting instruction, the
SWE agent simply generates code yet fails to meet the users’ requirement for the task. However,
with the ToM agent, the SWE agent can first consult the ToM agent that persists user mental state
across multiple sessions, and then act more aligned with the user’s preferences and constraints.

when needed. This separation is crucial for two reasons: it preserves the SWE agent’s coding per-
formance, and it enables specialized, persistent user modeling that developers can flexibly invoke
and customize for efficiency and privacy. The ToM agent itself functions in two complementary
modes to keep track of the user’s preferences, emotions, and etc. During active coding sessions (in-
session ToM), it infers the user’s underlying mental state (e.g., the “true” intent behind potentially
ambiguous instructions). After each session, it works to create mental models of the user (after-
session ToM), consolidating interaction history to refine its beliefs about the user’s mental state in a
hierarchical way.

To evaluate ToM-SWE’s effectiveness, we introduce the Stateful SWE benchmark, the first bench-
mark that allows agents to leverage realistic conversation histories across multiple coding sessions
to track user mental state. In this setting, agents interact with an LLM-powered user simulator and
receive synthesized interaction histories to guide their reasoning. To stay consistent with prior eval-
uation, we borrow the original issues from SWE-bench (Chowdhury et al., 2024), reframing them
as casual starting instructions paired with different user profiles and interaction histories. The agent
needs to understand user intent, preferences and constraints either through interacting with the LLM-
powered user simulator or inferring from the past interaction histories. Unlike existing benchmarks
such as SWE-bench, which primarily assess technical problem-solving, Stateful SWE evaluates an
agent’s ability to sustain meaningful interactions over time. While Ambiguous SWE-bench (Vijay-
vargiya et al., 2025) tests ambiguity resolution by underspecifying instructions, it does not capture
long-term memory demands.

We evaluate our ToM-SWE framework on both our newly introduced stateful SWE benchmark
as well as the stateless Ambiguous SWE-bench (Vijayvargiya et al., 2025), building our agent
(ToMCodeAct) using the OpenHands platform (Wang et al., 2025), an open-source framework
for developing SWE agents. We show that ToMCodeAct outperforms the OpenHands SOTA
CodeAct agent (Wang et al., 2024) on both benchmarks. On the ambiguous SWE-bench,
ToMCodeAct agent achieves 63.4% issue resolved rate compared to CodeAct agent’s 51.9%
(+11.5% improvement). On the stateful SWE-bench, ToMCodeAct agent achieves 57.4%
(+43.9%) task resolved rate compared to CodeAct agent’s 13.5%. Furthermore, ToMCodeAct
agent achieves substantially better user satisfaction scores of 3.62 compared to CodeAct agent’s
2.57 (+41% improvement, automatically measured through user simulators that evaluate prefer-
ence alignment, communication, etc.). The results highlight the importance of modeling user in
real-world software development scenarios to respect specific user preferences and constraints be-
yond task completion.
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Figure 2: Overview of the ToM-SWE framework: the SWE agent handles code generation and exe-
cution, while the ToM agent focuses on user modeling and intent inference. The SWE agent consults
the ToM agent to predict the user’s mental state before suggesting technical actions. Meanwhile, the
ToM agent maintains an external hierarchical memory system to persist the user’s state and update
user models after each session (with update memory action).

Finally, we conduct a human study with professional developers to validate the practical effective-
ness of our approach and find that ToM agent’s suggestions are useful 86% of the time. Over
a three-week study, we recruit 17 professional developers to use the ToM-enhanced OpenHands
CLI (Wang et al., 2025) for their everyday software development tasks. Each time the SWE agent
communicates with the ToM agent, the developers choose to accept, partially accept, or reject the
ToM agent’s suggestions. Developers can also provide feedback through a public Slack channel
anytime during the study. Besides the high acceptance rate, we learn from the developers’ feedback
that ToM agent can often provide useful and valuable suggestions that make users workflow more
efficient (e.g., “Please add pytest for the new function” or “keep your code edit minimal”). Fur-
thermore, ToM agent can even provide novel and preference aligned suggestions (e.g., “Linus-style
approach to refactor the code”).

2 TOM-SWE: PAIRING SWE AGENT WITH TOM AGENT

Consider existing setups of software engineering agents such as SWE-agent (Yang et al., 2024) and
OpenHands CodeAct (Wang et al., 2024; 2025). At time step t in coding session i, an agent receives
an observation ot ∈ O either from the environment (e.g., terminal output, file contents, test results)
or the user (e.g., user instructions, feedback) and takes an action at ∈ A (e.g., code edits, shell
commands) following some policy π(at|cit), where cit = (o1, a1, . . . , ot−1, at−1, ot) is the context
available to the agent in the coding session i until time step t.

The mapping cit 7→ at becomes challenging when accurate execution of the tasks requires under-
standing implicit user preferences and constraints because because critical user preferences often
exist in past sessions {cj}i−1

j=1, instead of the current context cit. For example, when a user says
“implement a web scraper”. The agent needs to infer library preferences (requests vs httpx),
which might be only available from previous interactions. To bridge this gap, we introduce a theory-
of-mind (ToM) agent that is explicitly tasked with modeling the user’s mental state (Figure 2). In
the following, we explain (1) how the SWE agent queries the ToM agents for the information it
possesses and (2) how the ToM agent models the user’s mental state.

SWE Agent Interaction with ToM Agent We allow the SWE agent to interacts with the ToM
agent by adding two new tools to the set of tools it is allowed to call: (1) consult tom (in-
session): the SWE agent sends a query q and the current session context cit to the ToM agent, the
ToM agent outputs relevant user mental state information muser by reasoning over the interaction
history {cj}i−1

j=1 ∪ {cit}. This user modeling information is then incorporated into the SWE agent’s
context as ct ∥ [at,muser] , enabling the agent to make decisions that align with the user’s implicit
preferences and constraints. (2) update memory (after-session): the SWE agent finishes the
coding session and informs the ToM agent to process the current finished session and update the
memory system that it maintains

ToM Agent Design The ToM agent models user mental states through a three-tier hierarchical
memory system implemented as external database: (tier 1) raw session storage, stores complete pre-
vious session histories. (tier 2) session-based user model, maintains per-session analysis including

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Collect sessions

Pre 
PR

Post 
PR

Tests

❌ ✔ join_struct_col

❌ ✔ vstack_struct_col

✔ ✔ matrix_transform

User Rating ★★★★✩

Original SWE-Bench
data leak in GBDT due to 
warm start

(## Brief description: This is about the non-
histogram-based version of...; 
## How to reproduce)

Codebase

sklearn/
examples/

README.rst
reqs.txt
setup.cfg

Unit Tests + User rating

User Instruction
There’s something wrong with GBDT

SWE 
Agent

Generated Pull Request (PR)

453 raw human-agent interactive SWE sessions
100k tokens per session on average

Create SWE profiles
15 profiles sampled from 600 preferences

20 sessions for each profile

Pair Issues &Profiles

GPT-5 process each session 

GPT-5 transform the issues to user instruction

User instruction is aligned with user profile

Figure 3: Overview of the stateful SWE benchmark. We first collect profiles following the three
steps outlined above. We then create instances by pairing the user simulator of different profiles
with SWE-bench issues. Original SWE-bench issue descriptions are rephrased by the user simulator
into casual, natural-sounding starting instructions. The agent solves the task under the same envi-
ronment and tests of the original instance with access to the previous interaction histories with the
user and could interact with the simulated user for extra information.

session intent, interaction patterns, and coding preferences. (tier 3) overall user model, aggregates
cross-session patterns into preference clusters, interaction style summary, and coding style summary.

During the in-session, once the SWE agent sends the query and current session history (cit) to the
ToM agent, the ToM agent with overall the user model loaded in the context window could de-
cide to use the search file action to retrieve the relevant context or use the read file action
for a specific file from the (tier 1) and (tier 2) of the memory system. The retrieved/read con-
tent will be added to the context window of the ToM agent. The ToM agent can perform multi-
ple actions to obtain the relevant information before providing suggestions to the SWE agent with
give suggestions action. We limit the number of actions to 3 before giving the suggestions to
the SWE agent by default for efficiency.

During the after-session, the ToM agent processes new session data through a structured work-
flow. Raw sessions are first added to (tier 1) automatically. The ToM agent then uses
analyze session to raw session data, extracting user intent, emotional states, and message-
level preferences to create structured session-based user models (tier 2). If there’s no overall user
model, ToM agent will use initialize user profile to aggregate these session analyses to
update the overall user model (tier 3). If there’s already an overall user model, ToM agent will use
update(operation, content) action to update the overall user model. (See Appendix A.5
for more action space details.)

This dual-agent design offers two advantages over having the SWE agent handle user modeling
directly: (1) reduced context distraction: the SWE agent maintains focus on technical tasks with-
out being overwhelmed by extensive user history, (2) specialized optimization: each agent can be
optimized for its specific domain (coding vs. user modeling)

3 STATEFUL SWE BENCHMARK

Most of previous SWE benchmarks solely focus on task completion (Zhao et al., 2024; Zan et al.,
2025; Chowdhury et al., 2024). Here, we introduce a new benchmark that extends SWE-bench
(Jimenez et al., 2024) to test agents’ ability to interact, model and adapt to users while solving tasks.
For each instance in our benchmark, agents not only have access to the coding environment, but can
also interact with the simulated user, and check the previous session history with the user.

Profile Collection: As shown in Figure 3, we begin by collecting 453 real, consented sessions be-
tween human software developers and coding agents through the OpenHands platform (Wang et al.,
2025). From the collected sessions, we derive 15 developer profiles capturing distinct interaction
styles (verbosity, question timing, response style) and coding preferences (testing practices, docu-
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mentation habits, architectural choices). Each profile represents a unique combination of interaction
patterns paired with coding preference clusters derived from 75 recurring practices observed in the
sessions (see Appendix A.4 for detailed breakdown). For each profile, we randomly sample 20 ses-
sions from the same developer to form the profile’s history. To maintain realism, these sessions are
processed with GPT-5 to align user messages with their corresponding profile characteristics (e.g.,
rephrasing a verbose user message into a concise one if the profile prefers concise exchanges).

Instance Creation and Evaluation: We pair created 15 developer profiles with 500 instances
from the verified SWE-bench issues (Chowdhury et al., 2024) and run a user simulator powered by
LLM that enables realistic human-agent interaction evaluation, inspired by Ambiguous SWE-bench
Vijayvargiya et al. (2025). Differing from Ambiguous SWE-bench, the user simulator in Stateful
SWE-bench is conditioning on the unique user profile with interactional and coding preferences.
Therefore, simulators with different profiles behave differently, posing challenges for the agent to
interact with different users. For example, a user with low verbosity preference will only answer
one question and could express dissatisfaction or even refuse to answer if the agent asks too many
questions in a single turn. Meanwhile, agents have access to previous conversation histories with the
same user profile, requiring them to derive user preferences from past interactions to communicate
successfully. Besides the standard SWE-bench instance evaluation, we could also apply the user
simulator to evaluate the agent’s ability to interact with the user. We give the full session data to the
corresponding profile-conditioned user simulator and ask the user simulator to rate the agent from 1
to 5 and obtain the user simulator satisfaction scores (Please see Appendix A.6.2 for details).

4 OFFLINE BENCHMARK EXPERIMENTS

4.1 EXPERIMENT SETUP

We implement all experiments using the OpenHands platform (Wang et al., 2025), an open-
source framework for developing and evaluating AI software development agents. OpenHands
provides sandboxed environments for safe code execution and standardized interfaces for agent-
environment interaction while maintaining isolation and reproducibility. Our experiments build
upon the CodeAct agent architecture (Wang et al., 2024), which uses executable code as a uni-
fied action space for agent interactions CodeAct consolidates traditional agent actions (e.g., file
editing, command execution, web browsing) into executable code snippets that are dynamically in-
terpreted within the environment.

Baselines and Setup Our experiments involve three agent variants: (1) CodeAct agent: The
baseline implementation following Wang et al. (2024), which operates without explicit user model-
ing capabilities. (2) RAGCodeAct agent: An enhanced version that encourages the coding agent
to proactively retrieve relevant information from previous interaction history, serving as the sin-
gle agent paradigm to manage both the coding task and user modeling task simultaneously. (3)
TomCodeAct agent: Our proposed approach that pair coding agent with a theory-of-mind agent,
maintaining explicit user mental models and adapting behavior accordingly. We evaluate all agents
using three state-of-the-art language models: Claude Sonnet 4, Claude 3.7 Sonnet and Qwen3-
480B (Qwen3). We use Claude Sonnet 4 for the theory-of-mind agent across all experiments and
use BM25 to retrive relevant information for both the RAGCodeAct agent and the TomCodeAct
agent (see Appendix A.6 for complete model specifications and hyperparameters).

Evaluation Benchmarks As described in Section 3, we evaluate our approach on two comple-
mentary benchmarks: the Ambiguous SWE benchmark and our Stateful SWE benchmark. Both
benchmarks use GPT-5 powered simulated users and evaluate agents over 500 instances with a max-
imum of 100 interaction turns per task. Note that the user simulator has access to both the complete
issue description and the hints for the issue from the original SWE-bench issues. Together, these
benchmarks evaluate complementary scenarios: ambiguous formal specifications requiring clarifi-
cation versus informal user instructions with available context. We report task resolved rates for
both benchmarks and additionally report user simulator satisfaction scores for the Stateful SWE
benchmark.
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4.2 BENCHMARK RESULTS

We present evaluation results demonstrating ToM-SWE’s effectiveness for both benchmarks and
human study. Our findings show consistent improvements in both task resolution rates and user
satisfaction when agents incorporate theory of mind capabilities for user modeling.
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Figure 4: Agent performance comparison across models. TomCodeAct agent consistently outper-
forms CodeAct agent across both benchmarks and model variants, with the largest performance
gap observed in the Stateful SWE benchmark using Claude Sonnet 4.

Figure 4 shows the resolved rates across all model-agent combinations. For example,
TomCodeAct agent maintains its lead with 63.4% resolution rate using Claude Sonnet 4
versus CodeAct agent’s 51.9% on the Ambiguous SWE benchmark. And TomCodeAct
agent achieves 57.4% resolution rate with Claude Sonnet 4 compared to CodeAct agent’s
13.5%, representing a 43.9 percentage point improvement on the Stateful SWE benchmark.

Table 1: User Simulator Satisfaction Scores on
Stateful SWE Benchmark

Agent Claude 3.7 Claude 4 Qwen3
CodeAct 2.26±0.08 2.57±0.08 2.48±0.08

+RAG 2.32±0.08 3.09±0.09 2.54±0.11

+ToM 3.29±0.08 3.62±0.07 3.24±0.09

Table 1 shows user satisfaction scores for
the Stateful SWE benchmark. TomCodeAct
agent achieves the highest satisfaction ratings
across all models.

Besides the wide success of the TomCodeAct
agent, we additionally have the following find-
ings: (1) Reasoning is essential for building
a accurate user mental state model while sim-
ply retrieving raw session data does not help the
agent to understand user preferences better. We
observe that while RAGCodeAct agent also has access to the previous raw session data, it still un-
derperforms the ToMCodeAct agent across all models. This is especially true when the base model
for SWE agent is not powerful enough to handle both the coding task and the user modeling task
simultaneously. With Claude 3.7 Sonnet, RAGCodeAct agent even hurts the performance of the
SWE agent (task resolved rate drops from 18.7% to 14.4%).

(2) User satisfaction does not equal solving the task. From Table 1, we observe the mismatch be-
tween task resolution rate and user satisfaction between RAGCodeAct agent and CodeAct agent.
To further investigate the relationship between task resolution rate and user satisfaction, we seper-
ate the user satisfaction scores into three categories: High (3.5-5), Medium (2-3.5) and Low (1-2).
And we focus on the cases where resolving the task disagrees with the user satisfaction, i.e., failed
to resolve the task but user satisfaction is high (F+H) and resolved the task but user satisfaction is
medium and low (S+M and S+L). Figure 5 provides a detailed analysis of agent performance across
different categories along with the example feedback from the user simulator in Table 2. We ob-
serve that the ToMCodeAct agent has the highest F+H rates, indicating that even if the task is not
resolved, the ToMCodeAct agent can still get higher user satisfaction. It is also interesting to see
that the RAGCodeAct agent has the highest S+M rates, suggesting that modeling user preferences
done wrong can lead to worse user satisfaction even if the task is resolved.
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Table 2: Examples of Task Resolution and User Satisfaction Mismatches
Category Reason User Simulator Example Feedback (SWE-bench issue ID)
Fail +
High

Meaningful
progress

“precise fix with minimal back-and-forth, aligned well with my pref-
erences” (matplotlib matplotlib-22865)

Good communi-
cation

“Asked for all key details up front (version, minimal re-
pro, affected APIs), matching the preferred workflow”
(django django-16256)

Success
+ Med

Ignored user’s
preferred tools

“Ignored the preferred typing style... Did not provide a descriptive
commit message” (sympy sympy-22456)

Poor communica-
tion style

“You didn’t provide a brief summary...”
(scikit-learn scikit-learn-13779)
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Figure 5: Task resolution and user satisfaction disagreement. F+H: the proportion of cases where
the user simulator statisfaction score is high given the task is not resolved. S+M: the proportion of
cases where the user simulator statisfaction score is medium or low given the task is resolved.

4.3 COST EFFICIENCY OF TOM AGENT

For each ToM base model (GPT-5 nano, GPT-5 mini, GPT-5, Claude 3.7, Claude 4), we run the
TomCodeAct agent on 100 sampled Stateful SWE-bench instances. We then report the resolved
rate (%) alongside the average session cost (USD), which includes the full end-to-end cost of using
the ToM agent during problem solving. As shown in Figure 6, even very efficient ToM base models
substantially improve performance while adding only a small fraction of the overall session cost.
For instance, GPT-5 nano reaches 38.0% at only $0.02 per session. The inset compares the average
SWE cost per session ($1.08) with the ToM consultation cost when using Claude 4 ($0.17), showing
that ToM accounts for approximately 16% of the total. Practitioners can choose ToM base models
that balances cost and quality for their budget.

5 ONLINE HUMAN STUDY

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Avg. cost per session ($)

0

10

20

30

40

50

60

R
es

ol
ve

d 
ra

te
 (%

)

w/o ToM

GPT-5 nano

GPT-5 mini

GPT-5

Claude 3.7

Claude 4

SWE avg ToM (Claude 4)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

$ 
pe

r s
es

si
on

$1.08

$0.17
16% of SWE

Model family
w/o ToM
GPT-5
Claude

Figure 6: Resolved rate vs avg. cost with
ToM agents models solving per instance.

To validate ToM-SWE’s effectiveness in real-world
settings, we conduct a three-week human study with
17 software developers who regularly use the base-
line OpenHands CLI. We enhanced their familiar
CLI environment with our TomCodeActAgent (pow-
ered by Claude Sonnet 4) to evaluate real-world ef-
fectiveness. In total, we collected 209 coding ses-
sions from participants working on their day-to-day
coding tasks, in which there were 174 instances
where the ToM agent provided suggestions.

Study Design and Success Metrics Our eval-
uation focuses on practical utility: we measure
success as the rate at which developers accept
(fully or partially) ToM agent suggestions during
real coding work. Participants install the ToM-
enhanced CLI and use it for their daily cod-
ing tasks over three weeks. The system in-
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cludes two key commands: /update memory
processes session data into the ToM agent’s mem-
ory, and /tom give suggestions explicitly re-
quests ToM guidance to suggest next step for the user. The ToM agent can also be triggered auto-
matically when the SWE agent “decides” to consult the ToM agent. When the ToM agent provides
suggestions, participants choose from three options: (1) Accept, use ToM’s suggestions directly,
(2) Almost right, let me modify it, combine ToM’s suggestion with participant mod-
ifications, or (3) Reject, proceed with the original instruction. This annotation process captures
real-time user preferences and validates the ToM agent’s understanding of user intent. The partici-
pants could also provide feedback on the ToM agent’s behavior throughout the study.

5.1 HUMAN STUDY FINDINGS
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Figure 7: ToM consultation analysis across 174 human study interactions. The overall success rate
of 86.2% varies by query category, with Code Understanding achieving 92% success while Other
queries succeed only 79.4% of the time.

As shown in Figure 7, developers find the ToM agent’s suggestions useful, with an overall success
rate of 86.2% (combining 74.1% full acceptance and 12.1% partial acceptance). Success varies by
query category: Code Understanding achieves the highest acceptance (80.0% + 12.0% = 92.0%),
followed by Development (75.2%), Troubleshooting (82.5%), and Other tasks (79.4%).

From the user feedback, we often find users would be happy to use the ToM agent’s suggestions to
help them guide the SWE agent: “I find these suggestions helpful, ToM helps me explicitly write
out rules I already have in my previous conversations.”, “I feel ToM agent creates a accurate user
profile for me.”, and “It’s more efficient now with the help of ToM agent.”.

To better understand where ToM agent succeeds and fails, we randomly sample 50 suggestions and
analyze them in detail and have the following observations:

(1) Context Specificity Spectrum. ToM agents excel with moderately underspecified queries that
have sufficient technical context, such as “User wants to refactor ConversationStats to be a Py-
dantic class and integrate it with ConversationState.” Here, the ToM agent leverages previous con-
versations to provide useful suggestions. However, when queries become extremely vague (e.g.,
using /tom give suggestions without specific context), success rates drop significantly. This
suggests ToM agents can handle a spectrum of ambiguity but struggle with highly underspecified
scenarios

(2) Confidence Correlates with Acceptance. Successful consultations typically exhibit 90-95%
confidence levels, while failures often show lower confidence (e.g., 70%). When ToM agents are
uncertain about user intent, they provide generic suggestions that fail to match user expectations,
particularly in Troubleshooting scenarios (82.5% success rate).

These patterns demonstrate that effective AI user modeling in software engineering requires not just
sophisticated reasoning capabilities, but also sufficient technical context, clear problem boundaries,
and confidence mechanisms to avoid low-quality suggestions in ambiguous scenarios.
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6 RELATED WORK

Software Engineering Agents Large language models enable competitive AI agents for software
engineering. Systems like SWE-agent (Yang et al., 2024), CodeAct (Wang et al., 2024), demonstrate
impressive automation capabilities through agent-computer interfaces and executable code actions
(Jimenez et al., 2024). However, these systems only interact with environments and overlook hu-
man developer interaction. Recently, ClarifyGPT (Mu et al., 2024) addresses requirement ambiguity
through two-step consistency checks but focuses only on simple function generation. And Vijay-
vargiya et al. (2025) introduce Ambiguous SWE-bench, demonstrating interaction value for complex
software engineering tasks.

Theory of Mind and Personalization in AI Systems Theory of mind (ToM) is crucial for AI
systems engaging with humans. Li et al. (2023) show that LLM-based agents with ToM capabilities
better coordinate in multi-agent collaboration, essential for complex software development (Qian
et al., 2024a). While SOTOPIA (Zhou et al., 2024) evaluates social intelligence and FANToM (Kim
et al., 2023) stress-tests machine ToM, software engineering agents’ ToM abilities remain under-
explored despite requiring close human-agent collaboration. Related personalization work includes
personalized reinforcement learning (Li et al., 2024), parameter-efficient conversation personaliza-
tion (Berglund et al., 2024), user embeddings (Maharjan et al., 2024), difference-aware user model-
ing (Liang et al., 2024), and causal preference modeling (Kim et al., 2024).

Agent Memory Systems Effective memory management is critical for long-term AI agent inter-
actions. Traditional RAG systems suffer from context pollution and fail to capture nuanced relation-
ships (Letta, 2024). Recent advances include MemGPT (Packer et al., 2023) with dual-tier mem-
ory hierarchies, A-MEM (Zhang et al., 2025) following Zettelkasten principles (Kadavy, 2021),
Mem0 (Singh et al., 2024) achieving 91% lower response times through dynamic consolidation, and
MemoRAG (Qian et al., 2024b) addressing context pollution via draft generation. However, existing
systems focus on general conversation contexts, leaving a gap in memory architectures for software
engineering where agents must maintain complex mental models of user preferences, coding styles,
and evolving requirements across sessions.

7 DISCUSSION & CONCLUSION

Limitations and Future Work (1) LLM Powered User Simulator: We use an LLM-powered user
simulator to evaluate interaction quality. While LLM-as-user/judge is cost-effective and widely
adopted, it can introduce systematic biases and unrealistic behaviors (e.g., over-knowledgeability,
near-perfect memory, and excessive compliance) that provide misleading signals (Lin & Tomlin,
2025). To mitigate these issues, we carefully calibrate the simulator with interative human feedback
and manually verify the simulator evaluation quality (see Appendix A.6.2 for details).

(2) Computational Overhead: While ToM-SWE achieves improved performance, the additional
LLM inferences introduce computational costs. In practice, this overhead is modest: with a
lightweight ToM base model, the average incremental cost per session ranges from $0.02 to $0.17
(Figure 6). Future work could explore finetuning smaller LLMs for ToM agent to reduce cost.

(3) User Privacy and Consent: The comprehensive user modeling raises important privacy considera-
tions. Our dual-agent implementation allows future work to explore more refined privacy-preserving
techniques (e.g., host the ToM agent on-device) to enhance user control while maintaining modeling
effectiveness.

(4) Generalization Across Domains: Our evaluation focuses on software engineering tasks. The
generalizability of ToM agent to other collaborative AI domains (e.g., creative writing, data analysis,
education) remains an open question for future investigation.

Conclusion We presented ToM-SWE, a novel framework that enhances software engineering
agents with theory of mind capabilities for understanding and adapting to individual users. Through
comprehensive evaluation across two benchmarks and a human study, we demonstrate that ToM-
SWE achieves substantial improvements in task resolution rates and user satisfaction. This validates
our central hypothesis that effective human-AI collaboration in software engineering requires agents
that can proactively model and adapt to user mental states.

9
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ETHICS STATEMENT

This work involves human data collection and user modeling, raising several ethical considerations
that we address as follows:

Human Subject Protection We collected 453 consented developer sessions from the OpenHands
platform with explicit user consent for research purposes. All user data was anonymized by remov-
ing identifying information including usernames, email addresses, repository names, and personal
file paths. Session data was processed to remove any sensitive information such as API keys, pass-
words, or proprietary code snippets. The data collection process followed institutional guidelines
for human subjects research.

Privacy and Data Protection Our ToM agent design implements user modeling through persistent
memory storage, which raises privacy concerns. We address these through several measures: (1)
the dual-agent architecture enables on-device deployment of the ToM agent, keeping personal data
local while the SWE agent operates in cloud environments, and (2) the system supports differential
privacy mechanisms to add noise to user profiles when necessary.

Potential for Misuse User mental state modeling capabilities could potentially be misused for
manipulation or unauthorized surveillance. We acknowledge this risk and emphasize that our ToM
agent is designed specifically for improving software development assistance, not for psycholog-
ical profiling or behavioral manipulation. We recommend that deployments include user consent
mechanisms and transparent disclosure of user modeling capabilities.

Bias and Fairness Our 15 developer profiles derived from OpenHands sessions may not represent
the full diversity of software developers globally. The profiles are predominantly based on English-
speaking developers using specific programming languages and frameworks. This limitation could
lead to biased user modeling for underrepresented populations. Future work should expand profile
diversity and include fairness metrics in user modeling evaluation.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work:

Code and Implementation Details Complete implementation details for the ToM agent are
provided in the Appendix: (1) Five core prompt templates implemented as Jinja2 templates
(give suggestions, update memory, session analysis, user analysis, message condensation) detailed
in Appendix A.5, (2) Three-tier hierarchical memory system architecture and JSON schemas in Ap-
pendix A.7, (3) Dual-agent integration protocols and algorithmic specifications in Appendix 1, and
(4) Complete implementation details for the ToM agent are provided anonymized code repository.

Experimental Setup All experimental conditions are fully specified in Appendix A.6: model con-
figurations (Claude Sonnet 4, Claude 3.7 Sonnet, GPT-5-nano, GPT-5-mini, GPT-5), hyperparame-
ters, evaluation metrics, and statistical testing procedures. The Stateful SWE benchmark construc-
tion process is detailed in Section 3, with user simulator implementation specifics in Appendix A.6.

Data Availability While the original 453 developer sessions cannot be shared due to privacy con-
straints, we provide: (1) the 15 anonymized developer profiles used in our benchmark (Table 3),
(2) synthetic session examples demonstrating data formats in Appendix A.7, (3) complete JSON
schemas for user models and session structures, and (4) the user simulator implementation with
profile conditioning mechanisms.

Benchmark and Evaluation The Stateful SWE benchmark methodology is fully described in
Section 3, with evaluation implementation details in Appendix A.6. This includes the pairing of de-
veloper profiles with SWE-bench instances, evaluation metrics computation, human study protocols,
and analysis scripts for statistical testing.
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Our implementation builds upon existing open-source frameworks (OpenHands, SWE-bench) and
follows established reproducibility practices in the software engineering agent research community.
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A IMPLEMENTATION DETAILS

This appendix provides comprehensive implementation details to enable full reproduction of the
ToM-SWE method. Section A.1 addresses LLM usage in our research. Section A.2 presents the
algorithmic specifications and action details for the ToM agent. Section A.6 contains the five core
prompt templates that implement our prompting methodology. Sections A.7-A.9 detail the experi-
mental configuration, data formats, and system architecture respectively.

A.1 TOM-SWE ALGORITHM

Algorithm 1 ToM-SWE Agent (in-session and after-session Operations)
1: procedure SWE-AGENT(instruct)
2: ht ← []
3: loop
4: action← generate act(instruct, ht)
5: if action is consult tom then
6: sug ← ToM-Agent(instruct, ht) ▷ in-session consultation
7: action← adapt(action, sug)
8: end if
9: obs← execute(action)

10: ht ← ht ∪ {action, obs}
11: if action is finish then
12: break
13: end if
14: end loop
15: update memory(ht) ▷ after-session memory update
16: end procedure

A.2 TOM AGENT ACTION SPECIFICATIONS

The ToM agent implements a structured action space through the ActionExecutor class, which
provides eight distinct actions organized into three categories: file operations, memory system up-
dates, and response generation. Each action is type-safe using Pydantic models and supports both
in-session consultation and after-session memory processing workflows.

A.2.1 CORE FILE OPERATIONS

READ FILE: Reads specific files from the memory system with configurable character ranges
(default: 5000-10000 characters). Parameters include file path, character start, and
character end. Used during in-session to access specific user model files or session data.

SEARCH FILE: Performs BM25-based semantic search or string matching across the three-tier
memory system. Parameters include query, search scope (cleaned sessions, session analyses,
user profiles), search method (bm25, string match), max results, chunk size, and
latest first. Supports both exact substring matching and semantic ranking with English stem-
ming.

UPDATE: Modifies JSON fields in the overall user model using dot notation paths.
Parameters include field path, new value, list operation (append, remove),
create if missing, and backup. Supports list operations with duplicate prevention and au-
tomatic timestamping.

A.2.2 MEMORY SYSTEM PROCESSING

ANALYZE SESSION: Processes batches of raw session data to create session-based user models
(Tier 2). Parameters include user id and session batch. Leverages the ToM analyzer to ex-
tract user intent, emotional states, and message-level preferences using structured Pydantic models.
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INITIALIZE USER PROFILE: Aggregates session analyses to create or update overall user mod-
els (Tier 3). Parameters include user id. Consolidates behavioral patterns across sessions into
comprehensive user profiles with preference clusters and interaction style summaries.

A.2.3 RESPONSE GENERATION ACTIONS

GIVE SUGGESTIONS: Produces final in-session consultation responses containing personalized
suggestions for the SWE agent. Parameters include suggestions and confidence score
(0-1 range). Returns structured GenerateSuggestionsParams objects with user modeling
insights.

GENERATE SLEEP SUMMARY: Provides final after-session processing summaries document-
ing memory system updates. Parameters include summarization describing changes made dur-
ing the session processing workflow. Returns structured GenerateSleepSummaryParams ob-
jects.

A.2.4 IMPLEMENTATION ARCHITECTURE

The action execution framework uses a workflow controller pattern with structured LLM calls, preset
action sequences, and iterative refinement (maximum 3 iterations by default). All actions support
comprehensive error handling, automatic retry mechanisms with exponential backoff, and validation
through Pydantic schemas. The system includes monitoring capabilities with structured logging and
metrics collection for debugging and optimization.

A.3 MEMORY SYSTEM JSON EXAMPLES

A.3.1 OVERALL USER MODEL EXAMPLE

Listing 1: Overall User Model Example

{
"user_id": "dev_alice_2024",
"profile_description": "Senior backend developer, prefers TypeScript",
"interaction_style": {"verbosity": "concise", "question_timing": "upfront"},
"coding_preferences": ["Always add type annotations", "Write tests first"],
"session_summaries": [
{"session_id": "2024-01-15_api_refactor", "tldr": "Refactored REST API"},
{"session_id": "2024-01-20_auth_system", "tldr": "Implemented JWT auth"}

]
}

A.3.2 SESSION-BASED USER MODEL EXAMPLE

Listing 2: Session-based User Model Example

{
"session_id": "2024-01-25_database_migration",
"user_intent": "Migrate from MongoDB to PostgreSQL",
"user_profile": "Backend developer, prefers step-by-step validation",
"message_preferences": [
{"message_id": 1, "user_message": "Help me migrate the user data",
"inferred_constraints": ["preserve data integrity"],
"preferred_approach": "incremental migration with validation"}

]
}
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A.4 DEVELOPER PROFILES BREAKDOWN

Table 3: 15 Developer Profiles in Stateful SWE Benchmark
Profile ID Interaction Style Coding Preferences (sample)
P01 Concise + Upfront + Short Always use exact same branch name when updating...
P02 Concise + Ongoing + Short Use descriptive branch names like ’feature/user-auth’...
P03 Verbose + Upfront + Verbose Use develop branch as primary development branch...
P04 Verbose + Ongoing + Verbose Clean up merged branches regularly to maintain...
P05 Verbose + Upfront + Short Implement comprehensive test coverage: unit, integration...
P06 Verbose + Ongoing + Short Implement comprehensive test coverage: unit, integration...
P07 Concise + Upfront + Verbose Use rebasing over merging to maintain clean git history...
P08 Concise + Ongoing + Verbose Always use exact same branch name when updating...
P09 Concise + Upfront + Short Be comfortable with force push for updating existing PRs...
P10 Concise + Ongoing + Short Clean up merged branches regularly to maintain...
P11 Verbose + Upfront + Verbose Write descriptive commit messages explaining the ’why’...
P12 Verbose + Ongoing + Verbose Separate git push operations from PR/MR creation...
P13 Verbose + Upfront + Short Use develop branch as primary development branch...
P14 Verbose + Ongoing + Short Use develop branch as primary development branch...
P15 Concise + Upfront + Verbose Use rebasing over merging to maintain clean git history...

A.5 PROMPT TEMPLATES

The ToM agent operates through five core Jinja2 templates that implement the prompting method-
ology described in Section 2:

A.5.1 WAKE-TIME SUGGESTION TEMPLATE

Listing 3: give suggestions.jinja2 (key components)
You are the ToM Agent expert in modeling user mental state and behavior.
Your job is to provide suggestions to the SWE agent based on user modeling.

Available Actions:
- SEARCH_FILE: Find relevant behavior patterns (BM25 search)
- READ_FILE: Read specific user model files
- GENERATE_SUGGESTIONS: Provide final recommendations (mandatory final action)

Special Cases: GitHub Issue Analysis, Empty instructions, Hard to recover scenarios

A.5.2 SLEEP-TIME MEMORY UPDATE TEMPLATE

Listing 4: update memory.jinja2 (key components)
You are a user modeling expert processing session files through three-tier memory.

Available Actions:
- UPDATE_JSON_FIELD: Update overall_user_model fields (append, remove operations)
- GENERATE_SLEEP_SUMMARY: Provide final summary (mandatory final action)

Key: Update UserProfile fields, include specific preferences, use [IMPORTANT] tags

A.5.3 SESSION ANALYSIS TEMPLATE

Listing 5: session analysis.jinja2 (excerpt)
Analyze this coding session to understand the user’s behavior, intent, and preferences.

## Full Session Context:
{{ full_session_context }}

## Key User Messages (focus on these for analysis):
{{ key_user_messages }}

## Session Metadata:
- Session ID: {{ session_id }}
- Total messages: {{ total_messages }}
- Important user messages: {{ important_user_messages }}
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A.5.4 USER ANALYSIS TEMPLATE

Listing 6: user analysis.jinja2 (excerpt)
Analyze these recent coding sessions to create a comprehensive user profile.

User ID: {{ user_id }}
Recent Sessions ({{ num_sessions }} sessions):
{{ sessions_text }}

Create a user analysis including: overall description, intent/emotion distributions,
preferences

For the preferences, pay attention to different kinds of preferences:
- Interactional preferences: how users prefer to communicate with the SWE agent, concise vs

verbose responses, upfront vs ongoing question timing, short vs long responses
- Coding preferences: TypeScript, React, Node.js, testing practices, etc.
- Other preferences: special requirements for the SWE agent

A.5.5 MESSAGE CONDENSATION TEMPLATE

Listing 7: message condensation.jinja2 (excerpt)
Please condense the following message to max {{ max_tokens }} tokens (do not exceed the limit,

and do not add any extra information).
FOCUS: Keep the most important information that provides context for understanding a

conversation.

Original message:
{{ content }}

Condensed version:

A.6 EXPERIMENTAL CONFIGURATION

A.6.1 MODEL SPECIFICATIONS

Our experiments use the following model configurations. The primary ToM agent model is Claude
Sonnet 4 (claude-sonnet-4-20250514), which provides the core user modeling capabilities. For
baseline comparison, we use Claude 3.7 Sonnet (claude-3-7-sonnet-20241022). Additionally, we
conduct multi-model evaluation using GPT models including gpt-5-nano-20241201, gpt-5-mini-
20241201, and gpt-5-20241201.

A.6.2 USER SIMULATOR SATISFACTION EVALUATION

User simulator satisfaction scores are computed through an automated evaluation pipeline using
profile-conditioned user simulators powered by GPT-5. The evaluation process consists of three
key components: (1) Trajectory Analysis: The complete agent-user interaction history, includ-
ing user messages, agent responses, code changes, and final outputs, is formatted into a structured
conversation flow for evaluation; (2) Profile-Conditioned Assessment: Each user simulator is in-
stantiated with the specific developer profile used during the original interaction, ensuring consistent
evaluation criteria based on the user’s stated preferences for verbosity, question timing, and coding
practices; (3) Multi-Dimensional Scoring: The simulator evaluates agent performance across five
dimensions on a 1-5 scale: overall satisfaction, communication quality, problem-solving approach,
efficiency, and user preference alignment.

Quality Control: We implemented preliminary validation by manually reviewing 30 randomly sam-
pled satisfaction scores across different agent types for Claude 4. We found that the human evalua-
tion and the user simulator have substantial correlation (r = 0.82, p < 0.001) for overall satisfaction
scores. We also validated that satisfaction scores appropriately reflect profile-specific preferences by
confirming that agents violating explicit user preferences (e.g., asking excessive questions to concise
users) received correspondingly lower scores.

A.6.3 EVALUATION FRAMEWORK

The multi-model comparison framework consists of three main components. The evaluation runner
serves as the main orchestration system, supporting model filtering, sample size control, and parallel
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evaluation across different model configurations. The core evaluation logic implements the clarity
assessment framework for analyzing model performance across different conditions. Configuration
management is handled through structured configuration objects that specify model parameters, API
endpoints, and evaluation settings for each experimental condition.

A.6.4 HYPERPARAMETERS

The experimental setup uses carefully tuned hyperparameters across different system components.
For memory retrieval, we retrieve the top-k=3 most relevant sessions BM25 search. The ToM
action limit restricts the agent to a maximum of 3 memory actions per consultation to balance thor-
oughness with efficiency. Temperature settings are configured as 0.1 for the ToM agent to ensure
consistent user modeling outputs, and 0.7 for the SWE agent to maintain appropriate creativity in
code generation.

A.7 DATA FORMATS AND JSON SCHEMAS

A.7.1 USER PROFILE SCHEMA

Listing 8: Overall User Model Schema
{

"user_id": "dev_alice_2024",
"profile_description": "Senior backend developer, prefers TypeScript",
"interaction_style": {"verbosity": "concise", "question_timing": "upfront"},
"coding_preferences": ["Always add type annotations", "Write tests first"],
"session_summaries": [
{"session_id": "2024-01-15_api_refactor", "tldr": "Refactored REST API"}

]
}

A.7.2 SESSION MODEL SCHEMA

Listing 9: Session-based User Model Schema
{

"session_id": "2024-01-25_database_migration",
"user_intent": "Migrate from MongoDB to PostgreSQL",
"user_profile": "Backend developer, prefers step-by-step validation",
"message_preferences": [
{"message_id": 1, "user_message": "Help me migrate the user data",
"inferred_constraints": ["preserve data integrity"],
"preferred_approach": "incremental migration with validation"}

]
}
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