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Abstract

Multi-modal conversational recommendation
(multi-modal CRS) can potentially revolution-
ize how customers interact with e-commerce
platforms. Yet conversational samples, as train-
ing data for such a system, are difficult to ob-
tain in large quantities, particularly in new plat-
forms. Motivated by this challenge, we con-
sider multimodal CRS in a low resource set-
ting. Specifically, assuming the availability of
a small number of samples with dialog states,
we devise an effective dialog state encoder to
bridge the semantic gap between conversation
and product representations for recommenda-
tion. To reduce the cost associated with dia-
log state annotation, a semi-supervised learn-
ing method is developed to effectively train the
dialog state encoder with a smaller set of la-
beled conversations. In addition, we design
a correlation regularisation that leverages the
multi-modal knowledge in the domain database
to better align textual and visual modalities. Ex-
periments on two datasets (MMD and SIMMC)
demonstrate the effectiveness of our method.
Particularly, with only 5% of the MMD training
set, our method (namely SeMANTIC) is com-
parable to the state-of-the-art model trained on
the full dataset.

1 Introduction

Over the past few years, there has been a grow-
ing interest in conversational recommendation sys-
tems (CRS). These systems bring together the user-
friendly nature of conversational Al and the busi-
ness potential of recommendation systems, poten-
tially revolutionizing how customers engage with e-
commerce platforms. Unfortunately, conventional
text-based dialogue systems have inherent limita-
tions in capturing user preferences. In many prac-
tical situations, a blend of textual and visual cues
allows agents to recommend products that are bet-
ter aligned with user interests (e.g., see Figure 1 for
an example).
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Figure 1: In a multimodal CRS, a user expresses her/his
requirements with preferred example image. The dialog
state (belief state) encapsulates user interest across turns
and modalities.

The advance in deep learning along with the
introduction of multi-modal benchmarks, such as
MMD (Saha et al., 2018), have contributed signifi-
cantly to the recent progress in multi-modal CRS. A
number of methods have been developed using Re-
current Neural Networks (RNN) (Saha et al., 2018),
RNN with attention (Cui et al., 2019), Graph Neu-
ral Networks (GNN) (Zhang et al., 2021), Memory
Networks (Nie et al., 2021), Knowledge-enhanced
Convolution Network (CNN) (Liao et al., 2018a),
and Transformer (Ma et al., 2022). Unfortunately,
deep learning-based methods require a significant
number of sample conversations with relevance
annotation (for recommendation), which can be
challenging to acquire. For example, the aforemen-
tioned methods have been trained on MMD using
hundreds of thousands of conversations, and it is
unclear whether these approaches remain effective
when being trained on a smaller sample size.

In this paper, we examine multi-modal CRS in
a low resource setting. Specifically, we consider
that there are only a limited number of sample con-
versations and strive to make the most of the data
by following two insights. Firstly, when the num-



ber of sample conversations is limited, augmenting
them with dialog states can help bridge the seman-
tic gap between dialogues and products as being
shown in traditional text-based task-oriented dia-
log (TOD) systems (Lei et al., 2018; Hosseini-Asl
et al., 2020; Shu et al., 2018; Zhang et al., 2020b;
Yang et al., 2021). Unfortunately, dialog state anno-
tation can be time-consuming, especially in multi-
modal dialogs. Therefore, we assume that only a
subset of sample conversations are annotated with
dialog states, and design an effective method for
dialog state modeling. Secondly, the vast amount
of products with both textual and visual informa-
tion should be exploited to bridge the cross-modal
semantic gap. Intuitively, doing so helps improve
the system’s capability in understanding user pref-
erences across modalities (see U3, Figure 1).

With such considerations, we propose a Sam-
ple Efficient Multi-modAl coNversaTlonal reCom-
mendation system, or SeMANTIC for short. More
specifically, dialog contexts and candidate prod-
ucts are first encoded with a context encoder and a
product encoder separately, resulting in initial con-
text/product representations. Such representations
are then enhanced with Dialog-State Interaction
modules that capture the interactions of the context
(or the product) representations with shared dialog
state embeddings. By doing so, we leverage dialog
states to bridge the semantic gap between the dialog
and the product sides. Here, dialog state embed-
dings are learned via a teacher-student framework,
where the teacher network has access to the limited
size of dialogs with belief states, and the student
network learns from the teacher to estimate dialog
state embeddings from conversations without dia-
log states. We then propose a regularization term
that makes state-aware (text/visual) representations
of the same product closer to each other. By do-
ing so, we effectively utilize the large number of
products in the domain database for bridging the
cross-modal semantic gap.

All in all, our main contributions are as follows:

* We propose a novel model, SeMANTIC, that
enhances dialog and product representations
with dialog states, and a regularization term
that leverages the domain database to bridge
cross-modal semantic gap.

* A semi-supervised learning is proposed based
on the teacher-student framework to allevi-
ate the annotation cost associated with dialog
state tracking.

* Extensive evaluation on SIMMC and MMD
datasets demonstrates the superiority of our
model in comparison to strong baselines in a
low resource setting.

* Further analysis validates that our semi-
supervised learning approach is data efficient
as it only requires a small ratio of supervision
for learning dialog state embeddings.

2 RELATED WORK

2.1 Unimodal Conversational Systems

Traditionally, dialog systems are divided into
chitchat and TOD systems. The former improves
user engagement, whereas the later helps users fin-
ish a specific task such as booking hotels. This
categorization helps characterize fundamental sub-
tasks such as response generation (Wu and Yan,
2019; Sun et al., 2020; Chao et al., 2021; Chen
et al., 2022), dialog state tracking (Yan et al., 2017;
Shu et al., 2018; Lei et al., 2018; Song et al., 2021),
dialog policy (Hosseini-Asl et al., 2020; Kung et al.,
2021; Zhao et al., 2022; Yang et al., 2021).
Recently, there is a growing interest in connect-
ing conversational agents with external systems,
resulting in the introduction of new types of dia-
log systems such as CRSs (Christakopoulou et al.,
2016; Zhang et al., 2018; Sun and Zhang, 2018;
Zhang et al., 2020a; Hayati et al., 2020; Deng et al.,
2021), knowledge-grounded dialog systems (Wang
et al., 2019; Zhao et al., 2019; Zhou et al., 2020;
Liu et al., 2021b). Unlike traditional ones, these
systems may contain dialog turns for recommen-
dation, knowledge-graph access, or fulltext search.
Beside traditional subtasks such as dialog policy
(Sun and Zhang, 2018; Zhang et al., 2020a; Deng
et al., 2021), or dialog state tracking (Yan et al.,
2017; Shu et al., 2018; Lei et al., 2018; Song et al.,
2021), new subtasks have been introduced such as
retrieval-augmented response generation (Zhang
et al., 2020c; Zou et al., 2020; Ren et al., 2021),
dialog-based recommendation (Christakopoulou
et al., 2016; Zhang et al., 2018; Hayati et al., 2020).

2.2 MultiModal Conversational Systems

The introduction of multi-modal datasets have been
introduced to foster studies in multi-modal QA
such as VisDial (Das et al., 2017), GuessWhat
(De Vries et al., 2017) and FashionIQ (Wu et al.,
2021), and multi-modal dialogs (Saha et al., 2018;
Kottur et al., 2021; Liao et al., 2021). Among
these, MMD is the multi-modal dialog dataset in



retail that comes with high quality images and re-
quires cross-modal reasoning. The majority of
previous baselines for multi-modal CRS are con-
ducted on this dataset (Saha et al., 2018; Cui et al.,
2019; Nie et al., 2019, 2021; Zhang et al., 2021).
Saha et al. (2018) present a basic multimodal hi-
erarchical encoder-decoder model (MHRED) as a
first benchmark in the field of multimodal CRS.
Since then, attention and research have focused on
developing better multimodal CRS models (Cui
et al., 2019; Nie et al., 2019; He et al., 2020; Liao
et al., 2018b). Cui et al. (2019) propose a user
attention-guided multimodal CRS which is based
on MHRED and uses a hierarchical product taxon-
omy tree to extract visual features. MAGIC (Nie
et al., 2019) proposes knowledge-aware RNN to
encode dialog context for response generation and
product recommendation. Nie et al. (2021) intro-
duce a contextual image search scheme (LARCH)
with multi-form knowledge interactions via mem-
ory network. Zhang et al. (2021) introduce TREA-
SURE that represents dialog contexts using graph-
based models and incorporate side information
such as the product attributes and style-tips from
celebrities. And recently, Ma et al. (2022) lever-
age a unified transformer semantic representation
framework with feature alignment and intention
reasoning for multi-modal dialog systems.

Our work also focuses on the e-commerce set-
ting proposed by Saha et al. (2018) but targets the
unexplored problem of learning with a limited num-
ber of conversations. In addition, our investigation
is on the recommendation task, which remains a
challenging subtask in multi-modal CRS, particu-
larly now that response generation can be greatly
improved with large language models. Note that
this is also in line with the recent studies such as
(Nie et al., 2021; Zhang et al., 2021).

2.3 Learning in a Low-Resource Setting

Deep learning has been the mainstream approach
recently. Unfortunately, deep learning methods
are also data hungry, requiring a large amount
of training conversational samples with annota-
tion. For example, to train a task-oriented dialog
(TOD) system, we need conversations that are fully
annotated with dialog states and system actions
(Budzianowski et al., 2018). For conversational
recommendation, it is also needed to collect di-
verse dialog samples annotated with recommen-
dations and various user requests (Budzianowski
etal.,, 2018; Li et al., 2018; Liu et al., 2020).

As labeled data is difficult to obtain, it is desir-
able to develop data efficient methods based on pre-
trained models (Yang et al., 2023; He et al., 2022),
meta-learning (Dai et al., 2020), or semi-supervised
learning (Yang et al., 2022; Huang et al., 2020; Li
et al., 2020). Specifically, Yang et al. (2023) and
Hu et al. (2022) leverage pretrained language mod-
els and prompt learning for dialog state tracking in
TOD. Dai et al. (2020) target fast adaptability of
TOD dialog systems to domains with low-resource
data using meta-learning. Zhao et al. (2020) and
Liu et al. (2021a) decompose response generation
in knowledge-grounded dialog systems into dis-
entangled decoders, each can be pretrained with
unlabeled data. Semi-supervised learning has been
used to utilize unlabeled data for estimating ac-
tion embeddings in task-oriented dialog systems
(Huang et al., 2020), dialog state tracking (Zhang
et al., 2020b), or grounded sentences in knowledge-
grounded dialog systems (Li et al., 2020).

Our work also follows the semi-supervised learn-
ing approach but focuses on multi-modal dialogs
instead of unimodal dialogs. It is noteworthy that
we cannot simply adopt a unimodal method to a
multi-modal scenario. For instance, one simple
way to apply these available methods (Huang et al.,
2020; Zhang et al., 2020b) to our task is to consider
DST as a text sequence generation task. However,
as we empirically show in Section 5.3, without
careful consideration of the semantic gap between
modalities as well as between products and dialogs,
even gold (sequentialized) DST will not facilitate
the recommendation task.

3 METHODOLOGY

We study the problem of training CRSs with a small
number of samples. Formally, let D be the set of
M fully labeled dialogues 7; = {w|1 <t < n},
where u; indicates the t-th turn from either the user
or the agent. Each (user or agent) utterance u,
contains the textual part «] and the visual part u;,
i.e. a list of user uploaded images or system rec-
ommended product images. For t-th user turn, we
are provided with a dialog state s} that summa-
rizes the user requests throughout the conversation.
Additionally, let Dp be the set of partially labeled
dialogs of which we do not have dialog state annota-
tion. We assume that Dp is larger in size compared
to Dp, but still in a moderate size. The CRS task
is formalized as selecting products from a domain
database P = {(pL, pL)|1 < k < np} as response



to a user request. Here, a product in P is associated
with both textual description p{ and images pﬁ.

The overall architecture of SeMANTIC is de-
picted in Figure 2, where the main idea is to
treat dialog states as shared (continuous) variables
that bridge the semantic gaps between the textual
modality and the visual modality, and between the
conversation and the product sides. Specifically,
representations of user texts/images and product
texts/images are both enhanced with dialog state
embeddings using Dialog State Interaction (DSI)
modules (Section 3.2). Here, the dialog state em-
beddings are obtained by encoding the groundtruth
dialog states for those in D, and inferred by the
dialog learner for those in the partially labeled set
(Section 4). To mitigate the limited size of D, we
add a regularization term inferred from the partially
labeled dialogs Dp and the abundance of products
in P (section 3.4 and 4).

3.1 Context and Product Encoders

Context Encoder Let 7 be a dialog context and
ul = {wi,wio, ... ,wtntT} be the textual utter-
ance at the t-th turn, where wy, is an one-hot repre-
sentation of the i-th word, we obtain the turn-level
text representation as follows:

Ug; = wtiWemb + PE()
Ut [Utla . UT ]
vl = SumPool[Sel fAttn(Ut I ul ul)

where We,,,; is the word embeddings obtained from
BERT (Devlin et al., 2018), PE and SelfAttn denote
the position embedding and self-attention (Vaswani
et al., 2017). The dialog-level representation for
the textual modality is as follows:

VT _ [ T T ]

= Vi, Vpp

CT = SelfAttn(VT, VT, VT

Similarly, we construct the turn-level vi-
sual representation from the t-th turn

UtI = {Itl, ItZ; . 7Itn{}:
UL = ResNet(I)
= SumPooling[UL, ...

vEi=[l . vl ]

Y TN

C! = CrossAttn(CT, VI, V1)

Uf]

The final dialog representations ¢’ and ¢! (for the
textual and visual modalities) are attained from the
last turn representations in C” and C.

Product Encoder The product text p? and visual
p! representations for a product p; = (plT, pll ) are
obtained similarly to the turn-level dialog represen-
tations (i.e. v/ and v/). Note also that the low-level
image representation ResNet are shared between
the context encoder and the product encoder.

3.2 Dialogue State Interaction Module

Our objective is to exploit dialog states for bridg-
ing the semantic gaps in multi-modal CRS. As
such, we first get a dialog state embedding Sy €
RMstateXNdim from the context (see Section 4 for
more details). Inspired by Memory Networks
(Sukhbaatar et al., 2015), we then introduce Di-
alog State Interaction (DSI) modules to enhance
both dialog and product representations with infor-
mation in dialog states.

The general architecture of Dialog State Inter-
action (DSI) module is depicted in Figure 2 with
K layers of multi-hop interactions. Given an input
vector x; and a state embedding matrix Sg, the
outputs of the k-th layer are obtained:

Sk41 = Wi415k

B cos(xk, Sk,i)
ak""lvi - Z"?state
J

cos(xy, Sk,j)
Nstate

Tp41 = T + E Ak41,iSk+1,i

i

where W1 denotes the model parameters and
ag+1 corresponds to the attention score vector.
Note that x( is obtained from a context or prod-
uct encoder (e.g. ¢’ or pT) and Sy is from the
state encoder module.

3.3 Recommendation

Given a dialog 7 and a candidate product p, the
relevance score is measured as follows:

f(1, p) = tanh[cos(z°T, 2FT) 4 cos(zT, 2TT)]

CT CI PT PI

where x are extracted from the
last layers of DSI modules, and correspond to state-
enhanced representations for the dialog context and
the candidate product.

3.4 Training

To train SeMANTIC, we construct a training set
{(Tiv pj;a s 7p7?;posa /)1_1» s ’pi_nneg)} by sampling
dialog contexts and the gold image responses from
Dp. Here, 7; indicates one conversation context,
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Figure 2: The overall architecture of SeMANTIC (left). Here, Dialog State Interaction (DSI) modules of the same
color are shared between the dialog product sides. The details of a DSI module is shown on the right block.

whereas p;; and p,, denote a positive recommen-
dation and a (sample) negative recommendation
for the i-th context. Note also that the dialog state
encoder is trained jointly with the rest of the model.
However, we postpone the detailed discussion un-
til Section 4, where semi-supervised learning for
dialog state modeling is described.

Ranking Loss The main objective for training
SeMANTIC is to maximize the margin in the rel-
evance score of the positive product compared to
the negative product. In other words, we minimize
the following rank loss:

Lry, =maz(0,1— f(r,p7) + f(7,p7))

where the loss is measured for a sample triple
(1,p", p7). Here, we drop the context and product
indices for simplicity.

Jensen Shannon Divergence To better align the
context and the product representations, we mea-
sure Jensen-Shannon divergence (Menéndez et al.,
1997) between the attention vectors extracted from
the last layer of DSI (Equation 3.2 for k£ = K).
Specifically, we respectively obtain (a“”, a®") for
the context text and images, and @®T, a®T) for the
product text and images, then measure:

g(1,p) = JS(a®T, afT) + JS(a®?, o)

Intuitively, we would like the g score to be small for
the relevant pair (7, p*) and larger for the irrelevant
pair (7, p~). To achieve this, we incorporate the
following loss to the objective function:

Ljs = max(O,g(T, P+) - 9(7—7 P_))

Correlation Similarity Due to the limited size
of conversational samples, we rely on the larger
number of available products to bridge the gap

)]
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Figure 3: The Teacher (left) vs The Student State En-
coder (right).

between the textual and visual modalities. Our goal
is to minimize the regularization term calculated
for a given product p as follows:
Leo—sim(p) = maz(0,1 — cos(zt'T, zF'T))
The idea here is make the (text/visual) state-

enhanced representations of the same product
closer to each other.

Overall Finally, the overall loss function L is:

+
Z Lo+ Lys+ Z ['cofsim(pik)
i ot
where pi indicates either a positive or negative
sample associated with the context 7;.

4 Semi-supervised State Learning

To leverage small samples with dialog states, we
follow the teacher-student framework (Chen et al.,
2017), where the teacher and student have a similar
structure but differ in the dialog state encoder.



Teacher State Encoder The teacher has access
to the ground truth dialog state in D, where each
dialog state u® = [(u?®, u?V)|1 < i < ngate)
is a list of slot and value pairs. The slot keys are
drawn from a predefined set of 1544t product prop-
erties defined in the domain database P, such as
color or type. For each slot key such as color, the
slot value is “none” if it is not mentioned in the
dialog context 73, and a specific value (e.g. red)
otherwise. For the i-th slot, we treat the slot key
and value as strings and attain the key and value
embeddings S5 € R*"a, SV € R'*"d via BERT
and MeanPooling, which is similar to the text en-
coder in Section 3.1. The state embedding is then
obtained via self attention as follows:

S;=SK+8)
S = [517 "'7Snstu,te]
S = Self Attn(S, S, S)

Student State Encoder The student network es-
timates the slot value embedding from the con-
text information by employing a “Value Predictor”.
Specifically, we first obtain the key embedding
SK ¢ Rnstatexna for all slot keys similarly to that
in the teacher state encoder. The value embedding
are then calculated as follows:

c=cr+c’
SV = CrossAttn(S¥,C, C)

where CrossAttn is the cross attention operator. We
then obtain the predicted state embedding S using
the “State Learner” as follows:

S=8K45v
S = Self Attn(S, S, S)

Joint Training We train the teacher network on
Dr and the student network on Dy + Dp using the
loss function L,;; as in Section 3.4. Hereafter, we
refer to the teacher and the student training losses
as L% and L5, We then let the teacher network
to guide the student network by minimizing the
mean square error of groundtruth dialog state em-
beddings and the predicted state embeddings on
Dpr. All in all the joint training objective is:

alli +(1—a) |L3F+ > MSE(S;, S)
Tq',G'DF

where S;, §l are the outputs of the teacher and
student encoders, respectively.

S Experiments

Evaluation Datasets Experiments are conducted
on MMD (Saha et al., 2018) and SIMMC (Kottur
etal., 2021). The MMD dataset contains more than
150k conversations in retail domain. Following pre-
vious works (Nie et al., 2021; Zhang et al., 2021),
we adopt the updated MMD dataset constructed
by Nie (Nie et al., 2021) and refer to it as MMD-
v2, which is divided into training/validation/test
sets with ratio 70%/15%/15%. To study the impact
of the sample size and dialog states, we sample
around 5% of MMD-v2 and perform dialog state
annotation with slot keys being product attributes.
We refer to this set of MMD as MMD-v3. We
split the data to sets train/valid/test so that the train-
ing/valid/test set of MMD-v3 is a subset of the
corresponding set of MMD-v2. As for SIMMC,
the dataset contains 10681 scene based conversa-
tions, which is divided into 68% for training, 16%
for validation, and 16% for testing. We extend the
multimodal coreference resolution task into a rec-
ommendation task by utilizing bounding boxes to
extract product objects from the same scene.

Implementation Details We implement our pro-
posed model using PyTorch! and conduct our ex-
periments on 1 NVIDIA V100 GPU with a mini-
batch size 64 and 50 epochs. The dimension of
the initial word embedding is set to 768, and the
dimension of the initial image embedding is set to
512. The dimensions of both context representation
and product representation are set to 768. For each
experimental setting, the results from multiple runs
of SeMANTIC and the baselines are averaged.

Evaluation Metrics Following (Nie et al., 2021;
Zhang et al., 2021), Precision@k, Recall@k, and
NDCG@k for (k=5, 10, and 20) are the adopted
metrics for the recommendation task in CRS.

Compared Methods We compare SeMANTIC
to baselines with published codes including
MHRED (Saha et al., 2018), UMD (Cui et al.,
2019), MAGIC (Nie et al., 2019), LARCH (Nie
etal., 2021), and TREASURE (Zhang et al., 2021).

5.1 Main Results

We present the evaluation results on SIMMC, and
MMD in Table 1. Note that on MMD, all com-
pared models are trained on MMD-v3 but tested
on MMD-v3 or MMD-v2. In addition, we consider

"https://pytorch.org/



MMD

Method P@s R@5 NDCG@5 | P@10 R@10 NDCG@10 | P@20 R@20 NDCG @20
. | MHRED 34.56+1.50 | 40.91£1.83 | 39.09+£1.35 | 20.54£0.79 | 48.55£1.92 | 42.604+1.33 | 12.14+0.42 | 57.35£1.94 | 45.82+£1.31
E UMD 27.13+4.80 | 30.04+£4.71 | 25.62+£4.08 | 18.134+2.06 | 42.52+4.61 | 31.23+3.87 | 11.82+0.81 | 55.27£3.67 | 35.89+3.42
< | MAGIC 46.33+0.77 | 53.48+0.94 | 51.61£1.87 | 26.214+0.34 | 60.724+0.83 | 54.86+1.55 | 14.39+0.19 | 66.93+0.93 | 57.10+1.44
A | LARCH 30.6442.57 | 37.004+2.93 | 36.66+£3.25 | 21.22£1.23 | 50.23+2.77 | 43.56+2.94 | 13.01+0.36 | 61.25£1.59 | 48.00£2.53
; TREASURE 45.75+1.47 | 53.34+1.78 | 52.11£2.10 | 25.5940.55 | 59.82+1.31 | 55.36+1.95 | 14.15+£0.19 | 66.37£0.91 | 57.46+1.73
SeMANTIC 63.87+0.39 | 75.19+0.54 | 75.87+£0.71 | 32.96+0.16 | 77.71+0.53 | 76.94+0.72 | 17.06:£0.09 | 80.52+0.47 | 77.91+0.71
. | MHRED 30.66+3.00 | 35.304+3.71 | 36.47+3.31 | 18.51£1.43 | 44.0843.36 | 39.874+3.22 | 10.974+0.64 | 52.29+3.08 | 42.85+3.09
¢ | uMD 13.494+0.66 | 15.66£1.59 | 15.00£1.81 | 10.7440.22 | 24.93+1.39 | 18.68+1.55 | 7.81+£0.76 | 35.97+£2.72 | 22.76+1.68
c;i MAGIC 38.31+1.77 | 44.88+2.06 | 43.38+2.60 | 22.0840.62 | 51.86+1.44 | 46.46+2.34 | 12.48+0.22 | 58.85+1.02 | 48.96+2.16
A | LARCH 23.61+1.42 | 28.55£1.66 | 29.39£1.95 | 16.904+0.52 | 40.02+1.16 | 35.32+1.71 | 10.71£0.12 | 50.41£0.56 | 39.51+1.44
; TREASURE 34.994+1.74 | 41.06+2.05 | 39.75+1.79 | 20.47+0.72 | 48.04+1.81 | 42.88+1.65 | 11.85+0.36 | 55.73+1.85 | 45.66+1.62
SeMANTIC 58.66+0.32 | 69.66+0.34 | 71.08+0.65 | 30.294+0.09 | 72.06+0.17 | 72.08+0.59 | 15.66+0.06 | 74.60+0.24 | 72.94+0.59
‘ TREASURE t ‘ 59.87 71.39 71.24 31.34 74.85 72.72 16.33 78.17 72.87
SIMMC
MHRED 22.9340.51 | 67.20+1.41 | 51.16£1.30 | 14.464+0.22 | 85.83+1.12 | 57.14+1.18 | 8.27+0.04 | 94.57+0.45 | 60.24+1.01
MAGIC 26.95+0.38 | 78.16£0.98 | 63.52£1.00 | 15.624+0.36 | 90.86+1.08 | 68.32+1.18 | 8.56+£0.03 | 97.69+0.32 | 70.10+0.84
LARCH 23.31+0.93 | 71.15£1.71 | 57.83£1.84 | 14.4840.31 | 86.85+1.72 | 63.80£1.48 | 8.15£0.08 | 96.10£0.89 | 66.69+1.23
TREASURE 27.504+0.47 | 79.43+£1.00 | 64.99£1.31 | 16.0040.18 | 91.66+0.57 | 69.89+1.24 | 8.60+0.04 | 98.10£0.16 | 71.27+1.07
SeMANTIC 31.99+0.33 | 87.14+0.71 | 76.82+£0.87 | 17.854+0.09 | 95.45+0.41 | 79.96+0.75 | 9.35+£0.01 | 98.99+0.14 | 81.04+0.64

Table 1: The overall results of SeMANTIC and baselines, in which the average and standard deviations of different
runs are reported. MMD v3/ v2 (or MMD v3/ v3) means we train the model on the training set of MMD-v3 and
evaluate on the testing set of MMD-v2 (or MMD-v3). TREASURE} is both trained and tested on MMD-v2 and

reported from (Zhang et al., 2021).

l ~---- NDCG@S (w/ full ds) l
- Recall@S (w/ full ds) o
~|:- NDCG@S (w/ partial ds)
{:- Recall@5 (w/ partial ds)

~-= NDCG@10 (w/ 100% ds)
--=-= Recall@10 (w/ 100% ds)
~}- NDCG@10 (w/ partial ds)

Recall@10 (w/ partial ds)

O% 2% S% 8%  10% 13% 15% 16%  20% 0% 2%  S% 8% 10% 12% 15% 16% 20%

Figure 4: Performance of SeMANTIC trained with vary-
ing ratio of fully labeled data on MMD-v3.

100% supervision for SeMANTIC here, leaving
semisupervised learning analysis to next section.

Table 1 presents the experimental results, where
a number of observations can be drawn. Firstly,
SeMANTIC outperforms the compared methods
on SIMMC and two testing sets of MMD, par-
tially validating its effectiveness and generaliza-
tion. Secondly, while the unified memory network
in LARCH may help bridge semantic gaps across
modalities as well as between the conversation and
product sides, the method may be too complex
to train effectively with a small sample size. As
a result, LARCH falls short compared to simpler
methods like MHRED, MAGIC, and TREASURE,
despite being the second best-performing method
when being trained with the MMD-v2 training set
(Nie et al., 2021). And finally, even though we train
our method with MMD-v3, which is only 5% of
the training set of TREASURE{ (MMD-v2), the
evaluation results on the test set of MMD-v2 show

—-- NDCG@5 (SeMANTIC w/ partial MMD v2 data) —-
Recall@5 (SeMANTIC w/ partial MMD v2 data)

---- NDCG@5 (TREASURE w/ full MMD v2 data) 67

-~ Recall@5 (TREASURE w/ full MMD v2 data)

NDCG@10 (SeMANTIC w/ partial MMD v2 data)
Recall@10 (SeMANTIC w/ partial MMD v2 data)
---- NDCG@10 (TREASURE w/ full MMD v2 data)

-+ Recall@10 (TREASURE w/ full MMD v2 data)

20% 0% 60% 80% 100% 20% ao% 60% 80% 100%

Figure 5: Performance of SeMANTIC trained with vary-
ing sample sizes on MMD-v2.

that our method is comparable to TREASURE.
It should be noted that training on MMD-v2 is
time-consuming, thereby preventing us from train-
ing compared models multiple times for compari-
son. Consequently, we directly report the results of
TREASURE 7 from (Zhang et al., 2021).

5.2 The Impacts of Sample Size

To verify the effectiveness of semi-supervised state
learning, we conduct experiments on MMD-v3 and
change the ratio of the sizes of D to Dp. For
every epoch, we first jointly train both teacher and
student models on D, then train the student model
on Dp without considering ground-truth dialogue
state. Figure 4 indicates that our model improves
as more annotated data is utilized. Furthermore,
the reduction in standard deviation indicates that
the model’s performance becomes more stable as
more samples with labeled states are considered.
More importantly, our model’s performance with



wlo ds * w/o ds
w/ ds w/ ds

IC LARCH TREASURE SeMANTIC 207 MHRED UMD MAGIC  LARCH TREASURE SeMANTIC

Figure 6: The impacts of dialog states.

20% of the supervision ratio is nearly as good as
having full supervision to learn state embeddings.
We evaluate the impact of the number of train-
ing (conversational) samples by conducting experi-
ments on MMD-v2. Specifically, we keep D to be
MMD-v3 training set, and increase the set Dp to in-
clude more samples from the training set of MMD-
v2. The results of SeMANTIC and TREASURE
are then reported on the testing set of MMD-v2 in
Figure 5. The results show that SeMANTIC out-
performs TREASURE in terms of NDCG@5 when
the size of Dp to be around 10% of the MMD-v2,
validating the sample efficiency of SeMANTIC.

5.3 Can Baselines Benefit from Dialog States?

SeMANTIC exploits dialog states during training,
but this information is not available in baselines.
As a result, we study whether the incorporation
of dialog states into baselines can help improve
performance of such methods. As adapting the
baselines to incorporate dialog state prediction is
nontrivial, we directly consider ground truth dialog
states as part of the dialog input for the baselines
during both training and testing. This experiment
is carried out on MMD-v32, where there exists
dialog state annotation for conversations in both the
training and testing sets. For SeMANTIC (w/o DS),
state encoding excludes slot values during training,
making it fair to compare with the baselines (w/o
DS). Note that SeMANTIC (w/ DS) only exploits
groundtruth values during training.

The performance comparison between the base-
lines and SeMANTIC with and without dialog
states is presented in Figure 6. Among all the
methods, only LARCH and SeMANTIC show im-
provement on NDCG@k (k=5,10, 20) when dialog
states are considered. One possible explanation
is that the slot values in dialogue states may not
match product attribute values. As a result, only
LARCH, which leverages diverse interactions be-
tween dialogs and knowledge through multi-form

We skip the report on SIMMC due to similar observations

w/o co_sim w/o co_sim
w/o MSE w/o MSE
w/o JS 20 w/o S
SeMANTIC SeMANTIC

Precision@5. Recall@s NDCG@5 o Precision@10 Recall@10 NDCG@10

Figure 7: Effect of different loss functions.

knowledge modeling, and SeMANTIC, which in-
corporates correlation similarity, can make good
use of dialog state information.

5.4 Ablation Study

To examine the contributions of different loss func-
tions, we exclude MSE loss (w/o M SE), correla-
tion similarity loss (w/o co_sitm), or JS divergence
(w/o JS) from the training objective.

Figure 7 showcases the impact of different loss
types on SeMANTIC in terms of three metrics
on MMD-v3. The results reveal several findings.
Firstly, the extraction of hidden information from
text-image correlation in products (co_sim) plays
a vital role in enhancing the model’s performance.
Secondly, the use of MSE loss as guidance for
the student model is also essential, given that the
model’s performance declines without this infor-
mation, especially at lower ranks (R@5, R@10).
Thirdly, the incorporation of L ;s helps reducing
variation, making the model more stable.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a novel approach named
SeMANTIC for multimodal conversational recom-
mendation systems (CRS). To bridge the gap be-
tween dialogs and products, we propose dialog
state interaction modules to enhance both the di-
alog and the product sides with dialog states. To
overcome the challenge of collecting dialogue state
labels, we develop a state value predictor to learn
the dialog state embedding following a teacher-
student framework. In addition, we introduce a
correlation regularization for semantic alignment
on the abundant products in the domain database.
Our comprehensive experiments demonstrate the
superiority of our proposed approach in the recom-
mendation task when compared to existing meth-
ods. In the future, active learning-based methods
(Liu et al., 2019; Sinha et al., 2019) can be studied
to improve sample efficiency for multimodal CRS.



Limitations

Due to time and computational constraints, our
study did not consider the approach based on large
vision-language models, such as (Radford et al.,
2021; Li et al., 2023; Zhao et al., 2023; Wang et al.,
2022). These models have shown promising results
in various tasks, including semantic alignment and
understanding in multimodal settings.

In the future, we plan to investigate how to adapt
these large vision-language models to our domain-
specific database and explore their potential as base
models for semantic alignment and recommenda-
tion in our multimodal conversational recommen-
dation system. This would involve addressing chal-
lenges related to model scalability, computational
resources, and fine-tuning on domain-specific data.

By incorporating these advanced models, we aim
to further enhance the performance and capabili-
ties of our system, leveraging the rich information
present in both textual and visual modalities.
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A Appendix
A.1 Dataset Statistics

In this paper, we conduct extensive experiments
on two well-known datasets, namely MMD and
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Dataset MMD v2 MMD v3 with DS
Dataset Stats Train Valid Test | Train | Valid | Test
Dialogs 105439 | 22595 | 22595 | 5478 | 1113 | 1174
Proportion 70% 15% 15% | 72% | 14% | 14%
Avg Rec Turns 5 5 5 6 6 6
Avg Pos Imgs 4 4 4 4 4 4
Avg Neg Imgs 616 618 994 628 | 632 | 989

Table 2: Statistics of the dataset by (Nie et al., 2019)
(MMD v2) and the subset with dialogue state annotation
(MMD v3 with DS).

Dataset
Dataset Stats
Dialogs
Proportion
Avg Rec Turns
Avg Pos Imgs
Avg Neg Imgs

SIMMC
Valid
1687
16%
4
2
22

Test
1687
16%
4
2
22

Train
7307
68%
4
2
22

Table 3: Statistics of the SIMMC dataset.

SIMMC. For further insights, detailed statistics are
provided in Table2 and Table3 respectively. Here,
“Avg Rec Turns” indicates the average number of
recommendations per dialog; and “Avg Pos Imgs”
denotes the number of correct recommendations
per turn whereas “Avg Neg Imgs” is the number of
distractors for evaluation.

A.2 TImplementation Details

We implement our proposed model using Py-
Torch library 3 and conduct our experiments on
1 NVIDIA V100 GPU with a mini-batch size 64
and 50 epochs. Adam (Kingma and Ba, 2014) is
adopted as the optimizer, with the initial learning
rate 5 x 10~ and the linear learning rate sched-
uler (Goyal et al., 2017) is used. Additionally, the
dimension of the initial word embedding is set to
768, and the dimension of the initial image embed-
ding is set to 512. The dimension of both context
representation and product representation are set
to 768. The number of layers of all transformer
based encoders and decoders are set to 3, the num-
ber of attention heads in the multi-head attention
is 8 and the inner-layer size is 768. We set all
dropout rate to 0.1 (Srivastava et al., 2014), and «
to 0.5 (Section 4). Moreover, we use 5 turns prior
to the current turn as the context with the maximum
sentence length of 30 and the maximum number
of historical images to 5. It is worth mentioning
that although both £i5¢¢her and L£3tudent contain
Ljs and L.o—sim, such losses are calculated by
the teacher model and deactivated by the student
model on Dr. These losses are only activated for
the student model on Dp.

3https://pytorch.org/
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MMD

Method P@s R@5 NDCG@5 | P@10 R@10 NDCG@10 | P@20 R@20 NDCG @20
wlo co_sim | 38.84::1.98 | 45.024:2.29 | 43.90£3.51 | 21.874:0.92 | 50.84:£2.21 | 46524321 | 12.114:044 | 56.47£2.11 | 48.5543.04
wioMSE | 59.26:£1.14 | 69.6641.34 | 68.46:£1.66 | 31.33£0.52 | 73.79+1.25 | 70.21£1.22 | 16314027 | 76.91£1.30 | 71.30+1.16
wlo IS 63264209 | 74.48£2.65 | 74.8543.56 | 32.79+0.85 | 77.2842.16 | 76.05+3.33 | 16.96::0.37 | 80.014:1.90 | 76.99+3.23
SeMANTIC | 63.87:£0.39 | 75.1920.54 | 75.87£0.71 | 32.96:0.16 | 77.712:0.53 | 76.940.72 | 17.06:0.09 | 80.52::0.47 | 77.91+0.71
SIMMC
wlo co_sim | 31.7920.26 | 86314027 | 75.16:0.13 | 17.124:0.07 | 94.64:0.19 | 78.100.18 | 9.31£0.02 | 97.28::0.04 | 80.624:0.41
w/oMSE | 31.0320.19 | 86.44:£0.36 | 75.23£0.48 | 17.1940.02 | 94.74:£0.13 | 78.00£0.42 | 9.310.01 | 97.18£0.11 | 80.7320.39
wlo IS 31.2740.37 | 87.01£0.80 | 76.74=1.15 | 17.2140.10 | 95.38::0.46 | 79342099 | 9.34:£0.01 | 98.33:0.06 | 81.09+:0.88
SeMANTIC | 31.99+0.33 | 87.14+0.71 | 76.824:0.87 | 17.85::0.09 | 95.45:0.41 | 79.96::0.75 | 9.35:£0.01 | 98.99:0.14 | 81.04::0.64
Table 4: Effect of different loss functions.

Param o | R@5 R@10 R@20 “ -

a=0.1 |[7357+£1.59 | 74.81£1.64 | 75.85+1.55 ’ -

a=03 74.04£1.64 | 75.27£1.69 | 76.224+1.67 -

a=0.5 75.87£0.71 | 76.9440.72 | 77.914+0.71

a=0.7 75.65+1.71 | 76.77£1.79 | 77.74%£1.73 “ “

a=09 75.69+0.78 | 76.914+0.61 | 77.8440.60 w -

Table 5: The results with different o on MMD v3.

For baseline methods, we adhere to a standard-
ized approach which adopts the default configura-
tions as set in the original papers. By doing so, we
ensure a consistent and accurate comparison with
the established methodology.

A.3 Supplementary Material

A.3.1 Ablation Study

We further extend the ablation study to SIMMC
dataset and Table 4 showcases more details of the
impact of different loss types on SeMANTIC.

A.3.2 Effect of Hyper-parameter o

To study the effect of hyper-parameter «, we did
several experiments with different « on MMD/ v3.
The results with different v are given in Table5,
which shows that our method is not sensitive to a.

A.3.3 Effect of Dialog States on SIMMC

As mentioned in Section5.3, to study whether the
incorporation of dialog states into baselines can
help improve performance of such methods, we
did experiments on MMD-v3. Here, we further
extend the experiments to SIMMC, and the results
are provided in Figure8.

A.4 Ethics and Broader Impacts

Our work is conducted using simulated data (pub-
lished datasets), similar to previous studies (Zhang
et al., 2021; Saha et al., 2018; Cui et al., 2019; Nie
et al., 2021, 2019), and does not involve the use of

w/o ds
w/ ds

w/o ds
w/ ds

MHRED  MAGIC LARCH  TREASURE  SeMANTIC MHRED  MAGIC  LARCH  TREASURE SeMANTIC

Figure 8: The impacts of dialog states on SIMMC.

any user-sensitive information. The purpose of our
research is to develop and evaluate a multimodal
conversational recommendation system in a low
resource setting.

We recommend following data protection guide-
lines and regulations when applying our method
in real platforms. It is crucial to obtain user agree-
ments and informed consent before analyzing user
requests or engaging in any data collection activ-
ities. This can be achieved through agree-upon
interviews, and perform data simulation instead of
using real conversations.
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