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ABSTRACT

For learning with noisy labels, the transition matrix, which explicitly models the
relation between noisy label distribution and clean label distribution, has been uti-
lized to achieve the statistical consistency of either the classifier or the risk. Previ-
ous researches have focused more on how to estimate this transition matrix well,
rather than how to utilize it. We propose good utilization of the transition ma-
trix is crucial and suggest a new utilization method based on resampling, coined
RENT. Specifically, we first demonstrate current utilizations can have potential
limitations for implementation. As an extension to Reweighting, we suggest the
Dirichlet distribution-based per-sample Weight Sampling (DWS) framework, and
compare reweighting and resampling under DWS framework. With the analy-
ses from DWS, we propose RENT, a REsampling method with Noise Transition
matrix. Empirically, RENT consistently outperforms existing transition matrix
utilization methods, which includes reweighting, on various benchmark datasets.
Our code is available at https://github.com/BaeHeeSun/RENT.

1 INTRODUCTION

The success of deep neural networks heavily depends on a large-sized dataset with accurate anno-
tations (Daniely & Granot, 2019; Berthon et al., 2021). However, creating such a large dataset is
arduous and inevitably affected by human errors in annotations, referred to as noisy labels. It causes
model performance degradation (Arpit et al., 2017; Zhang et al., 2021a;b), and studies have been
suggested to solve this degradation (Zhang & Sabuncu, 2018; Li et al., 2020; Wang et al., 2021; Wei
et al., 2021b; Bae et al., 2022; Na et al., 2024). Among various treatments, one prominent approach
is to estimate the transition matrix from true labels to noisy labels (Patrini et al., 2017).

Transition matrix explicitly models the relation between noisy labels and the latent clean labels (Yao
et al., 2020; Li et al., 2021). It means that the transition matrix provides a probability that a given
true label is transitioned to another noisy label, where the true label is unknown in our setting. With
this transition matrix, a trainer can ensure statistical consistency either to the true classifier (Patrini
et al., 2017) or to the true risk (Liu & Tao, 2015) ideally. Since this information is unknown when
learning with noisy label, previous transition matrix related studies have focused on the accurate
estimation of transition matrix (Li et al., 2021; Cheng et al., 2022).

Even if we assume that the transition matrix is accurately estimated, how we utilize the transition
matrix can also impact the performance. Forward (Patrini et al., 2017) is one of the general risk
structures for utilizing the transition matrix (Zhu et al., 2021; Yang et al., 2022). It trains a classifier
by minimizing the divergence between the noisy label distribution and the classifier output weighted
by the transition matrix. Other ways of transition matrix utilization include Reweighting (Liu &
Tao, 2015; Xia et al., 2019). Reweighting employs an importance-sampling technique, ensuring
statistical consistency of the empirical risk to the true risk. However, in practice, the empirical risk of
Reweighting can also deviate from the true risk because the estimation of per-sample weights relies
on the imperfect classifier’s output. In other words, when the classifier’s output cannot accurately
estimate per-sample weights, it can lead to a potential mismatch between the estimated empirical risk
and the true risk, compromising the effectiveness of reweighting as a transition matrix utilization.

Recently, An et al. (2020) suggested that resampling outperforms reweighting for correcting dataset
sampling bias. Motivated by the potential benefit of resampling over reweighting, we introduce an
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Figure 1: Dirichlet distribution-based per-sample Weight Sampling with shape parameter α and the
mean vector µ. Image at the vertices of yellow triangles represents data instance. Blocks above the
images represent true Class, noisy Label. Sides are implementation example of sampled w. w(1)

assigns weights to all data (Reweighting), while w(2) simulates resampling refined dataset (RENT).

extended framework, Dirichlet distribution-based per-sample Weights Sampling (DWS), to encom-
pass both resampling and reweighting. Figure 1 shows an implementation example of our frame-
work. w(1) and w(2) are sampled weight vectors from different Dirichlet distributions with the same
mean. They represent different properties by the shape parameter, α. These weights are represented
as reweighting and resampling in implementation, as each side of the figure.

We then analyze the impact of α on DWS. First, α affects the variance of risk and smaller α means
larger variance. When variance of the risk increases, it showed performance improvement accord-
ing to Lin et al. (2022) empirically, so we expect better performance with small α. Second, the
Mahalanobis distance between the true weight vector and the mean of per-sample weights sampling
distribution is proportional to the square root of α, emphasizing the merit of small α. Finally, α is
related to label perturbation. This label perturbation aligns with Chen et al. (2020), who proposes
label perturbation during training can reproduce better performance for learning with noisy label.

This analysis on the impact of α under DWS framework finally explains the differences between
resampling and reweighting. It provides theoretical rationale behind the superior performance of
resampling over reweighting for learning with noisy label. It leads us to introduce RENT, the first
REsampling method to utilize the Noise Transition matrix. RENT empirically shows better perfor-
mance for T utilization when combined with various T estimation methods.

In summary, the contributions of this paper are as follows.

1) We suggest DWS, which samples per-sample weight vectors from the Dirichlet distribution.

2) With DWS, we can express reweighting and resampling in a unified framework and demonstrate
resampling can be better than reweighting for learning with noisy label.

3) Under this situation, we suggest RENT, which resamples dataset with the transition matrix. RENT
empirically shows good performance, suggesting a new transition matrix utilization method.

2 TRANSITION MATRIX FOR LEARNING WITH NOISY LABEL

2.1 PROBLEM DEFINITION: LEARNING WITH NOISY LABEL

This paper considers a classification task with C classes. Let the uppercase, e.g. (X,Y ), be a
random variable and the corresponding lowercase, e.g. (x, y), denote a realized instance. We define
an input as X ∈ X and a true label as Y ∈ Y , where X ⊂ Rd and Y = {1, ..., C}, respectively.
Ỹ ∈ Y represents a noisy label. D̃ = {(xi, ỹi)}Ni=1 is the dataset with noisy labels. The model is
fθ(x) = σ (g (x; θ)), parameterized by θ. g : Rd → RC is a mapping function and σ(·) is a softmax
function. The objective is to find the optimal classifier f∗

θ which minimizes the true risk as:

f∗
θ = argminfθ

Rl(fθ), with Rl(fθ) := E(x,y)∼p(X,Y ) [l (fθ(x), y)] (1)

l(·, ·) is a loss function that measures the prediction quality of the label. For simplicity, we denote
Rl(fθ) as Rl, omitting fθ unless otherwise specified. Since D̃ contains noisy labels, the empirical
risk function using D̃, denoted as R̃emp

l := 1
N

∑N
i=1 l (fθ (xi) , ỹi), does not converge to the true
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risk Rl. It implies that f∗
θ cannot be accurately approximated by minimizing R̃emp

l . Therefore, our
objective is to minimize Rl, or training fθ to approximate p(Y |X = x), by learning with D̃. Please
refer to Appendix B for more studies related to learning with noisy label task.

2.2 TRANSITION MATRIX FOR LEARNING WITH NOISY LABEL

When there are C classes, the noisy label generation process can be explained with a matrix T ∈
[0, 1]C×C , whose entry Tjk is the probability of a clean label k being flipped to a noisy label j. In
other words, a noisy label ỹi is the sampling result from clean label yi with its flip probability as
p(Ỹ = ỹi|Y = yi). Here, this matrix, T , has been referred to as the transition matrix in noisy label
community (Patrini et al., 2017; Yao et al., 2021).1 Then, the noisy label distribution, from which
the noisy labelled dataset are sampled, can be expressed as Eq. 2.

p(Ỹ |x) = T (x)p(Y |x) with Tjk(x) = p(Ỹ = j|Y = k, x) ∀j, k = 1, ..., C (2)

Here, p(·|·) is vector and p(·|·) is scalar. Either p(Y |x) or p(Ỹ |x) can be calculated from the other
if T is given.2 With this property, previous studies utilizing the transition matrix have been able to
explain the statistical consistency of their classifier (Li et al., 2021; Cheng et al., 2022) or risk (Liu
& Tao, 2015; Patrini et al., 2017; Liu et al., 2023) to their true counterpart. The problem is that true
T is unknown, and previous studies have focused on estimating the good transition matrix (Patrini
et al., 2017; Xia et al., 2020; Zhang et al., 2021b; Zhu et al., 2021; 2022).

While we acknowledge the importance of estimating T , this paper emphasizes the utilization phase
of T in its research scope. Modifying R̃emp

l is essential for training fθ to minimize Eq. 1 when
only T and D̃ are available. We explicitly refer to this as T utilization, which means, we divide the
transition matrix based fθ training into two phases: 1) T estimation and 2) T utilization. Empirically,
T utilization impacts the model performance significantly, underscoring the importance of utilization
phase. The following section analyzes the previous researches on T utilization, and we demonstrate
that current practices on T utilization inherits significant drawbacks in actual deployments.

2.3 UTILIZING TRANSITION MATRIX FOR LEARNING WITH NOISY LABEL

In this section, assume that true T is accessible for the sake of analyzing T utilization. Until now,
three directions have been proposed for T utilization (Patrini et al., 2017; Liu & Tao, 2015). Each
methodology claims that it guarantees a specific type of statistical consistency, either to the classifier
or the risk. However, there are cases when this ideal consistency is empirically hard to be achieved,
and this section analyzes such practical situations without ideal consistency. We consider l as Cross
Entropy loss, which is generally used for classification. Remp

l,· denotes the empirical risk of Rl,·.

1) Forward (Patrini et al., 2017) risk minimizes the gap between Ỹ and Tfθ(X) as Rl,F =

Ep(X,Ỹ )

[
l
(
Tfθ(X), Ỹ

)]
. The learned fθ is statistically consistent to the optimal classifier f∗

θ .

However, fθ trained with Remp
l,F can be different from f∗

θ . According to Zhang et al. (2021b), the
gap between p(Ỹ |x) and the noisy label probability distribution approximated from D̃ can be high.
We specify the impact of this gap, ϵ( ̸= 0), to the classifier as f∗

θ (x)− fθ(x) = T−1ϵ ̸= 0. It means
that if p(Ỹ |x) is not estimated accurately, the deviation of fθ from f∗

θ is inevitable for classifier
consistency. Please check Appendix C also for more discussions regarding this issue.

2) Backward (Patrini et al., 2017) risk is Rl,B = Ep(X,Ỹ )

[
l(X)T−1

]
with l(X) =

[l (fθ(X), 1) , ..., l (fθ(X), C)]. As p(Y |X) = T−1p(Ỹ |X), Rl,B is statistically consistent to Rl.
However, optimizing Remp

l,B can lead to unstable performances as reported in Patrini et al. (2017).

3) Reweighting (Liu & Tao, 2015; Xia et al., 2019) risk computes per-sample weights based on the
likelihood ratio (Kahn & Marshall, 1953), for the noisy label classification as:
Rl,RW = Ep(X,Ỹ )

[
p(Y=Ỹ |X)
(Tp(Y |X))Ỹ

l
(
fθ(X), Ỹ

)]
. Here, (·)c means the c−th cell value of the vector.

Remp
l,RW would be expressed as

∑N
i=1

1
N

fθ(xi)ỹi
(Tfθ(xi))ỹi

l(fθ(xi), ỹi).

1We define the transition matrix as Eq. 2 for mathematical correctness. Appendix B.2 for more explanations.
2Since it is natural assuming the dependency of T on the input, we consider the transition matrix of x as

T (x). In this paper, we omit x from T (x), denoting as T for convenience.
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By applying importance sampling (Kahn & Marshall, 1953; Katharopoulos & Fleuret, 2018) to
T utilization, Reweighting does not suffer from unstable optimization as Backward. However,
the problem is that p(Y |X) is required as a component for per-sample weight, where estimating
p(Y |X) serves as the final objective. While previous studies (Liu & Tao, 2015; Berthon et al., 2021)
have estimated p(Y |X) from the on-training classifier’s output, this estimation can be inaccurate.

3 DWS: DIRICHLET-BASED PER-SAMPLE WEIGHT SAMPLING

In this section, we suggest a new framework, DWS, which incorporates per-sample Weight Sampling
based on the Dirichlet distribution. Through this incorporation, we interpret sample reweighting and
resampling by a single framework, facilitating the direct comparison of both methods. Then, we
analyze the impact of the shape parameter in the Dirichlet distribution, from which the per-sample
weights are generated, to empirical risk. With these analyses, we propose resampling can be a better
choice than reweighting based on two characteristics: the closeness between the mean of the per-
sample weight distribution and the true weight; and the label perturbation nature of resampling when
it is explained by DWS. Finally, we introduce our method, RENT, which becomes a resampling-
based approach for learning with noisy label.

3.1 DIRICHLET-BASED WEIGHT SAMPLING

=0.1 =10 =170

Figure 2: Density plot of Dir(αµ) with different
α. µ is set as [0.7,0.2,0.1] for this illustration.
Star (⋆) denotes the mean (µ). Note that this value
is invariant to α. Yellow denotes lower density,
while it becomes denser progressively with violet.

Let Dir(αµ) be the Dirichlet distribution with
parameters α ∈ R and µ ∈ RN . α is a scalar
concentration parameter and µ is a base mea-
sure with

∑N
i=1 µi is equal to 1. α, µ1, ..., µN

are positive values by the definition. Figure 2
illustrates properties of the Dirichlet distribu-
tion. As depicted in the figure, instances drawn
from the distribution with small α tend to clus-
ter around the vertices of a simplex (the left-
most). The sampling frequencies for each di-
mension converge to the mean value of that di-
mension. In contrast, as α increases, a greater proportion of samples from the Dirichlet distribution
will exhibit vectors that are in proximity to the mean vector (the rightmost).

Now, consider the property of reweighting and resampling. Reweighting multiplies pre-defined per-
sample weight values to the loss of each sample, indicating the importance of each sample. On the
other hand, resampling alters the composition of the dataset by assigning an importance value to each
sample via its sampling ratio. By interpreting not selecting as assigning 0 weight value to a specific
sample, resampling can be perceived as a process of per-sample weight vector sampling that exhibits
concentration toward a specific dimension. Consequently, we suggest that both reweighting and
resampling can be interpreted in the Dirichlet-based per-sample weight sampling (DWS) framework.

Remp
l,DWS :=

1

M

M∑
j=1

N∑
i=1

wj
i l(fθ(xi), ỹi), with wj ∼ Dir(αµ) (3)

Here, wj ∈ RN is j-th sample following Dir(αµ) and wj = [wj
1, ..., w

j
N ]. M is the number of

sampling w. With Eq. 3, per-sample weight parameters of existing Reweighting can be considered
as the sampled weights from the Dirichlet distribution whose α → +∞. Also, resampling can be
interpreted as the reweighting method with sampled weights from the distribution with its α → 0.
In other words, we integrate both reweighting and resampling as Eq. 3, providing a way to compare
these two distinct importance sampling based techniques comprehensively.

3.2 ANALYZING DWS FOR LEARNING WITH NOISY LABEL

Following Section 3.1, α controls the property of w. Therefore, analyzing the impact of α to Remp
l,DWS

is necessary for comparing several DWS cases with different α (i.e. reweighting, resampling).

V (wj
i ) and V (Remp

l,DWS) We start from the variance of wj
i as V (wj

i ) =
µi(1−µi)∑N
l=1 αµl+1

= µi(1−µi)
α+1 for

all i = 1, ..., N by definition. Here, V (wj
i ) converges to 0 as α→ +∞ (reweighting) and becomes
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larger with smaller α (if α→ 0, it represents resampling). According to Lin et al. (2022), increasing
the variance of the risk function can improve robustness when learning with noisy label empirically.
This study supports the robustness improvement of our framework, DWS with smaller α (or with
larger V (wj

i )) as Eq. 4. Let li = l(fθ(xi), ỹi), ∀i = 1, ..., N for convenience.

V (Remp
l,DWS) =

1

M2

M∑
j=1

 N∑
i=1

l2i V (wj
i ) +

∑
k ̸=i

lilkCov(wj
i , w

j
k)

 (4)

Note that our study is different from Lin et al. (2022) in that they focused on the impact of increasing
the variance of the risk function as a regularization to overfitting to noisy labels, while our objective
is to suggest a unified framework to explain reweighting and resampling.

Distance from the true weight Mean of per-sample weights vectors, µ, is approximated from
the on-training classifier. Therefore, it may be different from the true per-sample weight vector.
Let µ̃∗

i = p(Y=ỹi|xi)

p(Ỹ=ỹi|xi)
and µ∗ =

[
µ̃∗
i∑N

l=1 µ̃∗
l

, ...,
µ̃∗
N∑N

l=1 µ̃∗
l

]
. Note that the mean of per-sample weights

distribution can be approximated as the Gaussian distribution following central limit theorem (Dou-
glas C. Montgomery, 2013), since wj are i.i.d. sampled. It means w̄ = 1

M

∑M
j=1 w

j will follow
N (µ,Σ/M). Σ is the covariance matrix of Dir(αµ). We decompose Σ = S/(α + 1) as α and
α-invariant term S. Then we get Mahalanobis distance (Mahalanobis, 1936) between µ∗ and w̄ as:

dM (µ∗, w̄) =

√
(µ∗ − µ)

T

(
Σ

M

)−1

(µ∗ − µ) =

√
M(α+ 1) (µ∗ − µ)

T
S−1 (µ∗ − µ) (5)

The distance between µ∗ and per-sample weight distribution is proportional to the square root of α.
It means if µ∗ (true) and µ (estimated) is not the same, dM (µ∗, w̄) becomes smaller as α→ 0.

Noise injection of Remp
l,DWS Recent researches including Neelakantan et al. (2015) suggest that in-

jecting random noise to the training procedure can improve generalization, and it also works for
learning with noisy label (Chen et al., 2020; Wei et al., 2021a). Following the concept, we interpret
per-sample weights sampling as normally distributed noise injection during training, as Eq. 6. The
intensity of noise can be controlled with α (Full derivation of Eq. 6 is in Appendix D.1).

lim
N→∞

Remp
l,DWS =

N∑
i=1

µil(fθ(xi), ỹi) +

N∑
i=1

zil(fθ(xi), ỹi), with zi ∼ N
(
0,

µi(1− µi)

M(α+ 1)

)
(6)

Comparison to Previous Work Eq. 6 denotes Remp
l,DWS with N → ∞ can be similar to the risk of

SNL (Chen et al., 2020), who suggested label perturbation enhances the robustness for noisy label
learning. We compare details of DWS and SNL. Specifically, the empirical risk function of SNL is:

Remp
l,SNL =

N∑
i=1

l(fθ(xi)ỹi) + σ

N∑
i=1

C∑
k=1

zikl (fθ(xi), k) , zik ∼ N (0, 1) (7)

In the above, σ is a hyperparameter and zik is a perturbation noise from standard Normal distribution.
Eq. 6 and Eq. 7 are similar in three points. First, risks are decomposed into two parts: the static risk
(the former) and the stochastic noise (the latter). Second, the mean of noise (E[z]) are 0; and third,
considering the noise parts (the latter part), they are composed as the multiplication of l(·, ·) and z.

On the other hand, Remp
l,DWS and Remp

l,SNL differ as follows. First, Remp
l,Dir reflects distribution shift be-

tween noisy and true label through µi, while Remp
l,SNL does not. This means that E[Remp

l,SNL] can differ
from Rl. Second, the distributions of zi for Remp

l,DWS are not identical, unlike Remp
l,SNL. Since the vari-

ance term in Eq. 6 increases with an increase in µi(≤ 0.5), it introduces instance-wise adaptive
perturbations. This results in larger perturbations applied to confident samples, mitigating overfit-
ting, while smaller perturbations to less confident samples, thereby preserving the training process.
To empirically assess the difference between Remp

l,DWS and Remp
l,SNL, we compare the performance of

the two risks and the noise injection to Reweighting in Section 4.4 and Appendix F.4.

Analyzing the impact of α to Remp
l,DWS, smaller α can be beneficial. This also aligns with the experi-

mental results in Section 4.3 and Appendix F.3, showing good performance with α→ 0 empirically.
Based on these analyses, we suggest a resampling to utilize transition matrix in the following section.
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3.3 RENT: RESAMPLE FROM NOISE TRANSITION

This section proposes REsampling method to utilize Noise Transition matrix in this section. To our
knowledge, this is the first resampling study on noisy label classifications. Inspired by the concept
of Sampling-Importance-Resampling (SIR) (Rubin, 1988; Smith & Gelfand, 1992), RENT involves
resampling each data instance from the noisy-labelled dataset based on the calculated importance.
Algorithm 1 outlines the process of RENT.3

Algorithm 1: REsampling utilizing the Noise Transition matrix (RENT)

Input: Dataset D̃ = {xi, ỹi}Ni=1, classifier fθ, Transition matrix T , Resampling budget M
Output: Updated fθ

while fθ not converge do
Get µ̃i = fθ(xi)ỹi

/
(Tfθ(xi))ỹi for all i

Construct Categorical distribution πN = Cat( µ̃1∑N
l=1 µ̃l

, ... µ̃N∑N
l=1 µ̃l

)

Independently sample (x1, ỹ1), ..., (xM , ỹM ) from πN

Update fθ by θ ← θ −∇θ
1
M

∑M
j=1 l(fθ(xj), ỹj)

end

With the number of sampling as a hyperparameter, we fix M = N for experiments unless specified
otherwise. We provide the ablation study on M in Section 4.6. Also, we conducted resampling based
on mini-batch for implementation. We provide ablation for this sampling strategy in Appendix F.6.
The empirical risk function of the resampled dataset is expressed as Eq. 8.

Remp
l,RENT :=

1

M

N∑
i=1

nil(fθ(xi), ỹi), where [n1, ..., nN ] ∼ Multi(M ;
µ̃1∑N
l=1 µ̃l

, ...,
µ̃N∑N
l=1 µ̃l

) (8)

µ̃i = fθ(xi)ỹi

/
(Tfθ(xi))ỹi

.
∑M

j=1 w
j
i of Eq. 3 with α → 0 can be interpreted as ni in Eq. 8. In

other words, this multinomial distribution can be interpreted as a distribution instance sampled from
the Dirichlet distribution with a shape parameter, α, according to Dirichlet-based Weight Sampling.

Next, we focus on the property of the dataset sampled with RENT. With proposition 3.1, we demon-
strate that Remp

l,RENT satisfies statistical consistency to the true risk. It means that a dataset sampled
from RENT can be regarded as i.i.d. sampled instances from the true clean label distribution, im-
plying the possibility of RENT to build the noise-filtered dataset from the noisy-labelled dataset.
Proposition 3.1. If µ∗ is accessible, Remp

l,RENT is statistically consistent to Rl (Proof: Appendix D.3).

4 EXPERIMENT

4.1 IMPLEMENTATION

Datasets and Training Details We evaluate our method, RENT, on CIFAR10 and CIFAR100
(Krizhevsky & Hinton, 2009) with synthetic label noise and two real-world noisy dataset, CIFAR-
10N (Wei et al., 2022) and Clothing1M (Xiao et al., 2015). The label noise in our experiments
include 1) Symmetric flipping (Yao et al., 2020; Li et al., 2021; Bae et al., 2022) and 2) Asymmetric
flipping (Li et al., 2020; Liu et al., 2020; Bae et al., 2022), marked as SN and ASN, respectively.
CIFAR-10N is a real-world noisy-labelled dataset, with its label from Amazon M-turk. Clothing1M
is another real-world noisy-labelled dataset with 1M images. For training, we report results with 5
times replications unless specified. See appendix F.1 for more implementation details.

T Estimation Baselines As RENT is a method for T utilization, estimating T is a prerequisite.
To check the adaptability of RENT over the different estimation of T , we apply Forward (Patrini
et al., 2017), DualT (Yao et al., 2020), TV (Zhang et al., 2021b), VolMinNet (Li et al., 2021) and
Cycle (Cheng et al., 2022) as estimation methods on the experiments. For real-world label noise,
we added PDN (Xia et al., 2020) and BLTM (Yang et al., 2022) as baselines for instance dependent

3We show the process of DWS on Appendix E.
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Table 1: Test accuracies on CIFAR10 and CIFAR100 with various label noise settings. − represents
the training failure case. Bold is the best accuracy for each setting.

CIFAR10 CIFAR100
Base Risk SN 20% SN 50% ASN 20% ASN 40% SN 20% SN 50% ASN 20% ASN 40%

CE ✗ 73.4±0.4 46.6±0.7 78.4±0.2 69.7±1.3 33.7±1.2 18.5±0.7 36.9±1.1 27.3±0.4

w/ FL 73.8±0.3 58.8±0.3 79.2±0.6 74.2±0.5 30.7±2.8 15.5±0.4 34.2±1.2 25.8±1.4

Forward w/ RW 74.5±0.8 62.6±1.0 79.6±1.1 73.1±1.7 37.2±2.6 23.5±11.3 27.2±13.2 27.3±1.3

w/ RENT 78.7±0.3 69.0±0.1 82.0±0.5 77.8±0.5 38.9±1.2 28.9±1.1 38.4±0.7 30.4±0.3

w/ FL 79.9±0.5 71.8±0.3 82.9±0.2 77.7±0.6 35.2±0.4 23.4±1.0 38.3±0.4 28.4±2.6

DualT w/ RW 80.6±0.6 74.1±0.7 82.5±0.2 77.9±0.4 38.5±1.0 12.0±13.5 38.5±1.6 24.0±11.6

w/ RENT 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

w/ FL 74.0±0.5 50.4±0.6 78.1±1.3 71.6±0.3 34.5±1.4 21.0±1.4 33.9±3.6 28.7±0.8

TV w/ RW 73.7±0.9 48.5±4.1 77.3±2.0 70.2±1.0 32.3±1.0 17.8±2.0 32.0±1.5 23.2±0.9

w/ RENT 78.8±0.8 62.5±1.8 81.0±0.4 74.0±0.5 34.0±0.9 20.0±0.6 34.0±0.2 25.5±0.4

w/ FL 74.1±0.2 46.1±2.7 78.8±0.5 69.5±0.3 29.1±1.5 25.4±0.8 22.6±1.3 14.0±0.9

VolMinNet w/ RW 74.2±0.5 50.6±6.4 78.6±0.5 70.4±0.8 36.9±1.2 24.4±3.0 34.9±1.3 26.5±0.9

w/ RENT 79.4±0.3 62.6±1.3 80.8±0.5 74.0±0.4 35.8±0.9 29.3±0.5 36.1±0.7 31.0±0.8

w/ FL 81.6±0.5 − 82.8±0.4 54.3±0.3 39.9±2.8 − 39.4±0.2 31.3±1.2

Cycle w/ RW 80.2±0.2 57.0±3.4 78.1±0.9 70.6±1.1 37.8±2.7 30.2±0.6 38.1±1.6 29.3±0.6

w/ RENT 82.5±0.2 70.4±0.3 81.5±0.1 70.2±0.7 40.7±0.4 32.4±0.4 40.7±0.7 32.2±0.6

True T
w/ FL 76.7±0.2 57.4±1.3 75.0±11.9 70.7±8.6 34.3±0.5 22.0±1.5 35.8±0.5 31.9±1.0

w/ RW 76.2±0.3 58.6±1.2 − − 35.0±0.8 21.8±0.8 21.3±16.6 21.6±10.4

w/ RENT 79.8±0.2 66.8±0.6 82.4±0.4 78.4±0.3 36.1±1.1 24.0±0.3 34.4±0.9 27.2±0.6

Table 2: Test accuracies on CIFAR-10N and Clothing1M. Due to the space issue, we report perfor-
mances only from parts of the baselines. Please refer to Appendix F.2 for more results.

CIFAR-10N Clothing1M
Base Risk Aggre Ran1 Ran2 Ran3 Worse
CE ✗ 80.8±0.4 75.6±0.3 75.3±0.4 75.6±0.6 60.4±0.4 66.9±0.8

w/ FL 79.6±1.8 76.1±0.8 76.4±0.4 76.0±0.2 64.5±1.0 67.1±0.1

Forward w/ RW 80.7±0.5 75.8±0.3 76.0±0.5 75.8±0.6 63.9±0.7 66.8±1.1

w/ RENT 80.8±0.8 77.7±0.4 77.5±0.4 77.2±0.6 68.0±0.9 68.2±0.6

w/ FL 79.8±0.6 74.5±0.4 74.5±0.5 74.3±0.3 57.5±1.3 64.9±0.4

PDN w/ RW 80.6±0.8 74.9±0.7 73.9±0.7 74.4±0.8 58.7±0.5 −
w/ RENT 80.2±0.6 75.2±0.7 75.0±1.1 75.7±0.4 61.6±1.6 67.2±0.2

w/ FL 81.5±0.7 78.1±0.3 77.5±0.6 77.8±0.5 65.8±1.0 67.2±0.8

BLTM w/ RW 54.0±33.9 64.4±27.0 50.9±32.9 38.0±32.4 43.5±28.1 67.0±0.4

w/ RENT 80.8±2.1 79.1±0.9 78.9±1.1 79.6±0.6 69.7±2.0 70.0±0.4

transition matrix. To avoid the confusion, we denote Forward utilization explained in Section 2.3 as
FL and the T estimation method from Patrini et al. (2017) as Forward from now on. Also, we denote
Reweighting utilization as RW for convenience. Please check Appendix F.1 for more explanations.

4.2 CLASSIFICATION ACCURACY

We compare FL, RW and RENT by applying each method to the various T estimation methods.
Table 1 shows the test accuracies of the classifiers trained with noisy-labelled CIFAR10 and CI-
FAR100.4 Experiments are conducted with 1) estimated T and 2) true T . First, RENT consistently
outperforms FL in 42 out of 48 cases, as shown in the table. This demonstrates that RENT can
improve performances of transition-based methods. It is noteworthy that the performance gaps be-
tween RENT and FL become larger in settings with higher noise ratios. Next, RENT outperforms
RW in all cases except for two cases. Note that the performance gap between RW and RENT is
marginal in the cases where RW is better, while the gap is significant when RENT exceeds RW.

Table 2 shows test accuracies for CIFAR-10N and Clothing1M. Again, RENT shows consistent
improvement over the baselines for T utilization for real-world noisy labelled dataset. Please check
Appendix F.2 also for more experimental outputs including results over diverse T estimations.

4Some reported performances on this paper are different from those of the original paper. We unified
experimental settings, e.g. network structures, epochs, etc, that were varied in previous studies. This setting
discrepancy resulted in the changes, and we provide more details in Appendix F.2.
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4.3 IMPACT OF α TO DWS
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Figure 3: Test accuracy with regard to various α
for CIFAR10. (Star (⋆) is RENT and Cross (x)
means RW, respectively.)

As we demonstrated in Section 3.1, Remp
l,DWS

would be able to explain from Remp
l,RW to Remp

l,RENT
with α adjustment. Also, we explained the im-
pact of α to DWS in Section 3.2. Here, we
report the model performances with various α
empirically 5, along with RW and RENT. As
we can see in figure 3, there is an increas-
ing trend of test accuracy with smaller α, and
RENT shows the best performance for all cases
consistently. It certainly aligns with the supe-
rior performances of RENT over RW, explain-
ing the benefits of introducing the variance to
per-sample weights term empirically. Please re-
fer to Appendix F.3 for more results.

4.4 NOISE INJECTION IMPACT OF RENT
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Figure 4: Test accuracies over various σ for
CIFAR10. RW+ϵ denotes the integration of
RW and the label perturbation technique.

As in section 3.2, Remp
l,DWS and Remp

l,SNL shares similar
form in their structures, and we compare the perfor-
mance of DWS and SNL in this section. Specifically,
we report the performance of RENT, α → 0 ver-
sion of DWS. Since there is a difference in the static
risk term between Remp

l,SNL and Remp
l,DWS, we addition-

ally implement the label perturbation technique sug-
gested in the SNL paper (Chen et al., 2020) to RW
for fair comparison. In figure 4, RENT consistently
outperforms SNL, implying label perturbation alone
may be insufficient for managing noisy label. Fur-
thermore, RENT performs better or comparably with
RW+ϵ, indicating that RENT implicitly injects ade-
quate noise during training process. Note that RW+ϵ
is highly sensitive to the value of σ, so a simple combination of RW and label perturbation technique
may not be enough for wide adaptation. Please check Appendix F.4 also for more results.

4.5 OUTCOME ANALYSES OF RENT
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Figure 5: Histogram of wi, of RENT on CI-
FAR10. Cycle for T estimation. Blue and or-
ange represents samples with clean and noisy
labels, respectively. Vertical dotted line de-
notes 1/B.

wi value Samples with noisy labels should have
weight values close to zero ideally, indicating their
exclusion. We analyze the statistics of wi after train-
ing in figure 5. It shows more than 80% of noisy
labelled samples will be excluded.

We also provide statistics on the number of clean and
noisy samples whose categorical distribution param-
eter is greater or smaller than 1/B, respectively. For
i.i.d. sampling within a mini-batch (B represents the
number of samples in the batch), all samples have
the same weight value of 1/B. If the normalized w̃i

for (xi, ỹi) is smaller than 1/B, it indicates that the
sample is less likely to be selected compared to the
i.i.d. sampling. The presence of a large number of
clean samples at the oversampling region and the concentration of noisy samples near zero support
that fθ trained with RENT effectively resamples clean samples when trained on a noisy label.

5We tested over α ∈ [0.1, 0.2, 0.5, 1.0, 10.0, 100.0, 1000.0].
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Figure 6: Training data with incorrect labels
divided by the confidence (threshold=0.5).
Cycle for T estimation, on CIFAR10.

Confidence of wrong labelled samples Next, we
focus on the confidence value of samples with incor-
rect labels. We compare the number of samples with
incorrect labels based on the confidence of the mod-
els trained using RW and RENT in figure 6. Two
sets in the figure are distinguished by the threshold
(0.5 in our experiment). It shows a larger propor-
tion of noisy samples is in the Uncertain group when
the model is trained with RENT. It implies that RW
is more prone to fitting to noisy label, meaning the
model memorizes incorrect labels during training.
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Figure 7: Resampled dataset evaluation. Cy-
cle for T estimation, on CIFAR 10.

Resampled dataset quality We then analyze the
quality of resampled instances by measuring their
precision, recall and F1 score. Here, precision and
recall can be recognized as the clarity and cover-
age of the resampled dataset, respectively. Fig-
ure 7 shows the efficacy of RENT over the base-
lines (FINE (Kim et al., 2021) and MCD (Lee
et al., 2019)) considering the quality of resampled
instances. RENT consistently surpasses the base-
lines in F1 score, meaning RENT resamples clean
yet diverse samples well.

Please check Appendix F.5 also for more results of
this section (Section 4.5).

4.6 ABLATION STUDY ON SAMPLING BUDGET
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Figure 8: Ablation of M on CIFAR10. Re-
sults from FL and RENT are denoted as dot-
ted line and bold line, respectively.

The size of the resampled dataset (M ) can be mod-
ified as a hyper-parameter. In practice, the sampling
size can be adjusted based on the user’s need, e.g.
computer memory is not enough to accommodate
the huge entire noisy dataset. As part of an ab-
lation study, we checked the classifier accuracy of
fθ when trained with different resampling budgets.
Intuitively, the model performance could be either
1) higher, as it reduces the probability to resample
noisy samples, or 2) lower, as it restricts the chance
for model to learn various data samples. Figure 8
illustrates the classification accuracy with different
resampling budget of M . The results tend to show
higher model performance for RENT compared to FL, and indicate that RENT performs well even
with smaller resampling budgets, suggesting for the further improvement of RENT.

For the ablation study regarding the sampling strategy, we report some results in Appendix F.6.

5 CONCLUSION

In this paper, we first decompose the training procedure for noisy label classification with the label
transition matrix T as estimation and utilization, underscoring the importance of adequate utiliza-
tion. Next, we present an alternative utilization of the label transition matrix T by resampling,
RENT. RENT ensures the statistical consistency of risk function to the true risk for data resampling
by utilizing T , yet it supports more robustness to learning with noisy label with the uncertainty on
per-sample weights terms. By interpreting resampling and reweighting in one framework through
Dirichlet distribution-based per-sample Weight Sampling (DWS), we integrated both techniques and
analyzed the success of resampling over reweighting in learning with noisy label. Our benchmark
experiments with synthetic and real-world label noises show consistent improvements over the ex-
isting T utilization methods as well as the reweighting methods.
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A ILLUSTRATION OF DWS IMPLEMENTATION EXAMPLE

Figure 9 shows an implementation example of our algorithm, DWS, as RW (previous) and RENT
(ours).

Dirichlet based per-sample Weight Sampling (DWS)

𝑹(𝒘𝟏) = (𝟏. 𝟎 + 𝟎. 𝟎 + 𝟎. 𝟎 )

𝒘 from 𝑫𝒊𝒓 𝛼(𝟏)𝝁

𝛼(1)→∞

M times of 
𝒘 Sampling

𝒘 from𝑫𝒊𝒓 𝛼(2)𝝁

𝛼(2)→𝟎

𝒘𝟏 = [1,0,0]

𝝁 = [𝟎. 𝟕, 𝟎. 𝟐, 𝟎. 𝟏]

RENT

𝒘𝑴 = [1,0,0]

M times of 
𝒘 Sampling

RW

𝒘𝑴−𝟏 = [0,1,0]

𝒘𝑴−𝟐 = [0,0,1]

𝒘𝑴−𝟑 = [1,0,0]

𝑹(𝒘𝟏) = (𝟎. 𝟕 + 𝟎. 𝟐 + 𝟎. 𝟏 )

𝒘𝟏 = [0.7,0.2,0.1]

𝒘𝑴 = [0.7,0.2,0.1]

𝒘𝑴−𝟏 = [0.7,0.2,0.1]

𝒘𝑴−𝟐 = [0.7,0.2,0.1]

𝒘𝑴−𝟑 = [0.7,0.2,0.1]

Figure 9: Dirichlet distribution-based per-sample Weight Sampling (DWS) with shape parameter α
and the mean vector µ. Similar to Figure 1, image at the vertices of yellow triangles represents data
instance. Blocks above the images represent Class (upper), Label (lower). Green means labels
are same as true class (clean) and Red means labels are different from true class (noisy). R(w†)
represents the risk function with w† as per-sample weight vector. Each colored box represents one
sampled w.

In DWS framework, we sample per-sample weights vectors, w for M times. Each sampled wj

becomes a per-sample weight vector. From the property of the Dirichlet distribution, if the shape
parameter α→∞, sampled w will be near to the mean vector. However, if α→ 0, sampled w will
be clustered to vertices. Due to the space issue, we showed only one sampled w in figure 1, while
we illustrate more times of per-sample weights sampling here.

B PREVIOUS STUDIES

We first explain previous studies for learning with noisy labels. Next, focusing on the studies utiliz-
ing the transition matrix, we summarize previous studies considering the estimation of the transition
matrix, which were not included in the main paper.

B.1 LEARNING WITH NOISY LABEL

Considering learning with noisy label, several directions have been suggested, including sample
selection (Han et al., 2018; Yu et al., 2019; Wei et al., 2020; Cheng et al., 2020), label correction
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(Tanaka et al., 2018; Li et al., 2020; Zheng et al., 2020; Wang et al., 2021) and robust loss (Zhang
& Sabuncu, 2018; Wang et al., 2019). Sample selection-based methods manage noisy-labelled in-
stances by setting the objective as removing them during training. For example, Han et al. (2018)
assumed that samples whose losses are small during training have clean labels. However, this will
cause learning bias toward early learned easy samples because the deep neural network will easily
overfit to those samples. As a solution, Han et al. (2018) proposes using two same-structured net-
works with different initialization point, and utilize the output of the other classifier as the metric to
decide whether to select or not each sample for training a classifier. However, since two different
classifiers have still finally converged to the same output, Yu et al. (2019) has proposed to select
samples when the outputs of the sample from the two different networks are different. It may solve
the problem of two different networks’ alignment considering the output of a sample after enough
time, it may not work better even than Han et al. (2018) since it selects too small portion of samples,
especially when the noise ratio is high. Wei et al. (2020) focused on this problem and they relieve
this limitation by updating two networks together with introducing the KL divergence between the
output of the two networks as regularization, making the output of two networks become closer
to true labels and that of their peer network’s. Cheng et al. (2020) selects samples with dynamic
threshold and regularize confidences of samples.

On the other hand, Label correction-based methods do not waste samples with recycling noisy-
labelled instances by relabelling them. For example, Tanaka et al. (2018) optimizes both the classi-
fier parameters and labels of data instances jointly, initialize the network parameters and train with
the modified labels again. Li et al. (2020) considers samples with large loss as unlabeled samples
and solve the noisy-labelled dataset problems utilizing semi-supervised learning techniques, giving
the noisy-labelled samples pseudo-labels. Zheng et al. (2020) calculates the likelihood ratio between
the classifier’s confidence on noisy label and its confidence on its (assumed) true label prediction as
its threshold to configure clean labeled dataset, and corrects the label into the prediction for samples
with low likelihood ratio iteratively. Wang et al. (2021) analyzes several types of label modification
approaches and suggests label correction regularization hyperparameter depending both on learning
time stage and confidence of a sample.

Studies modeling the loss function which is more robust to noisy label include Zhang & Sabuncu
(2018), which combine the advantages of the mean absolute loss (MAE) and the cross entropy loss
(CE) and Wang et al. (2019), which adds the original cross entropy and reverse cross entropy. Apart
from that, studies like Liu et al. (2020) relies on the fact that the deep neural networks memorize the
noisy labels slowly, and they regularize the network not to memorize the noisy labels by maximizing
the inner product between the model output and the weighted outputs of previous epochs.

Although these studies would show good performances empirically, these studies cannot ensure
statistical consistency of (1) classifier or (2) the risk function to the true one Yao et al. (2020).
Therefore, we now focus on the studies which utilize T .

B.2 PREVIOUS RESEARCHES ON T ESTIMATION

In this section, we explain more details of the previous studies considering T .

T estimation under Class-Conditional Noise (CCN) setting stems from Patrini et al. (2017). It de-
fines T as the matrix of the transition probability from clean label to noisy label. It also suggest two
loss structures, Forward loss and Backward loss, which ensures statistical consistency of classifier
and statistical consistency of risk, respectively. Since these two loss structures ensure theoretical
success of learning with noisy label utilizing T , studies have focused on the estimation process of
T , since T is actually unknown information.

Patrini et al. (2017) estimate T with anchor points, yet finding the explicit anchor points in dataset
may be unrealistic and difficult. Therefore, Yao et al. (2020) decomposes the objective of estimation
as 2 easily learnable matrices: 1) a transition matrix from noisy label to bayes optimal label and 2) a
transition matrix from bayes label to true label. Since bayes optimal label is one-hot label, 1) can be
estimated by summing up the samples with specific noisy label and the specific bayes optimal label,
and 2) estimation would be easier than the original T estimation. Zhang et al. (2021b) points out the
overconfidence issue for T estimation, and find a way to estimate optimal T by maximizing the total
variation distance between clean label posterior probabilities. However, it has theoretical assumption
of having anchor points and requires ensuring the multiplication of two matrices (V and U ) should
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be equal to true T . Li et al. (2021) is a research studied at similar time as Zhang et al. (2021b), and it
finds the optimal T by minimizing the volume of simplex enclosed by the columns of T . It relieves
the anchor point assumption, yet it is still vulnerable to overconfidence issue reported at Zhang et al.
(2021b). Motivated by this error gap of T estimation, Cheng et al. (2022) suggests a comprehensive
loss of utilizing both Forward and Backward loss structure. It shows good performance empirically,
but the optimal T learned by Cheng et al. (2022) would be an identity matrix by its modeling, since
both T and T

′
, which is an approximation of T−1, are modeled as diagonally dominant and all cells

are nonnegative.

Apart from these directions, Zhu et al. (2021) calculates T by solving the optimization problem
with constraints. These constraints stems from Clusterability, which assumes samples with similar
features would have same true label. As an effort to reflect the feature information to transition
probability, T estimation processes under IDN condition have been studied. For example, Xia et al.
(2020) assumes weighted sum of transition matrices of parts can explain instance-dependent transi-
tion matrix. Berthon et al. (2021) assumes accessibility to p(y = i|ỹ = i, x) for every sample and
calculates p(Ỹ |Y,X). Yang et al. (2022) parameterize T (X) and trains a new deep neural network
which gives instance-dependent transition matrix as its output using distilled dataset, which is the
subset of the original training dataset with its maximum softmax output is large enough. Although
modeling instance dependent transition matrix may be more realistic, estimating T (X) is far more
difficult because its domain space becomes much bigger than T modeling. Therefore, its estima-
tion is impossible without additional assumptions or information (Liu et al., 2023), since the true
C×C matrix cell values per every single samples would have unbounded solutions per each sample,
making it harder to analyze the properties of estimated T (X).

Please note that to write as p(Ỹ |x) = T (x)p(Y |x), the definition of T (x) notation should be as
Tjk(x) = p(Ỹ = j|Y = k, x) ∀j.k = 1, ..., C. Take a 2-dimension example. It should be as:[

p(Ỹ = 1|x)
p(Ỹ = 2|x)

]
=

[
p(Ỹ = 1|Y = 1, x) p(Ỹ = 1|Y = 2, x)

p(Ỹ = 2|Y = 1, x) p(Ỹ = 2|Y = 2, x)

] [
p(Y = 1|x)
p(Y = 2|x)

]
(9)

meaning that the (j, k)−th element of T (x) should be p(Ỹ = j|Y = k, x).

C DISCUSSIONS FOR PREVIOUS TRANSITION MATRIX UTILIZATION

We assume that T is invertible, which has been generally assumed in the previous researches.

First we discuss Forward utilization. As we defined in the main paper, let ϵ be p̃(Ỹ |x) − p(Ỹ |x),
where p̃(Ỹ |x) is noisy label probability vector estimated from the classifier trained with noisy labels.
Then, p(Ỹ |x) becomes p̃(Ỹ |x)− ϵ, which means, Tp(Y |x) = p(Ỹ |x) = p̃(Ỹ |x)− ϵ. Therefore,
p(Y |x) becomes T−1(p̃(Ỹ |x)− ϵ) = T−1p̃(Ỹ |x)− T−1ϵ.

Following Eq. 2 on the main paper, fθ(x) will be equal to p(Y |x) if and only if Tfθ(x) = p(Ỹ |x)
for all (xi, ỹi)

n
i=1. It means that fθ(x) = p(Y |x) ⇔ Rl,F = 0 and p(Ỹ |x) is required for train-

ing fθ. However, p(Ỹ |x) should approximated by the noisy labels from the dataset since the ex-
act value of p(Ỹ |x) is unknown and it makes the gap. In other words, we get fθ by minimizing
Remp

l,F = 1
N

∑N
i=1 l(Tfθ(xi), ỹi), and if we minimize Remp

l,F , fθ(x) will be T−1p̃(Ỹ |x) so that the
gap between f∗

θ (x) and fθ(x) will become T−1ϵ.

The difficulty of estimating p(Ỹ |x) from learning a model Tfθ(x) with D̃ has already been denoted
before. Remark C.1 is one of those proposals.

Remark C.1. (Zhang et al., 2021b) The estimation error of the noisy label posterior distribution,
p(Ỹ |x), from neural networks trained with D̃ could be high. This confidence calibration might
be more difficult than p(Y |X) estimation, because p(Ỹ |x) should be within the convex hull of
transition matrix T , Conv(T ), i.e., p(Ỹ |x) ∈ Conv(T ) ⊂ ∆C−1, and Conv(T ) ̸= ∆C−1 if T ̸= I .

Remark C.1 claims the difficulty of estimating p(Ỹ |x) from D̃, because the value of p(Ỹ |x) does
not achieve the full range of [0, 1]. Intuitively, p(Ỹ |x) would not be represented as one-hot because
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the noisy label generation process would not be deterministic, which is also claimed by previous
works Yao et al. (2020); Zhang et al. (2021b); Yao et al. (2021).

This failure of p(Ỹ |x) estimation is a crucial issue considering the statistical consistency of fθ to
f∗
θ since fθ(x) = p(Y |x) if and only if Tfθ(x) = p(Ỹ |x). Therefore, the gap between p(Ỹ |x)

and p̃(Ỹ |x) make the inevitable gap for estimating p̃(Y |x). It means that a classifier trained with
empirical Forward risk may not be able to estimate p(Y |x) accurately even with true T .

We also propose fθ trained with Remp
l,F can memorize all noisy label under the following assumption.

Assumption C.2. Given a noisy training dataset D̃ = {(xi, ỹi)}ni=1, let xi ̸= xj for all i ̸= j, and
Tjj > Tjk for all j ̸= k of T , and fθ has enough capacity to memorize all labels.

For the each term of the risk function Remp
l,F , we have l (Tf(xi), ỹi) = − log

∑C
j=1 Tỹijfj(xi) ≥

− log Tỹiỹi
fỹi

(xi). It is from
∑C

j=1 Tỹijfj(xi) ≤
∑C

j=1 (maxkTỹik) fj(xi) = Tỹiỹi
. Note that

fk(x) ≥ 0 for all k and
∑C

k=1 fk(x) = 1. Also (maxkTỹik) = Tỹiỹi
by the assumption C.2.∑C

j=1 Tỹijfj(xi) = Tỹiỹi
when fj(xi) = 1 for j = ỹi and 0 otherwise. Therefore, fθ that mini-

mizes Remp
l,F can result in fF,emp

θ (xi) = ỹi for all i = 1, ..., n,.
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Figure 10: Training accuracies with regard to the noisy labels
(left), the clean labels (center), and test accuracies (right) of var-
ious methods on CIFAR10 (symmetric 20% noise). We applied
Forward and our method, RENT, to various T estimation Patrini
et al. (2017); Zhang et al. (2021b); Li et al. (2021). We express
the result of Forward and the result of RENT as dotted line and
bold line, for each estimation respectively. CE is the result of the
classifier trained with Cross Entropy loss.

Figure 10 supports the above
proposal empirically. It de-
picts the train accuracies with
noisy labels (left), train accu-
racies with the original true la-
bels (center) and test accuracies
(right) of various methods with
Forward, where each method
is trained on the noisy-labelled
dataset. As training iterations
progress, all methods utilizing
Forward eventually memorize
the noisy label, which leads to
the degradation on the test ac-
curacy. Note that the learning
with true T (denoted as True T )
also memorizes the noisy label.
In contrast, methods equipped
with RENT alleviate noisy label
memorization; they also show
the correct inference capabili-
ties for the clean labels of noisy
training instances, which is an
evidence of non-memorization.

We also discuss Backward briefly. Please note that (with l as Cross Entropy loss)

(
l(x)T−1

)
ỹ
=

C∑
k=1

lkT
−1
k,ỹ = −

C∑
k=1

T−1
k,ỹ log(fθ(x)k) (10)

If T = I , then since T−1 = I , Eq. 10 becomes − log fθ(x)ỹ .

If T ̸= I , we first think of C = 2 case, when T−1 has a simple form.

As fθ(x)k ̸=ỹ = 1 − fθ(x)ỹ , the derivative of the empirical backward risk over fθ(x)ỹ becomes

− T−1
ỹ,ỹ

fθ(x)ỹ
+

T−1
k ̸=ỹ,ỹ

1−fθ(x)ỹ
. Note that T−1 = 1

T11T22−T12T21

[
T22 −T12

−T21 T11

]
. Assuming T11 > T21 and

T22 > T12, both T−1
12 and T−1

21 become negative. It means that T−1
k ̸=ỹ,ỹ is negative, making the

derivative when fθ(x)ỹ near 0 or 1 goes to −∞.

17



Published as a conference paper at ICLR 2024

For C > 2 case, the direct analysis is impossible because there is no explicit form for the inverse
matrix. However, since T ∈ [0, 1]C×C , the inverse of the transition matrix can easily be negative if
it is not an identity matrix so the same issue may happen.

D DERIVATION AND PROOF

D.1 DERIVATION OF EQ. 6

Here, we show the derivation of Eq. 6 fully. Notations are same as the main paper, which means,

wj ∈ RN is j-th sample following Dir(αµ). Let w̄i :=
∑M

j=1
wj

i

M . li = l(fθ(xi), ỹi) for all
i = 1, ..., N for convenience.

Remp
l,DWS =

1

M

M∑
j=1

N∑
i=1

wj
i li =

N∑
i=1

1

M

M∑
j=1

wj
i li =

N∑
i=1

 M∑
j=1

wj
i

M

 li =

N∑
i=1

w̄ili (11)

Since w1
i , ..., w

j
i is i.i.d. for same i, we can apply Central Limit Theorem: w̄i ∼ N

(
µi,

µi(1−µi)
M(α+1)

)
.

Remp
l,DWS =

N∑
i=1

w̄ili =

N∑
i=1

(w̄i − µi + µi) li

=

N∑
i=1

µili +

N∑
i=1

(w̄i − µi) li, with (w̄i − µi) ∼ N
(
0,

µi(1− µi)

M(α+ 1)

) (12)

D.2 EXPLANATION FOR THE CATEGORICAL DISTRIBUTION PARAMETER OF RENT

Here, we explain how the per-sample weights can be formulated as p(Y=ỹ|x)
(Tp(Y |x))ỹ = p(Y=ỹ|x)

p(Ỹ=ỹ|x) .

Following the derivation from Liu & Tao (2015), The likelihood ratio between p(X,Y ) and p(X, Ỹ )

will be same as the likelihood ratio between p(Y |X) and p(Ỹ |X). It is because p(X) does not
change for noisy label classification task.

Rl(fθ) = E(x,y)∼p(X,Y ) [l(fθ(x), y)] = E(x,ỹ)∼p(X,Ỹ )

[
l(fθ(x), ỹ)

p(x, Y = ỹ)

p(x, Ỹ = ỹ)

]
= E(x,ỹ)∼p(X,Ỹ )

[
l(fθ(x), ỹ)

p(Y = ỹ|x)p(x)
p(Ỹ = ỹ|x)p(x)

]
= E(x,ỹ)∼p(X,Ỹ )

[
l(fθ(x), ỹ)

p(Y = ỹ|x)
p(Ỹ = ỹ|x)

]
= E(x,ỹ)∼p(X,Ỹ )

[
p(Y = ỹ|x)
p(Ỹ = ỹ|x)

l(fθ(x), ỹ)

]
(13)

Following the concept of Sampling-Importance-Resampling (SIR) (Rubin, 1988; Smith & Gelfand,
1992), this importance sampling is transformed as algorithm 1.

D.3 PROOF OF PROPOSITION 3.1

Proposition D.1. If µ∗ is accessible, Remp
l,RENT is statistically consistent to Rl.

Note that the true mean of weight vectors, µ∗, is assumed to be accessible for this part. In other
words, we assume

[
µ̃1∑N
l=1 µ̃l

, ..., µ̃N∑N
l=1 µ̃l

]
is equal to µ∗, with µ̃i =

fθ(xi)ỹi
(Tfθ(xi))ỹi

for all i.

µ̃∗
i = p(Y=ỹi|xi)

p(Ỹ=ỹi|xi)
and µ∗ =

[
µ̃∗
i∑N

l=1 µ̃∗
l

, ...,
µ̃∗
N∑N

l=1 µ̃∗
l

]
as in the main paper.

Proof. We first start by rewriting the risk function of RENT (Same as the main paper). Let D̃N =
{(xi, ỹi)}Ni=1 is the training dataset, which comes from p(X, Ỹ ) = Tp(X,Y ), with size N .

Remp
l,RENT :=

1

M

N∑
i=1

nil(fθ(xi), ỹi), where [n1, ..., nN ] ∼ Multi(M ;
µ̃1∑N
l=1 µ̃l

, ...,
µ̃N∑N
l=1 µ̃l

) (14)
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Then,

E
[
Remp

l,RENT

]
= E

[
E
[
Remp

l,RENT|D̃N

]]
= E

[
E

[
1

M

N∑
i=1

nil(fθ(xi), ỹi)
∣∣∣D̃N

]]

= E

[
1

M

N∑
i=1

E
[
nil(fθ(xi), ỹi)|D̃N

]]
= E

[
N∑
i=1

µ̃i∑N
k=1 µ̃k

l(fθ(xi), ỹi)

]
(15)

By the assumption above,

N∑
i=1

µ̃i∑N
k=1 µ̃k

l(fθ(xi), ỹi) =

N∑
i=1

µ̃∗
i∑N

k=1 µ̃
∗
k

l(fθ(xi), ỹi)

=
1∑N

k=1 µ̃
∗
k

N∑
i=1

µ̃∗
i l(fθ(xi), ỹi) =

1∑N
k=1 µ̃

∗
k

N∑
i=1

p(Y = ỹi|xi)

p(Ỹ = ỹi|xi)
l(fθ(xi), ỹi)

=
1∑N

k=1 µ̃
∗
k

N∑
i=1

p(Y = ỹi|xi)p(xi)

p(Ỹ = ỹi|xi)p(xi)
l(fθ(xi), ỹi) =

1∑N
k=1 µ̃

∗
k

N∑
i=1

p(Y = ỹi, xi)

p(Ỹ = ỹi, xi)
l(fθ(xi), ỹi)

=
1

1
N

∑N
k=1

p(Y=ỹk,xk)

p(Ỹ=ỹk,xk)

× 1

N

N∑
i=1

p(Y = ỹi, xi)

p(Ỹ = ỹi, xi)
l(fθ(xi), ỹi) (16)

∑N
k=1 µ̃

∗
k works as a constant term with regard to i. Then, Remp

l,RENT converges to Ep(X,Y )[Rl] by the
strong law of large number as N goes to infinity. (Note that D̃N comes from p(X, Ỹ ).) Therefore,
Remp

l,RENT is statistically consistent to the true risk.

E ALGORITHM FOR DIRICHLET BASED SAMPLING

Here, we show the algorithm of dirichlet based per-sample weight sampling process.

Algorithm 2: Dirichlet distribution-based per-sample Weight Sampling (DWS)

Input: Noisy dataset D̃ = {xi, ỹi}Ni=1, classifier fθ, Transition matrix T , concentration
parameter α, the number of sampling M

Output: Updated fθ
while fθ not converge do

Get µi = µ̃i

/∑N
j=1 µ̃j , where µ̃i = fθ(xi)ỹi

/
(Tfθ(xi))ỹi for all i

for j = 1, ...,M do
Independently sample wj from Dir(α,µ)

end
Update fθ by θ ← θ −∇θ

1
M

∑M
j=1

∑N
i=1 w

j
i l(fθ(xi), ỹi)

end

F EXPERIMENT

F.1 IMPLEMENTATION DETAILS

Network Architecture and Optimization We utilized ResNet34(He et al., 2016) for CIFAR10
and ResNet50(He et al., 2016) for CIFAR100. We used Adam Optimizer (Kingma & Ba, 2014)
with learning rate 0.001 for training. No learning rate decay was applied. We trained total 200
epochs for all benchmark datasets and no validation dataset was utilized for early stopping. We
utilized batch size of 128 and as augmentation, HorizontalFlip and RandomCrop were applied.
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Considering Clothing1M, we used ResNet50 pretrained with ImageNet (Deng et al., 2009). As
a same condition with benchmark dataset setting, we utilized Adam Optimizer with learning rate
0.001 with no learning rate decay. We trained 10 epochs and set batch size as 100. RandomCrop,
RandomHorizontalflip and Normalization was applied during training, and only Centercrop and
Normalization was applied at testing. For experiments over Clothing1M, we do not use a clean
validation dataset in training.

Unless being specified, we keep this experimental settings for other experiments.

Synthetic noisy label generation Considering CIFAR10 and CIFAR100, all samples from these
benchmark dataset are assumed to have clean labels. Therefore, we arbitrarily inject noisy labels
following the rules below. Let τ% a noisy label ratio.

(1) Symmetric flipping (SN) Yao et al. (2020); Zhang et al. (2021b); Li et al. (2021); Bae et al.
(2022) flips labels uniformly to all other classes. We set (1− τ)% samples of each class unchanged.

(2) Asymmetric flipping (ASN) Li et al. (2020); Liu et al. (2020); Cheng et al. (2022); Bae et al.
(2022) flips labels to pre-defined similar class. For CIFAR10, we flipped label class as Truck ⇒
Automobile, Bird⇒ Airplane, Deer⇒ Horse, Cat⇔ Dog following the previous researches. For
CIFAR100, we flipped between sub-classes within each super-class.

Dataset description CIFAR-10N (Wei et al., 2022) contains real-world noisy-labels of CIFAR10
images from Amazon Mechanical Turk. The label noise includes 5 types; Aggregate (Aggre), Ran-
dom1 (Ran1), Random2 (Ran2), Random3 (Ran3) and Worse. For detailed descriptions of how
the noisy labels of each noise type are created, please refer to the original paper. According to the
original paper, the noise ratio is 9.03%, 17.23%, 18.12%, 17.64% and 40.21%, respectively.

Clothing 1M (Xiao et al., 2015) is real-world noisy-labelled dataset collected from online shopping
websites. The dataset includes 1 million images with 14 classes. Noise ratio is estimated as 38%.

Baseline description Here, we explain methods that we used in experiments to estimate T .

Forward Patrini et al. (2017) identifies anchor points based on the calculated noisy class posterior
probabilities. Following the customs of the original paper, we chose the top 3% confident sample
for each class as anchor points.

DualT Yao et al. (2020) decomposes T into 1) a transition from noisy label to intermediate class;
and 2) a transition from intermediate to true class to reduce the estimation gap of T .

TV Zhang et al. (2021b) estimates T by maximizing the total variation distance between clean label
probabilities of samples. Although it requires an anchor point assumption theoretically, it does not
need to find anchor points explicitly.

VolMinNet Li et al. (2021) estimates the optimal T by minimizing the volume of the simplex formed
by the column vectors of T . The volume is measured as log of the determinant of T as original paper.

Cycle Cheng et al. (2022) develops an alternative method, which minimizes volume of T , without
estimating the noisy class posterior probabilities as VolMinNet. It minimizes the comprehensive
loss which takes the form of forward plus backward plus the regularization term which obligates the
multiplication of T and T

′
to be an identity.

PDN (Xia et al., 2020) assumes weighted sum of transition matrices of parts can explain instance-
dependent transition matrix. Therefore it first calculates the transition matrix for anchor parts and
get instance-wise weights to multiply to each part matrix.

BLTM (Yang et al., 2022) parameterize T (X) and trains a new deep neural network which gives
instance-dependent transition matrix as its output using distilled dataset, which is the subset of the
original training dataset with its maximum softmax output is large enough.

We did not consider CSIDN (Berthon et al., 2021) as our baselines because they requires the infor-
mation of p(Y = ỹi|Ỹ = ỹi), although we do not have those kind of information basically.
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Techniques used to hinder memorization in previous researches We report regularization tech-
niques in previous researches used to hinder memorization as table 3. Settings are reported based on
CIFAR10 experiment conditions.

Table 3: Regularizations to hinder noisy label memorization used in previous researches (CIFAR10)

Method Dropout Early Stopping Lr decay W decay Augmentation

Forward Patrini et al. (2017) X O O 10−4 HorizontalFlip, RandomCrop

DualT Yao et al. (2020) X O O 10−4 HorizontalFlip, RandomCrop, Normalization

TV Zhang et al. (2021b) X X* X 10−4 HorizontalFlip, RandomCrop, Normalization

VolMinNet Li et al. (2021) X O O 10−3 HorizontalFlip, RandomCrop

Cycle Cheng et al. (2022) X O O 10−3 Not reported

Ours X X X X HorizontalFlip, RandomCrop

We marked the asterisk on the early stopping of TV Zhang et al. (2021b) since the number of
epoch is different (40) from our setting (200). As reported in table 3, we conducted experiments
removing several techniques without augmentation. We show the difference between the reported
performance in the original paper and the reproduced performance following their condition, the
reproduced performance under our experiment settings in the following section.

F.2 MORE RESULTS FOR CLASSIFICATION ACCURACY

Performance with regard to the noise ratio Figure 11 shows the performance comparison of
FL, RW and RENT changing the noise ratio for several T estimation methods. As we can see in the
figure, the gaps between red lines and others become larger with higher noise ratio.
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Figure 11: Performance comparison when using different T utilization methods over several T
estimation methods. Subscripts of each figure represents T estimation baselines and colored regions
mean standard deviation. X-axis and Y-axis of each figure represents noisy label ratio and the test
accuracy, respectively. CE means training with Cross Entropy loss.

Experimental results are based on CIFAR10 datasets with symmetric noise, and replicated over 5
times. Please note that when the noise ratio becomes 90%, it means nothing but random label status,
so it is natural the test accuracy is equal to 10%.

True T is NOT the best? One of the interesting findings we can see in Table 1 is that the model
performance is not the best when it is trained with the true transition matrix (denoted as True T ).
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To check what happens, we first report the performances of RENT with several T estimation meth-
ods over the differences between the resulting estimated T and true T. Furthermore, to check any
performance pattern over T estimation gap is unique for RENT or not, we also report results for the
performances of Forward loss as T utilization (the conventional).
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Figure 12: Performances with several transition matrix estimation methods over T estimation gap
(∆T , calculated as l2 norm). Sub captions mean noise settings and each color represents different T
estimation methods. Figures on upper lines are performances of Forward (the conventional utiliza-
tion), and that on lower lines are performances of RENT as T utilization. X axes mean T estimation
error (calculated as l2 norm) and y axes mean the respective performances. Dots mean different
seeds. We do not report Cycle SN 50 (%) cases in the figure because its test accuracy is 10 (%).

Table 4: Pearson Correlation coefficient with regard to ∆T and model performances.

w/ FL w/ RENT

SN 20% SN 50% ASN 20% ASN 40% SN 20% SN 50% ASN 20% ASN 40%

Pearson Correlation 0.2234 0.1448 0.2355 -0.2601 0.4648 -0.1590 -0.0644 -0.5597

Figure 12 shows the results. Interestingly, not only can we find out that the performance is not the
best when ∆T is equal to 0, but we can also check that the relation between ∆T and the model
performance is not linear. Check Pearson Correlation also in Table 4.

At first, we conjecture that this failure of finding the correlation between ∆T and the model per-
formance is due to two reasons: (1) considering TV, VolMinNet and Cycle includes regularization
terms for updating a classifier, those terms may have affected the classifier training process and (2)
For TV, VolMinNet and Cycle, the transition matrix changes during training procedure, so the tran-
sition matrix estimation gap would have reduced while training (according to their original paper,
the estimation error seems to decrease with training process). Therefore, the transition matrix gap
of those algorithms would have been larger than the reported transition matrix estimation gap.

To analyze the impact of T estimation error to the model performance, comparing performances un-
der same risk function (including no regularization terms) and other learning procedures is required.
Therefore, we subtracted ϵT to diagonal terms and added ϵT

/
(the number of classes-1) to others.

Figure 13 shows the model performance over ∆T .

Figure 13 shows the performance over ∆T . For SN 20 (%), we set ϵT =[0.0, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6] and for SN 50 (%), we set ϵT =[0.0, 0.05, 0.1, 0.2, 0.3], since 0.7 and 0.4 would
mean same as total random label flipping respectively. Lines represent performances with arbitrary
corrupted transition matrix and small dots is mean performance of each ϵT . It again shows that the
performance is not the best when the transition matrix estimation error is 0.

Considering Forward, DualT and True, their performances are within the colored region, possibly
supporting the explainability of this arbitrary transition matrix corruption experiment.
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Figure 13: Performance over ∆T . Dots are same as 12. Colored regions are standard deviation over
5 seeds. For SN 20 (%), we set ϵT = [0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] and for SN 50 (%), we
set ϵT = [0, 0.05, 0.1, 0.2, 0.3], since 0.7 and 0.4 would mean same as total random label flipping
respectively.

Performance with Lin et al. (2022) We compare the performance of RENT and Lin et al. (2022),
whose method name is VRNL. We also report the performances with Forward utilization (w/ FL)
again as baselines, following VRNL.

Table 5: Test accuracies on CIFAR10 and CIFAR100 with various label noise settings including
VRNL. − represents the training failure case. Bold is the best accuracy for each setting.

CIFAR10 CIFAR100
Base Risk SN 20% SN 50% ASN 20% ASN 40% SN 20% SN 50% ASN 20% ASN 40%

Forward
w/ FL 73.8±0.3 58.8±0.3 79.2±0.6 74.2±0.5 30.7±2.8 15.5±0.4 34.2±1.2 25.8±1.4

w/ VRNL 76.9±0.4 64.8±2.3 54.2±9.2 59.3±12.7 34.1±3.4 18.4±2.8 35.5±2.4 27.2±1.6

w/ RENT 78.7±0.3 69.0±0.1 82.0±0.5 77.8±0.5 38.9±1.2 28.9±1.1 38.4±0.7 30.4±0.3

DualT
w/ FL 79.9±0.5 71.8±0.3 82.9±0.2 77.7±0.6 35.2±0.4 23.4±1.0 38.3±0.4 28.4±2.6

w/ VRNL 81.2±0.3 73.7±0.8 83.5±0.1 78.1±2.2 38.2±1.4 25.2±3.7 40.0±1.2 34.4±1.3

w/ RENT 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

TV
w/ FL 74.0±0.5 50.4±0.6 78.1±1.3 71.6±0.3 34.5±1.4 21.0±1.4 33.9±3.6 28.7±0.8

w/ VRNL 76.0±0.6 51.3±0.7 78.8±0.3 58.5±9.2 28.5±1.2 22.9±2.8 29.9±1.0 26.4±2.3

w/ RENT 78.8±0.8 62.5±1.8 81.0±0.4 74.0±0.5 34.0±0.9 20.0±0.6 34.0±0.2 25.5±0.4

VolMinNet
w/ FL 74.1±0.2 46.1±2.7 78.8±0.5 69.5±0.3 29.1±1.5 25.4±0.8 22.6±1.3 14.0±0.9

w/ VRNL 76.3±0.9 50.3±1.4 72.3±9.0 67.4±5.3 28.1±0.6 26.6±2.2 19.5±3.7 14.7±1.4

w/ RENT 79.4±0.3 62.6±1.3 80.8±0.5 74.0±0.4 35.8±0.9 29.3±0.5 36.1±0.7 31.0±0.8

Cycle
w/ FL 81.6±0.5 − 82.8±0.4 54.3±0.3 39.9±2.8 − 39.4±0.2 31.3±1.2

w/ VRNL 82.4±0.6 − 83.0±0.4 54.3±0.4 41.9±2.1 − 42.1±1.6 32.5±1.2

w/ RENT 82.5±0.2 70.4±0.3 81.5±0.1 70.2±0.7 40.7±0.4 32.4±0.4 40.7±0.7 32.2±0.6

True T
w/ FL 76.7±0.2 57.4±1.3 75.0±11.9 70.7±8.6 34.3±0.5 22.0±1.5 35.8±0.5 31.9±1.0

w/ VRNL 79.3±0.6 63.8±1.3 49.2±4.4 47.7±6.2 36.6±1.1 25.5±0.7 26.2±3.3 22.5±5.7

w/ RENT 79.8±0.2 66.8±0.6 82.4±0.4 78.4±0.3 36.1±1.1 24.0±0.3 34.4±0.9 27.2±0.6

One step further from the original paper, we also report experimental results with DualT (Yao et al.,
2020), TV (Zhang et al., 2021b), Cycle (Cheng et al., 2022) and True T , since it can be applied to
various transition matrix estimation methods orthogonally. We reported these performances follow-
ing Work with VolMinNet in Practical Implementation part of Lin et al. (2022). In other words,
we added the variance of the risk function (not including another regularization terms) for imple-
menting VRNL with DualT, TV, Cycle and True T . Performances in table 5 consistently shows
VRNL improves the original T estimation methods, and RENT tends to show better performances
than VRNL. We demonstrate that RENT can increase the variance of the risk function enough with-
out the need to choose the hyper-parameter for variance regularization term (denoted as α in Lin
et al. (2022)).

For the hyper-parameter α, we followed settings from their paper.
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Table 6: Performance comparison with regard to variance of the risk function over various T es-
timation. Bold means the better accuracy between VRNL and RENT for each data setting and T
estimation. If the performance of the integrated method is better than the original both methods, we
underline the performances.

CIFAR10 CIFAR100
SN ASN SN ASN

Base Regularizer 20% 50% 20% 40% 20% 50% 20% 40%

Forward

VRNL 76.9±0.4 64.8±2.3 54.2±9.2 59.3±12.7 34.1±3.4 18.4±2.8 35.5±2.4 27.2±1.6

RENT 78.7±0.3 69.0±0.1 82.0±0.5 77.8±0.5 38.9±1.2 28.9±1.1 38.4±0.7 30.4±0.3

0.0001 78.0±0.8 68.3±1.5 81.0±1.0 76.8±1.2 36.9±1.6 25.4±2.1 38.5±0.7 29.9±1.5

0.001 77.9±1.3 68.5±0.3 81.0±0.5 72.5±8.9 38.0±1.5 25.8±1.4 38.9±0.1 28.2±4.0

0.01 77.5±0.9 68.9±0.7 80.9±1.1 76.8±1.0 37.6±0.5 27.1±2.0 37.9±1.4 30.3±2.0

0.05 78.9±0.9 71.1±0.4 52.7±34.9 52.0±32.9 37.7±1.7 26.9±2.9 38.5±0.6 30.8±1.5

DualT

VRNL 81.2±0.3 73.7±0.8 83.5±0.1 78.1±2.2 38.2±1.4 25.2±3.7 40.0±1.2 34.4±1.3

RENT 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

0.0001 81.6±0.4 74.2±0.7 82.9±0.5 79.4±0.3 39.0±0.4 26.7±4.8 38.5±0.6 33.5±0.7

0.001 81.4±0.5 74.0±1.2 83.5±0.3 79.3±1.3 38.5±2.1 26.7±5.3 40.1±0.4 32.7±0.9

0.01 81.1±0.5 73.4±0.7 82.8±0.3 78.7±0.8 39.3±1.2 26.2±6.7 38.7±0.8 33.0±1.4

0.05 81.8±0.5 71.8±1.5 82.6±0.7 80.3±0.4 40.0±1.2 27.0±2.8 37.1±1.1 33.4±1.4

TV

VRNL 76.0±0.6 51.3±0.7 78.8±0.3 58.5±9.2 28.5±1.2 22.9±2.8 29.9±1.0 26.4±2.3

RENT 78.8±0.8 62.5±1.8 81.0±0.4 74.0±0.5 34.0±0.9 20.0±0.6 34.0±0.2 25.5±0.4

0.0001 77.7±0.3 61.5±4.2 78.2±4.3 74.3±0.8 33.2±2.2 19.7±0.6 34.8±0.5 25.4±1.4

0.001 78.2±0.7 60.4±1.5 80.0±0.8 73.1±1.1 31.0±4.0 20.7±0.5 33.5±1.6 26.5±0.5

0.01 78.2±1.1 62.6±2.8 81.1±0.9 74.1±1.1 32.8±2.9 20.0±0.7 33.4±1.0 25.6±0.9

0.05 80.3±1.0 68.8±1.4 80.7±1.2 73.7±0.9 35.2±1.8 21.6±0.4 34.0±2.3 23.2±4.4

VolMinNet

VRNL 76.3±0.9 50.3±1.4 72.3±9.0 67.4±5.3 28.1±0.6 26.6±2.2 19.5±3.7 14.7±1.4

RENT 79.4±0.3 62.6±1.3 80.8±0.5 74.0±0.4 35.8±0.9 29.3±0.5 36.1±0.7 31.0±0.8

0.0001 78.1±1.0 60.4±2.3 80.7±0.5 72.0±1.0 36.3±0.8 27.8±0.7 32.1±1.3 29.1±1.2

0.001 77.8±0.7 62.6±3.2 78.4±4.5 72.2±1.3 31.8±4.0 28.2±1.7 35.0±2.5 29.5±0.7

0.01 78.3±0.5 64.2±2.6 80.1±0.5 73.0±2.2 35.9±0.7 27.4±1.9 34.7±1.1 29.4±1.9

0.05 80.1±0.7 69.7±1.0 80.5±0.2 72.3±1.1 37.0±1.7 30.8±0.8 33.0±6.9 31.3±1.9

Cycle

VRNL 82.4±0.6 − 83.0±0.4 54.3±0.4 41.9±2.1 − 42.1±1.6 32.5±1.2

RENT 82.5±0.2 70.4±0.3 81.5±0.1 70.2±0.7 40.7±0.4 32.4±0.4 40.7±0.7 32.2±0.6

0.0001 82.1±0.5 70.4±1.0 80.8±0.8 69.1±1.1 40.9±1.2 31.3±0.9 40.5±1.4 31.4±1.2

0.001 81.5±0.4 69.8±1.3 80.5±0.9 68.4±0.9 37.9±5.3 30.9±0.7 35.9±4.7 31.9±0.5

0.01 81.5±0.7 70.5±1.0 80.6±0.8 69.1±0.4 42.0±0.1 32.1±0.9 35.9±3.6 30.4±0.9

0.05 82.1±0.6 71.6±1.0 80.9±1.0 69.9±1.0 42.2±0.8 31.4±0.3 40.8±0.4 29.1±0.1

True T

VRNL 79.3±0.6 63.8±1.3 49.2±4.4 47.7±6.2 36.6±1.1 25.5±0.7 26.2±3.3 22.5±5.7

RENT 79.8±0.2 66.8±0.6 82.4±0.4 78.4±0.3 36.1±1.1 24.0±0.3 34.4±0.9 27.2±0.6

0.0001 79.1±0.5 66.9±0.7 82.0±0.4 77.2±0.5 33.9±2.2 23.1±1.2 33.8±0.7 25.4±1.2

0.001 79.5±0.6 66.6±1.5 81.0±0.6 77.2±0.9 35.4±1.6 23.3±0.4 32.5±1.6 26.3±0.2

0.01 79.1±0.9 67.4±0.9 81.5±0.7 77.7±1.2 32.2±2.7 23.8±0.2 33.1±2.4 25.8±1.9

0.05 80.5±0.5 70.2±0.6 − 9.8±0.4 35.0±1.2 24.9±0.9 2.0±0.0 6.6±3.1

Then, the next question arises: would integrating RENT and VRNL enhance model performance?,
since both methods can be orthogonally applied to the original transition matrix estimation methods.
It could show improved performance by increasing the variance of the risk function efficiently,
hindering overfitting to noisy labels. It might also lead to worse performance if it prevents training
process too much, e.g. when the variance increasing is too much.

Table 6 shows the performance comparison with VRNL, RENT and RENT+variance increasing
regularizer. Numbers in front of each row represents the hyperparameter representing the variance (α
in Lin et al. (2022)). We report all results with various hyperparameter values to show its sensitivity.

There are cases when the resulting performance is even better than the original both methods, show-
ing its possibility of future development. However, it should be noted that there is no ”good-for-all”
hyperparameter, indicating its possible limitation of applying it robustly to diverse settings.
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Table 7: Test accuracies on CIFAR10 and CIFAR100 with various label noise settings for other
baselines. Bold is the best accuracy for each setting.

CIFAR10 CIFAR100
Terminology Base SN 20% SN 50% ASN 20% ASN 40% SN 20% SN 50% ASN 20% ASN 40%

Regularization ELR 75.5±0.9 47.7±0.5 79.5±0.7 70.8±1.1 34.7±0.8 18.4±1.3 37.0±0.9 27.7±1.2

SNL (σ = 0.1) 71.7±0.3 46.9±0.3 80.5±1.1 72.7±1.2 30.2±1.5 17.3±0.3 33.4±1.5 26.5±0.8

Robust loss SCE 79.5±0.6 54.8±0.5 79.5±0.8 69.5±0.9 34.3±1.2 18.3±0.6 36.2±1.1 27.6±0.5

APL 79.3±1.2 61.5±3.0 76.9±1.7 64.1±1.0 33.5±2.0 18.3±5.5 35.9±2.0 24.0±4.1

Data cleaning

LRT 74.9±0.5 46.5±1.2 77.7±1.9 69.2±0.6 33.8±1.8 20.1±0.4 35.9±0.8 25.4±3.8

Coteaching 78.7±1.4 76.4±3.1 81.7±0.5 73.9±0.5 37.8±4.0 12.5±1.3 39.7±2.0 26.9±3.2

Jocor 83.4±1.6 62.9±5.6 80.1±1.1 65.9±3.4 27.5±4.9 7.9±1.4 34.7±2.5 26.9±2.3

DKNN 55.5±1.0 30.8±0.8 62.3±1.1 54.1±0.7 5.1±0.5 2.9±0.4 5.3±0.1 4.3±0.4

CORES2 74.7±5.0 26.3±4.1 71.3±2.3 60.7±5.5 37.8±2.3 6.5±2.1 37.8±1.7 27.2±1.3

RENT (DualT) 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

Performance with other baselines In the main paper, we compared our method with Transition
matrix based methods to demonstrate the improvement effect of RENT with regard to the transition
matrix utilization. In this section, we compare other baselines for the learning with noisy label task
itself for a wider range of comparison. Baselines included in this section are:

ELR Liu et al. (2020) suggests early learning regularization. Based on the finding that simple pat-
terns are learned fast, they use the output of a learning classifier in early time iterations to regularize
overfitting to noisy labels.

SCE Wang et al. (2019) suggests a reverse cross entropy as robust loss.

APL Ma et al. (2020) theoretically shows any loss with normalization can be made robust to noisy
labels and suggests to use two types of robust loss, active loss and passive loss.

LRT Zheng et al. (2020) calculate the likelihood ratio between noisy label and the possible pseudo-
label, which can be defined as the dimension whose output is the maximum. Based on this criterion,
it arbitrary sets a threshold and corrects the label into pseudo label or not.

Please refer to Section 4.4 or Appendix F.4 also for SNL Chen et al. (2020), and Section F.7 for
sample selection based methods.

Again, RENT shows best or second best performance.
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More results on real dataset Due to the space constraints, we reported the accuracies from only
some of the baselines in the main paper. In this part, we present results for more baselines. As
shown in table 8, RENT consistently outperforms other T utilization (FL and RW). Similar to the
results for CIFAR10 and CIFAR100 presented in Table 1 in the main paper, the performance gap
between RENT and previous T utilization widens as the noise ratio increases (please refer to the
dataset description section for details on the noise ratio). When estimating T as Cycle, RENT does
not always exhibit the best performance. We believe this may be due to the substantial gap between
the estimated per-sample weights during training and the true per-sample weights, a hypothesis
supported by the consistently poor performance of the RW case. Please also note that although
there is the case of PDN CIFAR-10N Aggre when utilizing T as RW yields the best results, the gap
between RW and RENT is marginal.

Table 8: Whole test accuracies on CIFAR-10N and Clothing1M. Bold is the best.

CIFAR-10N Clothing1M
Base Risk Aggre Ran1 Ran2 Ran3 Worse -
CE ✗ 80.8±0.4 75.6±0.3 75.3±0.4 75.6±0.6 60.4±0.4 66.9±0.8

w/ FL 79.6±1.8 76.1±0.8 76.4±0.4 76.0±0.2 64.5±1.0 67.1±0.1

Forward w/ RW 80.7±0.5 75.8±0.3 76.0±0.5 75.8±0.6 63.9±0.7 66.8±1.1

w/ RENT 80.8±0.8 77.7±0.4 77.5±0.4 77.2±0.6 68.0±0.9 68.2±0.6

w/ FL 81.9±0.2 79.4±0.4 79.3±1.0 79.4±0.4 72.1±0.9 68.2±1.0

DualT w/ RW 81.8±0.4 79.8±0.2 79.4±0.6 79.6±0.4 71.4±1.0 68.5±0.4

w/ RENT 82.0±1.2 80.5±0.5 80.4±0.7 80.5±0.6 73.5±0.7 69.9±0.7

w/ FL 80.5±0.7 76.4±0.4 76.2±0.5 76.1±0.1 60.2±5.2 66.7±0.3

TV w/ RW 80.7±0.4 75.8±0.6 75.2±1.1 75.4±1.5 62.3±2.9 67.4±0.5

w/ RENT 81.0±0.4 77.4±0.6 77.8±1.0 76.7±0.4 66.9±3.1 68.1±0.4

w/ FL 80.9±0.3 76.3±0.5 75.9±0.7 75.9±0.6 61.8±1.3 65.0±0.1

VolMinNet w/ RW 80.7±0.6 76.2±0.5 75.5±0.8 75.5±0.2 63.0±3.2 66.6±0.1

w/ RENT 81.3±0.4 77.6±1.0 77.7±0.3 77.2±0.7 66.9±0.5 67.7±0.3

w/ FL 83.3±0.2 81.0±0.4 81.6±0.7 81.2±0.4 51.6±1.0 67.1±0.2

Cycle w/ RW 81.7±0.8 79.1±0.4 78.4±0.4 78.2±1.7 66.0±0.9 67.3±1.2

w/ RENT 82.0±0.8 80.0±0.3 81.0±0.8 80.4±0.4 70.5±0.4 68.0±0.4

w/ FL 79.8±0.6 74.5±0.4 74.5±0.5 74.3±0.3 57.5±1.3 64.9±0.4

PDN w/ RW 80.6±0.8 74.9±0.7 73.9±0.7 74.4±0.8 58.7±0.5 −
w/ RENT 80.2±0.6 75.2±0.7 75.0±1.1 75.7±0.4 61.6±1.6 67.2±0.2

w/ FL 81.5±0.7 78.1±0.3 77.5±0.6 77.8±0.5 65.8±1.0 67.2±0.8

BLTM w/ RW 54.0±33.9 64.4±27.0 50.9±32.9 38.0±32.4 43.5±28.1 67.0±0.4

w/ RENT 80.8±2.1 79.1±0.9 78.9±1.1 79.6±0.6 69.7±2.0 70.0±0.4
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Table 9: Test accuracies for CIFAR10. [1] means the
reported performance at the original paper. [2] means
the reproduced performance using our code. [3] is
the model performance under our experiment settings
(same as the performance reported in the main paper as
Forward (FL)). − is not-reported or training failure.

CIFAR10
SN ASN

T estimation [1] ∼ [3] 20% 50% 20% 40%

Forward
[1] 83.4±− − 87.0±− −
[2] 82.6±0.3 67.4±1.0 87.9±0.2 82.9±0.4

[3] 73.8±0.3 58.8±0.3 79.2±0.6 74.2±0.5

DualT
[1] 78.4±0.3 70.0±0.7 − −
[2] 85.6±0.2 74.2±0.1 87.8±0.7 81.9±0.7

[3] 79.9±0.5 71.8±0.3 82.9±0.2 77.7±0.6

TV
[1] − 82.6±0.4 − −
[2] 87.5±0.2 76.6±0.2 80.6±7.4 75.0±13.3

[3] 74.0±0.5 50.4±0.6 78.1±1.3 71.6±0.3

VolMinNet
[1] 89.6±0.3 83.4±0.3 − −
[2] 91.4±0.1 79.2±0.1 94.9±0.1 88.0±4.5

[3] 74.1±0.2 46.1±2.7 78.8±0.5 69.5±0.3

Cycle
[1] 90.4±0.2 − 90.6±0.0 87.3±0.0

[2] 90.4±0.4 − 86.5±0.1 66.4±0.4

[3] 81.6±0.5 − 82.8±0.4 54.3±0.3

Performance reproduce & comparison
with our experiment setting Table 9
shows [1] the reported performance at the
original paper, [2] the reproduced per-
formance using our code, and [3] the
model performance under our experiment
settings for each T estimation methods.
Comparing three rows for each T estima-
tion method, note that (1) we reproduced
the original performance enough and (2)
the model performance drops significantly
under our experiment setting. We propose
again that Forward may not be enough to
regularize noisy label memorization.

Please note that there was high variance to
the test accuracy with regard to the seed
for TV (Zhang et al., 2021b), so better
performances could be reproduced if we
have explored more times (Currently, we
reported best 5 results over 10 times for [2]
considering TV). Also since there is no of-
ficial code for Cycle (Cheng et al., 2022),
we reproduced it only with the paper and if
some settings are not reported in the paper
(e.g. augmentation), we followed settings
from Li et al. (2021). Also note that the resnet structure used in TV (Zhang et al., 2021b) and
VolMinNet (Li et al., 2021) did not include maxpooling layer unlike the standard structure (He
et al., 2016), and it made the difference in model performance. Although there are cases when ex-
cluding the maxpooling layer increased the test accuracy up to 5 %, we report the test accuracy with
the maxpooling layer following Yao et al. (2020) and Yao et al. (2021) to show the performance
utilizing the original resnet structure.

RENT utilizes T better robustly over Experimental Settings We conducted a total of 180 ex-
periments under various settings and this number is from the multiplication of below settings.

• T estimation (6): Forward, DualT, TV, VolMinNet, Cycle, True T
• Optimizer (2): SGD, Adam
• Network Architecture (3): ResNet 18, 34, 50
• Seed (5)

Table 10: Beating number (Total 180 times) and average gap (%) of RENT over Forward loss (FL).
Perf. gap is the abbreviation of the performance gap.

CIFAR10 CIFAR100

SN ASN SN ASN
Metric 20% 50% 20% 40% 20% 50% 20% 40%

Number 162 (90%) 172 (96%) 117 (65%) 148 (82%) 143 (80%) 146 (81%) 110 (61%) 101 (56%)

Perf. gap 3.5% 16.0% 1.0% 3.7% 2.2% 5.4% 1.0% 1.2%

Table 10 demonstrates the general improvement of RENT over Forward loss for T utilization. Note
that the average performance gap between RENT and Forward loss is larger when the noise ratio is
higher, indicating the increased difficulty of noisy label distribution matching with higher levels of
noise. Another interesting point is the superiority of RENT for CIFAR100 since RENT resamples
dataset in a mini-batch, meaning it will be harder to get samples from all classes when the number
of class becomes more. Therefore, the gradient from the resampled samples could be biased to the
classes of the selected samples. Nevertheless, it still utilizes T better than Forward (FL).
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F.3 MORE RESULTS FOR THE IMPACT OF α TO DWS

We show the additional results including other noisy label setting of CIFAR10 and CIFAR100,
with colored-lines in each figure reporting all T estimation methods we experimented. Note that
the interval of α value in x-axis are drawn in log-scale, meaning that we assigned more space for
smaller α region (Same in the figure 3). For experimental details, we used the same experimental
settings that we explained earlier.
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Figure 14: Test accuracy with regard to various α values for CIFAR10 and CIFAR100. Similar to
the main paper, Star (⋆) and cross (x) represents the performances of RENT and RW respectively.

As shown in the figure 14, performances tend to be higher with smaller α for most of the cases of
CIFAR10. However, there are a few cases when the smaller α may not be the answer considering
CIFAR100, showing higher lines than the star point (⋆, meaning RENT). Intuitively, it implies that
larger variance may not always be the answer and there could exist optimal α for each dataset
representing the difficulty and noisy property of the dataset, which could be the direction of further
research. Yet, please note that still the Stars are higher than the Crosses (x, meaning RW) except
only one case (please refer to table 1 for their exact values).
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F.4 MORE RESULTS FOR NOISE INJECTION IMPACT OF RENT

Table 11: Noise injection impact comparison over various T estimation. Bold means best accuracy
for each data setting and T estimation. CE, RW and RENT is the same as the one in the main paper.
w.o./T and w/T means without T and with T , respectively.

CIFAR10 CIFAR100
SN ASN SN ASN

Loss Base 20% 50% 20% 40% 20% 50% 20% 40%

w.o./ T SNL

CE (0.0) 73.4±0.4 46.6±0.7 78.4±0.2 69.7±1.3 33.7±1.2 18.5±0.7 36.9±1.1 27.3±0.4

σ = 0.1 71.7±0.3 46.9±0.3 80.5±1.1 72.7±1.2 30.2±1.5 17.3±0.3 33.4±1.5 26.5±0.8

σ = 0.2 74.2±1.1 45.9±1.0 79.6±1.3 74.8±0.6 35.8±2.4 25.5±1.0 36.5±1.0 30.5±4.3

σ = 0.3 75.2±1.4 46.8±1.5 78.6±1.3 72.0±1.5 31.7±3.1 22.6±2.2 31.7±1.1 27.1±0.9

w/ T

Forward

RW (0.0) 74.5±0.8 62.6±1.0 79.6±1.1 73.1±1.7 37.2±2.6 23.5±11.3 27.2±13.2 27.3±1.3

σ = 0.1 77.8±1.5 64.8±6.1 74.0±11.5 77.5±1.0 26.1±3.9 1.2±0.1 29.9±2.4 11.0±8.6

σ = 0.2 75.9±4.1 65.9±3.3 76.7±3.5 76.3±3.6 2.0±1.0 1.1±0.2 9.1±7.3 3.1±2.0

σ = 0.3 77.5±1.6 45.5±12.3 76.4±2.9 74.5±2.8 1.6±0.4 1.0±0.1 2.3±1.5 1.3±0.4

RENT 78.7±0.3 69.0±0.1 82.0±0.5 77.8±0.5 38.9±1.2 28.9±1.1 38.4±0.7 30.4±0.3

DualT

RW (0.0) 80.6±0.6 74.1±0.7 82.5±0.2 77.9±0.4 38.5±1.0 12.0±13.5 38.5±1.6 24.0±11.6

σ = 0.1 74.7±3.6 48.2±9.7 78.4±1.1 72.2±4.7 18.5±7.2 1.9±0.6 31.7±4.1 11.8±9.1

σ = 0.2 66.4±9.2 31.6±5.0 76.6±0.7 69.4±5.1 2.2±1.3 1.4±0.7 7.9±4.2 3.5±2.2

σ = 0.3 59.7±11.7 26.2±10.8 69.6±2.8 64.2±2.7 1.5±0.7 1.2±0.1 4.9±3.0 1.4±0.6

RENT 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

TV

RW (0.0) 73.7±0.9 48.5±4.1 77.3±2.0 70.2±1.0 32.3±1.0 17.8±2.0 32.0±1.5 23.2±0.9

σ = 0.1 70.7±10.1 49.0±10.6 76.2±4.7 69.8±3.1 1.4±0.3 1.8±1.0 15.0±11.9 5.6±7.9

σ = 0.2 57.6±16.5 15.6±7.8 38.6±29.4 43.9±18.3 1.4±0.2 1.1±0.1 1.4±0.4 1.7±0.9

σ = 0.3 30.3±23.3 15.6±4.9 30.5±22.6 19.5±11.4 1.0±0.1 1.1±0.2 1.2±0.3 1.2±0.4

RENT 78.8±0.8 62.5±1.8 81.0±0.4 74.0±0.5 34.0±0.9 20.0±0.6 34.0±0.2 25.5±0.4

VolMinNet

RW (0.0) 74.2±0.5 50.6±6.4 78.6±0.5 70.4±0.8 36.9±1.2 24.4±3.0 34.9±1.3 26.5±0.9

σ = 0.1 77.1±2.0 56.6±2.0 79.0±2.3 71.2±2.3 1.9±0.7 1.2±0.1 2.5±0.9 2.3±0.8

σ = 0.2 67.7±7.0 25.8±12.1 75.3±2.4 59.9±3.9 1.2±0.1 1.1±0.1 1.2±0.2 1.2±0.3

σ = 0.3 21.8±10.3 15.6±4.2 39.9±22.2 32.8±18.4 1.1±0.3 1.2±0.2 1.2±0.2 1.2±0.2

RENT 79.4±0.3 62.6±1.3 80.8±0.5 74.0±0.4 35.8±0.9 29.3±0.5 36.1±0.7 31.0±0.8

Cycle

RW (0.0) 80.2±0.2 57.0±3.4 78.1±0.9 70.6±1.1 37.8±2.7 30.2±0.6 38.1±1.6 29.3±0.6

σ = 0.1 77.9±1.3 71.1±2.5 75.9±2.7 74.4±1.4 7.9±11.1 2.5±1.8 2.0±1.3 5.2±3.3

σ = 0.2 61.0±23.8 64.1±5.6 69.7±2.9 66.8±1.5 1.7±0.3 1.3±0.4 1.9±0.5 2.7±1.4

σ = 0.3 63.0±2.6 61.2±5.4 58.4±4.7 42.7±11.1 1.2±0.2 1.4±0.2 1.2±0.1 1.4±0.2

RENT 82.5±0.2 70.4±0.3 81.5±0.1 70.2±0.7 40.7±0.4 32.4±0.4 40.7±0.7 32.2±0.6

True T

RW (0.0) 76.2±0.3 58.6±1.2 − − 35.0±0.8 21.8±0.8 21.3±16.6 21.6±10.4

σ = 0.1 79.9±0.8 68.8±0.6 81.3±0.6 78.0±0.7 30.7±3.3 24.1±0.5 34.5±1.9 27.1±2.4

σ = 0.2 76.5±2.1 67.3±2.3 81.7±0.4 77.8±1.1 25.7±3.4 12.4±8.4 32.5±2.7 27.2±2.4

σ = 0.3 75.7±1.3 59.3±11.5 78.8±1.5 75.5±2.7 14.3±4.7 1.5±0.4 25.9±2.6 23.6±2.9

RENT 79.8±0.2 66.8±0.6 82.4±0.4 78.4±0.3 36.1±1.1 24.0±0.3 34.4±0.9 27.2±0.6

Table 11 shows model performance comparison with regard to CIFAR10 and CIFAR100 under
various label noise settings. In the table, we report the results under the whole T estimation baselines
that we experimented in the table 1.

Interestingly, label perturbation to either (1) the naive cross entropy loss (SNL row in the table) or
(2) the reweighting loss with true T (True T row in the table) generally improves the model per-
formance compared to the baselines, which refer to the model performances achieved when trained
solely with the basic loss itself without any random label noise. On the other hand, there are cases
where the model performance become worse when the random label noise injection technique is
utilized with the reweighting loss from the estimated T under the same σ. Also note that integrating
the label perturbation technique directly to various T estimation methods can easily lead to training
failure, especially for CIFAR100. These failure could be attributed to both the inaccurate objective
function resulting from the inaccurate per-sample weights, which are calculated based on the esti-
mated T , and the injected label noise. These could also imply that application of the label noise
injection technique to the reweighting loss might be more sensitive to the parameter σ compared to
its original application, which is the application to the naive cross entropy loss. This sensitivity can
be problematic in term of its applicability. In contrast, RENT tends to exhibit better performance
than RW, further highlighting its robust adaptability to diverse situations.
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Figure 15 shows additional results for CIFAR10 over figure 4. Similar to figure 4, RENT consistently
outperforms SNL and RW+ϵ also under ASN settings. In the figure, we removed σ = 0.0 case,
which is RW, for ASN plots because the training failed considering both cases. Also note that
RW+ϵ is highly sensitive to the value of σ and tuning the parameter is required for adequate model
performances.
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Figure 15: Test accuracies over various σ for CIFAR10. Same with figure 4, RW+ϵ denotes the
integration of RW and the label noise perturbation technique.

We present the model performances using different σ ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0] for both
figure 4 and figure 15. We utilized the true transition matrix T for getting the model performances
in the figures, because we wanted to ensure that T estimation gap does not have impact on the
performance gap between SNL and others. All other experimental details remain consistent with the
settings described in the earlier section.

F.5 MORE RESULTS FOR OUTCOME ANALYSES
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Figure 16: Histogram of wi of RENT on CIFAR10 and CIFAR100. Same as figure 5, we utilized
Cycle (Cheng et al., 2022) as T estimation method for this plot. Blue and orange represents the
number of samples with clean and noisy labels, respectively. Vertical dotted line denotes 1/B.
Samples with wi ≤ 1/B would likely be less sampled than i.i.d..

wi value Figure 16 shows the additional results of the figure 5 over CIFAR10 and CIFAR100.
Percentages reported in both figures are calculated as the ratio between the number of samples
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whose wi is within each range and the total number of samples whose labels as data instances (ỹi)
are same with (clean) or different from (noisy) the original class labels (×100%). Similar to figure
5, it consistently shows high ratio of clean samples in oversampling region and high ratio of noisy
samples near zero.

With the results reported in Figure 5 and figure 16, wi value can be divided easily with threshold,
1/B. However, Table 12 shows it is not true.

Table 12: Test accuracies on CIFAR10 and CIFAR100 with various label noise settings comparing
RENT vs. thresholding to wi+random sampling. Bold is the best accuracy for each setting.

CIFAR10 CIFAR100
Base Criterion SN 20% SN 50% ASN 20% ASN 40% SN 20% SN 50% ASN 20% ASN 40%

Forward w+random 74.0±0.8 45.7±1.6 80.0±0.8 71.3±2.0 30.8±1.8 16.1±1.1 30.6±2.2 24.6±0.5

w/ RENT 78.7±0.3 69.0±0.1 82.0±0.5 77.8±0.5 38.9±1.2 28.9±1.1 38.4±0.7 30.4±0.3

DualT w+random 74.8±0.6 48.2±1.2 80.1±0.6 72.4±0.9 31.9±0.9 16.5±1.1 34.7±1.8 25.1±0.7

w/ RENT 82.0±0.2 74.6±0.4 83.3±0.1 80.0±0.9 39.8±0.9 27.1±1.9 39.8±0.7 34.0±0.4

TV w+random 70.7±1.8 45.5±1.6 78.7±0.9 71.9±1.7 28.2±2.8 16.1±0.9 28.8±2.0 21.6±1.9

w/ RENT 78.8±0.8 62.5±1.8 81.0±0.4 74.0±0.5 34.0±0.9 20.0±0.6 34.0±0.2 25.5±0.4

VolMinNet w+random 71.4±0.4 45.3±2.3 76.8±2.9 71.7±1.7 28.7±1.5 17.2±1.5 30.4±2.0 23.9±2.2

w/ RENT 79.4±0.3 62.6±1.3 80.8±0.5 74.0±0.4 35.8±0.9 29.3±0.5 36.1±0.7 31.0±0.8

Cycle w+random 70.8±12.2 44.7±0.8 78.1±0.7 69.2±1.2 31.5±0.8 16.3±1.4 33.2±1.6 24.5±2.3

w/ RENT 82.5±0.2 70.4±0.3 81.5±0.1 70.2±0.7 40.7±0.4 32.4±0.4 40.7±0.7 32.2±0.6

Here, w+random means when if we just set a threshold for w and randomly sampling again from
the selected samples. This gap happens because during training, especially in the earlier learning
iterations, w of clean samples and noisy samples may be more mixed, since the model parameter
is yet more similar to the random assignment. Therefore, sorting with an arbitrary threshold may
be riskier. However, Dirichlet-based resampling and RENT may be safer to this problem since
the sampling probability of the samples below threshold is not 0.This would result in the overall
performance differences.

Also, choosing a good threshold may be difficult and some training iteration and noise condition
adaptive strategy could be needed. Figure 17 shows this need.

(a) SN 20% (b) SN 50%

Figure 17: The number of samples whose wi value is larger than 1/B over time iterations. We
visualize clean labels and noisy labels as blue and orange. Dataset is CIFAR10. Note that 40,000
and 25,000 samples are total number of clean labels for 20% and 50%, respectively.

It shows the number of samples whose wi value is larger than 1/B over time iterations, with clean
labels and noisy labels, respectively, while training the classifier with RENT. Result shows that clean
label samples whose wi is larger than 1/B is not as many as the final iteration (which is natural),
which underlines the training process adaptive strategy for threshold value.

Confidence of wrong labelled samples We show additional results over figure 6 in figure 18 for
CIFAR10 and CIFAR100. The model trained with RENT consistently reports lower confidence
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Figure 18: Training data with incorrect labels divided by the confidence (threshold=0.5). Cycle
(Cheng et al., 2022) for T estimation, on CIFAR10 and CIFAR100.

values for noisy-labelled samples across different datasets compared to RW. This observation again
supports less memorization of RENT over RW.
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Figure 19: Evaluation based on the selected metrics for CIFAR10 and CIFAR100. We adopted
Cycle (Cheng et al., 2022) for T estimation.

Resampled dataset quality Here, we show additional results over figure 7 in figure 19 for CI-
FAR10 and CIFAR100. We show that RENT consistently surpasses the baselines in F1 score, im-
plying the good quality of the resampled dataset. We provide details about the baselines that were
used in our experiments as follows.

MCD Lee et al. (2019) assumes features of samples with noisy label will be far away from that of
samples with clean label. In this sense, they assume feature distribution as normal distribution and
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filter out noisy-labelled data using the Mahalanobis distance as the metric to discriminate whether
a sample is clean or noisy. Following the original paper, we select to use 50% samples of the data
with smallest distances.

FINE Kim et al. (2021) filters out noisy-labelled samples by eigenvector. Following the original
paper, we use the hyperparameter of clean probability of GMM as 0.5.

Considering FINE, there are cases when it shows unimaginably bad performance. We conjecture
these bad performances can be from two factors. First, please note that there are differences in
experimental settings. In the original paper, FINE utilizes ResNet 34 network, without max pooling
layer, with SGD optimizer. We utilize ResNet 34 for CIFAR10 and ResNet 50 for CIFAR100 with
Adam optimizer. Considering the dataset condition, we did not normalize input data following
Zhang et al. (2021b); Li et al. (2021) but FINE did and it would make differences in performance.
Second, since there is no reported result on the original paper when applying the FINE algorithm
to the model trained with transition matrix based loss functions, comparing this performance to
the performance from the original paper is impossible. With lower recall values, we assume eigen
decomposition of feature vectors would not discriminate clean samples efficiently.

F.6 ABLATION OVER THE SAMPLING STRATEGIES

Table 13: Ablation over the sampling strategies.

CIFAR10 CIFAR100
Base Sampling SN 20% SN 50% ASN 20% SN 20% SN 50% ASN 20%

Forward
Batch 78.7±0.3 69.0±0.1 82.0±0.5 38.9±1.2 28.9±1.1 38.4±0.7

Global 81.8±0.5 72.6±0.9 83.2±0.6 32.3±2.2 4.4±1.9 33.3±2.1

Global.C 81.8±0.5 75.9±0.4 83.5±0.3 37.3±0.8 23.3±2.5 36.7±2.7

DualT
Batch 82.0±0.2 74.6±0.4 83.3±0.1 39.8±0.9 27.1±1.9 39.8±0.7

Global 81.7±0.6 74.6±0.7 83.0±0.4 39.1±1.4 26.9±2.3 36.4±1.9

Global.C 81.3±0.7 74.1±0.7 82.7±0.6 38.9±1.3 27.3±3.0 38.7±1.6

RENT utilizes the resampling from the mini-batch as a default setting. However, sampling from the
mini-batch could also be changed to the dataset-level. As another ablation study on the sampling
strategies of RENT, we conduct sampling from the whole dataset level, which could be divided into
two; 1) global sampling from whole dataset, which we denote as Global, and 2) class-wise sampling
from whole dataset, which we denote as Global.C. Table 13 shows that each strategy shows robust
performances over the different experimental settings.

F.7 RENT VS. SAMPLE-SELECTION

Apart from transition matrix based methods, sample selection methods dynamically select a subset
of training dataset during the classifier training, by filtering out the incorrectly-labelled instances
from the noisy dataset Han et al. (2018); Yu et al. (2019); Wei et al. (2020); Bahri et al. (2020);
Cheng et al. (2020). Our method, RENT, shares the same property with sample selection methods
by recognizing the resampling of RENT as noise-filtering procedure. Therefore, we compare the
performances of RENT with Coteaching Han et al. (2018), Jocor Wei et al. (2020), DKNN Bahri
et al. (2020) and CORES2 Cheng et al. (2020). We report the details of the baselines as follows.

Coteaching Han et al. (2018) assumes samples with large loss are assumed to be noisy-labelled.
However, selecting samples based on the output of the trained classifier may cause the problem
of sampling only already-trained samples again. Therefore, it utilizes two networks with same
structures from different initialization point. It selects data with small loss from other network and
train model parameter with the selected data.

Jocor Wei et al. (2020) also considers the loss value as a metric to discriminate noisy-labelled data
and they utilize two networks with same structures, but they optimize two network at one time.

DKNN Bahri et al. (2020) considers data whose labels are different from the K-Nearest Neighbor
algorithm result as noisy-labelled data. We utilize k = 500 as reported in the original paper.
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CORES Cheng et al. (2020) select samples based on its output confidence with regularization term
making the model be more confident, since a classifier can be uncertain for clean labels when training
with noisy-labelled dataset. We set β = 2 following the original paper.

For training Coteaching and Jocor, noisy label ratio is required as input information to decide the
sample selection portion. However, since we do not know this information, we followed the same
way as DualT Yao et al. (2020) for noisy ratio estimation, i.e. get the average of the diagonal term
of T as 1-noisy ratio. For T estimation, we utilize the algorithm of Yao et al. (2020).

Table 14: Comparison with Sample selection methods - Clothing1M. We did not report results on
DKNN because of too much computation.

Methods Coteaching Jocor CORES2 DKNN RENT

Accuracy (%) 67.2±0.4 68.4±0.1 66.4±0.7 − 69.9±0.7

Table 7 and table 14 compares test accuracies over the baselines and RENT. Our method shows
competitive performances over the baselines. It should be noted that Coteaching and Jocor requires
the training of two different classifiers, which requires more memory space and computation than
other methods.

F.8 WHEN NOISY DATASET IS CLASS IMBALANCED

Solving class imbalanced dataset with noisy label can be important (Koziarski et al., 2020; Chen
et al., 2021; Huang et al., 2022). Therefore, we experimented to show which T utilization would
work well under class imbalance. Following studies that solves class imbalanced learning Cao
et al. (2019); Zhang et al. (2023), we first make the imbalanced dataset with (the maximum number
of samples in class)

/
(the minimum number of samples in class) is defined as imbalance ratio and

between two classes the number of samples in each class should increase in exponential order. Then,
we flipped the label to be noisy as we did previously.

Figure 20 shows the performance comparison of FL, FW and RENT with several T estimation
baselines. As we can see in the figure, again, RENT shows consistently good result over FL and
RW. However, since there is no treatment to solve class imbalance issue in all of FL, RW and RENT,
the model performances decrease with higher class imbalance ration. This direction could be an
interesting future study.
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Figure 20: Performance comparison of FL, RW and RENT over class imbalance ratio. Subcaptions
represent noisy label setting and vertical captions mean the transition matrix estimation methods.
RED, GREEN and BLUE represents RENT, RW and FL, respectively.

F.9 TIME COMPLEXITY

Table 15: Iterations denotes the number of iterations per epoch.

Dataset CIFAR10 CIFAR100 Clothing1M
Dataset size / Iterations 50,000 / 391 50,000 / 391 1,000,000 / 10,000

ttotal 15.62s 20.44s 2315.10s

tsample 0.13s (0.83%) 0.12s (0.59%) 4.02s (0.17%)

To check whether there is increment in the time complexity by RENT, Table 15 presents the wall-
clock time in resampling procedure of RENT. ttotal is the total wall-clock for a single epoch, and
tsample is the time only for the resampling. Given a large-scale dataset, i.e. Clothing1M, the resam-
pling time becomes ignorable.
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