
Robust Distributed Estimation: Extending Gossip
Algorithms to Ranking and Trimmed Means

Anna van Elst Igor Colin Stephan Clémençon
LTCI, Télécom Paris, Institut Polytechnique de Paris

{anna.vanelst, igor.colin, stephan.clemencon}@telecom-paris.fr

Abstract

This paper addresses the problem of robust estimation in gossip algorithms over
arbitrary communication graphs. Gossip algorithms are fully decentralized, relying
only on local neighbor-to-neighbor communication, making them well-suited for
situations where communication is constrained. A fundamental challenge in exist-
ing mean-based gossip algorithms is their vulnerability to malicious or corrupted
nodes. In this paper, we show that an outlier-robust mean can be computed by
globally estimating a robust statistic. More specifically, we propose a novel gossip
algorithm for rank estimation, referred to as GORANK, and leverage it to design
a gossip procedure dedicated to trimmed mean estimation, coined GOTRIM. In
addition to a detailed description of the proposed methods, a key contribution of
our work is a precise convergence analysis: we establish an O(1/t) rate for rank
estimation and an O(1/t) rate for trimmed mean estimation, where by t is meant
the number of iterations. Moreover, we provide a breakdown point analysis of
GOTRIM. We empirically validate our theoretical results through experiments on
diverse network topologies, data distributions and contamination schemes.

1 Introduction

Distributed learning has gained significant attention in machine learning applications where data
is naturally distributed across a network, either due to resource or communication constraints [7].
The rapid development of the Internet of Things has further amplified this trend, as the number of
connected devices continues to grow, producing large volumes of data at the edge of the network. As
a result, edge computing, where computation is performed closer to the data source, has emerged
as a viable alternative to conventional cloud computing [6, 36]. By reducing reliance on centralized
servers, edge computing offers several advantages, including lower energy consumption, improved
data security, and reduced latency [6, 36]. In this context, several distributed learning frameworks,
including Gossip Learning and Federated Learning, have been developed. Federated Learning depends
on a central server for model aggregation [26], which introduces challenges such as communication
bottlenecks and a single point of failure. In contrast, Gossip Learning provides a fully decentralized
alternative where nodes communicate only with their nearby neighbors [18]. In addition, Gossip
learning is particularly well-suited for situations where communication is constrained, such as in
peer-to-peer or sensor networks.

One of the central challenges in distributed learning is robustness to corrupted nodes—scenarios
where some nodes may contain contaminated data due to hardware faults, or even adversarial
attacks [8, 39]. Consider a network of sensors deployed to monitor the temperature in a small
region, as described in [5]. In idealized scenarios, sensor noise is typically modeled by a zero-
mean Gaussian. However, a recent survey (see [1]) mentions that sensor networks are especially
prone to outliers due to their reliance on imperfect sensing devices. Indeed, in practice, sensors
can malfunction (e.g., become miscalibrated, get stuck at constant values, or report extreme values

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

 1. : update rank and

trimmed mean estimates

 2. Select randomly

and average and

 3. Swap observations

 and

Swap

Figure 1: Illustration of a GOTRIM’s iteration paired with GORANK on a communication graph
G = (V,E). Initially, each node k ∈ V stores the observation Xk.

due to environmental interference). These issues introduce outliers in the dataset which can corrupt
the estimated temperature. Specifically, we consider a setting in which a fraction of the nodes hold
outlying data [14]. In Federated Learning, significant progress has been made in designing robust
aggregation methods based on statistics, such as the median and trimmed mean [2, 3, 39]. These
statistics are known to be more robust to outliers than the standard mean [19]. However, ensuring
robustness in Gossip Learning remains challenging. Unlike Federated Learning, where a central
server can enforce robust aggregation rules, gossip algorithms inherently rely on local communication.
To the best of our knowledge, approaches relying on globally estimating robust statistics remain
largely unexplored in the gossip literature.

In this paper, we address the problem of robust estimation in gossip algorithms over arbitrary
communication graphs. Specifically, we show that an outlier-robust mean can be computed by
globally estimating a robust statistic. Ranks play a crucial role in the framework we develop here,
as they allow us to identify outliers and compute robust statistics on the one hand [30], and because
they can be obtained by means of pairwise comparisons on the other. This allows us to exploit the
gossip approach proposed in [10] to compute pairwise averages (U -statistics) in a decentralized way.
Note that both ranks and trimmed means are inherently global statistics, which makes them more
challenging to estimate in a decentralized manner compared to statistics like averages, minima, or
maxima that rely on local conservation principles.

Our main contributions are summarized as follows:

•We propose GORANK, a new gossip algorithm for rank estimation, and establish the first theoretical
convergence rates for gossip-based ranking on arbitrary communication graphs, proving an O(1/t)
convergence rate, where t ≥ 1 denotes the number of iterations.
• We introduce GOTRIM, the first gossip algorithm for trimmed mean estimation which can be
paired with any ranking algorithm. GOTRIM does not rely on strong graph topology assumptions—a
common restriction in robust gossip algorithms. We prove a competitive convergence rate of order
O(1/t) and provide a breakdown point analysis, demonstrating the robustness of its estimate.
• Finally, we conduct extensive experiments on various contaminated data distributions and network
topologies. Numerical results empirically show that (1) GORANK consistently outperforms previous
work in large and poorly connected communication graphs, and (2) GOTRIM effectively handles
outliers—its estimate quickly improves on the naive mean and converges to the true trimmed mean.

This paper is organized as follows. Section 2 introduces the problem setup and reviews the related
works. In Section 3, we present our new gossip algorithm for ranking, along with its convergence
analysis and supporting numerical experiments. Section 4 introduces our novel gossip algorithm
for trimmed mean estimation, together with a corresponding convergence analysis and experimental
results. Finally, Section 5 explores potential extensions of our work. Due to space constraints,
technical details, further discussions, and results are deferred to the Supplementary Material.

2 Background and Preliminaries

This section briefly introduces the concepts of decentralized learning, describes the problem studied
and the framework for its analysis.

2

2.1 Problem Formulation and Framework

Here, we formulate the problem using a rigorous framework and introduce the necessary notations.

Notation. Let n ≥ 1. We denote scalars by normal lowercase letters x ∈ R, vectors (identified as
column vectors) by boldface lowercase letters x ∈ Rn, and matrices by boldface uppercase letters
X ∈ Rn×n. The set {1, . . . , n} is denoted by [n], Rn’s canonical basis by {ek : k ∈ [n]}, the
indicator function of any eventA by IA, the transpose of any matrix M by M⊤ and the cardinality of
any finite set F by |F |. By In is meant the identity matrix in Rn×n, by 1n = (1, . . . , 1)⊤ the vector
in Rn whose coordinates are all equal to one, by ∥ · ∥ the usual ℓ2 norm, by ⌊·⌋ the floor function,
and by A⊙B the Hadamard product of matrices A and B. We model a network of size n > 0 as
an undirected graph G = (V,E), where V = [n] denotes the set of vertices and E ⊆ V × V the
set of edges. We denote by A its adjacency matrix, meaning that for all (i, j) ∈ V 2, [A]ij = 1 iff
(i, j) ∈ E, and by D the diagonal matrix of vertex degrees. The graph Laplacian of G is defined as
L = D−A.

Setup. We consider a decentralized setting where n ≥ 2 real-valued observations X1, . . . , Xn

are distributed over a communication network represented by a connected and non-bipartite graph
G = (V,E), see [12]: the observation Xk is assigned to node k ∈ [n]. For simplicity, we assume
no ties: for all k ̸= l, Xk ̸= Xl. Communication between nodes occurs in a stochastic and
pairwise manner: at each iteration, an edge of the communication graph G is chosen uniformly at
random, allowing the corresponding neighboring nodes to exchange information. This popular setup
is robust to network changes and helps reduce communication overhead and network congestion
[5, 10, 13]. We focus on the synchronous gossip setting, where nodes have access to a global clock
and synchronize their updates [5, 10, 13]. We assume that a fraction 0 < ε < 1/2 of the data is
corrupted and may contain outliers, as stipulated in Huber’s contamination model, refer to [19].

The Decentralized Estimation Problem. The goal pursued here is to develop a robust gossip
algorithm that accurately estimates the mean over the network despite the presence of outliers,
specifically the α-trimmed mean with α ∈ (0, 1/2), i.e., the average of the middle (1 − 2α)-th
fraction of the observations. This statistic, discarding the observations of greater or smaller rank,
is a widely used location estimator when data contamination is suspected; see [31, 34]. Formally,
let Xn(1) ≤ Xn(2) ≤ · · · ≤ Xn(n) be the order statistics (i.e., the observations sorted in ascending
order), and define m = ⌊αn⌋ for α ∈ (0, 1/2). The α-trimmed mean is given by:

x̄α =
1

n− 2m

n−m∑
k=m+1

Xn(k). (1)

Based on the rank of each node’s observation Xk, namely rk = 1 +
∑n

l=1 I{Xk>Xl} in the absence
of ties, for k ∈ [n], it can also be formulated as a weighted average of the observations, just like many
other robust statistics:

x̄α =
1

n

n∑
k=1

wn,α(rk)Xk, (2)

where wn,α is a weight function defined as wn,α(rk) = (n/(n− 2m))I{rk∈In,α}, with the inclusion
interval given by In,α = [u, v] where u = m+ 1 and v = n−m.
Remark 1. The framework can be extended to the case of ℓ ≥ 2 tied observations with the mid-rank
method: the rank assigned to the ℓ tied values is the average of the ranks they would have obtained
in absence of ties, that is, the average of p + 1, p + 2, . . . , p + ℓ, which equals p + (ℓ + 1)/2, see
[24]. To account for the possibility of non-integer rank estimates, one may use the adjusted inclusion
interval to define the weights in (2): In,α = [u− 1/2, v + 1/2]. Note that when ranks are integers,
this adjustment has no effect.
Remark 2. Our setup assumes honest nodes, meaning they perform updates correctly and consistently
based on their local observations. However, under Huber’s contamination model, these observations
may include outliers. Note that this setup is fundamentally different from the Byzantine model where
nodes may behave arbitrarily or maliciously, potentially sending incorrect updates with the intent to
disrupt consensus or degrade performance. This model is still realistic in many practical settings: a
sensor could be miscalibrated, stuck at a fixed value, or may consistently report incorrect readings
due to environmental factors, without necessarily being attacked.

3

2.2 Related Works – State of the Art

The overview of related literature below highlights the novelty of the gossip problem analyzed here.

Distributed Ranking. Distributed ranking (or ordering) is considered in [9], where a gossip al-
gorithm for estimating ranks on any communication graph is proposed. The algorithm is proved
to converge, in the sense of yielding the correct rank estimate, in finite time with probability one.
However, their work does not provide any convergence rate bound, and empirical results suggest
that the algorithm is suboptimal in scenarios with long return times, i.e., when the expected time
for a random walk on the graph to return to its starting node is long (see the Supplementary Mate-
rial). Alternatively, here we take advantage of the fact that ranks can be calculated using pairwise
comparisons I{Xk>Xl}, so as to build on the GoSta approach in [10], originally introduced for the
distributed estimation of U -statistics, with a proved convergence rate bound of order O(1/t).

Robust Mean Estimation. To the best of our knowledge, the estimation of α-trimmed means
has not yet been explored in the gossip literature. Several related works examine the estimation of
medians and quantiles in sensor networks [15, 23, 33]. A key limitation of these works is their reliance
on a special node, such as a base station or leader, which initiates queries, broadcasts information,
and collects data from other sensors—an assumption that does not apply to our setting [15, 23, 33].
Another work has proposed an algorithm for estimating quantiles [16]; however, there seems to be no
guarantees of convergence to the true quantiles. Moreover, their algorithm assumes a fully connected
communication graph and the ability to sample from four nodes at each step and to sample K random
nodes at the end of the protocol, whereas we consider the more challenging setting of arbitrary
communication graphs and pairwise communication. Recently, He et al. [17] proposed a novel local
aggregator, ClippedGossip, for Byzantine-robust gossip learning. In our pairwise setup with a fixed
clipping radius, their approach—though reasonable for robust optimization—does not work for robust
estimation. Specifically, ClippedGossip ultimately converges to the corrupted mean and, therefore,
fails to reduce the impact of outliers. A detailed analysis is provided in the Supplementary Material.

The following table assesses whether each method is fully decentralized, whether the estimator is
unbiased, and whether theoretical convergence rates exist (for both complete and arbitrary graphs).

Method Decentralized? Unbiased? Rates on: Any Graph? Complete Graph?

Chiuso et al. (Baseline) × ✓ Complete Graph: O(exp(−t/|E|))
Baseline++ (ours) × ✓ Complete Graph: O(exp(−t/|E|))
GoRank (ours) ✓ ✓ Any Graph: O(1/t)
Haeupler et al. × ∼ Complete Graph: O(log(n)) rounds
He et al. ✓ × ×
Shrivastava et al. × ✓ ×
GoTrim (ours) ✓ ✓ Any Graph: O(1/t)

3 A Gossip Algorithm for Distributed Ranking – GORANK

In this section, we introduce and analyze the GORANK algorithm. We establish that the expected
estimates converge to the true ranks at a O(1/ct) rate, where the constant c > 0 (given in Theorem
1 below) quantifies the degree of connectivity of G: the more connected the graph, the greater this
quantity and the smaller the rate bound. We also prove that the expected absolute error decreases at
a rate of O(1/

√
ct). In addition, we empirically validate these results with experiments involving

graphs of different types, showing that the observed convergence aligns with the theoretical bounds.

3.1 Algorithm – Convergence Analysis

We introduce GORANK, a gossip algorithm for estimating the ranks of the observations distributed on
the network, see Algorithm 1. It builds on GOSTA, an algorithm originally designed for estimating
pairwise averages (U -statistics of degree 2) proposed and analyzed in [10]. The GORANK algorithm
exploits the fact that ranks can be computed by means of pairwise comparisons:

rk = 1 + n

(
1

n

n∑
l=1

I{Xk>Xl}

)
= 1 + nr′k, for k = 1 . . . , n. (3)

4

Algorithm 1 GoRank: a synchronous gossip algorithm for ranking.

1: Init: For each k ∈ [n], initialize Yk ← Xk and R′
k ← 0. // init(k)

2: for s = 1, 2, . . . do
3: for k = 1, . . . , n do
4: Update estimate: R′

k ← (1− 1/s)R′
k + (1/s)I{Xk>Yk}.

5: Update rank estimate: Rk ← nR′
k + 1. // update(k, s)

6: end for
7: Draw (i, j) ∈ E uniformly at random.
8: Swap auxiliary observation: Yi ↔ Yj . // swap(i, j)
9: end for

10: Output: Estimate of ranks Rk.

Let Rk(t) and R′
k(t) denote the local estimates of rk and r′k respectively at node k ∈ [n] and iteration

t ≥ 1. Each node maintains an auxiliary observation, denoted Yk(t), which enables the propagation
of observations across the network, despite communication constraints. For each node k, the variables
are initialized as Yk(0) = Xk and R′

k(0) = 0. At each iteration t ≥ 1, node k updates its estimate
R′

k(t) by computing the running average of R′
k(t− 1) and I{Xk>Yk(t−1)}. The rank estimate is then

computed as Rk(t) = nR′
k(t) + 1. Next, an edge (i, j) ∈ E is selected uniformly at random, and the

corresponding nodes exchange their auxiliary observations: Yi(t) = Yj(t− 1) and Yj(t) = Yi(t− 1).
This random swapping procedure allows each observation to perform a random walk on the graph,
which is described by the permutation matrix W1(t) = In − (ei − ej)(ei − ej)

⊤, which plays
a key role in the convergence analysis [10]. By taking the expectation with respect to the edge
sampling process, we obtain W1 := E[W1(t)] = In − (1/|E|)L. This stochastic matrix W1 shares
similarities with the transition matrix used in gossip averaging [5, 25, 32]: it is symmetric and doubly
stochastic. Consequently, W1 has eigenvector 1n with eigenvalue 1, resulting in a random walk with
uniform stationary distribution. In other words, after sufficient iterations (i.e., in a nearly stationary
regime), each observation has (approximately) an equal probability of being located at any given
node—a property that would naturally hold (exactly) without swapping if the communication graph
were complete. In addition, it can be shown that, if the graph is connected and non-bipartite, the
spectral gap of W1 satisfies 0 < c < 1 and is given by c = λ2/|E| where λ2 is the second smallest
eigenvalue (or spectral gap) of the Laplacian [10]. This spectral gap plays a crucial role in the
mixing time of the random walk, reflecting how quickly it (geometrically) converges to its stationary
distribution [32]. In fact, the spectral gap of the Laplacian is also known as the graph’s algebraic
connectivity, a larger spectral gap meaning a higher graph connectivity [27].

Remark 3. We assume that the network size n ≥ 2 is known to the nodes. If not, it can be easily
estimated by injecting a value +1 into the network, where all initial estimates are set to 0, and
applying the standard gossip algorithm for averaging [5], see the Supplementary Material. The
quantities computed for each node will then converge to 1/n.

Remark 4. The asynchronous extension of GORANK is straightforward: it replaces the global
iteration counter s with a local counter Ck maintained at each node k. The update rule then becomes
(1−1/Ck)R

′
k+(1/Ck)IXk>Yk

. Empirically, we find that Asynchronous GORANK converges slightly
faster and is more efficient than its synchronous counterpart. Due to space constraints, the detailed
algorithm and experimental results are deferred to Appendix H.

We now establish convergence results for GORANK, by adapting the analysis in [10], origi-
nally proposed to derive convergence rate bounds for GOSTA as follows. For k ∈ [n], set
hk = (I{Xk>X1}, . . . , I{Xk>Xn})

⊤ and observe that the true rank of observation Xk is given
by rk = h⊤

k 1n + 1. At iteration t = 1, the auxiliary observation has not yet been swapped, so the
expected estimate is updated as E [R′

k(1)] = h⊤
k ek. At the end of the iteration, the auxiliary observa-

tion is randomly swapped, yielding the update: E[R′
k(2)] = (1/2)E[R′

k(1)]+(1/2)h⊤
k W1ek, where

E[·] denotes the expectation taken over the edge sampling process. Using recursion, the evolution of
the estimates, for any t ≥ 1 and k ∈ [n], is given by

E[R′
k(t)] = (1/t)

t−1∑
s=0

h⊤
k W

s
1ek and E[Rk(t)] = nE[R′

k(t)] + 1.

5

Note that E [R′
k(t)] can be viewed as the average of t terms of the form I{Xk>Xl}, where Xl is picked

at random. Observe also that R(t) = (R1(t), . . . , Rn(t)) is not a permutation of [n] in general:
in particular, we initially have Rk(1) = 1 for all k ∈ [n]. We now state a convergence result for
GORANK, which claims that the expected estimates converge to the true ranks at a rate of O(1/ct).
Theorem 1 (Convergence of Expected GORANK Estimates). We have: ∀k ∈ [n], ∀t ≥ 1,

|E[Rk(t)]− rk| ≤
σk

ct
,

where the constant c = λ2/|E| represents the connectivity of the graph, with λ2 being the spectral
gap of the graph Laplacian, and the rank functional σk = n3/2 · ϕ((rk − 1)/n) is determined by the
score generating function ϕ : u ∈ (0, 1)→

√
u(1− u).

More details, as well as the technical proof, are deferred to section C of the Supplementary Material.
Theorem 1 establishes that, for each node, the estimates converge in expectation to the true ranks
at O(1/ct) rate, where c is a constant depending on the graph’s algebraic connectivity: higher
network connectivity leads to faster convergence. In addition, the shape of the function ϕ involved
in the bound (1), resp. of u ∈ (0, 1) 7→

√
u(1− u), suggests that extreme (i.e., the lowest and

largest) values are intrinsically easier to rank than middle values, see also Fig. 2. Regarding its
shape, observe that GORANK can be seen as an algorithm that estimates Bernoulli parameters
(1/n)

∑n
l=1 I{Xk>Xl} = (rk− 1)/n and, from this perspective, the σk’s can be viewed as the related

standard deviations, up to the factor n3/2.

We state an additional result below that builds upon the previous analysis, and establishes a bound of
order O(1/

√
ct) for the expected absolute deviation.

Theorem 2 (Expected Gap). Let k ∈ [n], and let c and σk be as defined in Theorem 1. For all t ≥ 1,
we have: E[|Rk(t)− rk|2] ≤ O (1/ct) · σ2

k . Consequently,

E [|Rk(t)− rk|] ≤ O
(

1√
ct

)
· σk .

Refer to section C in the Supplementary Material for the technical proof. Theorem 2 shows that
the expected error in absolute deviation decreases at a rate of O(1/

√
ct), similar to the convergence

rate for the expectation E[R(t)], but with a square root dependence. In addition, Theorem 2 can be
combined with Markov’s inequality to derive high-probability bounds on the ranking error. As will
be shown in the next section, this is a key component in the convergence analysis of GOTRIM.

Building upon the previous analysis, we derive another gossip algorithm called Baseline++, an
improved variant of the one proposed by Chiuso et al. for decentralized rank estimation [9]. It is
described at length in section A of the Supplementary Material. The algorithm’s steps and propagation
closely resemble those of GORANK. However, instead of estimating the means (3) based on pairwise
comparisons directly, Baseline++ aims to minimize, for each node k ∈ [n], a specific ranking loss
function, namely the Kendall τ distance ϕk(X,R) =

∑n
l=1 I{(Xk−Xl)·(Rk−Rl)<0}, counting the

number of discordant pairs among ((Rk, Xk), (Rl, Xl)) with l = 1, . . . , n. While GORANK
provides a quick approximation of the ranks, especially in poorly connected graphs, Baseline++,
despite being slower at first, may ultimately achieve a lower overall error as it minimizes a discrete
loss function. However, GORANK has a practical advantage: it does not require an initial ranking,
which may not always be available in real-world settings. Moreover, it comes with convergence rate
guarantees that apply to any graph topology. In contrast, analyzing the convergence of Baseline++
on arbitrary communication graphs is challenging and is left for future work.

3.2 Numerical Experiments

Setup. We conduct experiments on a dataset S = {1, . . . , n} with n = 500, distributed across
nodes of a communication graph. Our evaluation metric is the normalized absolute error between
estimated and true ranks, i.e., for node k at iteration t, the error is defined as ℓk(t) = |Rk(t)− rk|/n.
While more sophisticated ranking metrics such as Kendall τ exist, they are not relevant in our context,
as we focus on individual rank estimation accuracy. We first examine the impact of the constants
appearing in our theoretical bounds (see Theorem 1), the one related to graph connectivity and
the one reflecting rank centrality. To this end, we consider three graph topologies: the complete

6

graph (c = 4.01× 10−3), in which every node is directly connected to all others, yielding maximal
connectivity; the two-dimensional grid (c = 1.65 × 10−5), where each node connects to its four
immediate neighbors; and the Watts–Strogatz network (c = 3.31× 10−4), a randomized graph with
average degree k = 4 and rewiring probability p = 0.2, offering intermediate connectivity between
the complete and grid graphs. Then, we compare GORANK with the two other ranking algorithms
Baseline and Baseline++. Figure (a) was generated on a Watts-Strogatz graph, averaged over 1e3
trials. Figure (b) and (c) show the convergence of ranking algorithms with mean and standard
deviation computed from 100 trials: figure (b) shows the convergence of GORANK on different
graph topologies; figure (c) compares the convergence of the ranking algorithms on a 2D Grid graph.
All experiments were run on a single CPU with 32 GB of memory for 8e4 iterations, with a total
execution time of approximately two hours. The code for our experiments is publicly available.1

0 125 250 375 500
0.00

0.02

0.04

0.05

0.07

0.00

0.25

0.50
Absolute Error vs. Rank

GoRank
Bound

(a) Role of ϕ

0 2e4 4e4 6e4 8e4
0.00

0.05

0.10

0.15

0.20
Absolute Error vs. Timesteps

2D Grid
Watts-Strogatz
Complete

(b) Role of c

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(c) GORANK vs. Baseline

Figure 2: Illustration of the behavior of GORANK: (a) shows how the absolute error of the rank
estimates of GORANK aligns with the shape of the function ϕ, and highlights the role of the constant
σk for k ∈ [n] in the error bound; (b) compares the convergence rate of GORANK across different
graph topologies (i.e., levels of connectivity), illustrating the influence of the constant c in the
bound; (c) compares GORANK with existing method (Baseline) and an alternative ranking algorithm
developed in this work (Baseline++).

Results. Together, the figures illustrate key properties of GORANK. Figure (a) empirically confirms
that extreme ranks are easier to estimate than those in the middle—consistent with the shape of the
theoretical bound. Figure (b) highlights the impact of graph topology: as connectivity decreases,
convergence slows, in line with the theoretical bounds. Finally, Figure (c) compares the different
methods. GORANK and Baseline++ provide fast rank approximations even for large, poorly con-
nected graphs (e.g., a 2D grid graph). Baseline++ appears to converge faster in the end, as it directly
optimizes a discrete loss. Baseline, on the other hand, converges more slowly throughout, which
aligns with its dependence on the return time (i.e., the expected time for a random walk to revisit its
starting node), a quantity known to be large for poorly connected graphs. More extensive experiments
and discussion, confirming the results above, can be found in the Supplementary Material.

4 GOTRIM – A Gossip Algorithm for Trimmed Means Estimation

In this section, we present GOTRIM, a gossip algorithm for trimmed means estimation. We establish
a convergence in O(1/t) with constants depending on the network and data distribution.

4.1 Algorithm – Convergence Analysis

We introduce GOTRIM, a gossip algorithm to estimate trimmed mean statistics (see Algorithm 2),
which dynamically computes a weighted average using current estimated ranks. Notably, GOTRIM
can be paired with any ranking algorithm, including GORANK consequently. Let Zk(t) and Wk(t)
denote the local estimates of the statistic and weight at node k and iteration t. First, by Equation (2),
the α-trimmed mean can be computed via standard gossip averaging: for all k ∈ [n], Zk(t) =
(1/n)

∑n
l=1 Wl(t) ·Xl, where Wl(t) = wn,α(Rl(t)) with wn,α(·) defined in Section 2. Secondly,

1The code is available at github.com/anna-vanelst/robust-gossip.

7

https://github.com/anna-vanelst/robust-gossip

Algorithm 2 GoTrim: a synchronous gossip algorithm for estimating α-trimmed means.

1: Input: Trimming level α ∈ (0, 1/2), function wn,α defined in 2 and choice of ranking algorithm
rank (e.g., GoRank).

2: Init: For all node k, set Zk ← 0, Wk ← 0 and Rk ← rank.init(k).
3: for s = 1, 2, . . . do
4: for k = 1, . . . , n do
5: Update rank: Rk ← rank.update(k, s).
6: Set W ′

k ← wn,α(Rk).
7: Set Zk ← Zk + (W ′

k −Wk) ·Xk.
8: Set Wk ←W ′

k.
9: end for

10: Draw (i, j) ∈ E uniformly at random.
11: Set Zi, Zj ← (Zi + Zj)/2.
12: Swap auxiliary variables: swap(i, j)
13: end for
14: Output: Estimate of trimmed mean Zk.

since ranks Rk(t) vary over iterations, the algorithm dynamically adjusts to correct past errors:
at each step, it compensates by injecting (Wk(t)−Wk(t− 1)) · Xk into the averaging process.
On the one hand, we have an averaging operation which is captured by the averaging matrix:
W2(t) = In − (ei − ej)(ei − ej)

⊤/2. Similarly to the permutation matrix (see the previous
section), the expectation of the averaging matrix is symmetric, doubly stochastic and has spectral
gap that satisfies 0 < c2 < 1 and is given by c2 = c/2 [5, 32]. On the other hand, we have
a non-linear operation that depends on the estimated ranks: at each iteration t > 0, each node
k is updated as Zk(t) = Zk(t − 1) + δk(t) · Xk, where δk(t) = Wk(t) − Wk(t − 1). Hence,
the evolution of the estimates can be expressed as Z(t) = W2(t) (Z(t− 1) + δ(t)⊙X) , where
Z(t) = (Z1(t), . . . , Zn(t)) and δ(t) = (δ1(t), . . . , δn(t)). Taking the expectation over the sampling
process, the expected estimates are given by: E[Z(t)] = W2 (E[Z(t− 1)] + ∆w(t)⊙X) with
W2 = In − (1/2|E|)L and ∆w(t) = E[δ(t)]. For t = 1, since Zk(0) = 0, we have E[Z(1)] =
W2∆w(1)⊙X . Recursively, for any t > 0,

E[Z(t)] =

t∑
s=1

Wt+1−s
2 ∆w(s)⊙X.

We first state a lemma that claims that Wk(t) converges in expectation to wn,α(rk).
Lemma 1 (Convergence in Expectation of Wk(t)). Let R(t) and W(t) be defined as in Algorithm 1
and Algorithm 2, respectively. For all k ∈ [n] and t > 0, we have:

|E[Wk(t)]− wn,α(rk)| ≤ O
(

1

γ2
kct

)
· σ2

k,

where γk = min(|rk − a| , |rk − b|) ≥ 1/2 with a = ⌊αn⌋ + 1/2 and b = n − ⌊αn⌋ + 1/2 being
the endpoints of interval In,α. The constants c and σk are those defined in Theorem 2.

Further details and the complete proof are provided in Section D of the Supplementary Material.
Lemma 1 establishes that, for each node k, the estimates of the weight Wk converge in expectation
to the true weight wn,α(rk) at a rate of O

(
1/γ2

kct
)
. In addition, this lemma suggests that points

closer to the interval endpoints are subject to larger errors, as reflected in the constant γk, which is
consistent with the intuition that these points require greater precision in estimating ranks.

Having established the convergence of the weights Wk(t), we now focus on the convergence of the
estimates Zk(t). The following theorem demonstrates the convergence in expectation of GOTRIM
when paired with the GORANK ranking algorithm.
Theorem 3 (Convergence in Expectation of GOTRIM). Let Z(t) be defined as in Algorithm 2, and
assume the ranking algorithm is Algorithm 1. Then, for any t > T ∗ = min {t > 1 | ct > 2 log(t)},

∥E[Z(t)]− x̄α1n∥ ≤ O
(

1

c2t

)
∥K⊙X∥,

where K = (σ2
1/γ

2
1 , . . . , σ

2
n/γ

2
n) and c, σk, γk are the constants defined in Lemma 1.

8

See Section D of the Supplementary Material for the detailed proof. Theorem 3 shows that, for each
node k, the estimate of the trimmed mean Zk converges in expectation to the true trimmed mean x̄α

at a rate of O
(
1/c2t

)
. While the presence of the c2 term may appear pessimistic, empirical evidence

suggests that the actual convergence may be faster in practice. The vector K acts as a rank-dependent
mask over X, modulating the contribution of each data point Xk to the error bound. Specifically: (1)
extreme values are more heavily penalized by the mask, as they come with better rank estimation; (2)
values with ranks near the trimming interval endpoints are amplified, as small inaccuracies in rank
estimation can lead to disproportionately larger errors.

4.2 Robustness Analysis - Breakdown Points

Consider a dataset S of size n ≥ 1 and Tn = Tn(S) a real-valued statistic based on it. The
breakdown point for the statistic Tn(S) is defined as ε∗ = p∞/n, where p∞ = min{p ∈ N∗ :
supS′

p
|Tn(S)−Tn(S

′
p)| =∞}, the supremum being taken over all corrupted datasets S′

p obtained by
replacing p samples in S by arbitrary samples. The breakdown point is a popular notion of robustness
[20], corresponding here to the fraction of samples that need to be corrupted to make the statistic Tn

arbitrarily large (i.e., "break down"). For example, the breakdown point of the α-trimmed mean is
given by ⌊αn⌋/n, which is approximately α. We consider here a generalization of this notion, namely
the τ -breakdown point by replacing p∞ with pτ = min{p ∈ N∗ , supS′

p
|Tn(S)− Tn(S

′
p)| ≥ τ},

where τ > 0 is a threshold parameter. Since our algorithm does not compute the exact α-trimmed
mean, we focus instead on determining the τ -breakdown point ε∗k(t) of the partial α-trimmed mean
at iteration t for each node k, i.e., the estimate Zk(t). Given that this quantity was previously shown
to converge to the α-trimmed mean, we expect that ε∗k(t) ≤ α. The following theorem provides
framing bounds for the breakdown point of the estimates of GOTRIM when paired with GORANK.

Theorem 4. Let τ > 0 and δ, α ∈ (0, 1). With probability at least 1 − δ, the τ -breakdown point
ε∗k(t) of the partial α-trimmed mean at iteration t > T for any node k satisfies

1

n
max

(⌊
⌊αn⌋+ 1

2
− K(δ)√

t− T

⌋
, 0

)
≤ ε∗k(t) ≤

⌊αn⌋
n

,

where K(δ) = O(1/δ) is a constant and T = O(log(1/τδ)) represents the time allowed for the
mean to propagate.

See Section E of the Supplementary Material for the technical proof, which relies on the idea that,
when estimating a partial α-trimmed mean, there are two sources of error: (1) the uncertainty in rank
estimation, which can lead to incorrect data points being included in the mean, and (2) the delay from
the gossip averaging, which requires a certain propagation time T to update the network estimates.
Note that, as t→∞, Theorem 4 recovers the breakdown point of the exact α-trimmed mean.

4.3 Numerical Experiments

Setup. The experimental setup is identical to that of the previous section, with the key difference
being the introduction of corrupted data. Specifically, the dataset S is contaminated by replacing a
fraction ε = 0.1 of the values with outliers. We consider two types of corruption, each affecting ⌊εn⌋
randomly selected data points: (a) scaling, where a value x is changed to sx, and (b) shifting, where
x becomes x+ s. While this is a relatively simple form of corruption, it is sufficient to break down
the classical mean. We measure performance using the absolute error between the estimated and
true trimmed mean. For node k at iteration t, the error is given by ℓ(t) = (1/n)

∑
k |Zk(t) − x̄α|.

Experiments (a) and (b) are run on dataset S, corrupted with scaling s = 10, using a Watts-Strogatz
and a 2D grid graph, respectively. Experiment (c) uses the Basel Luftklima dataset, corrupted with
shift s = 100. This dataset includes temperature measurements from n = 105 sensors across Basel.
A graph with connectivity c = 4.7× 10−4 is constructed by connecting sensors within 1 km of each
other. The code and dataset for our experiments is publicly available.2

Results. Figure (a) empirically confirms that the uncertainty in the weight estimates is highest near
the boundaries of the interval, consistent with our theoretical bound. Figures (b) and (c) show that
GOTRIM, when combined with GORANK or even alternative ranking methods, quickly approximates

2The code and Basel Luktklima dataset are available at github.com/anna-vanelst/robust-gossip.

9

https://github.com/anna-vanelst/robust-gossip

0 125 250 375 500
0.0

0.3

0.6

0.9

Absolute Error of Weight vs. Rank

GoRank
Bound

(a) Role of σ2
k/γ

2
k

0 2e4 4e4 6e4 8e4

50

100

150

200

250

300

350

400
Absolute Error vs. Timesteps

GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(b) Simulated Dataset

0 1e4 2e4 2e4 3e4

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Absolute Error vs. Timesteps
GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(c) Basel Luftklima Dataset

Figure 3: Convergence behavior of GOTRIM in combination with different ranking algorithms. Figure
(a) illustrates how the constant in the bound reflects the error of the weight estimate of GOTRIM.
Figures (b) and (c) demonstrate that, for α = 0.2 and ε = 1, GOTRIM quickly improves on the naive
corrupted mean and converges to the trimmed mean.

the trimmed mean and significantly improves over the corrupted mean (indicated by the black dashed
line). Overall, GOTRIM quickly outperforms the naive mean under corruption and ClippedGossip
which will ultimately converge to the corrupted mean. Additional experiments and implementation
details are provided in the Supplementary Material.

5 Conclusion and Discussion

We introduced and analyzed two novel gossip algorithms: GORANK for rank estimation and GOTRIM
for trimmed mean estimation. We proved convergence rates of O(1/t) and established robustness
guarantees for GOTRIM through breakdown point analysis. Empirical results show both methods
perform well on large, poorly connected networks: GORANK quickly estimates ranks, and GOTRIM
is robust to outliers and improves on the naive mean.

Byzantine Robustness. In this work, we focused on robustness to data contamination in the sense
of Huber’s framework. Extending these results to the more adversarial setting of Byzantine robustness
remains an interesting direction. Developing a rigorous theoretical foundation for this setting is still
an open problem, and we plan to address it in future work.

Asynchronous Extension. Although our analysis focuses on the synchronous setting, real-world
systems are often asynchronous. We present the asynchronous version of GORANK in Appendix H.
The theoretical analysis in the asynchronous setting is carried out in an extension to this work [35].

Scalability. To demonstrate the scalability of our method on large networks, we repeated the
experiments from Fig. (c) in Sections 3.2 and 4.3, originally conducted with n = 500, on larger
networks with n = 1000 and n = 5000. The detailed results are provided in Appendix I.

Robustness to Network Disruptions. While robustness to data contamination is important, the
robustness of our proposed algorithms to network disruptions (e.g., edge or node failures, network
partitioning) is equally crucial in real-world applications. In Appendix J, we provide a detailed
analysis of how our current framework can be extended.

Performance on Sparse Graphs. An interesting question is whether our algorithms perform well
on sparse graphs. In practice, however, performance depends more on the graph’s connectivity than
on its sparsity. To illustrate this, we present experiments in Appendix K on sparse graphs with varying
levels of connectivity.

Rank-based Statistics. GOTRIM naturally extends to the decentralized estimation of rank-based
statistics. This includes rank statistics [21], which are key tools in data analysis—particularly for
robust hypothesis testing—as well as L-statistics (such as the Winsorized mean).

Further Discussion. In appendix L, we provide extended discussion on several topics, including
the optimality of the bounds, faster gossip algorithms, extension to multivariate data, and potential
applications like robust decentralized optimization.

10

Acknowledgments

This research was supported by the PEPR IA Foundry and Hi!Paris ANR Cluster IA France 2030
grants. The authors thank the program for its funding and support.

References
[1] Aya Ayadi, Oussama Ghorbel, Abdulfattah M Obeid, and Mohamed Abid. Outlier detection

approaches for wireless sensor networks: A survey. Computer Networks, 129:319–333, 2017.

[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. Advances in Neural Information Processing Systems, 32, 2019.

[3] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learn-
ing with adversaries: Byzantine tolerant gradient descent. Advances in neural information
processing systems, 30, 2017.

[4] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. SIAM
review, 46(4):667–689, 2004.

[5] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE transactions on information theory, 52(6):2508–2530, 2006.

[6] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge computing
research. IEEE access, 8:85714–85728, 2020.

[7] Mingzhe Chen, Deniz Gündüz, Kaibin Huang, Walid Saad, Mehdi Bennis, Aneta Vulgarakis
Feljan, and H Vincent Poor. Distributed learning in wireless networks: Recent progress and
future challenges. IEEE Journal on Selected Areas in Communications, 39(12):3579–3605,
2021.

[8] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1–25, 2017.

[9] Alessandro Chiuso, Fabio Fagnani, Luca Schenato, and Sandro Zampieri. Gossip algorithms
for distributed ranking. In Proceedings of the 2011 American Control Conference, pages
5468–5473. IEEE, 2011.

[10] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon. Extending gossip
algorithms to distributed estimation of u-statistics. Advances in Neural Information Processing
Systems, 28, 2015.

[11] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual averaging
for decentralized optimization of pairwise functions. In International conference on machine
learning, pages 1388–1396. PMLR, 2016.

[12] Reinhard Diestel. Graph Theory, volume 173. Graduate Texts in Mathematics, Springer, 2025.

[13] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2011.

[14] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed robust learning. arXiv preprint
arXiv:1409.5937, 2014.

[15] Michael B Greenwald and Sanjeev Khanna. Power-conserving computation of order-statistics
over sensor networks. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 275–285, 2004.

[16] Bernhard Haeupler, Jeet Mohapatra, and Hsin-Hao Su. Optimal gossip algorithms for exact and
approximate quantile computations. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pages 179–188, 2018.

11

[17] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust decentralized learning
via clippedgossip. arXiv preprint arXiv:2202.01545, 2022.

[18] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized learning works: An empirical
comparison of gossip learning and federated learning. Journal of Parallel and Distributed
Computing, 148:109–124, 2021.

[19] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and distribution, pages 492–518. Springer, 1992.

[20] Peter J Huber and Elvezio M Ronchetti. Robust statistics. John Wiley & Sons, 2011.

[21] Jaroslav Hájek and Zbyněk Šidák. Theory of Rank Tests. Probability and Mathematical Statistics.
Academic Press, San Diego, second edition edition, 1999.

[22] Hamid Jalalzai, Stephan Clémençon, and Anne Sabourin. On binary classification in extreme
regions. Advances in Neural Information Processing Systems, 31, 2018.

[23] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 482–491. IEEE, 2003.

[24] Maurice G Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239–251,
1945.

[25] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In International conference on machine
learning, pages 3478–3487. PMLR, 2019.

[26] Priyanka Mary Mammen. Federated learning: Opportunities and challenges. arXiv preprint
arXiv:2101.05428, 2021.

[27] Bojan Mohar, Y Alavi, G Chartrand, and Ortrud Oellermann. The laplacian spectrum of graphs.
Graph theory, combinatorics, and applications, 2(871-898):12, 1991.

[28] Karl Mosler. Depth statistics. Robustness and complex data structures: Festschrift in Honour
of Ursula Gather, pages 17–34, 2013.

[29] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

[30] Helmut Rieder. Qualitative robustness of rank tests. Ann. Statist., 10(1):205 – 211, 1982.

[31] Robert J Serfling. Approximation theorems of mathematical statistics. John Wiley & Sons,
2009.

[32] Devavrat Shah et al. Gossip algorithms. Foundations and Trends® in Networking, 3(1):1–125,
2009.

[33] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians
and beyond: new aggregation techniques for sensor networks. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 239–249, 2004.

[34] Aad W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[35] Anna Van Elst, Igor Colin, and Stephan Clémençon. Asynchronous gossip algorithms for
rank-based statistical methods. To appear in International Conference on Federated Learning
Technologies and Applications (FLTA), 2025.

[36] Esther Villar-Rodriguez, María Arostegi Pérez, Ana I Torre-Bastida, Cristina Regueiro Senderos,
and Juan López-de Armentia. Edge intelligence secure frameworks: Current state and future
challenges. Computers & Security, 130:103278, 2023.

[37] Sissi Xiaoxiao Wu, Hoi-To Wai, Lin Li, and Anna Scaglione. A review of distributed algorithms
for principal component analysis. Proceedings of the IEEE, 106(8):1321–1340, 2018.

12

[38] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53(1):65–78, 2004.

[39] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International conference on machine learning,
pages 5650–5659. Pmlr, 2018.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the contributions in the abstract and introduction: two new
gossip algorithms with corresponding convergence rate bounds, as well as numerical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: We provide a clear problem formulation and setup in the second section. All
the proofs are detailed in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed algorithms and experimental setup (see subsections Numerical
Experiments) are clearly detailed, allowing for full reproducibility. Code with detailed
instructions and data are also released in this purpose.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are available in an anonymous Github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide most details of the experiments in the subsections Numerical
Experiments and the rest of the details is available in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We compute the mean error and standard deviation over all the runs. The
variability comes from the edge sampling process and the distribution of the data over the
graph.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in the paper and detailed in the Supplementary Material, the
experiments are not computationally intensive and are run on a single CPU for a few of
hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper’s contribution is of methodological nature and regarding the experi-
ments, we use either synthetic data or publicly available data with no sensitive information.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper is mostly theoretical but our introduction mentions the positive
impact of decentralized and robust learning, regarding trustworthiness and frugality.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Outline of the Supplementary Material
The Supplementary Material is organized as follows. Section A introduces two alternative gossip
algorithms for distributed ranking: Baseline and Baseline++. In Section B, we present auxiliary
results related to gossip matrices and the convergence analysis of the standard gossip algorithm for
averaging. The detailed convergence analysis of GORANK, including the proofs of Theorems 1 and 2,
is provided in Section C. Section D presents the convergence proofs for GOTRIM, specifically Lemma
1 and Theorem 3. In Section E, we provide the robustness analysis of GOTRIM (i.e., the proof of
Theorem 4). The convergence analysis of ClippedGossip is covered in Section F. Section G includes
additional experiments and implementation details. Section H introduces Asynchronous GORANK,
along with corresponding experimental results. Section I details experiments on larger networks.
Section J describes how the current framework can be extended to include network disruptions.
Section K provides experiments on sparse networks. Finally, Section L offers further discussion and
outlines future work.

A Gossip Algorithms for Ranking

Here, we detail two gossip algorithms for ranking, which can be considered natural competitors to
GORANK. The algorithm presented first was proposed in [9] and, to our knowledge, is the only
decentralized ranking algorithm documented in the literature. The algorithm presented next can be
seen as a variant of the latter, incorporating the more efficient communication scheme of GORANK.

A.1 Baseline: Algorithm from Chiuso et al.

Chiuso et al. propose a gossip algorithm for distributed ranking in a general (connected) network
[9]. They demonstrate that this algorithm solves the ranking problem almost surely in finite time.
However, they do not provide any convergence rate or non-asymptotic convergence results. The
algorithm is outlined in Algorithm 3 and proceeds as follows. At each time step t, an edge (i, j) is
selected, and the algorithm operates in three phases:

1. Ranking: The nodes check if both their local and auxiliary ranks are consistent with the
corresponding local and auxiliary observations. If the ranks are inconsistent, the nodes
exchange their local and auxiliary rank.

2. Propagation: The nodes swap all their auxiliary variables.
3. Local update: Each of the two nodes verifies if the auxiliary node has the same ID. If so, it

updates its local rank estimate based on the auxiliary rank estimate.

Algorithm 3 Algorithm from Chiuso et al. (Baseline)

1: Require: Each node with id Ik = k holds observation Xk.
2: Init: Each node k initializes its ranking estimate Rk ← k and its auxiliary variables Rv

k ←
Rk, X

v
k ← Xk and Ivk ← Ik.

3: for t = 1, 2, . . . do
4: Draw (i, j) uniformly at random from E.
5: if (Xi −Xj) · (Ri −Rj) < 0 then
6: Swap rankings of nodes i and j: Ri ↔ Rj .
7: end if
8: if (Xv

i −Xv
j) · (Rv

i −Rv
j) < 0 then

9: Swap rankings of nodes i and j: Rv
i ↔ Rv

j .
10: end if
11: Swap auxiliary variables of nodes i and j: Ivi ↔ Ivj , R

v
i ↔ Rv

j and Xv
i ↔ Xv

j .
12: for p ∈ {i, j} do
13: if Ivp = Ip then
14: Update local ranking estimate: Rp ← Rv

p.
15: end if
16: end for
17: end for
18: Output: Each node contains the estimate of the ranking.

21

A.2 Baseline++ - Our Improved Variant Proposal

The algorithm selects an edge (i, j) at each step, and the corresponding nodes check if the auxiliary
ranks are consistent with their auxiliary observations. If the ordering is inconsistent, the nodes swap
their auxiliary ranks. Then, each node updates its local rank if the ordering of its local observation is
inconsistent with the auxiliary observation. In contrast, the algorithm proposed by Chiuso et al. only
updates the local estimates when the wandering estimate returns to its originating node. This design
can significantly slow down convergence in graphs with low connectivity and long return times.

Algorithm 4 Baseline++

1: Init: For all k, set Rk ← k, R′
k ← k and X ′

k ← Xk.
2: for t = 1, 2, . . . do
3: Draw (i, j) ∈ E uniformly at random.
4: if (X ′

i −X ′
j) · (R′

i −R′
j) < 0 then

5: Swap rankings: R′
i ↔ R′

j .
6: end if
7: for p ∈ {i, j} do
8: if (X ′

p −Xp) · (R′
p −Rp) < 0 or X ′

p = Xp then
9: Update local rank: Rp ← R′

p.
10: end if
11: end for
12: Swap: R′

i ↔ R′
j and X ′

i ↔ X ′
j .

13: end for
14: Output: Estimate of ranks Rk.

B Auxiliary Results

In this section, we present key properties of the transition matrices that will be essential for the proofs
of our main theorems. We also present the standard gossip algorithm for mean estimation, along with
its convergence results.

B.1 Properties of Gossip Matrices

Lemma (B.1). Assume the graph G = (V,E) is connected and non-bipartite. Let t > 0. If at
iteration t, edge (i, j) is selected with probability p = 1

|E| , then the transition matrices are given by

W1(t) = In − (ei − ej) (ei − ej)
⊤
, (swapping matrix) (4)

W2(t) = In −
1

2
(ei − ej) (ei − ej)

⊤
, (averaging matrix) (5)

For α ∈ {1, 2}, denote Wα(t) = In − 1
α (ei − ej) (ei − ej)

⊤. The following properties hold:

(a) The matrices are symmetric and doubly stochastic, meaning that

Wα(t)1n = 1n, 1⊤
nWα(t) = 1⊤

n .

(b) The matrices satisfy the following equalities:

W2(t)
2 = W2(t), W1(t)

2 = In.

(c) For α ∈ {1, 2}, we have

Wα = E[Wα(t)] = In −
1

α|E|
L. (6)

(d) The matrix Wα is also doubly stochastic and it follows that 1n is an eigenvector with
eigenvalue 1.

22

(e) The matrix W̃α ≜ Wα − 1n1
⊤
n

n satisfies, by construction, W̃1n = 0, and it can be shown
that ∥W̃α∥op ≤ λ2(α), where λ2(α) is the second largest eigenvalue of Wα and ∥ · ∥op
denotes the operator norm of a matrix.

(f) The eigenvalue λ2(α) satisfies 0 ≤ λ2(α) < 1 and λ2(α) = 1− λ2

α|E| where λ2 the spectral
gap (or second smallest eigenvalue) of the Laplacian.

Proof. The proofs of (a), (b), (d), and (e) are omitted for brevity. For more details, we refer the reader
to [5, 10]. The proof of (c) follows from the fact that

E[Wα(t)] =
1

|E|
∑

(i,j)∈E

(
In −

1

α
(ei − ej) (ei − ej)

⊤
)

and from the definition of the Laplacian matrix L =
∑

(i,j)∈E (ei − ej) (ei − ej)
⊤.

The proof of (f) can be found in [10] (see Lemmas 1, 2 and 3).

B.2 Convergence Analysis of Gossip for Averaging

In the following section, we present classical results on the gossip algorithm for averaging.

Algorithm 5 Gossip algorithm for estimating the standard average [5]

1: Each node k initializes its estimate as Zk = Xk.
2: for t = 1, 2, . . . do
3: Randomly select an edge (i, j) from the network.
4: Update estimates: Zi, Zj ← Zi+Zj

2 .
5: end for

Lemma (B.2). Let us assume that G = (V,E) is connected and non bipartite. Then, for Z(t) defined
in Algorithm 5, we have that for all k ∈ [n] :

lim
t→+∞

E [Zk(t)] = X̄n

Moreover, for any t > 0, ∥∥E[Z(t)]− X̄n1n

∥∥ ≤ e−c2t
∥∥X− X̄n1n

∥∥
where c2 = 1− λ2(2) > 0, with λ2(2) = 1− λ2

2|E| .

Proof. The proof is kept brief, as this is a standard result. For more details, we refer the reader to
[5, 10]. To prove this lemma, we will primarily use points (e) and (f) from Appendix B.1.

Let t > 0. Recursively, we have E[Z(t)] = Wt
2X where W2 = In − 1

2|E|L.

Denote W̃2 ≜ W2 − 1n1
⊤
n

n . Noticing that 1n1
⊤
n

n X = X̄n1n and that W̃t
2 = Wt

2 −
1n1

⊤
n

n , we have∥∥E[Z(t)]− X̄n1n

∥∥ =
∥∥∥W̃t

2X
∥∥∥ .

Since 1⊤
n W̃2 = 0, it follows that∥∥E[Z(t)]− X̄n1n

∥∥ ≤ (λ2(2))
t ∥∥X− X̄n1n

∥∥ .
Setting c2 = 1− λ2(2) > 0 finishes the proof, as 0 < λ2(2) < 1.

Lemma (B.3). Let us assume that G = (V,E) is connected and non bipartite. Then, for Z(t) defined
in Algorithm 5, we have that for any t > 0 :

P(∥Z(t)− X̄n1n∥ ≥ ε∥X− X̄n1n∥) ≤
e−c2t

ε2
.

where c2 = 1− λ2(2) > 0, with λ2(2) = 1− λ2

2|E| .

23

Proof. The original proof can be found in [5].

Let t > 0 and ε > 0. At iteration t, we have Z(t) = W2(t)Z(t−1). Denoting Y(t) = Z(t)−X̄n1n,
it follows that Y(t) = W2(t)Y(t− 1). Taking the conditional expectation, we get

E[Y(t)⊤Y(t) | Y(t− 1)] = Y(t− 1)⊤E[W2(t)
⊤W2(t)]Y(t− 1) ≤ λ2(2)∥Y(t− 1)∥2,

as E[W2(t)
⊤W2(t)] = E[W2(t)] = W2.

By repeatedly conditioning, we obtain the bound

E[Y(t)⊤Y(t)] ≤ λ2(2)
t∥Y(0)∥2.

Finally,

P(∥Z(t)− X̄n1n∥ ≥ ε∥Z(0)− X̄n1n∥) = P(∥Z(t)− X̄n1n∥2 ≥ ε2∥Y(0)∥2) (7)

≤ 1

ε2∥Y(0)∥2
E[Y(t)⊤Y(t)] (8)

≤ λ2(2)
t

ε2
. (9)

Remark. Using the Cauchy-Schwarz inequality E[∥Y∥] ≤
√
E[∥Y∥2], we can also derive

P(∥Z(t)− X̄n1n∥ ≥ ε∥Z(0)− X̄n1n∥) ≤

(√
λ2(2)

)t
ε

.

Setting c2 = 1− λ2(2) > 0 finishes the proof, as 0 < λ2(2) < 1.

C Convergence Analysis of GORANK

In this section, we will prove Theorem 1 and 2.

C.1 Proof of Theorem 1

Theorem 1. Let R(t) be defined in GoRank. We have that for all k ∈ [n] :

lim
t→+∞

E [Rk(t)] = rk. (10)

Moreover, for any t > 0,

|E[Rk(t)]− rk| ≤
1

ct
· σk, (11)

where c = λ2

|E| , with λ2 being the second smallest eigenvalue of the graph Laplacian (spectral gap),

and σk = nσ̃n

(
rk−1
n

)
, with σ̃n(x) =

√
nx(1− x).

Proof. To prove Theorem 1, we will primarily use points (e) and (f) from Appendix B.1.

Let k ∈ [n], t > 0, and h̄k = 1
nh

⊤
k 1n. From the previous derivation, one has:

E [R′
k(t)] =

1

t

t−1∑
s=0

h⊤
k W

s
1ek. (12)

Denote W̃1 ≜ W1 − 1n1
⊤
n

n . Noticing that h⊤
k

1n1
⊤
n

n ek = h̄k and that W̃s
1 = Ws

1 −
1n1

⊤
n

n for
0 ≤ s ≤ t− 1, we have

|E[R′
k(t)]− h̄k| ≤

1

t

t−1∑
s=0

|h⊤
k W̃

s
1ek|. (13)

Since 1⊤
n W̃1 = 0, it follows that

|h⊤
k W̃

s
1ek| ≤ (λ2(1))

s ·
∥∥hk − h̄k1n

∥∥ .
24

Thus,

|E[R′
k(t)]− h̄k| ≤

1

t

t−1∑
s=0

(λ2(1))
s ∥∥hk − h̄k1n

∥∥ ≤ 1

t
· 1

1− λ2(1)

√
nh̄k(1− h̄k). (14)

since λ2(1) < 1 and
∥∥hk − h̄k1n

∥∥ =
√∑

i(I{Xk>Xi} − h̄k)2. Using 1− λ2(1) =
λ2

|E| where λ2 is
the second smallest eigenvalue of the graph Laplacian, it follows that

|E[R′
k(t)]− h̄k| ≤

1

t

|E|
λ2

σ̃n(h̄k), (15)

where σ̃n(x) =
√

nx(1− x). Plugging E[Rk(t)] = nE[R′
k(t)] + 1 and rk = nh̄k + 1 finishes the

proof:

|E[Rk(t)]− rk| ≤
1

t
· |E|
λ2
· nσ̃n

(
rk − 1

n

)
. (16)

C.2 Proof of Theorem 2

We now present a convergence result for the expected gap, which is key to proving the convergence
of GOTRIM.
Theorem 2 (Expected Gap). Let all k ∈ [n], and let c and σk be as defined in Theorem 1. Then, for
all t ≥ 1, we have: E[|Rk(t)− rk|2] ≤ (3/ct) · σ2

k . Consequently,

E [|Rk(t)− rk|] ≤
√

3

ct
· σk .

Proof. The proof relies on the Cauchy-Schwarz inequality:

E[|Rk(t)− rk|] ≤
√

E[(Rk(t)− rk)2].

Thus, to prove Theorem 2, a convergence result for the variance term E
[
(Rk(t)− rk)

2
]

or equiva-

lently E
[(
R′

k(t)− h̄k

)2]
is required. This result is formalized in the following lemma.

Lemma (C.1). We have

E
[
(Rk(t)− rk)

2
]
≤ 3

ct
· σ2

k,

where the constants are defined in Theorem 1.

Proof. Let t > 0 and let k ∈ [n]. Using the update rule in GoRank, the estimated rank R′
k(t) of agent

k at iteration t can be expressed as follows:

R′
k(t) =

1

t

t−1∑
s=0

h⊤
k W1(s :)

⊤ek. (17)

where for any 1 ≤ s ≤ t− 1, W(s :) = W(s) . . .W(1) and W(0 :) = In.

For any t ≥ 1, let us define W̃1(t) as W̃1(t) ≜ W1(t)− 1n×n

n . Note that W1(t) are a real symmetric
matrices and that 1n is always an eigenvector of such matrices. Therefore, for any 0 ≤ s ≤ t− 1,
one has: W̃1(s :) = W1(s :)− 1n×n

n . Using this decomposition in (17) yields

R′
k(t)− rk =

1

t

t−1∑
s=0

(hk − h̄k1n)
⊤W̃⊤

1 (s :)ek ,

since h̄k = h⊤
k

1n×n

n ek and 1⊤
n W̃1(s) = 0. The squared gap can thus be expressed as follows:

(
R′

k(t)− h̄k

)2
=

1

t2

t−1∑
s=0

t−1∑
u=0

(hk − h̄k1n)
⊤W̃1(s:)

⊤ek(hk − h̄k1n)
⊤W̃1(u:)

⊤ek ,

25

or equivalently,(
R′

k(t)− h̄k

)2
=

2

t2

∑
s<u

(hk − h̄k1n)
⊤W̃1(s:)

⊤ek(hk − h̄k1n)
⊤W̃1(u:)

⊤ek

+
1

t2

t−1∑
u=0

(hk − h̄k1n)
⊤W̃1(u:)

⊤ek(hk − h̄k1n)
⊤W̃1(u:)

⊤ek .

Denoting h̃k = hk − h̄k1n, define v(s) := h̃⊤
k W̃1(s)

⊤ek. We first consider the second term:
1
t2

∑t−1
u=0 v(u)

2. Note that

v(u)2 = h̃⊤
k W̃1(u:)

⊤eke
⊤
k W̃1(u:)h̃k .

Let J = 1
n1n1

⊤
n . Since h̃⊤

k J = 0, we can simplify:

v(u)2 = h̃⊤
k W1(u:)

⊤eke
⊤
k W1(u:)h̃k ≤ h̃⊤

k W1(u:)
⊤W1(u:)h̃k.

Since the product of two identical permutation matrices is equal to the identity matrix, we obtain
W1(u:)

⊤W1(u:) = In and conclude that E[v(u)2] ≤ ∥h̃k∥2. Now let’s consider the first term:
2
t2

∑
s<u v(s)v(u). Note that for s < u,

v(s)v(u) = h̃⊤
k W̃1(s:)

⊤eke
⊤
k W̃1(u:s+ 1)W̃1(s:)h̃k .

Taking expectation conditional on W1(s:), we have

E[v(s)v(u) |W1(s:)] = h̃⊤
k W̃1(s:)

⊤eke
⊤
k E
[
W̃1(u:s+ 1)

]
· W̃1(s:)h̃k .

Since E[W̃1(u:s+ 1)] = W̃u−s
1 , we obtain the following bound:

E[v(s)v(u) |W1(s:)] ≤ λ2(1)
u−s · h̃⊤

k W̃1(s:)
⊤W̃1(s:)h̃k .

Using the previous derivation, we get:

E[v(s)v(u)] ≤ λ2(1)
u−s · ∥h̃k∥2 .

Combining the two terms, we obtain:

E
[(
R′

k(t)− h̄k

)2] ≤ (1

t
+

2

t2

∑
s<u

λ2(1)
u−s

)
∥h̃k∥2 .

Note that: ∑
s<u

λ2(1)
u−s ≤

t−1∑
u=0

u∑
d=1

λ2(1)
d ≤ t

1− λ2(1)
.

Recalling c = 1− λ2(1),

E
[(
R′

k(t)− h̄k

)2] ≤ (1

t
+

2

ct

)
∥h̃k∥2 ≤

3

ct
· ∥h̃k∥2 .

Plugging ∥h̃k∥2 = σn(h̄k)
2 and using E[(R′

k(t)− h̄k)
2] = 1

n2E[(Rk(t)−rk)
2] finish the proof.

D Convergence Proofs for GOTRIM

In this section, we will prove Lemma 1 and Theorem 3.

D.1 Proof of Lemma 1

Lemma 1. Let R(t) and W(t) be defined as in Algorithm 1 and Algorithm 2, respectively. For all
k ∈ [n] and t > 0, we have:

|E[Wk(t)]− wn,α(rk)| ≤
3

ct
· σ2

k

γ2
k(1− 2α)

, (18)

where γk = min(|rk − a| , |rk − b|) ≥ 1
2 with a = ⌊αn⌋ + 1

2 and b = n − ⌊αn⌋ + 1
2 being the

endpoints of interval In,α. The constants c and σn(·) are as defined in Theorem 2.

26

Proof of Lemma 1. Let k ∈ [n] and t > 0. Denoting pk(t) = E[I{Rk(t)∈In,α}] = P(Rk(t) ∈ In,α),
we have E[Wk(t)] =

pk(t)
cn,α

where cn,α = 1− 2mn−1 with m = ⌊αn⌋.

Hence, we need to show, for γk > 0:∣∣P(Rk(t) ∈ In,α)− I{rk∈In,α}
∣∣ ≤ P(|Rk(t)− rk| ≥ γk) ≤

3

ct
· σ

2
k

γ2
k

, (19)

The right-hand side of the inequality follows directly from Lemma C.1 via an application of Markov’s
inequality:

P[|Rk(t)− rk| ≥ γk] = P[|Rk(t)− rk|2 ≥ γ2
k] ≤

E[|Rk(t)− rk|2]
γ2
k

.

For the left-hand side, we introduce the interval In,α = [a, b] and define

γk =


min(b− rk, rk − a), if a ≤ rk ≤ b,

a− rk, if rk < a,

rk − b, if rk > b.

Observe that γk ≥ 1
2 since rk is always discrete. We now analyze the three different cases.

Case 1: a ≤ rk ≤ b. Then,
∣∣pk(t)− I{rk∈In,α}

∣∣ = |1− pk(t)| = P(Rk(t) /∈ In,α). Since we have
P(|Rk(t)− rk| ≤ γk) ≤ P(Rk(t) ∈ In,α), it follows that the probability can be upper-bounded as
P(Rk(t) /∈ In,α) ≤ P(|Rk(t)− rk| > γk) ≤ P(|Rk(t)− rk| ≥ γk).

Case 2: rk < a. Here,
∣∣pk(t)− I{rk∈In,α}

∣∣ = pk(t) = P(Rk(t) ∈ In,α). Since it holds that
P(|Rk(t)− rk| < γk) ≤ P(Rk(t) /∈ In,α), we obtain P(Rk(t) ∈ In,α) ≤ P(|Rk(t)− rk| ≥ γk).

Case 3: rk > b This case follows symmetrically from the previous one.

In all cases, we have
∣∣P(Rk(t) ∈ In,α)− I{ri∈In,α}

∣∣ ≤ P(|Rk(t)− rk| ≥ γk).

Finally, the result follows from E[Wk(t)] =
pk(t)
cn,α

and cn,α = 1− 2mn−1 ≥ 1− 2α.

D.2 Proof of Theorem 3

Now, we will prove the convergence in expectation of the estimates of GOTRIM.
Theorem 3 (Convergence in Expectation of GoTrim). Let Z(t) be defined GoTrim, and assuming the
ranking algorithm is GoRank, we have that for all k ∈ [n] :

lim
t→+∞

E [Zk(t)] = x̄α. (20)

Moreover, for any t > T ∗ = min {t > 1 | ct > 2 log(t)}, we have

∥E[Z(t)]− x̄α1n∥ ≤
(

5

ct
+

4

ct− 2 log(t)

)
· 3

c(1− 2α)
· ∥K⊙X∥,

where K =
[
σ2
k

γ2
k

]n
k=1

and c, σk and γk are constants defined in Lemma 1.

Proof of Theorem 3. Recall that for t > 1, the expected estimates are characterized recursively as:

E[Z(t)] =

t∑
s=1

Wt+1−s
2 ∆w(s)⊙X. (21)

Denote W̃2 ≜ W2 − 1n1
⊤
n

n and notice that W̃t
2 = Wt

2 −
1n1

⊤
n

n . Denoting S(s) = ∆w(s)⊙X, we
have have

E[Z(t)] =

t∑
s=1

1

n
1n1

⊤
nS(s) +

t∑
s=1

W̃t+1−s
2 S(s). (22)

27

Since ∀i, pi(0) = 0, the first term can be rewritten as:

t∑
s=1

1

n
1n1

⊤
nS(s) =

t∑
s=1

(
1

n

n∑
i=1

Si(s)

)
1n =

(
1

n

n∑
i=1

wi(t)Xi

)
1n, (23)

where ∆wi(s) = wi(s)− wi(s− 1) with wi(s) = E[Wi(s)]. This leads to the bound:

∥E[Z(t)]− x̄α1n∥ ≤

∥∥∥∥∥
(
1

n

n∑
i=1

wi(t)Xi

)
1n − x̄α1n

∥∥∥∥∥+ ∥R(t)∥ . (24)

The first term simplifies as:∣∣∣∣∣ 1n
n∑

i=1

(E[Wi(t)]− wn,α(ri))Xi

∣∣∣∣∣ · √n ≤ 1√
n

n∑
i=1

|E[Wi(t)]− wn,α(ri)| · |Xi| (25)

≤ 1√
n

n∑
i=1

Ci

t
· |Xi| (26)

≤ 1

t
∥C⊙X∥ , (27)

where Ci =
3
c ·

σ2
k

γ2
i (1−2α)

comes from Lemma 1 and we denote C = [C1, . . . , Cn]. To bound R(t),
we decompose it using an intermediate time step T = t− log(t)/c2 > 0, where c2 = 1− λ2(2) > 0.
Let T ∗ = min {t > 1 | c2t > log(t)}. We obtain for all t > T ∗,

R(t) =

T∑
s=1

W̃t+1−s
2 S(s) +

t∑
s=T+1

W̃t+1−s
2 S(s).

Using Lemma 1, we derive for s > 1, |∆wk(s)| ≤ 2Ck

s−1 . We obtain ∥S(1)∥ ≤ ∥C ⊙X∥ and for
s > 1,

∥S(s)∥ ≤

√√√√ n∑
k=1

4C2
kX

2
k

(s− 1)2
≤ 2

s− 1
∥C⊙X∥.

Applying this bound and using c2 = 1− λ2(2) yields:

∥R(t)∥ ≤ λ2(2)
t−T

T∑
s=1

λ2(2)
T−s∥S(s)∥+

t∑
s=T+1

λ2(2)
t−s∥S(s)∥

≤ e−c2(t−T) 2

1− λ2(2)
∥C⊙X∥+ 1

T

2

(1− λ2(2))
∥C⊙X∥

≤
(

2

c2t
+

2

c2t− log(t)

)
∥C⊙X∥.

Finally, we establish the following error bound:

∥E[Z(t)]− x̄α1n∥ ≤
1

t
∥C⊙X∥+ 4

ct
∥C⊙X∥+ 2

c
2 t− log(t)

∥C⊙X∥,

where c = 2c2. This bound simplifies to

∥E[Z(t)]− x̄α1n∥ ≤
(

5

ct
+

4

ct− 2 log(t)

)
∥C⊙X∥.

Moreover, we have ∥C ⊙ X∥ = 3
c(1−2α)∥K ⊙ X∥ where K =

[
σ2
k

γ2
k

]n
k=1

, which completes the
proof.

28

E Robustness Analysis: Breakdown Point of the Partial Trimmed Mean

Here, we prove provide a breakdown point analysis of GOTRIM and prove Theorem 4.

Theorem 4 (Breakdown Point). Let τ > 0 and δ, α ∈ (0, 1). Denote m = ⌊αn⌋. With probability at
least 1− δ, the τ -breakdown point ε∗i (t) of the partial α-trimmed mean at iteration t > T for any
node i satisfies

1

n
max

(⌊
m+

1

2
− K(δ)√

t− T

⌋
, 0

)
≤ ε∗i (t) ≤

m

n
,

where T = 4
c log

(
n
εδ

)
denote a propagation time with c being the connectivity constant and ε :=

τ/maxi |Xi| denote a tolerance parameter. Moreover, we define K(δ) := cm
(1− 1

n)
√
cδ

where cm =
√
3n3/2 · ϕ((m− 1)/n) with ϕ : u ∈ (0, 1)→

√
u(1− u).

Proof. Applying Lemma 1, we estimate the breakdown point while accounting for the uncertainty
in rank estimation, and combine it with Lemma 2 via a union bound. Lemma 2 introduces T the
number of iterations required for the mean to propagate and the maximum delay T corresponds to
the smallest possible ε, given by ε = τ

B , where B = maxi |Xi|. Setting δ1 =
(
1− 1

n

)
δ and δ2 = δ

n
complete the proof.

Lemma E.1 (Instant Breakdown Point). Let δ1 > 0. Denote ε̃∗(t) the breakdown point at
iteration t as the statistic defined as

1

n

n∑
i=1

wn,α(Ri(t))Xi.

Then, with probability at least 1− δ1,

ε̃∗(t) ≥
max

(⌊
m+ 1

2 −
cm

δ1
√
ct

⌋
, 0
)

n
,

where we define m = ⌊nα⌋ and cm =
√
3n3/2 ·ϕ((m−1)/n). As t→∞, note that p = ⌊ 12 +m⌋ =

m, which allows us to recover the breakdown point of the α-trimmed mean.

Proof. We are interested in the observations Xk with rank 1 ≤ rk ≤ m (the outliers that should be
excluded from the mean), where m = ⌊nα⌋. Note that we do not consider the data points with rank
n−m+ 1 ≤ rk ≤ n, as this case is symmetrical for determining the breakdown point.

Let 1 ≤ rk ≤ m and consider the probability pk(t) of including Xk in the mean. This probability
satisfies:

pk(t) ≤
√
3σn(rk)

(a− rk)
√
ct
≤ cm

(a− rk)
√
ct
,

where a = m + 1
2 is the left endpoint of the inclusion interval. The breakdown point can be

interpreted as p
n where p is the maximum rank required to "break" the mean and n is the sample size.

To determine the maximum rk in [1,m] such that the probability of inclusion is lower than a certain
confidence parameter δ, we solve for rk:

pk(t) ≤
cm

(a− rk)
√
ct
≤ δ,

and obtain

p = max

(⌊
1

2
+m− cm

δ
√
ct

⌋
, 0

)
.

Thus, with probability at least 1− δ, the breakdown point is given by ε̃∗(t) = p
n .

Lemma E.2 (Propagation Time). Let δ2 > 0 be a confidence parameter and ε > 0 a tolerance
parameter. We define Z(·) as the evolution of the standard mean estimate, initialized as Z(0) = X.
Additionally, we introduce a perturbed estimate, Z̃(·), which starts at Z̃(0) = X + Bej . At
iteration t, we detect a mistake of magnitude B, we correct it by injecting −B, leading to the update

29

Z̃(t)← Z̃(t)−Bej . Then, it follows that, with probability at least 1− δ2, for all s ≥ t+ T , for any
node i,

|Zi(s)| ≤ ∥Z̃(s)− Z(s)∥ ≤ εB,

where T represents number of iterations required to correct a mistake with tolerance ε > 0 and is
given by T = 4

c log
(

1
εδ2

)
with c is the connectivity of the graph.

Proof. At iteration t, the perturbed estimate is Z̃(t) = W2(t:)Z̃(0) = Z(t) + W2(t:)Bej since
Z(t) = W2(t :)Z(0). Then, at iteration s > t, we inject −B at node j which gives the following:
Z̃(s) = W2(s:t) [Z(t) +W2(t:)Bej −Bej]. Thus, for any s > t,

∆(s) := Z̃(s)− Z(s) = W2(s:t) [W2(t:)− In]Bej = W2(s)∆(s− 1).

Following the proof in [5], by repeatedly conditioning, we obtain

E[∆(s)⊤∆(s) |∆(t)] ≤ λ2(2)
s−t∥∆(s)∥2.

Since ∥∆(s)∥ ≤ B and taking the expectation on both sides, we have

E[∆(s)⊤∆(s)] ≤ λ2(2)
s−tB2.

Finally, we derive

P(∥Z̃(s)− Z(s)∥ ≥ εB) = P(∥Z̃(s)− Z(s)∥2 ≥ ε2B2) (28)

≤ 1

ε2B2
E[∆(s)⊤∆(s)] (29)

≤ λ2(2)
s−t

ε2
. (30)

Let δ2 > 0. We need to solve 1
ε2 e

−c2T ≤ δ, which gives T = 4
c log

(
1

εδ2

)
. It follows that with

probability at least 1− δ2, for s ≥ t+ T , for all nodes i,

|Zi(t)| ≤ ∥Z̃(s)− Z(s)∥ ≤ εB.

F Convergence Analysis of ClippedGossip

In this section, we show that ClippedGossip, in our pairwise setup with a fixed clipping radius,
ultimately converges to the corrupted mean. The following lemma describes the update rule of
ClippedGossip through its transition matrix.

Lemma (Transition Matrix). Assume at iteration t, edge (i, j) ∈ E is selected. Then, the update
using ClippedGossip rule with constant clipping radius τ is given by xt+1 = W (t)xt where
W (t) ∈ Rn×n denotes the transition matrix at iteration t which is given by

W (t) = In − αt
ijLij ,

where Lij := (ei − ej)(ei − ej)
⊤ is the elementary Laplacian associated with edge (i, j) and

αt
ij := 1

2 min
(
1, τ/∥xt

i − xt
j∥
)

a constant that depends on the previous estimates. Moreover, we
have W (t)W (t)⊤ = In − 2αt

ij(1− αt
ij)Lij . In the special case αij = 1/2, the matrix reduces to

the standard averaging and is a projection matrix: W (t)W (t)⊤ = W (t) .

Proof. At iteration t, if edge (i, j) ∈ E is selected, the update rule is

xt+1
i = xt

i +
1

2
CLIP(xt

j − xt
i, τ), xt+1

j = xt
j +

1

2
CLIP(xt

i − xt
j , τ),

where the clipping operator is defined as CLIP(z, τ) := min (1, τ/∥z∥) z. This update can be
expressed in matrix form as xt+1 = W (t)xt. It equals the identity matrix except for a 2× 2 block
corresponding to nodes i and j, given by[

1− αt
ij αt

ij

αt
ij 1− αt

ij

]
, where αt

ij :=
1

2
min

(
1,

τ

∥xt
i − xt

j∥

)
.

30

Observe that L2
ij = 2L2

ij and conclude.

The next lemma allows us to bound the coefficients αt
ij of the transition matrix.

Lemma (Lower Bound on Coefficient of the Transition Matrix). Let mt = max(k,l)∈E ∥xt
k−xt

l∥.
We have mt ≤ m and thus we derive

α ≤ min

(
1,

τ

∥xt
i − xt

j∥

)
≤ 1,

where α := min(1, τ/m)/2 with m = max(k,l)∈E ∥x0
k − x0

l ∥.

Proof. Let m1 = max(k,l)∈E ∥x1
k − x1

l ∥. We can show that m1 ≤ m. After update, we have
x1
i = (1− αij)x

0
i + αijx

0
j and x1

j = (1− αij)x
0
j + αijx

0
i . Observe that the new estimates remain

within the convex hull of the original points. Since only xi and xk have changed, the next maximum
distance is:

m1 = max

max
k ̸=i,j
ℓ ̸=i,j

∥x0
k − x0

ℓ∥,max
k ̸=i,j

∥x1
i − x0

k∥,max
k ̸=i,j

∥x1
j − x0

k∥, ∥x1
i − x1

j∥

 .

Note: ∥x0
k − x0

ℓ∥ ≤ m by definition. So we just need to show that the other terms are smaller than m.
For k ̸= i, j, recall x1

i = (1− αij)x
0
i + αijx

0
j , then we have

∥x1
i − x0

k∥ = ∥(1− αij)(x
0
i − x0

k) + α(x0
j − x0

k)∥ ≤ (1− αij)m+ αijm = m,

by the triangle inequality. Similarly, we derive for k ̸= i, j, ∥x1
j − x0

k∥ ≤ m. Finally, since
0 < 1− 2αij < 1, we have

∥x1
i − x1

j∥ = |1− 2αij | · ∥x0
i − x0

j∥ ≤ m.

Recursively, we have for all t ≥ 1, mt ≤ m, which finishes the proof.

The next lemma shows that at each iteration, the expected gap between the estimates and the corrupted
mean will decrease.

Lemma (Contraction Bound). Let t > 0. Define yt = xt − x̄1n where x̄ := (1/n)
∑n

i=1 x
0
i is the

initial average. We have the following bound:

E[∥yt+1∥2 | yt] ≤
(
1− βλ2

|E|

)
∥yt∥2.

where β = 2α(1 − α) with α := min(1, τ/m)/2 for m = max(k,l)∈E ∥x0
k − x0

l ∥ and λ2 denotes
the spectral gap of the Laplacian.

Proof. Taking the conditional expectation over the sampling process, we have

E[(yt+1)⊤yt+1 | yt] = (yt)⊤E[W (t)⊤W (t) | yt]yt.

Since yt ⊥ 1, and 1 is the eigenvector corresponding to the largest eigenvalue 1 of E[W (t)⊤W (t) |
yt],

(yt)⊤E[W (t)⊤W (t) | yt]yt ≤ λ2

(
E[W (t)⊤W (t) | yt]

)
∥yt∥2.

Now from the first lemma, we have W (t)⊤W (t) = In−βt
ijLij where βt

ij = 2αt
ij(1−αt

ij). We see

that β ≤ βt
ij ≤ 1/2 where β = 2α(1− α). Observing that E[W (t)⊤W (t) | yt] = In − (1/|E|)L̃t

where we define the weighted Laplacian as

L̃
t
:=

∑
(i,j)∈E

βt
ijLij .

Using the quadratic form of the weighted Laplacian:

x⊤L(w)x =
∑

(i,j)∈E

wij [x(i)− x(j)]2,

31

we derive βL ⪯ L̃
t ⪯ (1/2)L, as β ≤ βt

ij ≤ 1/2. Using the Courant-Fischer Theorem, we obtain:

βλ2 ≤ ρt ≤ λ2/2, where ρt denotes the second smallest eigenvalue of L̃
t

and λ2 is the second
smallest eigenvalue of the (unweighted) Laplacian L. We therefore obtain a bound on the second
largest eigenvalue of E[W (t)⊤W (t) | yt]:

1− λ2

2|E|
≤ 1− ρt

|E|
≤ 1− βλ2

|E|
,

which finishes the proof.

Finally, the convergence of ClippedGossip estimates is established in the following proposition.

Proposition (Convergence of ClippedGossip Estimates). For each node k,

lim
t→+∞

xk(t) = x̄.

Moreover, we have

E[∥xt − x̄1n∥2] ≤
(
1− βλ2

|E|

)t

∥x0 − x̄1n∥2,

where x̄ := (1/n)
∑n

i=1 x
0
i is the initial average, β = 2α(1 − α) with α := min(1, τ/m)/2 and

m = max(k,l)∈E ∥x0
k − x0

l ∥ and λ2 denotes the spectral gap of the Laplacian.

Proof. Using the previous lemma, recursively, we obtain

E[∥yt∥2] ≤
(
1− βλ2

|E|

)t

∥y0∥2.

Recalling yt = xt − x̄1n finishes the proof.

G Additional Experiments and Implementation Details

This section provides additional experiments and more details on the Basel Luftklima dataset as well
as compute resources.

G.1 Experiments Compute Resources

The experiments are run on a single CPU with 32 GB of memory.

The execution time for each experiment is less than 30 minutes (except for the large-scale experiments).
The details of a few experiments are given in Table 1.

Experiments Execution Time Figure
exp1+exp2+exp3 ∼ 30 min Ranking (a)
exp4+exp5+exp6 ∼ 5 min Ranking (b)
exp7+exp8+exp9 ∼ 15 min Ranking (c)
exp10+exp10a+exp10b ∼ 50 min Trimmed Mean (a)
exp11+exp12+exp13 ∼ 15 min Trimmed Mean (b)
exp14 ∼ 5 min Trimmed Mean (c)
exp15+exp16+exp17 ∼ 5 min Ranking (d)

Table 1: Execution times for all experiments

G.2 Basel Luftklima Dataset

The dataset contains temperature measurements from 99 Meteoblue sensors across the Basel region,
recorded between April 14 and April 15, 2025. For each sensor, only the first observation is used. A
graph is built by connecting sensors that are within 1 km of each other, based on their geographic
coordinates. Only the connected component of the graph is kept. To avoid ties during ranking, we
add a small, imperceptible amount of noise to the data.

32

G.3 Additional Experiments

Figures 4, 5, and 6 extend the experiments presented in sections 3 and 4.

0 125 250 375 500
0.00

0.01

0.020.02

0.03

0.00

0.25

0.50
Absolute Error vs. Rank

GoRank
Bound

(a) Complete Graph

0 125 250 375 500
0.00

0.02

0.04

0.05

0.07

0.00

0.25

0.50
Absolute Error vs. Rank

GoRank
Bound

(b) Watts-Strogatz Graph

0 125 250 375 500
0.00

0.02

0.04
0.05

0.07

0.00

0.25

0.50
Absolute Error vs. Rank

GoRank
Bound

(c) 2D Grid Graph

Figure 4: Role of ϕ for three different communication graphs

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(a) Complete Graph

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(b) Watts-Strogatz Graph

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(c) 2D Grid Graph

Figure 5: Comparison of ranking algorithms on three different communication graphs

0 2e4 4e4 6e4 8e4

50
100
150
200
250
300
350
400

Absolute Error vs. Timesteps
GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(a) Complete Graph

0 2e4 4e4 6e4 8e4

50

100

150

200

250

300

350

400
Absolute Error vs. Timesteps

GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(b) Watts-Strogatz Graph

0 2e4 4e4 6e4 8e4

50

100

150

200

250

300

350

400
Absolute Error vs. Timesteps

GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(c) 2D Grid Graph

Figure 6: Comparison of gossip algorithms for robust mean estimation on three different graphs

H Asynchronous Variant of GORANK

In this section, we propose an asynchronous variant of GORANK that operates without access to
a global clock or a shared iteration counter. Instead, each node k maintains a local counter Ck

which tracks the number of times it has participated in an update. Asynchronous GORANK, outlined
in Algorithm 6 proceeds as follows. When node k is selected, it increments Ck and updates its
local rank estimate using a running average, where the global iteration t is replaced by Ck. As
in the synchronous version of GoRank, selected nodes also exchange their auxiliary observations.
Note that this asynchronous version is more efficient, as it significantly reduces the number of
updates—performing only two updates per iteration instead of n.

33

Algorithm 6 Asynchronous GoRank

1: Init: For each k ∈ [n], Yk ← Xk, R′
k ← 0, Ck ← 0.

2: for t = 1, 2, . . . do
3: Draw (i, j) ∈ E uniformly at random.
4: for p ∈ {i, j} do
5: Set Cp ← Cp + 1.
6: Set R′

p ← (1− 1/Cp)R
′
p + (1/Cp)I{Xp>Yp}.

7: Update rank estimate: Rp ← nR′
p + 1.

8: end for
9: Swap auxiliary observation: Yi ↔ Yj .

10: end for
11: Output: Estimate of ranks Rk.

Figure 7 shows a comparison of Asynchronous GoRank with our two other ranking algorithms:
Synchronous GoRank and Baseline++. The results suggest that Asynchronous GoRank converges
slightly faster than Synchronous GoRank, thereby outperforming it in both speed and efficiency.

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

Baseline++ (ours)
GoRank (ours)
GoRank Async (ours)

(a) Complete Graph

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

Baseline++ (ours)
GoRank (ours)
GoRank Async (ours)

(b) Watts-Strogatz Graph

0 2e4 4e4 6e4 8e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

Baseline++ (ours)
GoRank (ours)
GoRank Async (ours)

(c) 2D Grid Graph

Figure 7: Comparison of Asynchronous GoRank with other ranking algorithms. Results show that
Asynchronous GoRank slightly converges faster than the synchronous version.

Note that the convergence analysis in the asynchronous case is more complex because it requires
analyzing the ratio of two statistics. Nonetheless, though technically more demanding, it is possible
to derive convergence rate bounds using Taylor expansions techniques. We will carry out such an
analysis in an extension to this work.

I Large-scale Experiments

To demonstrate the scalability of our method on large networks, we repeated the experiments from
Fig. (c) in Sections 3.2 and 4.3, originally conducted with n = 500, on larger networks with n = 1000
and n = 5000.

For the experiments related to Section 3.2, the results lead to the same conclusions: Figure 8 shows
that GoRank continues to achieve a low error (< 0.1), and the overall performance trends of the
other ranking algorithms remain similar on the Watts–Strogatz graph but are significantly worse on
the 2D grid graph. These additional results further reinforce GoRank’s scalability and robustness,
particularly in comparison to the other methods.

For the experiments related to Section 5.4, Figure 9 shows that GoTrim + GoRank continues to
converge efficiently to the trimmed mean, even on larger 2D grid graphs, clearly outperforming
the corrupted mean. In contrast, GoTrim + Baseline++ converges significantly more slowly on
the 2D grid (and does not even outperform the corrupted mean), although it remains efficient on
Watts–Strogatz graphs.

34

0 2e4 5e4 8e4 10e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(a) Watts-Strogatz with n = 1000

0 2e4 5e4 8e4 10e4
0.0

0.1

0.2

0.3

0.4

0.5
Absolute Error vs. Timesteps

GoRank (ours)
Baseline++ (ours)
Baseline (Chiuso et al.)

(b) 2D grid with n = 1000 (c) 2D grid with n = 5000

Figure 8: Comparison of the performance of gossip algorithms for ranking across large networks.

0 2e4 5e4 8e4 10e4

2000

4000

6000

8000

10000

12000
Absolute Error vs. Timesteps

GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(a) Watts-Strogatz with n = 1000

0 2e4 5e4 8e4 10e4

2000

4000

6000

8000

10000

Absolute Error vs. Timesteps

GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(b) 2D grid with n = 1000 (c) 2D grid with n = 5000

Figure 9: Comparison of the performance for trimmed means estimation across large networks.

J Robustness to Network Disruptions

While robustness to data contamination is important, the robustness of our proposed algorithms to
network disruptions (e.g., edge/node failures, network partitioning) is equally crucial in real-world
applications.

One natural extension is to introduce a fixed probability of failure for each node or edge (see [2]). This
would modify the edge sampling: instead of a uniform distribution, the algorithm would sample edge
e with probability pe. In our analysis, this change corresponds to replacing the normalized Laplacian
L/|E| with a weighted sum

∑
e peLe, where

∑
e pe < 1 due to edge failures and Le correspond

to the elementary Laplacians. The spectral gap, which governs the convergence rate, would now
correspond to the connectivity constant c̃ of this weighted Laplacian instead of c = λ2/|E|. For
instance, if each edge fails independently with probability 0.5, then pe = 1/2|E| for all e, and
the effective spectral gap becomes c̃ = λ2/(2|E|) < c, indicating a slower convergence rate. We
emphasize that as long as pe > 0 for all e, the weighted graph remains connected and non-bipartite if
the original graph was.

Another interesting scenario is network partitioning. One way to model this is by designing graphs
composed of tightly connected clusters with only a few inter-cluster edges that are prone to failure.
In such a setup, the connectivity constant would degrade significantly, and we expect the convergence
rate to reflect this bottleneck. We generated a graph consisting of 500 nodes organized into three
well-connected clusters, with only five inter-cluster edges. As expected, we observed a very low
connectivity constant c = 1.86× 10−6 and the convergence behavior of this graph is similar to that
of a 2D grid graph, which is consistent with the low overall connectivity.

K Experiments on Sparse Graphs

An interesting question is whether our algorithms performance well on sparse graphs. First, we
note that the Watts-Strogatz and 2D grid graphs used in our main experiments are already quite
sparse, with both containing fewer than 1000 edges. However, we would like to emphasize that

35

what primarily governs convergence behavior is not sparsity per se, but graph connectivity. For
example, a dense graph composed of loosely connected clusters may have poor connectivity, while
a sparse graph like a 3-regular graph can exhibit strong connectivity properties. A cycle graph, in
addition to being sparse, has very low connectivity and serves as a useful pathological case. To better
illustrate the relationship between topology and performance, we conducted additional experiments
using three different sparse graphs: 1) Watts-Strogatz graph (connectivity c = 3.31× 10−4, 1̃000
edges), 2) Cycle graph (c = 3.16 × 10−7, 499 edges), 3) 3-regular graph (c = 2.24 × 10−4, 750
edges). All experiments were run for 15× 104 iterations. For GoRank, both the Watts-Strogatz and
3-regular graphs achieved fast convergence (absolute error below 0.05), consistent with their strong
connectivity properties typical of expander graphs. The cycle graph, as expected, performed worse
due to its very low connectivity, but still achieved an error below 0.1. For GoTrim, using the same
corruption model as in Fig. 5b, the Watts-Strogatz and 3-regular graphs again performed very well,
with errors close to 0. However, the cycle graph exhibited much slower convergence: after 8× 104

iterations, the absolute error remained above 40. Doubling the number of iterations reduced the
error to below 40. While this is indeed slow, it is important to note that performance remains better
than the corrupted mean, and such a topology is highly atypical in real-world sensor networks. In
practice, such scenarios would likely require gossip algorithms specifically designed for cycle graphs.
These experiments support the conclusion that GoTrim still performs well on sparse graph with good
connectivity properties.

0 4e4 8e4 11e4 15e4
0.00

0.05

0.10

0.15

0.20
Absolute Error vs. Timesteps

Expander
Watts-Strogatz
Cycle

(a) GoRank on sparse graphs

0 4e4 8e4 11e4 15e4

50
100
150
200
250
300
350
400

Absolute Error vs. Timesteps
GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(b) GoTrim on expander graph

0 4e4 8e4 11e4 15e4
50

100

150

200

250

300

350

400

Absolute Error vs. Timesteps
GoTrim + GoRank (ours)
GoTrim + Baseline++ (ours)
Clipped Gossip (He et al.)
Error of the corrupted mean

(c) GoTrim on cycle graph

Figure 10: Comparison of the performance of GoRank and GoTrim on different sparse graphs.

L Further Discussion and Future Work

Our main focus was to develop foundational results for robust decentralized estimation. This section
highlights directions for deepening our understanding of the algorithms’ properties, extending them
to more complex settings, and applying them to related problems.

Optimality of the Bounds. To the best of our knowledge, there are currently no established lower
bounds on the convergence rate for the class of gossip-based algorithms applied to either decentralized
ranking or trimmed mean estimation. Thus, the optimality of our algorithms remains an open question.
In the special case of a complete graph, we observe that significantly faster convergence than the
typical O(1/t) rate is possible. For example, in the Baseline++ algorithm, which performs direct
ranking swaps, we can show exponential convergence of the form exp(−t/|E|). However, this fast
convergence critically relies on the high connectivity of the complete graph and does not generalize
well to less connected graphs. In contrast, GORANK demonstrates more robust performance across
general graphs, including those with limited connectivity, where achieving O(1/t) convergence
is already non-trivial. Deriving a formal lower bound for arbitrary graphs remains an open and
challenging problem. Nevertheless, it can be noted that with the current approach, the GORANK
convergence rate of O(1/t) is tight in the sense that rank estimation involves averaging t random
indicator functions. Finally, since GOTRIM relies on the rank estimates from GORANK, it inherits
the O(1/t) convergence rate, which is already near-optimal.

Faster Gossip Algorithms. Designing faster gossip algorithms is an interesting direction, and we
have also been exploring this aspect. One promising approach involves optimizing the edge sampling
strategy based on the graph connectivity constant c (see [4, 38]). While this strategy improves gossip

36

performance in standard averaging tasks, our empirical experiments suggest that its impact on the
GORANK algorithm is more limited. This is likely due to the relatively small variation in c, which
is insufficient to significantly affect a rate in 1/ct—though it has a more noticeable effect under a
geometric rate.

Extension to Multivariate Data. Extending the proposed approach to multivariate data is an
important direction. A natural extension involves ranking multivariate observations based on their
norms. Specifically, one could define a suitable norm depending on the task (e.g., Euclidean), compute
the norm for each observation, and then apply our univariate ranking method (GoRank) to these
one-dimensional values. Observations with the largest norms can then be treated as potential outliers.
Following this, a multivariate version of GoTrim can be defined by discarding the top k = ⌊αn⌋
observations with the largest norms, and computing the mean of the remaining points using the
standard gossip algorithm. Alternatively, one could explore data depths as a generalization of ranking
in multivariate settings (see [28]). Data depth provides a measure of centrality for multivariate data.
While this approach is promising, it would require a more in-depth investigation beyond the scope
of the current work, since depth computations usually require to solve computationally demanding
optimization problems, just like alternative methods recently designed to define multivariate ranks
(e.g. based on optimal transport). Finally, we could simply compute the coordinate-wise trimmed
mean by applying GoTrim to each coordinate individually [29, 39].

Applications. The proposed methods offer a promising foundation for robust decentralized opti-
mization. In particular, GOTRIM could be integrated into existing mean-based optimization algorithms
to enhance robustness against outliers [11, 25, 37]. Realizing this integration, however, will require
further algorithmic and theoretical development. Additionally, our ranking algorithms may prove
valuable in extreme value theory, where identifying rare or extreme observations is critical—especially
in high-stakes domains such as finance, insurance, and environmental science [22].

37

	Introduction
	Background and Preliminaries
	Problem Formulation and Framework
	Related Works – State of the Art

	A Gossip Algorithm for Distributed Ranking – GoRank
	Algorithm – Convergence Analysis
	Numerical Experiments

	GoTrim – A Gossip Algorithm for Trimmed Means Estimation
	Algorithm – Convergence Analysis
	Robustness Analysis - Breakdown Points
	Numerical Experiments

	Conclusion and Discussion
	Gossip Algorithms for Ranking
	Baseline: Algorithm from Chiuso et al.
	Baseline++ - Our Improved Variant Proposal

	Auxiliary Results
	Properties of Gossip Matrices
	Convergence Analysis of Gossip for Averaging

	Convergence Analysis of GoRank
	Proof of Theorem 1
	Proof of Theorem 2

	Convergence Proofs for GoTrim
	Proof of Lemma 1
	Proof of Theorem 3

	Robustness Analysis: Breakdown Point of the Partial Trimmed Mean
	Convergence Analysis of ClippedGossip
	Additional Experiments and Implementation Details
	Experiments Compute Resources
	Basel Luftklima Dataset
	Additional Experiments

	Asynchronous Variant of GoRank
	Large-scale Experiments
	Robustness to Network Disruptions
	Experiments on Sparse Graphs
	Further Discussion and Future Work

