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Abstract

Real-world time series are characterized by intrinsic non-stationarity that poses
a principal challenge for deep forecasting models. While previous models suffer
from complicated series variations induced by changing temporal distribution, we
tackle non-stationary time series with modern Koopman theory that fundamentally
considers the underlying time-variant dynamics. Inspired by Koopman theory
that portrays complex dynamical systems, we disentangle time-variant and time-
invariant components from intricate non-stationary series by Fourier Filter and
design Koopman Predictor to advance respective dynamics forward. Technically,
we propose Koopa as a novel Koopman forecaster composed of stackable blocks
that learn hierarchical dynamics. Koopa seeks measurement functions for Koop-
man embedding and utilizes Koopman operators as linear portraits of implicit
transition. To cope with time-variant dynamics that exhibits strong locality, Koopa
calculates context-aware operators in the temporal neighborhood and is able to
utilize incoming ground truth to scale up forecast horizon. Besides, by integrating
Koopman Predictors into deep residual structure, we ravel out the binding recon-
struction loss in previous Koopman forecasters and achieve end-to-end forecasting
objective optimization. Compared with the state-of-the-art model, Koopa achieves
competitive performance while saving 77.3% training time and 76.0% memory.
Code is available at this repository: https://github.com/thuml/Koopa.

1 Introduction

Time series forecasting has become an essential part of real-world applications, such as weather
forecasting, energy consumption, and financial assessment. With numerous available observations,
deep learning approaches exhibit superior performance and bring the boom of deep forecasting
models. TCNs [4} 143} 47] utilize convolutional kernels and RNNss [[12} 22| 137]] leverage the recurrent
structure to capture underlying temporal patterns. Afterward, attention mechanism [42] becomes the
mainstream of sequence modeling and Transformers [311 48} 53] show great predictive power with the
capability of learning point-wise temporal dependencies. And the recent revival of MLPs [32} 511 [52]]
presents a simple but effective approach to exhibit temporal dependencies by dense weighting.

In spite of elaboratively designed models, it is a fundamental problem for deep models to generalize
on varying distribution [1, 25} [33]], which is widely reflected in real-world time series because of
inherent non-stationarity. Non-stationary time series is characterized by time-variant statistics and
temporal dependencies in different periods [2,[14], inducing a huge distribution gap between training
and inference and even among each lookback window. While previous methods [16} 28] tailor
existing architectural design to attenuate the adverse effect of non-stationarity, few works research on
the theoretical basis that can be applied to deal with time-variant temporal patterns naturally.
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Figure 1: The measurement function g maps between non-stationary time series and the nonlinear
dynamical system so that the timeline will correspond to a system trajectory. Therefore, time series
variations in different periods are reflected as sub-regions of nonlinear dynamics, which can be
portrayed and advanced forward in time by linear Koopman operators {1, Ko, K3} respectively.
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From another perspective, real-world time series acts like time-variant dynamics [6]. As one of the
principal approaches to analyze complex dynamics, Koopman theory [20] provides an enlightenment
to transform nonlinear system into measurement function space, which can be described by a linear
Koopman operator. Several pilot works accomplish the integration with deep learning approaches
by employing autoencoder networks [40] and operator-learning [26} 49]. More importantly, it is
supported by Koopman theory that for time-variant dynamics, there exists a coordinate transformation
of the system, where localized Koopman operators are valid to describe the whole measurement
function space into several subspaces with linearization [23} 36]. Therefore, Koopman-based methods
are appropriate to learn non-stationary time series dynamics (Figure [T). Besides, the linearity of
measurement function space enables us to utilize spectral analysis to interpret nonlinear systems.

In this paper, we disentangle non-stationary series into time-invariant and time-variant dynamics and
propose Koopa as a novel Koopman forecaster, which is composed of modular Koopman Predictors
(KP) to hierarchically describe and advance forward series dynamics. Concretely, we utilize Fourier
analysis for dynamics disentangling. And for time-invariant dynamics, the model learns Koopman
embedding and linear operators to reveal the implicit transition underlying long-term series. As for
the remaining time-variant components that exhibit strong locality, Koopa performs context-aware
operator calculation and adaptation within different lookback windows. Besides, Koopman Predictor
goes beyond the canonical design of Koopman Autoencoder without the binding reconstruction loss,
and we incorporate modular blocks into deep residual architecture [32] to realize end-to-end time
series forecasting. Our contributions are summarized as follows:

* From the perspective of modern dynamics Koopman theory, we propose Koopa composed
of modular Fourier Filter and Koopman Predictor, which can hierarchically disentangle and
exploit time-invariant and time-variant dynamics for time series forecasting.

* Based on the linearity of Koopman operators, the proposed model is able to utilize incoming
series and adapt to varying dynamics for scaling up forecast horizon.

* Compared with state-of-the-art methods, our model achieves competitive performance while
saving 77.3% training time and 76.0% memory averaged from six real-world benchmarks.

2 Related Work

2.1 Time Series Forecasting with DNNs

Deep neural networks (DNNs) have made great breakthroughs in time series forecasting. TCN-based
models [4} 43| 47 explore hierarchical temporal patterns and adopt shared convolutional kernels
with diverse receptive fields. RNN-based models [[12} 22} |37] utilize the recurrent structure with
memory to reveal the implicit transition over time points. MLP-based models [32} 51} |52]] learn
point-wise weighting and the impressive performance and efficiency highlight that MLP performs
well for modeling simple temporal dependencies. However, their practical applicability may still
be constrained on non-stationary time series, which is endowed with time-variant properties and
poses challenges for model capacity and efficiency. Unlike previous methods, Koopa fundamentally
considers the complicated dynamics underlying time series and implements efficient and interpretable
transition learners in both time-variant and time-invariant manners inspired by Koopman theory.

Recently, Transformer-based models have also achieved great success in time series forecasting.
Initial attempts 19,127,148l 53] renovate the canonical structure and reduce the quadratic complexity



for long-term forecasting. However, recent studies [16,21] find it a central problem for Transformer
and other DNNs to generalize on varying temporal distribution and several works [[15,116,[211[28] tailor
to empower the robustness against shifted distribution. Especially, PatchTST [31]] boosts Transformer
to the state-of-the-art performance by channel-independence and instance normalization [41] but may
lead to unaffordable computational cost when the number of series variate is large. In this paper, our
proposed model supported by Koopman theory works naturally for non-stationary time series and
achieves the state-of-the-art forecasting performance with remarkable model efficiency.

2.2 Learning Dynamics with Koopman Operator

Koopman theory [20] has emerged over decades as the dominant perspective to analyze modern
dynamical systems [[6]. Together with Dynamic Mode Decomposition (DMD) [38] as the leading nu-
merical method to approximate the Koopman operator, significant advances have been accomplished
in aerodynamics and fluid physics [3} 19} 30]. Recent progress made in Koopman theory is inherently
incorporated with deep learning approaches in the data science era. Pilot works [29, 140} 50] leverage
data-driven approaches such as Koopman Autoencoder to learn the measurement function and oper-
ator simultaneously. PCL [3]] further introduces a backward procedure to improve the consistency
and stability of the operator. Based on the capability of Koopman operator to advance nonlinear
dynamics forward, it is also widely applied to sequence prediction. By means of Koopman spectral
analysis, MDKAE [5] disentangles dominant factors underlying sequential data and is competent
to forecast with specific factors. K-Forecast [24] utilizes Koopman theory to handle nonlinearity in
temporal signals and propose to optimize data-dependent basis for long-term time series forecasting.
By leveraging predefined measurement functions, KNF [44] learns Koopman operator and attention
map to cope with time series forecasting with changing temporal distribution.

Different from previous Koopman forecasters, we design modular Koopman Predictors to tackle
time-variant and time-invariant components with hierarchically learned operators, and renovate
Koopman Autoencoder by removing the reconstruction loss to achieve fully predictive training.

3 Background

3.1 Koopman Theory

A discrete-time dynamical system can be formulated as z; 1 = F(x;), where z; denotes the system
state and F is a vector field describing the dynamics. However, it is challenging to identify the system
transition directly on the state because of nonlinearity or noisy data. Instead, Koopman theory [20]
hypothesizes the state can be projected into the space of measurement function g, which can be
governed and advanced forward in time by an infinite-dimensional linear operator K, such that:

Kog(x) =g(F(zt)) = g(wes1)- (D

Koopman theory provides a bridge between finite-dimensional nonlinear dynamics and infinite-
dimensional linear dynamics, where spectral analysis tools can be applied to obtain in-depth analysis.

3.2 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) [38] seeks the best fitted finite-dimensional matrix K to
approximate infinite-dimensional operator /C by collecting the observed system state (a.k.a. snapshot).
Although DMD is the standard numerical method to analyze dynamics, it only works on linear space
assumptions, which can be hardly identified without prior knowledge. Therefore, eDMD [45] is
proposed to avoid handcrafting measurement functions and harmonious incorporations are made with
the learning approach by employing autoencoders, which yields Koopman Autoencoder (KAE). By
the universal approximation theorem [[13]] of deep networks, KAE finds desired Koopman embedding
g(x¢) with learned measurement function in a data-driven approach.

3.3 Time Series as Dynamics

It is challenging to predict real-world time series because of inherent non-stationarity. But if
we zoom in the timeline, we will find the localized time series exhibited weak stationarity. It
coincides with Koopman theory to analyze large nonlinear dynamics. That is, the measurement
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Figure 2: Left: Koopa structure. By taking the residual of previous block fitted dynamical system,
each block learns hierarchical dynamics and Koopa aggregates the forecast of all blocks. Right: For
time-invariant forecast, Koopa learns globally shared dynamics from each lookback-forecast window
pair. For time-variant forecast, the model calculates localized and segment-wise dynamics.

function space can be divided into several neighborhoods, which are discriminately portrayed by
localized linear operators [23]]. Therefore, we leverage Koopman-based approaches that tackle large
nonlinear dynamics by disentangling time-variant and time-invariant dynamics. Inspired by Wold’s
Theorem [46] that every covariance-stationary time series X; can be formally decomposed as:

[ee]
Xe=m+ Y biery, 2
j=0
where 7, denotes the deterministic component and ¢; is the stochastic component as the stationary
process input of linear filter {b;}, we introduce globally learned and localized linear Koopman
operators to exploit respective dynamics underlying different components.

4 Koopa

We propose Koopa composed of stackable Koopa Blocks (Figure [2). Each block is obliged to learn
the input dynamics and advance it forward for prediction. Instead of struggling to seek one unified
operator that governs the whole measurement function space, each Koopa Block is encouraged to
learn operators hierarchically by taking the residual of previous block fitted dynamics as its input.

Koopa Block As aforementioned, it is essential to disentangle different dynamics and adopt proper
operators for non-stationary series forecasting. The proposed block shown in Figure [2] contains
Fourier Filter that utilizes frequency domain statistics to disentangle time-variant and time-invariant
components and implements two types of Koopman Predictor (KP) to obtain Koopman embedding
respectively. In Time-invariant KP, we set the operator as a model parameter to be globally learned
from lookback-forecast windows. In Time-variant KP, analytical operator solutions are calculated
locally within the lookback window, with series segments arranged as snapshots. In detail, we
formulate the b-th block input X®) as [x1,zs,...,27]" € RT*C, where T and C denote the
lookback window length and the variate number. The target is to output a forecast window of length
H. Our proposed Fourier Filter conducts disentanglement at the beginning of each block:

x® x® = FourierFilter(X ®)). 3)

mv
Respective KPs will predict with time-invariant input X i(nl:,) and time-variant input Xv(fr), and Time-
variant KP simultaneously outputs the fitted input Xv(fr)

Y = TimeInvKP (X)),

inv inv

X\ggr)v Y = TimeVarKP(X(b)).

var var

“
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Figure 3: Left: Time-invariant KP learns Koopman embedding and operator with time-invariant com-
ponents globally from all windows. Right: Time-variant KP conducts localized operator calculation
within lookback window and advances dynamics forward with the obtained operator for predictions.

Unlike KAEs [45] 144]] that introduce a loss term for rigorous reconstruction of the lookback-window
series, we feed the residual X (*1) as the input of next block for learning a corrective operator. And

the model forecast Y is the sum of predicted components E/VE,I), YHEV) gathered from all Koopa Blocks:

X0 = XO - X0, v =3 (@ +v). )

var mv

Fourier Filter To disentangle the series components, we leverage Fourier analysis to find the
globally shared and localized frequency spectrums reflected on different periods. Concretely, we
precompute the Fast Fourier Transform (FFT) of each lookback window of the training set, calculate
the averaged amplitude of each spectrum S = {0, 1,...,[T/2]}, and sort them by corresponding
amplitude. We take the top percent of « as the subset G, C S, which contains dominant spectrums
shared among all lookback windows and exhibits time-invariant dynamics underlying the dataset.
And the remaining spectrums are the specific ingredient for varying windows in different periods.
Therefore, we divide the spectrums S into G, and its complementary set G,. During training and
inference, FourierFilter(-) conducts the disentanglement of input X (block superscript omitted) as

Xiny = F 1 (Filter (Ga, F(X))),

_ (6)
Xyar = F ' (Filter (Go, F(X))) =X — Xiny,

where F means FFT, 7~ is its inverse and Filter(-) only passes corresponding frequency spectrums

with the given set. We validate the disentangling effect of our proposed Fourier Filter in Section[5.2]

by calculating the variation degree of temporal dependencies in the disentangled series.

Time-invariant KP Time-invariant KP is designed to portray the globally shared dynamics, which
discovers the direct transition from lookback window to forecast window as F : X, — Yiu.
Concretely, we introduce a pair of Encoder : RT*¢ i RP” and Decoder : RP s R7*C to
learn the common Koopman embedding for the time-invariant components of running window pairs,
where D denotes the embedding dimension. Working on the data-driven measurement function, we
introduce the operator Kj,, € RP*D a5 a learnable parameter in each Time-invariant KP, which
regards the embedding of lookback and forecast window Zp,ck, Ztore € RP as running snapshot pairs.
The procedure is shown in Figure [3|and TimeInvKP(-) is formulated as follows:

Zpack = EHCOder(Xinv)a Zrore = Kiny Zvack, Yiny = DeCOder(Zfore)~ @)



Time-variant KP As time-variant dynamics changes continuously, we utilize localized snapshots
in a window, which constitute a temporal neighborhood more likely to be linearized. To obtain
semantic snapshots and reduce iterations, the input X, is divided into % segments x; of length S:

Xj = [T(-1)s+1.---»Tjs] €RS*C j=12...T/S (8)
We assume S is divisible by 7" and H; otherwise, we pad the input or truncate the output to
make it compatible. Time-variant KP aims to portray localized dynamics, which is manifested
analytically as the segment-wise transition F : x; +— x;,1 with observed snapshots. We utilize
another pair of Encoder : R*¢ — RP to transform each segment into Koopman embedding z; and
Decoder : RP +— RSXC to transform the fitted or predicted embedding Z; back to time segments X ;:

z; = Encoder(x;), %; = Decoder(Z%;). )

Given snapshots collection Z = [z1,...,2 T | € RP X%, we leverage eDMD [45]] to find the best
fitted matrix that advances forward the system. We apply one-step operator approximation as follows:

Zback = [217 225y Z%_l]; Zrore = [227 235 .- ;ZT]7 Kyar = ZforeZJaCkv (10)

where Z,Iack € R(5=1*D i5 the Moore—Penrose inverse of lookback window embedding collection.

The calculated K, € RP*P varies with windows and helps to analyze local temporal variations as
a linear system. With the calculated operator, the fitted embedding is formulated as follows:

[217 2oy, 2%] = [Zla Kz, .-y KVaIZ%_l] = [Zla Kvaerack]- (11)
To obtain a prediction of length H, we iterate operator forwarding to get % predicted embedding:
P = (Kw)tz%, t=1,2,...,H/S. (12)

Finally, we arrange the segments transformed by Decoder(+) as the module outputs X var, Yvar- The
whole procedure is shown in Figure[3|and TimeVarKP(-) can be formulated as Equation §

X 1T (13)

~ ~ 1T ~ ~

Xoar = [Xla ce ,X%] , Yiar = [X%_Ha e ,X%+%
Forecasting Objective In Koopa, Encoder, Decoder and Kj,, are learnable parameters, while
Ka 1s calculated on-the-fly. To maintain the Koopman embedding consistency in different blocks,
we share Encoder, Decoder in Time-variant and Time-invariant KPs, which are formulated as ¢y,,
and ¢,y respectively, and use the MSE loss with the ground truth Yy, for parameter optimization:

argminKinvv(bvan(binv EMSE(Y7 }/gt) : (14)

Optimizing by a single forecasting objective based on the assumption that if reconstruction failed, the
prediction must also fail. Thus eliminating forecast discrepancy helps for fitting observed dynamics.

S Experiments

Datasets We conduct extensive experiments to evaluate the performance and efficiency of Koopa.
For multivariate forecasting, we include six real-world benchmarks used in Autoformer [48]]: ECL
(UQCD, ETT [53]], Exchange [22], ILI (CDC), Traffic (PeMS), and Weather (Wetterstation). For
univariate forecasting, we evaluate the performance on the well-acknowledged M4 dataset [39],
which contains four subsets of periodically collected univariate marketing data. And we follow the
data processing and split ratio used in TimesNet [47]].

Notably, instead of setting a fixed lookback window length, for every forecast window length H,
we set the length of lookback window 1" = 2H as the same with N-BEATS [32]], because historical
observations are always available in real-world scenarios and it can be beneficial for deep models to
leverage more observed data with the increasing forecast horizon.

Baselines We extensively compare Koopa with the state-of-the-art deep forecasting models, includ-
ing Transformer-based model: Autoformer [48]], PatchTST [31]]; TCN-based model: TimesNet [47],
MICN [43]]; MLP-based model: DLinear [51]]; Fourier forecaster: FiLM [54], and Koopman fore-
caster: KNF [44]. We also introduce additional specialized models N-HiTS [7] and N-BEATS [32]]
for univariate forecasting as competitive baselines. All the baselines we reproduced are implemented
based on the original paper or official code. We repeat each experiment three times with different
random seeds and report the test MSE/MAE. And we provide detailed code implementation and
hyperparameters sensitivity in Appendix



5.1 Time Series Forecasting

Forecasting results We list the results in Table [TH2] with the best in bold and the second underlined.
Koopa shows competitive forecasting performance in both multivariate and univariate forecasting.
Concretely, Koopa achieves state-of-the-art performance in more than 70% multivariate settings and
consistently outperforms other deep models in the univariate settings.

Notably, Koopa surpasses the state-of-the-art Koopman-based forecaster KNF by a large margin in
real-world time series, which can be attributed to our hierarchical dynamics learning and disentangling
mechanism. Also, as the representative of efficient linear models, the performance of DLinear is
still subpar in ILI, Traffic and Weather, indicating that nonlinear dynamics underlying the time
series poses challenges for model capacity and point-wise weighting may not be appropriate to
portray time-variant dynamics. Besides, compared with painstakingly trained PatchTST with channel-
independence mechanism, our model can achieve a close and even better performance with naturally
addressed non-stationary properties of real-world time series.

Table 1: Multivariate forecasting results with different forecast lengths H € {24, 36,48, 60} for ILI
and H € {48,96, 144,192} for others. We set the lookback length T' = 2H. Additional results
(ETTml, ETTm2, ETTh1) are provided in Appendix [D.1]

Models Koopa  PatchTST TimesNet DLinear MICN KNF FiLM  Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

48|0.130 0.234 0.147 0.246 0.149 0.254 0.158 0.241 0.156 0.271 0.175 0.265 0.197 0.270 0.164 0.272
96(0.136 0.236 0.143 0.241 0.170 0.275 0.153 0.245 0.165 0.277 0.198 0.284 0.238 0.341 0.182 0.289
144(0.149 0.247 0.145 0.241 0.183 0.287 0.152 0.245 0.163 0.274 0.204 0.297 0.234 0.338 0.210 0.315
192]0.156 0.254 0.147 0.240 0.189 0.291 0.153 0.246 0.171 0.284 0.245 0.321 0.240 0.339 0.221 0.324

48]0.226 0.300 0.223 0.297 0.241 0.319 0.226 0.305 0.260 0.336 0.385 0.376 0.261 0.324 0.355 0.380
96(0.297 0.349 0.300 0.353 0.325 0.376 0.294 0.351 0.343 0.393 0.433 0.446 0.322 0.372 0.427 0.432
14410.333 0.381 0.346 0.390 0.374 0.408 0.354 0.397 0.374 0.411 0.441 0.456 0.352 0.397 0.457 0.461
192]0.356 0.393 0.383 0.406 0.394 0.434 0.385 0.418 0.455 0.464 0.528 0.503 0.361 0.410 0.503 0.491

48|0.042 0.143 0.044 0.144 0.059 0.172 0.043 0.145 0.117 0.248 0.128 0.271 0.071 0.192 0.125 0.252
96(0.083 0.207 0.085 0.204 0.120 0.255 0.084 0.220 0.108 0.251 0.294 0.394 0.112 0.245 0.280 0.386
144/0.130 0.261 0.132 0.260 0.206 0.334 0.132 0.253 0.152 0.301 0.597 0.578 0.174 0.306 0.520 0.523
192|0.184 0.309 0.174 0.300 0.377 0.463 0.178 0.299 0.187 0.331 0.654 0.595 0.241 0.364 0.653 0.592

24(1.621 0.800 2.063 0.881 2.464 1.039 2.624 1.118 4.380 1.558 3.722 1.432 3.590 1.424 2.831 1.085
36(1.803 0.855 2.178 0.943 2.388 1.007 2.693 1.156 3.314 1.313 3.941 1.448 4.200 1.383 2.801 1.088
48|1.768 0.903 1.916 0.896 2.370 1.040 2.852 1.229 2.457 1.085 3.287 1.377 3.317 1.417 2.322 1.006
60(1.743 0.891 1.981 0.917 2.193 1.003 2.554 1.144 2.379 1.040 2.974 1.301 4.077 1.444 2.470 1.061

48|0.415 0.274 0.426 0.286 0.567 0.306 0.488 0.352 0.496 0.301 0.621 0.382 0.498 0.312 0.640 0.361
96(0.401 0.275 0.413 0.283 0.611 0.337 0.485 0.336 0.511 0.312 0.645 0.376 0.451 0.297 0.668 0.367
144/0.397 0.276 0.405 0.278 0.603 0.322 0.452 0.317 0.498 0.309 0.683 0.402 0.430 0.288 0.681 0.379
192]0.403 0.284 0.404 0.277 0.604 0.321 0.438 0.309 0.494 0.312 0.699 0.405 0.425 0.288 0.692 0.385

48(0.126 0.168 0.140 0.179 0.138 0.191 0.156 0.198 0.157 0.217 0.201 0.288 0.160 0.206 0.185 0.240
96(0.154 0.205 0.160 0.206 0.180 0.231 0.186 0.229 0.187 0.250 0.295 0.308 0.189 0.233 0.230 0.279
14410.172 0.225 0.174 0.221 0.190 0.244 0.199 0.244 0.197 0.257 0.394 0.401 0.200 0.245 0.268 0.308
192]0.193 0.241 0.195 0.243 0.212 0.265 0.217 0.261 0.214 0.270 0.462 0.437 0.219 0.263 0.325 0.347

1* Count 34 11 0 3 0 0 0 0

ECL

ETTh2

Exchange

ILI

Traffic

Weather

Table 2: Univariate forecasting results for the M4 dataset. We report the weighted average forecasting
error from all four subsets and full results are provided in Appendix [D.T]

Models Koopa N-HiTS N-BEATS PatchTST TimesNet DLinear MICN KNF FiLM  Autoformer
ks & | SMAPE 11.863 11.960 11.910 13.022 11.930 12.418 13.023 12.126 12.489 14.057
) o | MASE| 1.595 1.606 1.613 1.814 1.597 1.656 1.836 1.641 1.690 1.954
2 <| owa| 0858 0861 0.862 0.954 0.867 0.891 0.960 0.874 0.902 1.029
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Figure 4: Model efficiency comparison. The performance comes from Table [T] with forecast window
length H = 144. Training time and memory footprint are recorded with the same batch size and
official code configuration. Full results of all six datasets are provided in Appendix[D.3]

Model efficiency We comprehensively evaluate the model efficiency from three aspects: forecasting
performance, training speed, and memory footprint. In Figure ] we compare the efficiency under
two representative datasets with different variate numbers (7 in ETTh2 and 862 in Traffic).

Compared with the state-of-the art forecasting model PatchTST, Koopa saves 62.3% and 96.5%
training time respectively in the ETTh2 and Traffic datasets with only 26.8% and 2.9% memory
footprint. Concretely, the averaged training time and memory ratio of Koopa compared to PatchTST
are 22.7% and 24.0% in all six datasets (see Appendix [D.3]for the detail). Besides, as an efficient
MLP-based forecaster, Koopa is also capable of learning nonlinear dynamics from time-variant and
time-invariant components, and thus achieves a better performance.
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Figure 5: Left: Comparison of Degree of Variation (the standard deviation of linear weighting fitted
on different periods), we plot respective values of disengaged components on all six datasets. Right:
A case of localized Koopman operators calculated on the Exchange dataset at the interval of one year.
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5.2 Model Analysis

Dynamics disentanglement To validate the disentangling effect of our proposed Fourier Filter,
we divide the whole time series into 20 subsets of different periods and conduct respective linear
regression on the components disentangled by Fourier Filter. The standard deviation of the linear
weighting reflects the variation of point-to-point temporal dependencies, which works as the manifes-
tation of time-variant property. We plot the value as Degree of Variation (Figure [5|Left). It can be
observed that larger deviations occur in the time-variant component, which indicates the proposed
module successfully disentangles two types of dynamics from the perspective of frequency domain.

Case study We present a case study on real-world time series (exchange rate) on the right of
Figure[5] We sample the lookback window at the interval of one year and visualize the Koopman
operators calculated in Time-variant KP. It can be clearly observed that localized operators can exhibit
changing temporal patterns in different periods, indicating the necessity of utilizing varying operators
to describe time-variant dynamics. And interpretable insights are also presented as series uptrends
correspond to heatmaps with large value and downtrends are reflected with small value.



Ablation study We conduct ablations on Koopa. As shown in Table |3, Time-variant and Time-
invariant KPs perform as complementary modules to explore the dynamics underlying time series,
and discarding any one of them will lead to the inferior performance. Besides, we evaluate alternative
decomposition filters to disentangle time series dynamics. We find the proposed Fourier Filter
conducts effective disentanglement, where the amplitude statistics of frequency spectrums from
different periods are utilized to exhibit time-agnostic information. Therefore, Koopa tackling the
right dynamics with complementary modules can achieves the best performance.

Table 3: Model ablation. Only K;,, uses one-block Time-invariant KP; Only K,,, stacks Time-variant
KPs only; Truncated Filter replaces Fourier Filter with High-Low Pass Filter; Branch Switch changes
the order of KPs on disentangled components. The averaged results are listed here.

Dataset | ECL ETTh2 Exchange ILI Traffic Weather
Metric | MSE  MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Only Kiny 0.148 0.250| 0.312 0.358 | 0.120 0.241|2.146 0.963 | 0.740 0.446|0.170 0.213
Only Kyar 1.547 0.782]0.371 0.405|0.205 0.316|2.370 1.006 | 0.947 0.544 | 0.180 0.232
Truncated Filter | 0.155 0.255|0.311 0.362 | 0.129 0.246 | 1.988 0.907 | 0.536 0.334 | 0.172 0.220
Branch Switch | 0.696 0.393 | 0.344 0.385|0.231 0.325|2.130 0.964 | 0.451 0.304|0.173 0.221
Koopa 0.146 0.246 | 0.303 0.356 | 0.111 0.230 | 1.734 0.862 | 0.419 0.293 | 0.162 0.211

Avoiding rigorous reconstruction Unlike previous Koopman Autoencoders, the proposed Koop-
man Predictor does not reconstruct the whole dynamics at once, but aims to portray the partial
dynamics evolution. Thus we remove the reconstruction branch, which is only utilized during training
in previous KAEs. In our deep residual structure, the predictive objective function works as a good
optimization indicator. We validate the design in Table ] where the performance of sorely forecasting
objective optimized model is better than with an additional reconstruction loss. Because the end-to-
end forecasting objective helps to reduce the optimization gap between training and inference, making
it a valuable contribution of applying Koopman operators on end-to-end time series forecasting.

Table 4: Performance comparison of the dynamics learning blocks implemented by our proposed
Koopman Predictor (Koopa) and the canonical Koopman Autoencoder [29](KAE).

Dataset \ ETTh2 Exchange ECL Traffic Weather ILI

Model | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Koopa | 0.303 0.356 | 0.110 0.230 | 0.143 0.243 | 0.404 0.277 | 0.161 0.210 | 1.734 0.862
KAE 0.312 0.361 | 0.129 0.248 | 0.169 0.269 | 0.463 0.329 | 0.170 0.217 | 2.189 0.974

Promotion | 2.88% | 1473% | 1538% | 1274% | 529% | 20.79%

Learning stable operators We turn to analyze our architectural design from the spectral perspective.
The eigenvalues of the operator determine the amplitude of dynamics evolution. As most of non-
stationary time series experience the distribution shift and can be regarded as an unstable evolution,
the learned Koopman operator with the modulus far from the unit circle will cause non-divergent and
even explosive trending in the long term, leading to training failures.

To tackle this problem generally faced by Koopman-based forecasters, we propose to utilize the
disentanglement and deep residual structure. We measure the stability of the operator as the average
distance of eigenvalues from the unit circle. As shown in Figure[6] the operator can become more
stable by the above two techniques. The disentanglement helps to describe complex dynamics based
on the decomposition and appropriate inductive bias can be applied. The architecture where each
block is employed to fill the residual of the previously fitted dynamics reduces the difficulty of
directly reconstructing complicated dynamics. Each block portrays the basic process driven by a
stable operator within its power, which can be aggregated for a complicated non-stationary process.

5.3 Scaling Up Forecast Horizon

Most deep forecasting models work as a settled function once trained (e.g. input-7-output-H). For
scenarios where the prediction horizon is mismatched or long-term, it poses two challenges for the
trained model: (1) reuse parameters learned from observed series; (2) utilize incoming ground truth
for model adaptation. The practical scenarios, which we name as scaling up forecast horizon, may
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Figure 6: Visualization of the operator stability on the highly non-stationary Exchange dataset. We
plot the first block time-invariant operator eigenvalues of the following design: (a) Single-block
model with only time-invariant operator. (b) Single-block model with time-invariant and time-variant
operators. (c¢) Two-block model with time-invariant and time-variant operators.

lead to failure on most deep models but can be naturally tackled by Koopa. In detail, we first train
Koopa with forecast length Hy. and attempt to apply it on a larger forecast length Hi..

Method Koopa scales up forecast horizon as follows: Since Time-invariant KP has learned the
globally shared dynamics and Time-variant KP can calculate localized operator K, within the
lookback window, we freeze the parameters of trained Koopa but only use the incoming ground truth
to adapt K,,;. The naive implementation uses incremental Koopman embedding with dimension D
and conducts Equation to obtain an updated operator, which has a complexity of O( H.D?). We
further propose an iterative algorithm with improved O((H,. + D)D?) complexity. The detailed
method implementations and complexity analysis can be found in Appendix

Results As shown in Table [5] the proposed operator adaption mechanism further boosts the
performance on the scaling up scenario, which can be attributed to more accurately fitted time-variant
dynamics with incoming ground truth snapshots. Besides, the promotion becomes more significant
when applied to non-stationary datasets (manifested as large ADF Test Statistic [10]).

Table 5: Scaling up forecast horizon: (Hy, He) = (24,48) for ILI and (Hy,, H,) = (48,144) for
others. Koopa conducts vanilla rolling forecast and Koopa OA further introduces operator adaptation.

ETTh2
(-4.135)

Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

Koopa 0.214 0.348 | 0.437 0.429 | 2.836 1.065 | 0.199 0.298 | 0.709 0.437 | 0.237 0.276
Koopa OA | 0.172 0.319 | 0.372 0.404 | 2.427 0.907 | 0.182 0.271 | 0.699 0.426 | 0.225 0.264

Promotion MSE) | 19.6% |  149% | 141% | 85% | 14% | 51%

ILI
(-5.406)

Dataset
ADF Test Statistic

Exchange

ECL Traffic Weather
(-1.889)

(-8.483) (-15.046) (-26.661)

6 Conclusion

This paper tackles time series as dynamical systems. With disentangled time-variant and time-
invariant components from non-stationary series, the Koopa model reveals the complicated dynamics
hierarchically and leverages MLP modules to learn Koopman embedding and operator. Experimen-
tally, our model shows competitive performance with remarkable efficiency and the potential to scale
up the forecast length by operator adaptation. In the future, we will explore Koopa with the dynamic
modes underlying non-stationary data using the toolbox of Koopman spectral analysis.
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A Scaling Up Forecast Horizon

In this section, we introduce the capability of Koopa to scale up forecast horizon. In detail, we train a Koopa
model with forecast length H;, and attempt to apply it on a larger length Hi.. The basic approach conducts
rolling forecast by taking the model prediction as the input of the next iteration until the desired forecast horizon
is all filled. Instead, we further assume that after the model gives a prediction, the model can utilize the incoming
ground truth for model adaptation and continue rolling forecast for the next iteration. It is notable that we do not
retrain parameters during model adaptation, since it will lead to overfitting on the incoming ground truth and
Catastrophic Forgetting [11} 118} 135].

Koopa can naturally cope with the scenario by learning Koopman embedding and operator Kj,, in Time-invariant
KPs while calculating localized operator K, to describe the dynamics in the temporal neighborhood. Therefore,
we freeze the parameters of Koopa but only use the incoming ground truth for operator adaptation of Ky, in
Time-variant KPs.

A.1 Implementation of Operator Adaptation

At the beginning of rolling forecast, the Encoder in Time-variant KP ou%)uts D-dimensional Koopman embedding
for each observed series segment as [z1, 22, ..., zr], where F' = = is the segment number with S as the
segment length. The operator K, in Time-variant KP is calculated as follows:

Zack = [21, 225 -+, 2F 1], Ztore = (22,23, ..., 2F)], Ky = ZforeZJaCk, (15)

where Zvack, Ziore € RP*(F _1), Ky € RP*P With the calculated operator, we obtain the next predicted
Koopman embedding by one-step forwarding:

2F+1 = KvarZF~ (16)

After decoding the embedding 21 to the series prediction, we can utilize the true value of incoming Koopman
embedding zr+1 obtained by Koopa with frozen parameters. Instead of using K., to obtain the next embedding
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2p 12, we use incremental embedding collections Zpuck+, Zrorer € RP*¥ to obtain a more accurate operator
Kwy € RP*P (o describe the local dynamics:

Zback+ = [Zback7 ZF‘L Zfore+ = [Zback7 ZF+1}, Kvar+ = Zfore+ZJack+- (17)

The procedure repeats for L times (L o< Hy.) until the forecast horizon is all filled, we formulate it as Algorithm[T]
And experimental results (Koopa OA) in Section[5.3have demonstrated the promotion of forecasting performance
due to more precisely fitted dynamics.

A.2 Computational Acceleration

The naive implementation shown in Algorithm [T|repeatedly conducts Equation[T7)on the incremental embedding
collection to obtain new operators, which has a complexity of O(LD?). We propose an equivalent algorithm
with improved complexity of O((L + D)D?) as shown in Algorithm

Theorem. Algorithm@ gives the same K, as Algorithm in each iteration with (’)(D2) complexity.

Proof. We start with the first iteration analysis. By the definition of Moore-Penrose inverse, we have
ZJackZbﬂCk = Ir_1, where Ir_; is an identity matrix with the dimension of F' — 1. When the model receives
the incoming embedding zr 41, incremental embedding m = zr,n = zp41 will be appended to Zpack and Zore
respectively. Instead of calculating new K.,4 from incremental collections, we utilize calculated K., to find
the iteration rule on Kya. Concretely, we suppose
Z = A FxD
Zgack+ = [ baLgT ] € R x ) (]8)
where A € RE=DXP j ¢ RP are variables to be identified. By the definition of Moore—Penrose inverse, we
have lewck 1 Zback+ = Ir. By unfolding it, we have the following equations:
AZuek =0, b Zyuac =0 b'm =1, Z]

bac]

o — Am = 0. (19)

We suppose A = 6b', where § € R ™!, such that when b Zpex = 0, then AZyx = 0. Then we have
Zlom—38b"m=Z! ,m—6=0,thus A = Z! ,mb". Given equations that b" Ziyex = O and b'm = 1,
we have the analytical solution of b:

b= 7"/”7“”2, where r = m — ZbaCkZJackm' (20)

Therefore, we find the equation between the incremental version Ky, and calculated Ky :

Zl (Ip —mb"
ZJack+ = |: baCk( ?;T m ):| 5 Kvar+ = Zfore+ZJack+ = K + (n - Kvarm)bT7 (21)
where m, n are the incremental embedding of Zpack, Zrore and b can be calculated by Equation@ We also derive
the iteration rule on X = ZbackZJack to obtain b, which is formulated as follows:

Xy = Zoer Zg = X+ (m — Xm)b" = X +7b". (22)

ack+

By adopting Equation 2T}-[22]and permuting the matrix multiplication order, we reduce the complexity of each
iteration to O(D?). Therefore, Algorithm [2| has a overall complexity of O((L 4+ D)D?). Since L o< He,
Algorithm [1H2|have O(H,.D?) and O((H, + D)D?) complexity respectively.

B Implementation Details

Koopa is trained with L2 loss and optimized by ADAM [17]] with an initial learning rate of 0.001 and batch size
set to 32. The training process is early stopped within 10 epochs. We repeat each experiment three times with
different random seeds to obtain average test MSE/MAE and detailed results with standard deviations are listed
in Table[6] Experiments are implemented in PyTorch [34] and conducted on NVIDIA TITAN RTX 24GB GPUs.

All the baselines that we reproduced are implemented based on the benchmark of TimesNet [47] Repository,
which is fairly built on the configurations provided by each model’s original paper or official code. Since several
baselines adopt Series Stationarization from Non-stationary Transformers [28]] while others do not, we equip all
models with the method for a fair comparison.

C Hyperparameter Sensitivity

Considering the efficiency of hyperparameters search, we fix the segment length S = 7'/2 and the number of
Koopa blocks B = 3 in all our experiments. We verify the robustness of Koopa of other hyperparameters as
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Algorithm 1 Koopa Operator Adaptation.

Require: Observed embedding Z = [z, ..

., zr] and successively incoming ground truth embedding

[2F11,...,2rs ] with each embedding z; € R,

1 Zoack = [215 -+, 2P 1], Ztore = [225 - - -, 2F) b Zoack, Ztore € RP*(F=1)
2 Kvar = Ziore Dy > Kyo € RPXD
3 Zpy1 = Kyar > Zpy1 € RP
4: forlin {1,...,L}: > zp4 comes successively
5: M = 2p4i—1,N = ZF4] >m,n € RP
6: Zack < [Zvacks M), Zore < [Zore, 1] > Zpacks Ztore € RP*(FH=1)
7 K = Zioe Z, b Kyyr € RDXD
8  ipys = Kan > Zpi1s1 € RP
9: End for

10: Return [2pi1,...,2F+041] > Return predicted embedding

Algorithm 2 Accelerated Koopa Operator Adaptation.

Require: Observed embedding Z = [z1, . . ., zr| and successively incoming ground truth embedding

[2Fi1,-- ., 2F1r] with each embedding z; € RP.

> Zbacka Zfore S RDX(F_l)

—

Zvack = (215 - s 2FP—1], Zrore = [22, ..., 2F]

2 Ky = ZforeZJaCk» X = ZbackZJaCk > Kvar» X e RD*D
3: Zpy1 = Kyn > Zpy1 € RP
4: forlin {1,...,L}: > 24 comes successively
5: M = ZFp4+1—1,1 = ZF4] Dm,nERD
6: r=m-—Xm >r e RP
7: b=r/|r||? >beRP
. _ T DxD
8: Koo + Ky + (n — Kyym)b > Ky €R
9 X+ X+rb" > X € RPXP
10: Zrii+1 = Koan > Zpii41 € RP
11: End for
12: Return [2py1,...,2p 041] " > Return predicted embedding

Table 6: Detailed performance of Koopa. We report the MSE/MAE and standard deviation of different
forecast horizons { Hy, Ho, H3, Hy} = {24, 36,48,60} for ILI and {48, 96, 144, 192} for others.

Dataset | ECL ETTh2 Exchange

Horizon ‘ MSE MAE MSE MAE MSE MAE
H, 0.1304-0.003 0.2344-0.003 0.22640.003 0.3004-0.003 0.0424-0.002 0.1434-0.003
Hs> 0.1364-0.004 0.2364-0.005 0.29740.004 0.3494-0.004 0.0834-0.004 0.20740.004
Hs 0.1494-0.003 0.2474-0.003 0.3334-0.004 0.3814-0.003 0.1304:0.005 0.2614-0.003
Hy 0.1564-0.004 0.2544-0.003 0.3564-0.005 0.3934-0.004 0.1844-0.009 0.3094-0.005

Dataset | ILI Traffic Weather

Horizon MSE MAE MSE MAE MSE MAE
H, 1.6214-0.008 0.8004-0.006 0.41540.003 0.2744-0.005 0.1264-0.005 0.1684-0.004
Ho 1.80340.040 0.8554:0.020 0.4014-0.005 0.2754:0.004 0.1544-0.006 0.2054-0.003
Hs 1.7684-0.015 0.9034-0.008 0.39740.004 0.27640.003 0.17240.005 0.2254-0.005
Hy 1.74340.040 0.8914-0.009 0.4034-0.007 0.2844-0.009 0.1934-0.003 0.2414-0.004
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Figure 7: Left: Hyperparameter sensitivity with respect to the dimension of Koopman embedding,
hidden layer number, and hidden dimension of Encoder and Decoder in Koopa.

follows: the dimension of Koopman embedding D, the hidden layer number ! and the hidden dimension d used
in Encoder and Decoder. As is shown in Figure[7] we find the proposed model is insensitive to the choices of
above hyperparameters, which can be beneficial for practitioners to reduce tuning burden.

Intuitively, a larger dimension of Koopman embedding D can bring about a lower approximation error. We
further dive into it and find that stacking blocks can enhance the model capacity, and thus the performance is
insensitive to D when the model is deep enough. To address the concern, we further check the sensitivity of D
under varying block number B in Figure[§] It can be seen that a larger B generally leads to lower error even if
D is small. And the performance can be sensitive to D when the model is not deep enough (B = 1, 2).

Besides, we find the proposed model can be insensitive to S on several datasets while sensitive on ECL and
Traffic datasets (The difference is about 10%). There are many variables in these two datasets, but our current
design shares the S for all variables. Since different variables with distinct evolution periods implicitly require
different optimal S, the performance of the dataset with more variables is more likely to be influenced by S.
Therefore, we set S = T'/2 with relatively small performance fluctuation to deal with most situations.

0.15 — 1Block 0.5 /—~
2 Blocks
—— 3 Blocks

—— 4 Blocks 0.4 —— Traffic

ETTh2
—— Weather
0.3 —— Electricity

\/\ 02
0.12 S G ——
—

—_— T

z 2 z 2 /8 1/4 12 T
Di ion of Koopi Embedding Segment Length

Figure 8: Left: Hyperparameter sensitivity of the dimension of Koopman embedding under different
settings of the block number. Right: Hyperparameter sensitivity of the segment length.

D Supplementary Experimental Results

D.1 Full Forecasting Results

Due to the limited pages, we list additional multivariate benchmarks on ETT datasets [53] in Table m which
includes the hourly recorded ETTh2 and 15-minutely recorded ETTm1/ETTm?2, and the full univariate results
of M4 [39] in Table[8] which contains the yearly, quarterly and monthly collected univariate marketing data.
Notably, Koopa still achieves competitive performance compared with state-of-the-art deep forecasting models
and specialized univariate models.

D.2 Full Ablation Results

We elaborately conduct model ablations to verify the necessity of each proposed module: Time-invariant KP,
Time-variant KP, Fourier Filter and evaluate alternative choices to disentangle dynamics. As shown in Table [0}
Koopa conducts effective disentanglement and tackles the right dynamics with complementary KPs, and thus
achieves the best forecasting performance.
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Table 7: Forecasting results with different forecast window lengths H € {48,96, 144,192} on ETT
dataset. We set the lookback window length 7" = 2H.

Models ~ KooPA  PatchTST [31] TimesNet [47] DLinear [SI] MICN [43]  KNF[44]  FiLM[54] Autoformer [48]
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

48(0.283 0.333 0.286 0.336 0.308 0.354 0.322 0.355 0.294 0.353 1.026 0.792 0.324 0.353 0.592 0.419
96(0.294 0.345 0.299 0.346 0.329 0.370 0.309 0.346 0.306 0.364 0.957 0.782 0.311 0.346 0.493 0.469
144/0.322 0.366 0.325 0.363 0.358 0.387 0.327 0.359 0.342 0.390 0.921 0.760 0.328 0.358 0.735 0.569
192]0.337 0.378 0.343 0.375 0.462 0.441 0.337 0.365 0.386 0.415 0.896 0.731 0.339 0.366 0.592 0.506

48|0.134 0.226 0.135 0.231 0.142 0.234 0.144 0.240 0.131 0.238 0.621 0.623 0.146 0.243 0.191 0.280
96(0.171 0.254 0.171 0.255 0.187 0.269 0.172 0.256 0.197 0.295 1.535 1.012 0.174 0.257 0.241 0.311
144/0.206 0.280 0.205 0.282 0.216 0.291 0.200 0.276 0.210 0.297 1.337 0.876 0.204 0.279 0.300 0.352
192]0.226 0.298 0.221 0.294 0.243 0.313 0.219 0.290 0.248 0.328 1.355 0.908 0.224 0.293 0.324 0.370

48]0.336 0.377 0.337 0.375 0.365 0.399 0.343 0.371 0.375 0.406 0.876 0.709 0.407 0.427 0.442 0.438
96(0.371 0.405 0.372 0.393 0.411 0.430 0.379 0.393 0.406 0.429 0.975 0.744 0.429 0.431 0.634 0.523
144/0.405 0.418 0.394 0.412 0.442 0.447 0.393 0.403 0.437 0.448 0.801 0.662 0.451 0.448 0.522 0.491
192]0.416 0.429 0.416 0.439 0.469 0.470 0.407 0.416 0.518 0.496 0.941 0.744 0.460 0.459 0.525 0.501

ETTml

ETTm2

ETThl

Table 8: Full univariate forecasting results for M4 dataset. We follow the same data processing
and forecasting length settings used in TimesNet [47]] benchmark. Additional forecasting models
N-HiTS [7] and N-BEATS [32] are also included.

Models KooPA N-HiTS N-BEATS PatchTST TimesNet DLinear MICN  KNF FiLM  Autoformer
5 sMAPE | 13.352 13.371 13.466 13.517 13.394 13.866 14.532 13.986 14.012 14.786
2 MASE | 2,997 3.025 3.059 3.031 3.004 3.006 3.359 3.029 3.071 3.349

OWA| 0.786 0.790 0.797 0.795 0.787 0.802 0.867 0.804 0.815 0.874

8 SsMAPE|10.159 10.454 10.074 10.847 10.101 10.689 11.395 10.343 10.758 12.125
§ MASE| 1.189 1219 1163 1315 1.183 1294 1379 1202 1306 1.483
o OWA | 0.895 0919 0881 0972 0.890 0957 1.020 0.965 0.905 1.091
< SsMAPE|12.730 12.794 12.801 14.584 12.866 13.372 13.829 12.894 13.377 15.530
§ | MASE| 0.953 0.960 0.955 1.169 0964 1.014 1.082 1.023 1.021 1.277
= OWA| 0901 0.895 0.893 1.055 0.894 0940 0988 0985 0.944 1.139
g SMAPE | 4.861 4.696 5.008 6.184 4982 4894 6.151 4.753 5259 5.841
< | MASE| 3.124 3.130 3443 4818 3323 3358 4.263 3.138 3.608 4.308
o OWA | 1.004 0988 1.070 1.140 1.048 1.044 1319 1.019 1.122 1.294

sMAPE | 11.863 11.960 11910 13.022 11.930 12.418 13.023 12.126 12.489 14.057
MASE | 1.595 1.606 1.613 1.814 1597 1.656 1.836 1.641 1.690 1.954
OWA | 0.858 0.861 0.862 0954 0.867 0.891 0.960 0.874 0.902 1.029

Weighted
Average

D.3 Model Efficiency

We comprehensively compare the forecasting performance, training speed, and memory footprint of our model
with well-acknowledged deep forecasting models. The results are recorded with the official model configuration
and the same batch size. We visualize the model efficiency under all six multivariate datasets in Figure O}-[T1] In
detail, compared with the previous state-of-the-art model PatchTST [8]], Koopa consumes only 15.2% training
time and 3.6% memory footprint respectively in ECL, 37.8% training time and 26.8% memory in ETTh2, 23.5%
training time and 37.3% memory in Exchange, 50.9% training time and 47.8% memory in ILI, 3.5% training
time and 2.9% memory in Traffic, and 5.4% training time and 25.4% memory in Weather, leading to the averaged
77.3% and 76.0% saving of training time and memory footprint in all six datasets. The remarkable efficiency
can be attributed to Koopa with MLPs as the building blocks, and we find the budget saving becoming more
significant on datasets with more series variables (ECL, Traffic).

Besides, as an efficient linear model, the performance of Koopa still surpasses other MLP-based models.
Especially, Compared with DLinear [S1]], our model reduces 38.0% MSE (2.852—1.768) in ILI and 13.6%
MSE (0.452—0.397) in Weather. And the average MSE reduction of Koopa compared with the previous
state-of-the-art MLP-based model reaches 12.2%. Therefore, our proposed Koopa is efficiently built with MLP
networks and shows great model capacity to exploit nonlinear dynamics and complicated temporal dependencies
in real-world time series.
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Table 9: Model ablation with detailed forecasting performance. We report forecasting results with
different prediction lengths {24, 36, 48,60} for ILI and H € {48,96, 144,192} for others. For
columns: Only Kj,, uses one-block Time-invariant KP; Only K, stacks Time-variant KPs only;
Truncated Filter replaces Fourier Filter with High-Low Frequency Pass Filter; Branch Switch changes
the order of KPs to deal with disentangled components.

Models KooPA Only Ky Only Kyar Truncated Filter ~ Branch Switch
Metric MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
48 0.130 0.234 | 0.150 0.243 | 1.041  0.777 | 0.149 0.245 0.137 0.234
d 96 0.136 0.236 | 0.137 0.242 | 4643 1.669 | 0.172 0.280 2240 0.724
3 144 | 0.149 0.247 | 0.150 0.252 | 0.238 0.327 | 0.149 0.246 0.226  0.331
192 | 0.156 0.254 | 0.158 0.260 | 0.267 0.355 | 0.152 0.248 0.181 0.284
« 48 0.226 0300 | 0.235 0304 | 0.271  0.334 | 0.340 0.310 0.245 0317
ﬁ 96 0.297 0.349 0.311 0.353 0.382 0.405 0.301 0.352 0.343 0.384
E 144 | 0333 0.381 | 0.337 0379 | 0.427 0.444 | 0338 0.386 0.403 0418
192 0.356 0.393 0.363 0.397 0.402 0.437 0.363 0.400 0.384 0.420
&% 48 0.042 0.143 | 0.046 0.150 | 0.065 0.184 | 0.048 0.150 0.055 0.165
Es 96 0.083 0.207 | 0.083 0.210 | 0.147 0.274 | 0.087 0.210 0.151 0277
S 144 | 0130 0.261 | 0.149 0.281 | 0.222 0.351 | 0.150 0.278 0.254  0.369
M 192 | 0.184 0.309 | 0.200 0322 | 0.385 0.456 | 0.229 0.345 0.463  0.490
24 1.621 0.800 2.165 0.882 1.972 0.919 2.140 0.874 2.092 0.894
= 36 1.803 0.855 | 1.815 0.882 | 2.675 1.091 1.692 0.844 2.116  0.950
= 48 1.768 0.903 2.107 0.981 2.446 1.045 1.762 0.895 2.394 1.084
60 1.743 0891 | 2496 1.108 | 2.387 0.970 | 2.357 1.018 1.917  0.926
o 48 0415 0.274 | 0445 0295 | 0915 0.536 | 0.668 0.363 0.468  0.300
SEN 96 0401 0.275 | 0403 0.277 | 0.833  0.465 | 0.441 0.323 0.429  0.298
= 144 | 0397 0.276 | 0400 0.278 | 0.816 0.452 | 0.436 0.321 0.438 0.307
192 | 0403 0.284 | 1.371 0.788 | 1.224  0.723 | 0.597 0.331 0.469  0.312
5 48 0.126  0.168 | 0.142 0.181 | 0.140 0.190 | 0.125 0.166 0.130  0.173
F&s‘ 96 0.154 0.205 0.164 0.209 0.169 0.224 0.154 0.202 0.163 0.210
§ 144 | 0172 0.225 | 0.178 0.226 | 0.194 0.247 | 0.176 0.226 0.187  0.238
192 0.193 0.241 0.195 0.245 0.217 0.268 0.195 0.244 0.212 0.261
05 ETTh2 Traffic
T = B R I
} } 07 } }
} } 1.459GB, 142.4ms } }
oo 200n_tocs J i 0.615.051GB, 195.ims L 10GB206h- ,?EB,J 46.424GB, 350.2ms
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Figure 9: Model efficiency comparison with forecast length I = 144 for ETTh2 and Traffic.
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Figure 10: Model efficiency comparison with forecast length H = 144 for Exchange and ECL.
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Figure 11: Model efficiency comparison with forecast length H = 144 for Weather and 48 for ILI.

D.4 Training Stability

Since the eigenvalues of the operator determine the amplitude of dynamics evolution, where modulus not close to
one causes non-divergent and explosive evolution in the long-term, we highlight that a stable Koopman operator
only describes weakly stationary series well. While most of the Koopman-based forecasters can suffer from
the operator convergence problem induced by complicated non-stationary series variations, we employ several
techniques to stabilize the training process.

Operator initialization We adopt the operator initialization strategy, where the operator starts from the
multiplication of eigenfunctions with standard Gaussian distribution and all-one eigenvalues.

Hierarchical disentanglement In our model, each block learns weak stationary process hierarchically and
feeds the residual of fitted dynamics for the next block to correct. Thus Koopman Predictor aims not to fully
reconstruct the whole dynamics at once, but to partially describe dynamics, so rigorous reconstruction is not
forced in each block, reducing the difficulty of portraying the non-stationary series as dynamics.

Explosion checking We introduce an explosion checking mechanism that replaces the operator encountering
nan number with the identity matrix when the exponential multiplication of multiple time steps is detected.

Based on the proposed strategies, we provide the model training curves in Figure[T2]to check the convergence of
our proposed model and other forecasters. The training curves of the proposed model in blue demonstrate a
consistent and smooth convergence, indicating its effectiveness in converging toward an optimal solution.

E Broader Impact

E.1 Impact on Real-world Applications
Our work copes with real-world time series forecasting, which is faced with intrinsic non-stationarity that poses

fundamental challenges for deep forecasting models. Since previous studies hardly research the theoretical
basis that can naturally address the time-variant property in non-stationary data, we propose a novel Koopman
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Figure 12: Training curves of different models on the ETT and Weather datasets.

forecaster that fundamentally considers the implicit time-variant and time-invariant dynamics based on Koopman
theory. Our model achieves the state-of-the-art performance on six real-world forecasting tasks, covering energy,
economics, disease, traffic, and weather, and demonstrates remarkable model efficiency in training time and
memory footprint. Therefore, the proposed model makes it promising to tackle real-world forecasting applica-
tions, which helps our society prevent risks in advance and make better decisions with limited computational
budgets. Our paper mainly focuses on scientific research and has no obvious negative social impact.

E.2 Impact on Future Research

In this paper, we find modern Koopman theory natural to learn the dynamics underlying non-stationary time
series. The proposed model explores complex non-stationary patterns with temporal localization inspired by
Koopman approaches and implements respective deep network modules to disentangle and portray time-variant
and time-invariant dynamics with the enlightenment of Wold’s Theorem. The remarkable efficiency and insights
from the theory can be instructive for future research.

F Limitation

Our proposed model does not respectively considers dynamics in different variates, which leaves improvement
for better multivariate forecasting with the consideration of various evolution patterns and series relationships.
And Koopman spectral theory is still under leveraging in our work, which can discover Koopman modes to
interpret the linear behavior underlying non-stationary data in a high-dimensional representation. Besides,
Koopman theory for control considering factors outside the system can be promising for series forecasting with
covariates, which leaves our future work.
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