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ABSTRACT

Generative models have gained significant prominence in Natural Language Pro-
cessing (NLP), especially in tackling the complex task of modeling and evaluat-
ing long text sequences. This task is crucial for advancing various downstream
applications, such as text generation and machine translation. Recent methods
that utilize stochastic processes to capture the intrinsic dynamics of sequences
have shown superior performance in generative modeling. However, the accu-
rate encoding of both temporal and structural dependencies from text datasets, as
well as leveraging this encoded information for sequence evaluation, remains an
open area of research. In this paper, we propose a novel approach to learn the
stochastic dynamics of long text sequences, utilizing a negative log-likelihood-
based encoder that outperforms contrastive learning methods. We also introduce a
likelihood-based evaluation metric for long-text assessment, which measures se-
quence coherence and can be applied to downstream tasks such as Human-AI dis-
crimination. Our encoder preserves sequence coherence effectively and performs
robustly on out-of-domain datasets. Additionally, the proposed evaluation metric
captures both temporal and structural information comprehensively. Theoretical
analysis demonstrates the superiority of our metric in sequence evaluation, and
experimental results highlight its flexibility and exceptional performance across a
variety of tasks, showcasing its utility in diverse NLP applications.

1 INTRODUCTION

Generative models are rapidly gaining traction in NLP (Zou et al., 2023; Yang et al., 2023; Yi et al.,
2024), particularly in tackling the intricate task of modeling and generating long text sequences.
This challenge is critical for various downstream applications, including text generation and machine
translation. Recently, the use of stochastic representations to model latent spaces has emerged as a
promising solution, demonstrating considerable potential in diverse fields such as time-series anal-
ysis (Liu et al., 2021), dynamical flow modeling (Albergo et al., 2023; Albergo & Vanden-Eijnden,
2023), and video generation (Zhang et al., 2023). In the domain of text generative models, Wang
et al. (2022) proposed a method that frames long sequences as stochastic dynamical flows, achieving
competitive results in generating coherent long texts. However, the challenge of accurately learning
the time-dependent probability density functions embedded within text datasets remains unresolved.
Moreover, fully harnessing the information encoded in the stochastic representation continues to
pose a significant challenge that has yet to be comprehensively addressed.

Brownian Bridge for stochastic representation modeling and coherence metric. Linguistic the-
ory offers valuable insights into modeling long articles as stochastic processes. For example, coher-
ent long texts tend to exhibit certain common properties (Sheng et al., 2024): (1) a central theme
that remains consistent throughout the text, (2) sentences at the beginning and end that empha-
size this central idea, and (3) sentences in the middle that may diverge slightly from the theme but
still remain aligned with it. These characteristics naturally align with the concept of a “bridge” in
stochastic processes, where the structure supports a consistent trajectory while allowing for con-
trolled variability. In this work, we employ the Brownian Bridge (abbreviated as BB) to represent
this conceptual bridge. It is a special stochastic process characterized by “fixed” starting and ending
positions (Øksendal & Øksendal, 2003) and has been widely applied in various fields. Inspired by
the work of Sheng et al. (2024) and Wang et al. (2022), we discover that the fit of a trajectory as a
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BB can be used to evaluate and represent several characteristics of long-form text as an evaluation
metric and text encoder.
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Figure 1: Schematic diagram of the Stochastic Representation and Metric. An article from domain
Xi, segmented into sentences (u1, u2, · · ·un), is processed by the Stochastic Process (or Contrastive
Learning) encoder, which consists of a pre-trained large language model (LLM) and a multi-layer
perceptron (MLP). The LLM generates a raw representation (x1, x2, · · ·xn), which the MLP trans-
forms into a time-dependent latent trajectory (s1, s2, · · · sn). Additionally, we introduce a stochastic
process metric (SPM) that captures the temporal and structural properties of this latent trajectory.

First, we introduce a novel likelihood-based evaluation metric, Stochastic Process Metric (SPM) for
long-text assessment that quantifies coherence by leveraging both temporal and structural dependen-
cies of the stochastic process, with detailed explanation in Section 2.1. Unlike similar approaches
that rely heavily on the training domain (Lai & Tetreault, 2018; Jeon & Strube, 2022) and are lim-
ited by their training schemes – which typically evaluate only pairwise data and restrict comparisons
to articles of the same length, SPM offers greater flexibility while maintaining comparable perfor-
mance. To demonstrate this, we generalize the established Shuffle test (Barzilay & Lapata, 2005;
Joty et al., 2018; Moon et al., 2019) into a Mixed Shuffle test. Instead of merely comparing shuf-
fled and unshuffled versions of the same article, this new test also compares across the shuffle and
unshuffled versions between different articles, which can be used to evaluate the robustness of the
metric regardless of individual article properties, e.g. article length. Moreover, SPM proves use-
ful in downstream tasks such as Human-AI discrimination and performs robustly in out-of-domain
(O.O.D.) tasks, likely due to it capture the structural information of the stochastic representation.

Second, we present a novel text encoder, Stochastic Process Encoder (SP Encoder) for effectively
capturing the stochastic dynamics present in extensive collections of long articles. We propose a
negative log-likelihood-based training objective for text encoders, comparing its effectiveness to
that of contrastive learning methods (Wang et al., 2022). The SP Encoder translates sequences into
a generalized BB while retaining essential information, leading to improved performance on O.O.D.
tests. In contrast, while contrastive learning can be useful for assessing coherence, it may fall short
in adequately capturing the representation of the target stochastic process, which could hinder its
effectiveness on other tasks, particularly those involving O.O.D. data.

In summary, the main contributions of our work are as follows:

• We propose a novel likelihood-based metric (SPM), designed to capture both temporal and
structural dependencies with a solid theoretical foundation. The SPM demonstrates supe-
rior flexibility and effectiveness in sequence evaluation, as evidenced by its performance
across various tasks.

• We hypothesized and validated that fitting the stochastic representation, as measured by the
SPM, can serve as an effective and flexible metric for multiple downstream tasks, such as
distinguishing between human and AI-generated writing.
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• We introduced a negative log-likelihood-based method (SP Encoder), for learning stochas-
tic representations that preserves sequence coherence while efficiently utilizing latent di-
mensions. Compared to contrastive learning encoders, it exhibits robust and superior per-
formance across O.O.D. datasets.

2 METHOD

2.1 STOCHASTIC REPRESENTATION

In this section, we introduce a stochastic representation of the encoded sequences by modeling them
using BBs, which are commonly utilized stochastic processes in various applications. We begin by
defining a standard BB {B(t) : t ∈ [0, T ]} with B(0) = 0 and B(T ) = 0. For any t ∈ [0, T ], the
process B(t) follows a normal distribution B(t) ∼ N(0, t(T − t)/T ). Additionally, for s, t ∈ [0, T ]
with s < t, the covariance between B(s) and B(t) is given by Cov(B(s), B(t)) = s(T − t)/T . A
general BB can then be constructed as a+ (t/T )(b− a) + σB(t), where a and b are fixed start and
end points, respectively, and σ is the standard deviation of the process.

For an input sequence s̄ = (s0, . . . , sT ) with st ∈ Rd for t = 0, 1, . . . , T , we capture temporal
dependence using standard BBs. To account for structural dependence among the components, we
consider d independent standard BBs B1(t), . . . , Bd(t) over the interval [0, T ]. At each time t, the
sequence is modeled as st = µt +W(B1(t), . . . , Bd(t))

⊤, where W ∈ Rd×d is a transformation
matrix and µt = s0 + (t/T )(sT − s0) represents the mean at time t. The structural dependence is
captured by Σ = WW⊤. Let s = (s1, . . . , sT−1) denote the sequence excluding the start and end
points, and let µ = (µ1, . . . , µT−1) be the corresponding means.

The SP Encoder and the SPM are based on the likelihood function of the input sequences, with Σ
being the only unknown parameter. The following proposition presents the likelihood function.

Proposition 1. Let ΣT ∈ R(T−1)×(T−1) be the covariance matrix with entries [ΣT ]s,t = s(T −
t)/T . For n independent input sequences s̄1, . . . , s̄n with lengths T1 + 1, . . . , Tn + 1, generated by
the same W (or equivalently, Σ), the log-likelihood function is

ℓ(Σ|{s̄i}ni=1) =
d
∑n

i=1(Ti − 1)

2
log(2π)− d

2

n∑
i=1

log(|ΣTi |)−
∑n

i=1(Ti − 1)

2
log(|Σ|)

− 1

2

n∑
i=1

tr(Σ−1(si − µi)Σ
−1
Ti

(si − µi)
⊤).

By Proposition 1, we derive the log-likelihood function given the input sequences, which enables us
to compute the maximum likelihood estimate (MLE) of Σ.
Proposition 2. Under the setting of Proposition 1, the MLE of Σ given {s̄i}ni=1 is

Σ̂ =
( n∑

i=1

(Ti − 1)
)−1( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)
.

The training of the SP Encoder and the definition of the SPM are thus based on the MLE of Σ.

2.2 ENCODERS

The encoder architecture consists of two components: a frozen, pretrained GPT-2 model from the
Hugging Face library and a trainable multi-layer perceptron (MLP) network. We extract the hidden
state corresponding to the end-of-sentence (EOS) token from the last layer of the GPT-2 model. This
hidden state serves as the input to a four-layer MLP, which is trained to map the input into the latent
space. The purpose of the encoder is to learn a nonlinear mapping from the raw input space to the
latent space, denoted as fθ : X → S. In practice, we use two loss functions to train the encoder: the
contrastive learning loss LCL and the negative log-likelihood loss LNLL. The contrastive learning
loss LCL is primarily designed to enhance the encoder’s ability to distinguish between positive and
negative samples from the data, following the approach in (van den Oord et al., 2018). In contrast,
the negative log-likelihood loss LNLL directly enforces the latent space representations to follow
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a specified distribution according to the likelihood function. While Wang et al. (2022) utilized
contrastive learning for the encoder, our SP Encoder employs the negative log-likelihood loss, which
offers certain advantages over their approach, both theoretically and empirically. For comparison
purposes, we first introduce the contrastive learning encoder as presented in Wang et al. (2022).

2.2.1 CONTRASTIVE LEARNING ENCODER (CL ENCODER)

In the context of Wang et al. (2022), a structure assumption Σ = Id was imposed, where Id is the
d-dimensional identity matrix. For arbitrary starting point s0 at time t = 0 and ending point sT at
time t = T , the marginal distribution of st at time t is given by st | s0, sT ∼ N((1 − t/T )s0 +
(t/T )sT , [t(T − t)/T ]Id). Consider any triplet of observations (x1,x2,x3) with x1,x2,x3 ∈ X .
The goal is to ensure that fθ(x2) follows the above marginal distribution with starting point fθ(x1)
and ending point fθ(x3). For a sequence of observations (x0, . . . ,xT ), let B = {(x0,xt,xT )} be
a batch consisting of randomly sampled positive triplets (x0,xt,xT ) with 0 < t < T . Then, the
contrastive learning loss function is defined as

LCL = E

[
− log

exp(d(x0,xt,xT ; fθ))∑
(x0,xt′ ,xT )∈B exp(d(x0,xt′ ,xT ; fθ))

]
,

where
d(x0,xt,xT ; fθ) = −(2σ2)−1∥fθ(xt)− (1− t/T )fθ(x0)− (t/T )fθ(xT )∥22, σ2 = t(T − t)/T.

However, there are two theoretical drawbacks to this contrastive learning approach. First, the as-
sumption Σ = Id implies independence and homogeneity among the dimensions of the encoded
sequence, which may not capture the true structural dependencies present in the sequence. Sec-
ond, using the marginal distribution neglects the time-dependent structure of the stochastic process,
limiting the model’s ability to capture temporal dependencies.

Empirically, it has been observed that only one dimension of the encoder’s output is effective, which
is undesirable for representing complex sequences. To address these issues and incorporate both
structural and temporal dependencies, we propose our novel SP Encoder, which minimizes the neg-
ative log-likelihood loss. This approach allows us to model the latent space more accurately by
considering the full covariance structure and the temporal dynamics of the data, leading to improved
theoretical foundations and empirical performance over the contrastive learning method.

2.2.2 STOCHASTIC PROCESS ENCODER (SP ENCODER)

Consider a multi-domain problem with m domains X1,X2, . . . ,Xm each associated with domain-
specific true structural parameters Σ1,Σ2, . . . ,Σm, respectively. For each domain Xj , we have
nj independent raw inputs xj1, . . . ,xjnj . We define the encoded sequences as s̄θji = fθ(xji) for
j = 1, . . . ,m and i = 1, . . . , nj , where fθ is the encoder parameterized by θ. When the encoder
parameters reach their optimal values θ∗, the sequences [s̄θ

∗

ji ]
nj

i=1 are expected to be i.i.d. samples
from BBs with parameters Σj for each domain Xj .

We employ the negative log-likelihood (NLL) as the loss function to train the encoder. According to
Proposition 1, for each θ, the negative log-likelihood for domain Xj depends on Σj and the inputs
[xji]

nj

i=1 through the expression
∑nj

i=1(Ti−1) log(|Σj |)+
∑nj

i=1 tr(Σ
−1
j (sθi −µθ

i )Σ
−1
Ti

(sθi −µθ
i )

⊤).
We consider the following training process.

Batch Processing: We divide the inputs [xji]
nj

i=1 into several batches. For each batch B, we compute
the batch loss using the current estimate Σ̂j of Σj :

∑
i∈B tr(Σ̂−1

j (sθi − µθ
i )Σ

−1
Ti

(sθi − µθ
i )

⊤). This
loss function measures how well the encoded sequences fit the assumed BB model with the current
structural parameter estimate.

Handling Large Sequences: When the sequence lengths Ti are large, computing the full loss
can be computationally intensive. To address this, we randomly sample a triplet of time points
t = (t1, t2, t3) with 1 ≤ t1 < t2 < t3 ≤ Ti − 1. We extract the corresponding sub-matrices
[sθi ]t and [µθ

i ]t of size d × 3 from sθi and µθ
i , respectively. Let [ΣTi ]t be the 3 × 3 sub-matrix

of ΣTi corresponding to the selected time points. The loss for each i in the batch becomes
tr(Σ̂−1

j ([sθi ]t − [µθ
i ]t)[ΣTi

]−1
t ([sθi ]t − [µθ

i ]t)
⊤). This approach reduces computational complexity

while still capturing temporal dependencies at selected time points.
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Updating Structural Parameters: After processing all batches for Xj , we update the estimate of
Σj using the MLE: Σ̂j = [

∑nj

i=1(Ti−1)]−1[
∑nj

i=1(s
θ
i−µθ

i )Σ
−1
Ti

(sθi−µθ
i )

⊤]. This update aggregates
information from all sequences in the domain to refine the structural parameter estimate.

Regularization for Stability: To stabilize the training process, we regularize Σ̂j by blending it
with a scaled identity matrix. We compute the average variance σ̂2

j and update Σ̂j as follows, using
a small regularization parameter ϵ > 0: Σ̂j = (1− ϵ)[

∑nj

i=1(Ti − 1)]−1[
∑nj

i=1(s
θ
i − µθ

i )Σ
−1
Ti

(sθi −
µθ

i )
⊤] + ϵσ̂2

j Id with σ̂2
j = [

∑nj

i=1(Ti − 1)d]−1[
∑nj

i=1 tr((s
θ
i − µθ

i )Σ
−1
Ti

(sθi − µθ
i )

⊤)]. This regular-
ization shifts Σ̂j slightly towards isotropy, improving numerical stability during optimization.

Total Empirical Loss Function: After iterating over all domains, the total empirical loss function
becomes

LNLL =

m∑

j=1

nj∑

i=1

(Ti − 1) log(|Σj |) +
m∑

j=1

nj∑

i=1

tr(Σ−1
j (sθi − µθ

i )Σ
−1
Ti

(sθi − µθ
i )

⊤).

Minimizing this loss over θ encourages the encoder to produce sequences that align with the assumed
stochastic process model across all domains.

Compared to the CL Encoder, our SP Encoder offers three key improvements. First, by directly min-
imizing the negative log-likelihood, we ensure that the encoded sequences adhere to the BB model.
This principled approach leverages the full statistical structure of the sequence, leading to more ac-
curate modeling of the latent space. Second, unlike CL Encoder that relies on marginal distributions,
our approach considers the joint distribution of entire sequences. This allows us to capture tempo-
ral dependencies inherent in the stochastic process, improving the representation of the sequence.
Third, we avoid assuming independence and homogeneity among latent dimensions. By estimating
the covariance matrix, the encoder learns the structural dependencies between dimensions, enabling
it to represent complex stochastic dynamics effectively, especially in long sequences.

2.3 STOCHASTIC PROCESS METRIC (SPM)

Consider the sequence s̄ = (s0, . . . , sT ), with s and µ defined as before. To evaluate the coherence
of the sequence from a domain with unknown parameters Σ, a natural approach is to compute its
density under the assumed model. If s̄ is a BB with covariance Σ, then by Proposition 1, the log
density of s̄ is given by:

log p(s̄|Σ) = −d(T − 1)

2
log(2π)−d

2
log(|ΣT |)−

(T − 1)

2
log(|Σ|)−1

2
tr(Σ−1(s−µ)Σ−1

T (s−µ)⊤).

If the sequence is not coherent with the model, the density would be low because the time-dependent
structure is violated. However, the log density is not scale-invariant with respect to the sequence
length. This means that for two sequences of different lengths generated from the same domain,
their log densities are not directly comparable. Additionally, the log density can take any real value,
whereas a positive and standardized metric is desirable for practical purposes. To address these
issues, we note that vec(s − µ) ∼ N(0,ΣT ⊗ Σ), where vec(·) denotes the vectorization operator
and ⊗ denotes the Kronecker product. Then we have [ΣT ⊗ Σ]−1/2vec(s− µ) ∼ N(0, I(T−1)×d),
which implies ∥[ΣT ⊗ Σ]−1/2vec(s − µ)∥2 = vec(s − µ)⊤[ΣT ⊗ Σ]−1vec(s − µ) ∼ χ2

(T−1)×d,
where χ2

(T−1)d denotes the chi-square distribution with (T −1)d degrees of freedom. Since vec(s−
µ)⊤[ΣT ⊗ Σ]−1vec(s − µ) = tr(Σ−1(s − µ)Σ−1

T (s − µ)⊤), we can define our metric, the SPM,
by normalizing with the degrees of freedom.

Definition (SPM). Let Σ̂ be the estimate of Σ from Proposition 2. The Stochastic Process Metric
(SPM) is defined as

M(s̄|Σ̂) = tr(Σ̂−1(s− µ)Σ−1
T (s− µ)⊤)/[(T − 1)d].

The SPM is always positive. When Σ̂ accurately estimates Σ and s̄ is a BB with covariance Σ, the
SPM will concentrate around 1. A larger value of SPM indicates that the sequence is less likely to
have been generated by the given covariance matrix Σ.

5
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Our metric, SPM, is novel in two key aspects. First, by utilizing the temporal covariance matrix
ΣT , the SPM captures the time-dependent structure inherent in the sequence, which is essential for
accurately assessing sequence coherence. Second, the inclusion of the covariance matrix Σ allows
the SPM to account for structural dependencies among the latent dimensions, providing a more
comprehensive evaluation of the sequence’s adherence to the assumed stochastic process.

3 EXPERIMENTS AND PROBLEMS

We now design experiments to evaluate the performance of SPM and the effectiveness of the SP
Encoder in learning stochastic representations. Specifically, we aim to address the following three
key questions (Q):

• Q1: Can SPM evaluate both local and global coherence? In Section 4.1, we demonstrate
that SPM not only excels in basic shuffle and unshuffle tasks but also achieves outstanding
results when comparing articles of varying lengths—an evaluation that current state-of-the-
art methods cannot perform effectively.

• Q2: Can SPM handle the human-AI discrimination task? In Section 4.2, we show that
SPM can effectively distinguish between human-written text and text generated by large
language models. Compared to recent well-known methods, SPM delivers competitive
results with shorter inference times and a more flexible computation scheme.

• Q3: Can the SP Encoder enhance the learning of stochastic representations? In Section
4.3, we demonstrate that the SP Encoder outperforms the CL Encoder in learning stochastic
representations by effectively using latent dimensions and their correlations. Moreover, this
advantage leads to more robust performance when applied to unseen datasets.

3.1 DATASETS

WikiSection: We use dataset introduced in Arnold et al. (2019) which contains selected Wikipedia
articles on the topic of global cities and have clear topic structures. Each article in this collection
follows a pattern certain sections such as abstract, history, geographics and demographics. The
training split contains 2165 articles and the test split has 658 articles.

HC3: The Human ChatGPT Comparison Corpus (HC3) (Guo et al., 2023) includes comparative
responses from human experts and ChatGPT, covering questions from various fields such as open-
domain, finance, medicine, law, and psychology.

WikiText: WikiText language modeling dataset (Merity et al., 2016) is a much larger set of verified
good and featured articles extracted from Wikipedia compared to WikiSection, and in section F in the
appendix, we further compare these two dataset and show that there is only ∼ 1% potential overlap
in topics. We used WikiText-103-v1 collection in specific for experiments. This dataset encompass
over 100 million tokens from 29,061 full articles. The dataset is assessible through Huggingface 1.

WSJ: The Wall Street Journal (WSJ) corpus (Consortium, 1994) is part of the Penn Treebank
dataset and contains 24 sections, each comprising 100 news articles. These articles were selected
from daily publications spanning 1987 to 1989. Following previous work (Moon et al., 2019),
sections 00–13 were used as the training set, while sections 14–24 were used as the test set. After
filtering out articles with fewer than 10 sentences, the training set includes 716 articles, and the test
set consists of 573 articles.

3.2 TASKS

We assess the effectiveness of our proposed methods across both artificial and real-world down-
stream tasks. In artificial scenarios, we introduce incoherence into human-authored documents to
evaluate the ability of SPM to detect these inconsistencies and accurately rank the original and shuf-
fled documents based on coherence across various experimental configurations. Additionally, we
investigate the applicability of this method in a realistic context to determine whether the learned
temporal patterns can effectively differentiate between human-generated and AI-generated content.

1https://huggingface.co/datasets/EleutherAI/WikiText_document_level
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Furthermore, we compare the model’s learning performance under two objective functions (CL and
SP) across both in-domain and out-of-domain settings. The following sections detail the setups used
in these experiments.

Global and Local discrimination For global discrimination tasks, we applied the Shuffle test
(Barzilay & Lapata, 2005; Moon et al., 2019), which involves randomly permuting sentences within
a discourse to create an incoherent document, which is then compared to the original version. Specif-
ically, we shuffled the entire article with varying sentence block sizes (1, 2, 5, and 10). For local
discrimination tasks, following Moon et al. (2019), we randomly sampled a number of 3-sentence
windows, denoted as w, and sentences within each window were shuffled to create perturbed copies.
For these two tasks, 20 shuffled copies were generated for each article, with duplicates discarded.

Mixed Shuffled test Building on the Shuffle test, we introduced a more complex variant where we
compare the score of an unshuffled article with shuffled articles from the entire dataset, rather than
just its own shuffled version. A robust and general-purpose coherence score should consistently
identify the unshuffled article as more coherent across these comparisons.

Human-AI text discrimination In the Human-AI discrimination tasks, we trained both the CL
Encoder on the WikiSection dataset, then applied them to generate latent representations for articles
from HC3. To differentiate between human and AI content, we computed the SPM for both human
and AI-generated articles, hypothesizing that, since WikiSection is based on human-written text,
human-authored articles in HC3 should have a lower SPM than AI-generated ones. Based on this
hypothesis, we conducted the discrimination task.

Out-of-domain (O.O.D.) test In this task, we trained the SP and CL Encoder on the WikiSection
and evaluated their performance on the Shuffle Task with data generated from WikiSection and WSJ.

4 RESULTS

4.1 COHERENCE EVALUATION TASKS

As shown in Tables 1, we first implement global and local discrimination tasks on WikiSection.
In the global tasks, SPM significantly outperforms the BBScore and matches SOTA results. (See
Appendix C for more details on methods we compared to.) The SOTA method, developed using a
complex network structure and trained on unshuffle-shuffle data pairs, serves as a robust baseline.
To achieve comparable results, we adopted a similar approach to that in Sheng et al. (2024), incor-
porating a multi-layer perceptron to fully leverage SPM across various shifting windows, which is
denoted by “SPM + CLS”. Our results demonstrate that SPM surpasses the SOTA method in global
discrimination tasks with larger block sizes, underscoring its potential to capture more globalized
properties. However, despite outperforming the BBScore, our score falls short in local discrimina-
tion tasks. This suggests that SPM is more effective in capturing global characteristics rather than
responding to local perturbations. Given that our metric is based on a likelihood approximation of
the entire trajectory, it is reasonable that it struggles to capture finer, localized features.

Methods Accuracy (Global) Accuracy (Local)
Db=1 Db=2 Db=5 Db=10 Dw=1 Dw=2 Dw=3

ENTITY GRID (Barzilay & Lapata, 2005) 85.73 82.79 75.81 64.65 53.04 60.83 66.67
UNIFIED COHERENCE (Moon et al., 2019) 99.73 97.86 96.90 96.09 77.47 82.98 87.87
BBSCORE (Sheng et al., 2024) 83.39 80.71 79.36 78.66 50.29 60.15 64.06
SPM (OURS) 95.06 94.72 95.13 95.67 56.35 68.83 74.24
SPM + CLS (OURS) 97.55 97.17 97.42 97.36 73.72 73.30 77.76

Table 1: Results of Global and Local Discrimination tasks on WikiSection. Db=i, i = 1, 2, 5, 10
refers to datasets constructed with varying levels of block shuffling. Dw=j , j = 1, 2, 3 denotes
datasets with different number of windows in local perturbation.

In global and local shuffle tasks, most current high-performance methods, including the SOTA ap-
proach, rely on pairwise training and are unable to effectively compare articles of different lengths,
as these models are typically constructed based on sentence-wise matching and comparisons. How-
ever, in the Mixed Shuffle test which evaluate the metric robustness across different articles, as
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shown in Table 9, SPM surpasses these SOTA method by generating a metric that can be compared
across different articles. We use the basic entity-grid method (Barzilay & Lapata, 2005) as a base-
line and the result highlights that our score enables article-wise comparison. It also demonstrates
significant potential in more complex tasks. Additionally, SPM outperforms the BBScore in this
article-wise comparison, underscoring a key contribution of our design—mitigating the effect of
article length on score evaluation. This property allows for a more general and robust comparison
across diverse articles. By visualizing the score distribution across different article lengths (as shown
in Fig 4 in the appendix), we can clearly observe this effect.

Methods Mixed Shuffled Test
Db=1 Db=2 Db=5 Db=10

ENTITY GRID (Barzilay & Lapata, 2005) 46.10 52.29 53.69 63.02
BBSCORE (Sheng et al., 2024) 22.37 24.94 23.84 19.69
SPM (OURS) 90.32 86.03 79.26 77.89

Table 2: Accuracy of Mixed Shuffled Test tasks on WikiSection.

4.2 HUMAN-AI DISCRIMINATION TASKS

In this task, we hypothesize that human writing, compared to AI-generated text, displays temporal
dynamics and structural patterns similar to those observed in other human-written articles. Specif-
ically, we propose that an encoder trained on a human-written dataset will more accurately capture
the characteristics of human writing than those of AI-generated text, resulting in a lower likelihood
and smaller SPM for human-authored content. To test this hypothesis, we use the dataset from Guo
et al. (2023), as summarized in Table 3. The data from Guo et al. (2023), which includes both human
and AI writing, is treated as unseen data for the encoder trained on WikiSection.

Methods HC3 (without Q&A) HC3 (with Q&A)
BBSCORE (Sheng et al., 2024) 37.53 31.47
DETECTGPT (Mitchell et al., 2023) 64.30 63.30
SPM (OURS) 70.67 69.71

Table 3: Accuracy of the Human-AI discrimination task.

Our results indicate that SPM performs well on both the Human-AI (without Q&A) and Human-
AI (Q&A) benchmarks, demonstrating its effectiveness. This strength is particularly notable as
SPM is training-free and relies solely on comparing article dynamics and writing structure. To
further explore the importance of capturing correlations in a high-dimensional latent space, we also
evaluated BBScore’s performance in the Human-AI discrimination task. As shown in Table 3, SPM
consistently outperforms BBScore, which we attribute to BBScore’s limited ability to capture the
complex structural information essential for understanding the latent space.

Additionally, to highlight the flexibility and competitive performance of SPM compared to LLM-
based models, we assessed the perturbation discrepancy metric proposed in DetectGPT (Mitchell
et al., 2023), a method known for its high performance in AI detection tasks. Our results reveal that
SPM surpasses DetectGPT when using a comparable number of model inferences. DetectGPT’s per-
formance is influenced by a hyperparameter—the number of perturbations—which directly affects
both the number of model inferences and the computational complexity. As shown in Table 8 in the
Appendix, we tested cases with 1 and 10 perturbations. With 1 perturbation, DetectGPT’s accuracy
was approximately 64%, lower than SPM’s 70%, while requiring twice the number of model infer-
ences per text. With 10 perturbations, DetectGPT’s accuracy increased to 84%, but this required 11
model inferences per text, making it significantly more computationally intensive than SPM.

4.3 COMPARISON BETWEEN SP ENCODER AND CL ENCODER

We first compare the performances of SP and CL Encoder in learning stochastic representations and
examine how these differences impact downstream tasks. By visualizing the covariance matrix (Σ̂)
of the SP and CL Encoder in Figures 2 (A) and (B), we find Σ̂ of CL Encoder exhibits only one
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Figure 2: CL vs SP Encoder in the latent representation. (A) and (B) depict the approximated covari-
ance matrix (Σ̂) from the latent representation of CL and SP Encoder, respectively. (C) shows the
deviation of s from µ, and it implies the robustness of the representation generated by SP Encoder.

effective dimension, while Σ̂ of SP Encoder use more latent dimensions with heterogeneity (see Fig
5 (A.2) and (B.2) in the appendix for further evidence on ineffective dimensions in the CL Encoder,
with a specific latent representation). As discussed in Section 2.2, learning the covariance structure
is crucial for learning the complex stochastic representations, and poor covariance modeling can
result in suboptimal downstream performance. To explore these differences further, we evaluate two
tasks: 1) Shuffle test and Mixed Shuffle test on WikiSection with SPM, and 2) O.O.D performance
analysis on datasets (WikiText and WSJ) with encoder trained on WikiSection.

Tasks Shuffle Test tasks Mixed Shuffle Test tasks
Db=1 Db=2 Db=5 Db=10 Db=1 Db=2 Db=5 Db=10

CL ENCODER 95.06 94.72 95.13 95.67 90.32 86.03 79.26 77.89
SP ENCODER 94.42 92.90 90.77 86.69 78.60 67.14 55.19 53.97

Table 4: Comparison of CL and SP Encoders on In-Domain tasks. Results show the performance
(accuracy) of the SPM computed with latent trajectories encoded by the CL and SP Encoders. En-
coders were trained on the WikiSection training set and evaluated on the WikiSection test set.

As shown in Table 4, the CL encoder excels in both Shuffle test tasks and Mixed Shuffle test tasks,
effectively distinguishing between shuffled and unshuffled articles as well as different articles and
their shuffled counterparts. However, as shown in Table 5, the SP Encoder shows better performance
in O.O.D. tasks. In the O.O.D. task, we evaluate SPM on an O.O.D. dataset by training two encoder
(CL and BB Encoder) on WikiSection, seperately, and then applying it to compute the latent tra-
jectory of articles from unseen datasets (WikiText and WSJ). Next, we assess performance on the
Shuffle test task, and the results show that SPM achieve high performance in O.O.D. tests, with the
SP Encoder outperforming the CL encoder. It indicates that the SP Encoder effectively learns both
the distribution and the dynamics of the entire article, and it can help SPM to robustly evaluate and
identify O.O.D. stochastic representations. To further support this O.O.D. result, we compare it with
BBScore (Sheng et al., 2024) and unified coherence (Moon et al., 2019).

Methods Shuffle Test tasks (WikiText) Shuffle Test tasks (WSJ)
Score type Encoder Db=1 Db=2 Db=5 Db=10 Db=1 Db=2 Db=5 Db=10

UNIFIED COHERENCE (Moon et al., 2019) —– 60.02 9.63 44.80 66.51 56.29 53.55 57.89 61.46
BBSCORE (Sheng et al., 2024) CL Encoder 70.32 72.09 76.84 77.73 36.61 38.90 41.53 49.24
BBSCORE (Sheng et al., 2024) SP Encoder 55.97 58.07 51.13 52.46 45.16 43.26 36.91 35.36
SPM (OURS) CL Encoder 91.30 87.22 86.14 88.18 52.69 53.86 50.32 51.11
SPM (OURS) SP Encoder 93.03 89.32 83.02 88.31 59.96 68.24 50.78 50.00

Table 5: Results of the O.O.D. Task. Encoders were trained on the WikiSection and evaluated on
Shuffle Test tasks using the WikiText and WSJ to assess their performance on O.O.D. tasks.

5 RELATED WORK

Stochastic processes have demonstrated robust capabilities in modeling complex tasks across various
fields, including biology (Horne et al., 2007) and finance (Øksendal & Øksendal, 2003). Recently,
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in the realm of machine learning, the use of stochastic representations to model latent spaces has
shown considerable promise in diverse applications such as time-series analysis (Liu et al., 2021)
and dynamical flow modeling (Albergo et al., 2023; Albergo & Vanden-Eijnden, 2023). Notably,
such methods excel in generation tasks, including video generation (Zhang et al., 2023), and long
text generation (Wang et al., 2022). A critical aspect of these tasks is the accurate learning of
stochastic representations from datasets, which requires capturing the time-dependent probability
density functions embedded within real-world data. Generally, there are two approaches to tackle
this challenge. One method is the likelihood-free training paradigm (Durkan et al., 2020), exempli-
fied by contrastive learning techniques, which have demonstrated significant effectiveness in han-
dling high-dimensional data (van den Oord et al., 2018). This approach enables the learning of
predictive density indirectly, rather than through direct reconstruction (Mathieu et al., 2021). The
alternative method is the traditional likelihood-based approach, such as stochastic interpolants (Al-
bergo et al., 2023; Albergo & Vanden-Eijnden, 2023), which requires the pre-definition of specific
target stochastic processes. Both methods exhibit substantial potential in their respective tasks.

Coherence, as described by Reinhart (1980), defines the discourse structure of a text, where high-
quality writing should exhibit a logical flow with well-connected ideas and topics. Previous studies
have indicated that neural language models, particularly transformers, often struggle to effectively
capture coherence structures (Deng et al., 2022). To better guide language models in learning the
dynamics of long texts, methods that construct latent spaces have been developed (Bowman et al.,
2016; Gao et al., 2021). These methods aim to model sentence embeddings by leveraging informa-
tion from neighboring utterances. However, most of these approaches yield static representations
and overlook the dynamic nature of the entire text. A recent study introduced the concept of using
stochastic representations, specifically the Brownian bridge, to incorporate “temporal dynamics”
into modeling latent space (Wang et al., 2022). This approach demonstrates superior performance
in modeling long-range text dependencies and achieving notable results in generating long, coherent
texts from learned latent plans. However, their training scheme may lead to ineffective dimensions
and fail to fully capture the structural and temporal information encoded in the dataset.

In addition to latent space modeling, automatically assessing coherence in any given text remains a
challenge (Sheng et al., 2024; Maimon & Tsarfaty, 2023). Building on stochastic concepts, Sheng
et al. (2024) developed a heuristic metric for coherence assessment, grounded in the unsupervised
learning approach proposed by Wang et al. (2022). This score demonstrated considerable perfor-
mance on artificial shuffle tasks. However, their method relies on a heuristic understanding of the
Brownian bridge and fails to adequately establish a theoretical foundation for their metric setup,
which limit the effectiveness and flexibility of their score, particularly its sensitivity to article length.

6 CONCLUSION

In this paper, we investigate the structural and temporal properties encoded in the stochastic repre-
sentation of latent trajectories and their applications in NLP tasks, both theoretically and empirically.
First, we propose a novel, flexible coherence evaluation metric, SPM, that is not affected by indi-
vidual article properties, such as text length. To validate this, we design a Mixed Shuffle test based
on the established Shuffle test. We also discover that our metric, which assesses the fit of target
stochastic processes, can aid in distinguishing between human-written and AI-generated data, in-
dicating that the stochastic representation encodes properties useful for human-AI discrimination.
Second, we introduce a negative log-likelihood-based training method (SP Encoder) to enhance the
learning of stochastic representations. Our results show that the SP Encoder outperforms in O.O.D.
tasks, due to its effectiveness in using the latent dimensions as suggested by the covariance matrix.

For future work, we aim to conduct a thorough analysis of how to leverage SPM for multi-domain
tasks, such as domain identification, and to utilize its text-length-independent property to develop
text generation models that maintain semantic meaning while being robust across varying text
lengths. Additionally, compared to existing well-known Human-AI scores, our method is simpler
and more flexible, achieving comparable performance with similar inference times; however, it may
become inferior as their model complexity increases, such as much more inference times. Thus,
extending this method is an intriguing avenue for exploration. Furthermore, a deeper theoretical
understanding of the differences between likelihood-based and contrastive learning-based models is
another direction for future research.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. We fix the start and end points s0 and sT and calculate the likelihood function of the input
sequence s.

Given that st − µt = W(B1(t), . . . , Bd(t))
⊤, and considering the independence of

B1(t), . . . , Bd(t) along with the properties of the standard BB, we have for any t, t′ ∈ {1, 2, . . . , T−
1}: E[st − µt] = 0, Var[st] = [ΣT ]t,tΣ and Cov[st, st′ ] = [ΣT ]t,t′Σ. Therefore, the vectorized
form of s− µ follows a multivariate normal distribution:

vec(s− µ) ∼ N(0,ΣT ⊗ Σ),

where vec(·) denotes vectorization and ⊗ represents the Kronecker product.

Using the likelihood function of the multivariate normal distribution, we have:

L(Σ|s̄) = (2π)−d(T−1)/2|ΣT ⊗ Σ|−1/2 exp[−vec(s− µ)⊤[ΣT ⊗ Σ]−1vec(s− µ)/2].

Using properties of the Kronecker product, we have |ΣT ⊗ Σ| = |ΣT |d|Σ|T−1 and then

vec(s− µ)⊤[ΣT ⊗ Σ]−1vec(s− µ) = vec(s− µ)⊤[Σ−1
T ⊗ Σ−1]vec(s− µ)

=vec(s− µ)⊤vec(Σ−1(s− µ)Σ−1
T ) = tr((s− µ)⊤Σ−1(s− µ)Σ−1

T )

=tr(Σ−1(s− µ)Σ−1
T (s− µ)⊤).

Therefore, the likelihood function becomes:
L(Σ|s̄) = (2π)−d(T−1)/2|ΣT |−d/2|Σ|−(T−1)/2 exp[−tr(Σ−1(s− µ)Σ−1

T (s− µ)⊤)/2].

Taking the logarithm, the log-likelihood function is:

ℓ(Σ|s̄) = −d(T − 1)

2
log(2π)− d

2
log(|ΣT |)−

(T − 1)

2
log(|Σ|)− 1

2
tr(Σ−1(s−µ)Σ−1

T (s−µ)⊤).

For n independent input sequences s̄1, . . . , s̄n with lengths T1 + 1, . . . , Tn + 1, generated by the
same Σ, the total likelihood is:

L(Σ|{si}ni=1) = Πn
i=1L(Σ|si).

Then the total log-likelihood function is

ℓ(Σ|{si}ni=1) =

n∑

i=1

ℓ(Σ|si)

=− d
∑n

i=1(Ti − 1)

2
log(2π)− d

2

n∑

i=1

log(|ΣTi |)−
∑n

i=1(Ti − 1)

2
log(|Σ|)

− 1

2

n∑

i=1

tr(Σ−1(si − µi)Σ
−1
Ti

(si − µi)
⊤).

A.2 PROOF OF PROPOSITION 2

Proof. To find the MLE of Σ, we need to minimize the negative log-likelihood function, which is
equivalent to minimize

g(Σ) =

n∑

i=1

(Ti − 1) log(|Σ|) +
n∑

i=1

tr(Σ−1(si − µi)Σ
−1
Ti

(si − µi)
⊤).

Since Σ = WW⊤ is positive definite, we can compute the gradient of g(Σ) with respect to Σ. Note
that (d/dΣ) log(|Σ|) = (Σ⊤)−1 = Σ−1 and

d

dΣ
tr(Σ−1(si − µi)Σ

−1
Ti

(si − µi)
⊤)

=− (Σ−1(si − µi)Σ
−1
Ti

(si − µi)
⊤Σ−1)⊤ = −Σ−1(si − µi)Σ

−1
Ti

(si − µi)
⊤Σ−1.
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We compute the gradient:

d

dΣ
g(Σ) =

( n∑

i=1

(Ti − 1)
)
Σ−1 − Σ−1

( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)
Σ−1.

Setting the gradient to zero for minimization, we have:

Σ̂ =
( n∑

i=1

(Ti − 1)
)−1( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)
.

B TRAINING DETAILS

B.1 SP ENCODER

The WikiSection SP Encoder was trained on 1 A100 GPU for about 10 hours using the training set
of WikiSection for 100 epochs. We used SGD optimizer and set the learning rate to be 1e-9. The ϵ
in the loss function LNLL is chosen as 1e-7. The WikiText SP Encoder was trained on 4 A100 GPUs
for roughly 20 hours for 4 epochs with WikiText dataset. For this dataset, we trained with AdamW
optimizer with learning rate 1e-9 and batch size 32. The ϵ in the loss function LNLL is chosen as
1e-3. Other hyperparameters can be accessed from the configuration file in the submitted code. Our
empirical results show incorporating σ̂j into the Σ̂j makes no significant results in the downstream
tasks, thus we disregard σ̂j during encoder training.

B.2 HYPER-PARAMETER TUNING

While training the WikiSection SP Encoder, we experimented with different ϵ in LNLL to see its
impact on the performance of the trained encoder. Note that ϵ determines the perturbation added to
the matrix Σ̂. The eigenvalues of the initial Σ̂ range from 10−6 to 10−1, with the majority of which
lying in [10−3, 10−5]. Thus we tested the following three different ϵ:

• Large ϵ = 10−3 that is larger that most eigenvalues of Σ̂.

• Medium ϵ = 10−5 that is about the same scale of most eigenvalues of Σ̂.

• Small ϵ = 10−7 that is smaller than most eigenvalues of Σ̂.

We choose the small ϵ based on the performance.
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C OTHER SCORES USED IN THIS PAPER

Entity Grid Barzilay & Lapata (2005) is the most recognized entity-based approach. It creates
a two-way contingency table for each input document to track the appearance of entities in each
sentence. We use Stanford’s CoreNLP to annotate the documents and the implementation provided
in the Coheoka library2 to obtain the Entity Grid score.

Unified Coherence Moon et al. (2019) presents a neural-based entity-grid method that integrates
sentence grammar, inter-sentence coherence relations, and global coherence patterns, achieving
state-of-the-art results in artificial tasks.

BBScore Sheng et al. (2024) introduces BBScore, and also check the main text for a comprehen-
sive comparison between BBScore and SPM.

SPM + CLS We use SPM and local moving window SPM with window sizes being 1, 2, 3, 5, and
10 as features showing how coherent the text is and an conceptual figure is illustrated in Figure 3 .
A three-layer perceptron (1× 2048× 512× 1 for global task and 1× 512× 1024× 1 for local task)
then takes those features as input and outputs predictions for designed tasks.

Figure 3: Illustration of SPM over the entire trajectory and SPM with a local moving window
(size=2).

2https://github.com/kigawas/coheoka
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D BBSCORE AND SPM UNDER DIFFERENT ARTICLE LENGTH

As illustrated in Fig 4, we present a visualization of both the BBScore and SPM for the original and
block-shuffled scores. From the plot, it is evident that the SPM remains more stable, regardless of
the article length. Notably, using SPM, the shuffled scores (in red) exhibit a similar pattern to the
unshuffled scores under different article length.

Figure 4: Visualization of BBscore and SPM.
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E COMPARISON OF LATENTS ENCODED BY CL AND SP ENCODER

First, we conduct a comparison between the BB encoder and the CL encoder. As shown in Fig
5 (A.1) and (B.1), we plot the rough shape of the latent trajectory (blue and red regions) and the
target BB (green region), where we observe that the BB encoder appears to learn the target BB more
accurately.

To further highlight the presence of ineffective dimensions in the CL Encoder, Figures 5 (A.2) and
(B.2) display the latent trajectory of a sample article encoded by the CL Encoder, which reveals only
two highly symmetric effective dimensions. In contrast, the SP Encoder captures a more diverse and
nuanced trajectory, reflecting superior dimensional effectiveness. This observation may also eluci-
date why Wang et al. (2022) could not establish a clear relationship between encoder dimensions
and the performance of the results.

Figure 5: CL Encoder vs SP Encoder in the latent representation: Latent analysis of the CL Encoder
(A.1 and A.2) and SP Encoder (B.1 and B.2). (A.2) and (B.2) show an example of the latent repre-
sentation of an article, with different colors representing different dimensions (total dimension=32).

F DIFFERENCE BETWEEN WIKISECTION AND WIKITEXT

The WikiSection dataset comprises 2,165 articles describing cities from Wikipedia, while WikiText
includes 29,061 featured or high-quality articles covering a broader range of topics. The WikiSec-
tion dataset is most similar to the “places” category in WikiText, which contains approximately 500
articles. To ensure dataset exclusivity, we used string match to check the overlapping. The regular
expression query we used is ’(a|the) ([\w\s]*)?(city|town) in’ as it is contained in
1,721 articles out of 2,165 in WikiSection dataset. Using the same query, we examined the WikiText
dataset and checked the intersection of first word of the article from both search result. After man-
ually getting rid of false positives, there are around 30 documents found overlap in both datasets.
We argue that with that amount of (∼0.1%) contamination, WikiSection can be considered out of
domain of WikiText.
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G HUMAN-AI COMPARISON TEST

Table 6 presents the performance of SPM computed with different Σ̂ ∈ Rd, while Table 7 shows the
performance of the BBScore with various σ̂ ∈ R, where the subscript indicates the dataset used for
approximation.

The clear improvement over the BBScore demonstrates that accurately capturing structural and tem-
poral information can significantly enhance the model’s accuracy. Table 8 display the performance
of DetectGPT with more inferences which significantly improves its performance while also takes
much longer time to infer.

Human AI comparison Human AI comparison with Q&A
Human (Σ̂human) Human (Σ̂ai) Human (Σ̂wiki) Human (Σ̂human) Human (Σ̂ai) Human (Σ̂wiki)

AI (Σ̂human) 70.07 70.55 - 69.00 69.60 -
AI (Σ̂ai) 59.98 61.52 - 58.19 59.74 -

AI (Σ̂wiki) - - 70.67 - - 69.71

Table 6: Combined accuracy of human AI comparison and human AI comparison with Q&A

Human AI comparison Human AI comparison with Q&A
Human (σ̂human) Human (σ̂ai) Human (σ̂wiki) Human (σ̂human) Human (σ̂ai) Human (σ̂wiki)

AI (σ̂human) 35.99 45.13 - 35.04 38.84 -
AI (σ̂ai) 26.37 37.05 - 33.73 38.12 -

AI (σ̂wiki) - - 37.53 - - 31.47

Table 7: Human-AI Task Results with BBScore (Sheng et al., 2024).

Human AI comparison Human AI comparison with Q&A
Number of Perturbations 1 10 1 10

Number of LLM Inferences Number of Perturbations + 1
Accuracy 64.30 84.89 63.30 83.13

Table 8: Human-AI Task Results with DetectGPT (Mitchell et al., 2023). As a comparison, SPM
only requires one LLM inference.
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H COMPUTATION EFFICIENCY ANALYSIS OF SPM

For the computational efficiency analysis of SPM, as shown in Figure 6, the y-axis represents com-
putation time, while the x-axis indicates article length. The theoretical computational complexity of
SPM is O(T 2), primarily due to matrix multiplications inherent in its definition. This complexity
is fundamental to fully leveraging temporal information for sequence evaluation. Empirically, the
observed computation time is slightly better than the theoretical prediction, thanks to the computa-
tional acceleration provided by Numpy. These results demonstrate that SPM is not only feasible for
real-time applications but also retains its robust evaluation capabilities.

Figure 6: The computation time of SPM for different article lengths. It reveals a quadratic relation-
ship (experimentally 1.57, theoretically 2) between article length and computation time, with each
article processed in approximately ∼ 10−3 seconds.
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I COMPARISON WITH RECENT LLM

Due to time and computational resource constraints, we tested our model using LLaMA3-1B and
LLaMA3-3B, with GPT2-117M which is the LLM model used in the main section. The results are
summarized in the table below. Specifically, we compare the following two tasks:

1. Shuffle Test (Global): LLaMA3-3B outperforms both GPT2-117M and the state-of-the-art
method (Moon et al., 2019), demonstrating its effectiveness in capturing global sequence
structure.

2. Mixed Shuffle Test: LLaMA3-3B surpasses GPT2-117M for smaller blocks (b=1, b=2),
but its performance decreases for larger blocks (b=5, b=10). This may be attributed to
our approach, where only an MLP layer was trained without fine-tuning the LLMs. Con-
sequently, GPT2 might better capture certain latent space properties, leading to a more
balanced performance across tasks.

For models of the same type, increased parameter sizes consistently yield better performance. How-
ever, in Mixed Shuffled Task, examining the performance drop from b=1 to b=10 reveals an interest-
ing pattern: LLaMA3-3B exhibits a sharper decrease (26%) compared to LLaMA3-1B (18%) and
GPT2-117M (12%). This suggests a trade-off where larger models excel at capturing local details
(b=1) but might sacrifice robustness for global structures (b=10). This insight highlights an intrigu-
ing direction for future exploration — different LLM architectures may facilitate learning stochastic
representations in task-specific ways.

Although our paper focuses on theoretical foundations and experimental validation, these findings
with recent LLMs provide additional evidence supporting our work’s ability to decode spatial and
temporal information from stochastic representations. They further validate our argument that the
fitness of distribution can be leveraged for various downstream tasks and demonstrate the broader
potential of our approach in addressing diverse challenges with advanced LLMs.

Tasks SHUFFLED TEST (GLOBAL) MIXED SHUFFLED TEST

Db=1 Db=2 Db=5 Db=10 Db=1 Db=2 Db=5 Db=10

GPT2-117M 95.06 94.72 95.13 95.67 90.32 86.03 79.26 77.89
LLaMA3-1B 93.21 90.42 86.76 86.55 80.30 72.68 66.39 62.44
LLaMA3-3B 99.57 98.75 98.14 98.74 95.04 86.46 74.00 69.06

Table 9: Different tasks with SPM

21


	Introduction
	Method
	Stochastic representation
	Encoders
	Contrastive Learning Encoder (CL Encoder)
	Stochastic Process Encoder (SP Encoder)

	Stochastic Process Metric (SPM)

	Experiments and Problems
	Datasets
	Tasks

	Results
	Coherence Evaluation Tasks
	Human-AI discrimination tasks
	Comparison between SP Encoder and CL Encoder

	Related work
	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Training Details
	SP Encoder
	Hyper-parameter Tuning

	Other scores used in this paper
	BBScore and SPM under different article length
	Comparison of Latents encoded by CL and SP Encoder
	Difference between WikiSection and WikiText
	Human-AI comparison test
	Computation efficiency analysis of SPM
	Comparison with recent LLM

