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Abstract. Multinomial logistic regression is a useful model for predicting the probabilities 
of multiclass outcomes. Because of the complexity and high dimensionality of some data, it 
is challenging to fit a valid model with high accuracy and interpretability. We propose a 
novel sparse reduced-rank multinomial logistic regression model to jointly select variables 
and reduce the dimension via a nonconvex row constraint. We develop a block-wise itera-
tive algorithm with a majorizing surrogate function to efficiently solve the optimization 
problem. From an algorithmic aspect, we show that the output estimator enjoys consis-
tency in estimation and sparsity recovery even in a high-dimensional setting. The finite 
sample performance of the proposed method is investigated via simulation studies and 
two real image data sets. The results show that our proposal has competitive performance 
in both estimation accuracy and computation time.
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1. Introduction
Multinomial logistic regression is a widely used model depicting the relationship between a multiclass response and a 
set of independent variables, discrete or continuous. This model has been used as a powerful tool for analyzing dichot-
omous data in many areas, such as disease diagnosis, sociological research, natural language processing, and educa-
tional improvement. Related publications presenting application scenarios of multinomial models include performing 
risk analysis (Bayaga 2010), studying motivational effects (Lee et al. 2002), detecting anomaly intrusions (Wang 2005), 
constructing random utility models (Liu et al. 2020), and identifying machinery conditions (Pandya et al. 2014). For 
biostatisticians, modeling gene expression data for disease classifications is naturally formulated as a logistic regression 
equation (Vincent and Hansen 2014). In addition, multinomial logistic regression is applied in the task of image seg-
mentation (Li et al. 2010) and recognition in the field of image processing.

Despite its popularity, the classical multinomial logistic regression model has limits in processing large-scale data 
because the maximum likelihood estimate tends to deteriorate as the dimension of predictors increases (Tutz et al. 
2015). With high-dimensional settings frequently occurring in modern statistics, searching for extensions of classical 
models is inevitable.

In this paper, we consider the problem of analyzing data with a multiclass response and high-dimensional predictor 
variables. To address it, we consider performing dimensional reduction and variable selection simultaneously in the 
multinomial logistic regression model. Although a rank constraint is added to reduce the dimension of the coefficient 
matrix, a limit on the number of nonzero rows is imposed on that matrix to reduce the effective number of predictors. 
In addition, we offer an efficient algorithm and show that it has desirable properties of convergence and solution accu-
racy in theory and empirically.
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1.1. Main Contributions
Our contribution in this paper is threefold. First, we introduce a sparse reduced-rank multinomial logistic regression 
(SRRMLR) model with the group ℓ0-norm to jointly achieve dimension reduction and variable selection. Rather than 
adding a penalty on the row vectors, we constrain the number of nonzero rows, which is more intuitive and efficient. 
The proposed SRRMLR is related to two works in particular: Bunea et al. (2012) and She (2017). Although the studies in 
Bunea et al. (2012) and She (2017) use the squared error as the objective function, we use the negative likelihood func-
tion, a more complicated function. This makes the theoretical analysis and the computational algorithm much harder.

Second, we develop a block-wise iterative algorithm to solve the SRRMLR model based on the primal-dual active 
set (PDAS; Wen et al. 2020) algorithm, and the majorization-minimization (MM; Lange 2016) algorithm. The MM algo-
rithm is applied to simplify the optimization procedure and reduce the computational cost, and the PDAS algorithm is 
modified to overcome the computational problem caused by the nonconvex group ℓ0-norm. The output estimator is 
shown to be consistent in estimation and variable selection under some mild conditions; that is, the dimension of pre-
dictors can grow at an exponential rate of the sample size. It is worth noting that, unlike most previous works, our the-
oretical results are totally derived from an algorithmic aspect. In addition, we also show empirically that the proposed 
algorithm can generate solutions almost identical to the optimal one.

Last, we demonstrate in numerical experiments that the proposed algorithm is competitive with many previous and 
popular methods, including the multinomial lasso (Simon et al. 2013), ordinary multinomial logistic regression model 
via neural network (Vincent and Hansen 2014), and reduced-rank vector generalized linear model (Yee and Hastie 
2003). In particular, we observe that in all synthetic data, our approach has substantially better performance with more 
accurate predictive power and more interpretive models, that is, fewer parameters in the final model. In the two 
benchmark data sets from the field of image recognition, our proposal outperforms the earlier approaches in terms of 
correctly identifying the true rank and yielding the minimum prediction error.

1.2. Literature Review
To avoid the curse of dimensionality and increase the interpretability of the obtained model, an intuitive approach 
is to add some sparsity constraints. Because its introduction, the concept of “sparsity” has been extensively used in 
many settings, including feature selection, factor analysis, and prediction accuracy improvement. It occurs as a regular-
ization term for linear modeling, convex regression, and logistic regression. With an interpretable sparse multinomial 
classification model, we can see the groupwise connection between response and explanatory variables. A sparsity 
assumption about the observed data or hidden model is a fundamental premise for analysts to construct applicable 
models, as in the tree structure constructed in Mistry et al. (2020), dimension reduction method proposed for optimal 
pricing in Wang (2009), technique of searching for a sparse solution of a quadratic system in Jiang et al. (2020), building 
on a sparse convex model by Bertsimas and Mundru (2020), and ambulance redeployment programming problem 
studied by Maxwell et al. (2010). A sparse structure within the observed data are not only attractive for computing but 
also reveals simple connections between predictors and responses, increasing the interpretability in applications. Also, 
the low-rank pattern is natural with our constraint on the coefficient matrix. For example, in a lung disease study, mul-
tivariate linear regression can be applied to predict various pulmonary function test results by using segmented lung 
airway measurements from computed tomography scanned images (Choi et al. 2015, Chen 2016). As the airway vari-
ables of the same type and in the same segment are generally highly correlated (Chen et al. 2016), imposing constraint 
on the rank of the coefficient matrix enables us to further reduce the dimensionality and overcome the collinearity 
problem. It also identifies the association between pulmonary functions and lung airway measurements by several 
uncorrelated latent pathways and then further promotes the interpretability of models.

As the historically first approach, the reduced-rank vector generalized linear model related the responses and the 
predictors via a few hidden variables and some linear combinations of predictors, thus reducing the dimension (Yee 
and Hastie 2003). As an extension of reduced-rank regression (Izenman 1975), it worked by restricting the coefficient 
matrix to a low-rank matrix, indicating a simple structure within the actual model. Nevertheless, the hidden variables 
obtained by Yee and Hastie’s method (Yee and Hastie 2003) are still linear combinations of all predictors, which might 
make it challenging to interpret the analytic results with so many predictors. Van der and Hinton (2008) proposed a 
nonparametric approach to dimension reduction named t-distributed Stochastic Neighbor Embedding, which is useful 
in visualization. Cheng et al. (2020) took a step forward by developing a supervised version. Although nonparametric 
methods lead to satisfying prediction accuracy, they do not provide an interpretable model, which is fundamentally 
useful in real applications.

Variable selection, which selects only a few relevant variables for the model, is an alternative approach to produce 
parsimonious models. A penalty or constraint on the coefficient matrix is added to the original optimization problem to 
reduce the effective elements. A naive approach is to constrain the nonzero rows in the coefficient matrix; yet this opti-
mization problem is reduced to mixed integer programming that is impractical in application because of its computing 
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complexity. To address the computational problem, Meier et al. (2008) extended the group lasso (Yuan and Lin 2006) (a 
group version of lasso (Tibshirani 1996) where an ℓ1 relaxation is used to constrain the nonzero rows) to logistic regres-
sion models with binary response variables. For multinomial logistic regression, Cawley et al. (2006) introduced a 
Bayesian ℓ1 regularization to induce sparsity in the coefficient matrix by considering the Laplacian prior. From the algo-
rithmic aspect, Krishnapuram et al. (2005) developed a fast algorithm for the ℓ1-type penalty to find a sparse estimator 
for multinomial logistic models. Later on, a block-wise descent algorithm was proposed by Simon et al. (2013) to fit the 
penalized multinomial logistic regression model based on a group lasso penalty.

Despite its favorable properties, the aforementioned methods suffer from the problem of biased estimation and 
overselection because of the use of the ℓ1-norm penalty. For multivariate continuous response, Chen and Huang (2012) 
addressed the bias problem by proposing an adaptive weighting strategy and showed its advantage over the group 
lasso penalty. Won et al. (2020) considered a group feature selection problem in networked data via the ℓ0-norm regu-
larization and developed a convex relaxation reformulation to cope with the computational challenge. However, there 
is no related work on multiclass response. In addition, the adaptive weighting version is a kind of convex relaxation of 
the group ℓ0-norm, which counts the nonzero rows of the coefficient matrix. The methods based on group ℓ0-norm 
have been shown to achieve the optimal rate for prediction in reduced-rank regression (Bunea et al. 2012, She 2017). 
However, the group ℓ0-norm involves exhaustively searching over all possible combinations, which makes this 
method hard to compute even for moderate-size data. Recently, in an attempt to select the best subsets for univariate 
response, Wen et al. (2020) discovered that using the ℓ0-norm performs substantially better than the lasso and other 
relaxation penalties. Bertsimas et al. (2016) developed a discrete extension of the first-order methods in convex optimi-
zation to obtain near-optimal solutions to the classic feature selection problem in linear regression.

1.3. Organization
Section 2 expounds our proposed methodology and presents the corresponding algorithm. In Section 3, we analyze 
the theoretical performance of the proposed algorithm. We demonstrate the competitive numerical performance of our 
method using simulation studies in Section 4 and show the effectiveness of our method via an application to the 
MNIST data set in Section 5. We discuss this paper in Section 6. Technical proofs of the main theoretical results and 
HAM10000 data analysis are provided in the online appendix.

2. Method and Algorithm
In this section, we present a sparse reduced-rank multinomial logistic regression (SRRMLR) model to simultaneously 
reduce dimension and select features for data with a multiclass response. Starting from the multinomial logistic model, 
a mathematical formulation for the SRRMLR is derived, which shapes our optimization procedure. Then we develop 
an alternative iteration algorithm for the SRRMLR. Through this section and the rest of the paper, the key notation 
summarized in Table 1 is used.

2.1. SRRMLR
Suppose we have observed data D � {(x1, y1), : : : , (xn, yn)} of n observations, each with p features xi ∈ Rp, and a q-class 
label yi ∈ R

q. For clarity, let xij, yik represent the jth feature and the kth encoding label of the ith collected sample. The 
label uses a “1-of-q” rule; that is, if the ith observation belongs to the kth class, then we have yik � 1, yil � 0 for all l ≠ k.

The multinomial logistic model is an effective yet simple model for classification with multiclass data, which links 
the allocation probability of classes with a linear transformation of features through a score function. In particular, let 
Pik � Pr(yik � 1 |xi) denote the probability of the ith observation belonging to the kth class given xi, i � 1, : : : , 
n, k � 1, : : : , q. Without loss of generality, assume that the first class is chosen as the pivot. Then the multinomial logistic 
model works by separately regressing the other (q� 1) classes against the pivot class as follows:

log Pik

Pi1
� log Pr(yik � 1 |xi)

Pr(yi1 � 1 |xi)
� c⊤k xi, k � 2, : : : , q, (1) 

where ck is the coefficient for the kth class. Using the fact that all q of the probabilities must sum to one, we have

Pi1 �
1

1+
Pq

l�2 exp(c⊤l xi)
, Pik �

exp(c⊤k xi)

1+
Pq

l�2 exp(c⊤l xi)
, k � 2, : : : , q: (2) 

For any given new data x, we can calculate the probability of Pr(y � k |x) belonging to k-th class via (2) with xi being 
replaced by x, and then assign it to the class with the maximum probability. That is, we predict that the new data x is 
in the Kth class if Pr(y � K |x) �maxkPr(y � k |x).
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Let C � (c2, : : : , cq) denote the coefficient matrix, then the log-likelihood function of the multinomial logistic model 
can be written as l(C;D) �

Pn
i�1
Pq

k�1 yik logPik. Because of the constraints 
Pq

k�1 Pik � 1 and 
Pq

k�1 yik � 1 for all 
i � 1, : : : , n, we can deduce that

l(C;D) �
Xn

i�1

Xq

k�2
yikc⊤k xi� log 1+

Xq

k�2
exp(c⊤k xi)

 !" #

:

The coefficient matrix C can be estimated via the maximum likelihood method, that is, maxCl(C;D). Because a minimi-
zation problem is usually formed by convention, we negate the log-likelihood function and average it as follows:

L(C;D) ��
1
n

logl(C;D) ��
1
n
Xn

i�1

Xq

k�2
yikc⊤k xi� log 1+

Xq

k�2
exp(c⊤k xi)

 !" #

: (3) 

In the high-dimensional setting where p is larger than n, optimizing over (3) suffers from the “curse of dimensionality,” 
which leads to the problem of heavy computational burden, low interpretability, and overfitting. Motivated by the 
work of Yee and Hastie (2003), we propose a SRRMLR method to deal with such high-dimensional data. Given two 
prespecified integers r and s, the SRRMLR problem is defined as

min
C

L(C; D)

s:t: rank(C) ≤ r, ‖C‖2, 0 ≤ s,
(4) 

where rank(C) denotes the rank of C, and ‖C‖2, 0 denotes its number of nonzero rows. The first constraint restricts the 
rank of C, which leads to dimensional reduction of the coefficient matrix. The second constraint limits the number of 
nonzero rows in C to be no more than s, which performs variable selection on the features.

2.2. Majorize Alternating Iterative Algorithm
There are two barriers to solving the optimization problem in (4). First, the optimization in (4) involves expensive com-
putation cost because the minimization of the negative log-likelihood function has no explicit solution. Here, we will 
introduce an MM (Lange 2016) algorithm to simplify the optimization procedure and reduce the computational cost. 
Second, the entanglement between the two constraints in (4), as well as the nonconvex and noncontinuous function 

Table 1. Notation

Notation Description

n Number of observations/samples
p Number of features
q Number of classes
xi � (xi1, : : : , xip) Predictor of the i-th sample
yi � (yi1, : : : , yiq) Class label of the i-th sample
D � {(xi , yi)}

n
i�1 Data with n observations

X � (x1, : : : , xn)
⊤ Design matrix

Y � (y1, : : : , yn)
⊤ Response matrix

C � (c2, : : : , cq) Coefficient matrix of size p × (q� 1)
Pr(· | ·) Conditional probability function
PC � (Pik)n×q Conditional probability matrix with Pik defined in (2)
Ỹ Matrix after eliminating the first column of Y
P̃C Matrix after eliminating the first column of PC

B, V Decomposition matrices of C � BV⊤ such that B ∈ Rp×r,
V ∈ R(q�1)×r, V⊤V � Ir

G Dual variable of B, defined as G �X⊤((2(Ỹ � P̃Cm

) +XCm)V �XB)=n
∆i Sacrifice for the j-th feature, defined as ∆i � ‖Bi· +Gi·‖

2
=2

C(k) The iterative at the k-th step of Algorithm 1
Cm The iterative at the m-th step of Algorithm 2
Cm, k Estimator in the k-th inner loop of the m-th outer loop in Algorithm 2
Ĉ Solution of problem (4)
C∗ True coefficient matrix
L(C;D) Negative log-likelihood function
S(C;D |Cm) Surrogate function at Cm
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(i.e., ‖ · ‖2, 0), can make the computation infeasible even in data of moderate size. We will address this problem by a 
matrix decomposition and solve the corresponding subproblems in an alternative iteration way.

Before formulating the algorithm, we introduce the notations and definitions needed in the subsequent section. Let 
X � (x1, : : : , xn)

⊤ denote the design matrix. Without loss of generality, we assume each column of X has 
ffiffiffi
n
√

norm. Sim-
ilarly, let Y � (y1, : : : , yn)

⊤ denote the response matrix, and Ỹ denote the matrix after eliminating the first column of Y. 
Denote the conditional probability matrix by PC � (Pik)n×q, where Pik is defined in (2), and C is the coefficient matrix. 
Similarly, let P̃C denote the matrix formed by eliminating the first column of PC.

Let [n] � {1, : : : , n}. For any set A ⊆ [n], Ac � [n] \A denotes the complement of A, and |A | denotes its cardinality. 
For matrix M � (Mij) ∈ Rp×q, we use Mi· and M·j to denote the ith row and jth column of M, respectively. Then for any 
set A ⊆ [p] and B ⊆ [q], define MA· � (Mi· : i ∈A) ∈ R |A | ×q and M·B � (M·j : j ∈ B) ∈ Rp× |B | . We define the Frobenius 

norm of M by ‖M‖F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i�1
Pq

j�1 M2
ij

q
, and the row support set of M by supp(M) � {i : ‖Mi·‖≠ 0}.

2.2.1. MM Algorithm. The main ingredient of the algorithm is the construction of a proper surrogate function. Moti-
vated by the work of Yee and Hastie (2003), we define a surrogate function of L(C; D) via a second-order Taylor expan-
sion. In particular, at the mth step, m � 0, 1, : : : , given the current solution Cm, we define the surrogate function 
S(C; D |Cm) by

S(C;D |Cm) � L(Cm;D) +
1

4n ‖X(C�Cm)� 2(Ỹ � P̃Cm

)‖
2
F�

1
n ‖Ỹ � P̃Cm

‖
2
F:

The next proposition states that S(C; D |Cm) is indeed a surrogate function of L(C; D).

Proposition 1. The function S(C; Cm) majorizes the objective function L(C; D) at Cm. That is,
S(C;D |Cm) ≥ L(C;D) for allC,

S(Cm;D |Cm) � L(Cm;D):

The detailed proof is given in the online appendix.
In summary, at the mth step, rather than directly optimizing using the objective function L(C; D), we consider the 

following simplified problem:
min

C
S(C;D |Cm)

s:t: rank(C) ≤ r, ‖C‖2, 0 ≤ s:
(5) 

Denote the solution of (5) by Cm+1. Then we can iteratively derive a local optimum as m goes to infinity, which is guar-
anteed by

L(Cm+1;D) ≤ S(Cm+1;D |Cm) ≤ S(Cm;D |Cm) � L(Cm;D), 

and the fact that L(C;D) ≥ 0 for all C.

2.2.2. Alternating Iterative Procedure. To overcome the computational difficulties caused by entanglement between 
the two constraints, a rank factorization is used to simplify Problem (5). For any p × (q� 1) matrix C � (Cij) satisfying 
rank(C) ≤ r and ‖C‖2, 0 ≤ s, we can decompose it via singular value decomposition. Specifically, C can be expressed in 
the form of C �URV⊤, where U is an p × r column orthogonal matrix, R is an r × r diagonal matrix with singular 
values on the diagonal, and V is a (q� 1) × r column orthogonal matrix. Define the active set for the rows in C as A, 
that is, A � {i : ‖Ci·‖≠ 0}. Let PA be a projection matrix on C that preserves the ith row with its index i ∈A and resets 
it to zero when i ∉A. Then we can decompose C as

C � PAC � PA(URV⊤) � (PAUR)V⊤¢BV⊤, 

where B � PAUR is a p × r matrix satisfying ‖B‖2, 0 ≤ s. We summarize the previous discussion in Proposition 2.

Proposition 2. For any p × (q� 1) matrix C satisfying the following constraints:
rank(C) ≤ r; ‖C‖2, 0 ≤ s, (6) 

there exist a p × r matrix B and a (q� 1) × r matrix V satisfy

‖B‖2, 0 ≤ s, V⊤V � Ir, (7) 

such that C � BV⊤. Conversely, for any p × r matrix B and any (q� 1) × r matrix V satisfying (7), C � BV⊤ must satisfy (6).
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The sufficiency of factorization is already proved by the previous discussion, whereas the necessity is an obvious 
fact from properties of B and V. Proposition 2 states that the interplay between the rank and sparsity constraints can 
be untangled equivalently. Therefore, Problem (5) can be rewritten as

min
B, V

S(BV⊤; D |Cm)

s:t: V⊤V � Ir, ‖B‖2, 0 ≤ s: (8) 

The optimization is now with respect to B and V, which can be done in a block-wise alternative iteration. Without loss 
of generality, we consider ‖B‖2, 0 � s. To start with, denote the row-wise minimizer of (8) by B and V. Given V , the con-
straint ‖B‖2, 0 � s indicates that there are (p� s) rows that would be forced to zero. To determine which rows are non-
zero, we define the dual variable of B as

G �
1
n

X⊤((2(Ỹ � P̃Cm

) +XCm)V �XB):

The objective function in (8) is equivalent to 1
4n ‖2((Ỹ � P̃Cm

) +XCm)�XBV⊤‖2F by ignoring some constants. Then by 
the constraint V⊤V � Ir, we know that the objective function in (8) can be transformed into the function 1

4n ‖2((Ỹ �
P̃Cm

) +XCm)V �XB‖2F equivalently. With this transformation, there is a projected response matrix in a low-rank space 
that is 2((Ỹ � P̃Cm

) +XCm)V . Then G is the correlation between the predictors and the residual with respect to the 
projected responses. Together with a hard thresholding rule, we classify the predictors into the active set and inac-
tive set, where the rows of primal variable B and dual variable G are complementary. On the one hand, the rows 
in primal variable measure the importance of the active predictors. On the other hand, the rows in dual variable 
measure the importance of the inactive predictor. In each iteration, we re-evaluate these two primal and dual vari-
ables to decide which predictors are more important and then update the active and inactive sets. Moreover, with 
the given V, the original problem is reduced into a common multiresponse regression. Therefore, following the 
argument of Wen et al. (2020), by fixing all rows except the ith row, we know that minimizing the objective func-
tion in (8) with the fixed V yields to an optimum point Bi· +Gi·: Based on this, we can define a sacrifice ∆i by repla-
cing Bi· +Gi· by 0, which is given by

∆i � S((B1·, : : : , 0, : : : , Bp·)
⊤V⊤;D |Cm)� S((B1·, : : : , Bi· +Gi·, : : : , Bp·)

⊤V⊤;D |Cm)

�
1
2 ‖Bi· +Gi·‖

2
:

Therefore, we may force those rows to zero if they contribute the least total sacrifices to the overall loss. To realize this, 
let ∆(1) ≥⋯≥ ∆(p) denote the decreasing rearrangement of {∆i}

p
i�1, then truncate the ordered sacrifice vector at position 

s. Combining the analytical result here with what came before, we have

Bi· �
Bi· +Gi·, ∆i ≥ ∆(s),
0 otherwise:

�

(9) 

Define A � supp(B) and I � (A)c. From (9), it follows that

A � {i : ∆i ≥ ∆(s)}, I � {i : ∆i < ∆(s)}, 

and

BA· � (X⊤·AX·A)�1X⊤·A(2(Ỹ � P̃Cm

) +XCm)V , BI · � 0,

GI · � X⊤·I ((2(Ỹ � P̃Cm

) +XCm)V �XB)=n, GA· � 0:

8
<

:
(10) 

By substituting B of (10) into (8), we can derive an explicit expression for V ; that is, the matrix consists of eigenvectors 
corresponding to the top r eigenvalues of the following matrix:

�
2(Ỹ � P̃Cm

) +XCm
�⊤

X·A(X⊤·AX·A)�1X⊤·A
�

2(Ỹ � P̃Cm

) +XCm
�
:

We summarize the previous discussion in Algorithm 1.
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Algorithm 1 (Alternative Iterative Algorithm for Surrogate Problem (8))
Input: Data matrices X and Ỹ , sparsity s, rank r, the initialized value C(0). 
1: M � 2(Ỹ � P̃C(0)

) +XC(0).
2: Initialization: k � 0, A(0) � {i : ‖C(0)i· ‖≠ 0}, and I (0) � (A(0))c.
3: while C(k) has not converged do
4: Calculate V (k+1) by the eigenvectors corresponding to the top r eigenvalues of matrix M⊤X

·A(k) (X
⊤

·A(k)

X
·A(k) )

�1X⊤
·A(k)

M.
5: Update the primal and dual variables by

B(k+1)
A(k)·
� (X⊤

·A(k)
X
·A(k) )

�1X⊤
·A(k)

MV (k+1), B(k+1)
I (k) ·
� 0

G(k+1)
I (k) ·
� X⊤

·I (k)
(MV (k+1) � XB(k+1))=n, G(k+1)

A(k) ·
� 0:

8
<

:

6: Compute the sacrifice ∆(k+1)
i � ‖B(k+1)

i· +G(k+1)
i· ‖2, i � 1, : : : , p.

7: Determine A(k+1) � {i : ∆k+1
i ≥ ∆

(k+1)
(s) }, I (k+1) � (A(k+1))c.

8: Let C(k+1) � B(k+1)(V (k+1))
⊤.

9: Set k � k+ 1.
10: end while
Output: C(k).

Remark 1. Because our target is to optimize over the coefficient matrix C, we stop Algorithm 1 if C(k) has con-
verged, that is, ‖C(k+1) �C(k)‖F < τ�for a prespecified tolerance τ. In practice, we set τ � 0:01 or 0.001.

2.2.3. Majorize Alternating Iterative Algorithm. By combining the ideas in Sections 2.2.1 and 2.2.2, we develop an effi-
cient algorithm we name the majorize alternating iterative (MAI) algorithm for the SRRMLR problem. Specifically, at 
the mth step of the outer loop, we majorize the objective function in (4) by S(C : D |Cm), and thus simplify Problem (4) 
to Problem (5). Then, to solve Problem (5), we use an inner loop to derive an optimum by an alternating iterative pro-
cedure. That is, at the kth step of the inner loop, we update B(k) and V (k) iteratively as shown in Algorithm 1.

We summarize the previous steps in Algorithm 2.

Algorithm 2 (MAI Algorithm for the SRRMLR)
Input: Data matrices X and Ỹ , sparsity s, rank r, the initialized value C0.

Initialization: m � 0.
while Cm has not converged do

Run Algorithm 1 with r, s, and Cm. Denote the output by Cm11.
Set m �m+ 1.

end while
Output: Cm

Remark 2. For the initialization of C, we simply set C0 � 0p×(q�1). We stop the iteration according to whether 
‖Cm+1�Cm‖F is small enough or a maximum allowed iteration number is reached.

Remark 3. A grid search is used for tuning the rank r and sparsity s. We can simply increase r by one each step 
from 1 to rmax and increase s similarly from 1 to rmax. In Section 3, we will derive upper bounds on r and s such 
that the estimation is consistent with the sample size n. For each pair of r and s, we compute the SRRMLR estima-
tor via Algorithm 2 on the training data, and a criterion (such as the negative log-likelihood value) is calculated 
on the test data. We then choose the optimal parameters with the smallest criterion value. When the data are not 
so rich, the cross-validation technique (Hastie et al. 2009) can be applied.

3. Theoretical Properties
3.1. Preliminaries
For the theoretical justification, we need to define some more notations before the main result. The proposed method 
includes the inner loop, that is, Algorithm 1, and the outer loop, that is, Algorithm 2. Denote the outer iteration index 
and the inner iteration index by m and k, respectively. Based on this, we further denote Cm, k as the estimate at the kth 
iteration of the inner loop and the mth iteration of the outer loop in Algorithm 2. For clarity, let Ĉ be the minimizer of 
(4), and C∗ be the true coefficient matrix in model 1.

Next, we introduce some regular conditions required in the theoretical analysis.
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Condition 3.1. With the given sparsity level s, there are two constants 0 < c�(s) ≤ c+(s) <∞ such that

c�(s) ≤ inf
u≠0

‖X·Au‖22
n‖u‖22

≤ sup
u≠0

‖X·Au‖22
n‖u‖22

≤ c+(s), 

where A is any subset of [p] satisfying |A | ≤ s.

Condition 3.2. With the given sparsity s, we assume that there is a constant θs such that

sup
u≠0

‖X⊤·AX·Bu‖2
n‖u‖2

≤ θs, 

with A,B ⊂ [p], |A | ≤ s, |B | ≤ s, and A ∩ B � ∅.

Condition 3.3. Let pC(x) � (pC
1 (x), : : : , pC

q (x))
⊤ denote the population version of conditional probability in (2). Suppose that 

there is some constant 0 < cC < 1=4 such that

cC ≤min
1≤i≤q

pC
i (x)(1� pC

i (x)), 
for all x.

We now discuss the relevance of these technical conditions in detail.

Remark 4. From Weyl’s theorem and Condition 3.1, we have

c�(s) ≤ λs
X⊤·AX·A

n

� �

≤ λ1
X⊤·AX·A

n

� �

≤ c+(s):

Therefore, Condition 3.1 is the restricted eigenvalue condition bounding the s-sparse eigenvalues of X⊤X=n. Con-
dition 3.2 indicates any sparse off-diagonal block of X⊤X=n is upper-bounded so that any two distinct small sub-
sets of variables of X=

ffiffiffi
n
√

are mutually uncorrelated. Condition 3.2 is a more detailed restriction than Condition 
3.1. In fact, it can be shown that θs ≤ c+(s) by fundamental algebra.

In the proof of Theorem 1, these two conditions are used to give an upper bound on the terms like 
‖ĈÂ·�C∗Â·‖F. The solution ĈÂ· has an explicit form similar to that of the least squares solution. In particular, it 
involves the term (X⊤

·ÂX·Â)
�1, which is bounded by 1=c�(s)I | Â | because of Condition 3.1. Considering the difference 

between ĈÂ· and C∗Â· yields the terms like X⊤
·ÂX·A∗�Â . Condition 3.2 is applied here to bound it by θs from the upper 

side. These two conditions together guarantee the identification of the solution in (4), and they are commonly used in 
high-dimensional regression studies (Bickel et al. 2009, Fan and Lv 2014, Huang et al. 2018, Li et al. 2019).

Remark 5. Condition 3.3 imposes a restriction on the true conditional probability, and a similar condition can be found 
in Meier et al. (2008) in deriving the consistency results in logistic regression. This can be viewed as the balanced outcome 
assumption, used to show that the surrogate function is a good approximation of the negative log-likelihood function. In 
particular, we show that the MM iteration converges geometrically to the global optimum of (4) when initialized in its 
neighborhood. This is derived by showing that each MM iteration is a contraction mapping with constant 1� 2η(1� η), 
where η�is the element in the conditional probability matrix that is closest to zero or one. Condition 3.3 ensures that this 
iterative constant is less than one, and thus the MM algorithm must converge.

3.2. Main Results
We focus on the following parameter space indexed by the sparsity level s,

Λ(s) � {C : ‖CAc· � C∗Ac ·‖F ≤ c‖CA· � C∗A·‖F, A � {i : ‖Ci·‖ ≠ 0} and |A | ≤ s}

for the constant c. This is a natural extension of the cone set in Wang et al. (2020) to the multivariate response case. 
Both the sparse solution and true coefficients are in the set Λ(s). As a baseline for the comparison with our algorithm, 
we establish the statistically nonasymptotic property in Theorem 1 for the global optimum of (4).

Theorem 1 (Error Bound of Model Solution). Suppose that Conditions 3.1 and 3.2 hold for s ≥ s∗, and Condition 3.3 holds 
for both C∗ and Ĉ ∈Λ(s). If c̃ �min{cC∗ , cĈ} ≥ cθs=(4c�(s)), then for r ≥ r∗ and, s ≥ s∗, with probability at least 1� δ�for 
any δ ∈ (0, 1), we have

‖Ĉ �C∗‖F ≤ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rqs
n log pq

δ

r

, 

where the constant c is an absolute positive constant.
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Theorem 1 points out that the statistical convergence rate of the global minimizer of (4) can achieve the rate 
O({n�1rqs log(pq)}1=2

), which is as good as the result of the linear reduced-rank regression (Zheng et al. 2019). The 
result is trivial because the multiresponse logistic regression can be seen as a generalized reduced-rank regression. 
However, this result is only theoretical guidance because the optimization problem is nonconvex, and the previous 
algorithms usually achieve a local minimizer and not the global one. The statistical properties of the algorithmic output 
remain a mystery. Unlike previous literature, we can establish the theoretical guarantee for the algorithmic output, 
which is presented in the following theorem and corollary.

With the user-specified rank r and sparsity level s, the parameters defined in Conditions 3.1 and 3.2 determine a 
parameter as follows:

γ �
θs(1 +

ffiffi
r
√
)(1 + θs)

c2
�(s)

+
(1 +

ffiffi
r
√
)θs

c�(s)
:

Next, we present the error bound of the estimation at each iteration in Algorithm 2.

Theorem 2 (Error Bound of Estimator at Each Iteration). Suppose Cm, k is the solution of Algorithm 2 for the given r ≥
r∗, s ≥ s∗ and the initial estimation C0. Given Conditions 3.1 and 3.2 and 0 < γ < 1, and with probability at least 
1� (pq)�α, we have

‖Cm, k�C∗‖F ≤ c1
ffiffi
r
√
γk‖C∗‖op + c2(1� 2ζ(1� ζ))mr‖C0�C∗‖F + c3r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs log(pq)

n

r

, 

where α, c1, c2, and c3 are some positive constants, and the parameter ζ�is defined as

0 < ζ¢ inf
C∈B(s, r,h0)

min
i, j

P̃C
i, j < 1 

with h0 � 2c+(s)=c�(s)(‖C0�C∗‖F + 20αpq) and
B(s, r, h0) � {C : rank(C) ≤ r, ‖C‖2, 0 ≤ s, ‖C�C∗‖F ≤ h0}:

The indices m and k are for the outer and inner loops, respectively. Note that 0 < γ < 1 and 1=2 < 1� 2ζ(1� ζ) < 1, 
which ensures the convergence of the proposed algorithm. On the one hand, it implies that the algorithm output will 
geometrically converge. On the other hand, the nonvanishing rate r{qs log(pq)=n}1=2 corresponds to the statistical theo-
retical guarantee. Therefore, with large enough m and k, the output Cm, k bridges the gap between the numerical com-
putation and statistical theory.

As for the assumption γ < 1, γ�will be less than one as long as the correlation parameter θs is small enough. A spe-
cial case is that the columns of X are mutually orthogonal, in which case, θs � 0. In this case, there actually is a closed 
formula for the solution in the inner loop (linear approximation), which can be seen in Zheng et al. (2014). A parameter 
similar to γ�can be found in Huang et al. (2018) and Zhu et al. (2020). The difference lies in the factor 

ffiffi
r
√

because we 
consider the multiple responses in this paper. Thus, there is an inflation factor 

ffiffi
r
√

. Under the univariate response, the 
parameter γ�coincides with Huang et al. (2018), Zhu et al. (2020) because the rank can be seen as one. As for the 
detailed discussion of the assumption γ < 1, the reader is referred to Huang et al. (2018); a similar argument can be 
made on the γ�defined in this paper.

Theorem 2 shows that the initial bias (‖C0�C∗‖F and ‖C∗‖op) can vanish with increasing iteration numbers k and m. 
After a large enough number of iterations, we can establish the statistical convergence rate for the numerical output, 
which we express as Corollary 1.

Corollary 1 (Overall Error Bound and Support Recovery). Under the same conditions of Theorem 2, if the iteration num-
bers m and k satisfy k ≥ logγc4

ffiffi
r
√
=(2c2‖C∗‖F)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs log(pq)=n

p
, and m ≥ logζ′c4=(c3‖C0�C∗‖F)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs log(pq)=n

p
with 

ζ′ � 1� 2ζ(1� ζ), then with the probability at least 1� (pq)�α, we have

‖Cm, k�C∗‖F ≤ 2c4r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs log(pq)

n

r

:

Furthermore, under the assumption mini∈supp(C∗)‖C∗i·‖2 ≥ 2c4r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs log(pq)=n

p
, the following result holds:

Pr(supp(Cm, k) � supp(C∗)) ≥ 1� (pq)�α:
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The corollary reveals that the statistical convergence rate of Ck, m can achieve O(r{qs log(pq)=n}1=2
), where it has a 

ffiffi
r
√

-factor inflation because of the quadratic approximation in the algorithm. This convergence rate is analogous 
(to a factor of 

ffiffi
r
√

) to the previous results, such as Zheng et al. (2019) and Uematsu et al. (2019). However, the major 
difference is that we directly give a statistical guarantee for the numerical solution, which bridges the gap between 
the computation and the theoretical analysis. The current literature usually uses the coordinate descending algo-
rithm to solve the estimation, leading to their numerical solutions sometimes being only local optimums because 
of the nonconvexity of the low-rank and sparse constraints. Recently, Chen et al. (2022) established the algorithmic 
convergence of sparse reduced-rank regression that is based on the stagewise algorithm, but they still do not pre-
sent a statistical guarantee for their numerical output. Unlike their work, we design a new algorithm and then 
directly analyze the numerical solution in theory, which enables us to get a statistical theoretical guarantee for the 
algorithm.

Moreover, under the minimum signal condition, Corollary 1 shows that we can select the true variables with a sig-
nificant probability. Therefore, the proposed algorithm in this paper can identify the important variables and then 
enhance the interpretability of the model.

4. Numerical Experiments
In this section, we evaluate the finite-sample performance of the proposed method and compare it with the state-of-art 
methods. All experiments were conducted on an Ubuntu 18.04.6 LTS Server machine with Intel Xeon Gold 6248 
80-core processor @ 2.50 GHz and 125 GB of RAM. All our methods were implemented in R (version 4.1.2). The code 
used for our experiments are publicly available at https://github.com/C2S2-HF/SRRMLR.

4.1. Experiment Setup
For our method, we terminate the algorithm if the absolute difference between the two estimated coefficients is less 
than τ � 0:001. We use a grid search for tuning rank and sparsity, that is, range the rank from {1, : : : , rmax} and sparsity 
level from {1, : : : , smax}. In addition, in the grid search of optimal values for r and s, we impose the restriction that r ≤ s 
and do not run the algorithm when r > s. For the upper bounds rmax and smax, we set smax � ⌈10(n=(q log(pq)))1=4

⌉ and 
rmax �min(smax, q� 1, ⌈10(n=(q log(pq)))1=3

⌉) based on the theoretical results in Section 3.
As the baseline method, we include the ordinary multinomial logistic regression model via neural network (NNET), 

implemented in the nnet package (Ripley et al. 2016). We set the maximum number of weights to 6,000 and use the 
default settings without trace optimization in the nnet package. To see the effectiveness of the feature selection, the 
multinomial lasso (mLasso (Simon et al. 2013), that is, multinomial logistic regression with ℓ1-norm regularization) is 
considered for our performance comparison. The mLasso method is one of the most commonly used variable selection 
methods in multinomial logistic regression models, and it has been implemented in the glmnet package. For mLasso, 
we set all the arguments to the default values; for instance, the number of regularization parameters λ�is 100. To evalu-
ate the rank selection performance of the proposal, we compare it with the reduced-rank vector generalized linear 
model (RRVGLM; Yee and Hastie 2003), implemented in VGAM package. To provide a fair comparison, we apply the 
same maximal rank as our proposal, that is, rmax, and search for an optimal rank by ranging from one to rmax. The 
other arguments are set to defaults.

For all the simulation studies, the true coefficient matrix C∗ ∈ Rp×q is constructed as C∗ � BV⊤, where B ∈ Rp×r and 
V ∈ Rq×r are two matrices defined later. For the matrix B, the elements of its top five rows are drawn from the uniform 
distribution U(�2=q, � 1=q) ∪U(1=q, 2=q), and the remaining rows are set to zero. Each element of the matrix V is 
drawn from the uniform distribution U(0, q) independently. We fix the class size to q � 8 and the true rank to r � 5 
throughout this section.

We consider training data of size n � 400, denoted by D � {(x1, y1), : : : , (xn, yn)}. We generate each predictor xi ∈ Rp, 
independently from a multivariate Gaussian distribution N (0,Σ) with covariance matrix Σ � (Σij)p×p. Then the class 
label yi ∈ R

q is generated from Model (2). Two types of covariance matrix are considered: 
• Compound symmetries (CS): Σij � 0:5, if i ≠ j and Σii � 1, i, j � 1, : : : , p;
• Auto-regressive (AR): Σij � 0:5 | i�j | , i, j � 1, : : : , p.
To explore the effect of dimension p on the performance, we use values 50, 200, and 500, respectively, representing 

scenarios of small, modest, and high dimension. Overall, there are six different scenarios of simulation settings, and a 
total of 100 replications are conducted for each setting.

For all methods, the optimal tuning parameter(s) is determined via a validation data set of size 1,000. Specifically, 
we determine the optimal parameter(s) as that with the smallest negative log-likelihood value on the validation data. 
Then, another independent test data set of size 1,000 is used to evaluate the predictive accuracy.
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Seven measurements are considered to assess the empirical performance of each method. Denote the nonzero rows 
and zero rows of the true coefficient matrix C∗ as A∗ and I ∗, respectively. For given data D, denote an estimator of C∗
by Ĉ, and its corresponding nonzero rows as Â. Let Î � Âc denote the zero rows. First, we measure the estimation 
accuracy (Est) in terms of the mean squared error and predictive accuracy (Pred) with the negative log-likelihood, that 
is,

Est � 1
pq
‖C� Ĉ‖2F, Pred � L(Ĉ;Dtest), (11) 

where Dtest denotes an independent test data set. The next two measurements are to evaluate the performance of vari-
able selection, the sensitivity (Sen) and specificity (Spe), which are defined by

Sen � |A
∗ ∩ Â |

|A∗ |
, Spe � |I

∗ ∩ Î |

|I ∗ |
:

We also report the estimated rank r̂ and the number of nonzero rows in Ĉ, that is, |Â | . Finally, we record the running 
time (Time) in seconds for each method to evaluate the computational performance.

4.2. Simulation Results
Tables 2 and 3 summarize the average results for all measurements. We can see that our method significantly outper-
forms the other three methods in terms of variable selection and predictive performance, irrespective of the dimension 
p and covariance structure in X. The improvement is driven largely by accurate detection of true nonzero rows in the 
coefficient matrix. The performance of the mLasso method is less impressive than that of our method because the for-
mer has comparable sensitivity but much lower specificity. This is consistent with the discussion that lasso-related 
methods might cause overselection problems (Fan and Li 2001, Fan et al. 2004). In addition, because it does not con-
sider the rank constraint, the mLasso gives larger values in prediction and estimation error. The other two methods 
cannot select variables and thus have poor performance with regard to variable selection. For the prediction and esti-
mation performance, both NNET and RRVGLM perform very poorly as the dimension p increases. In comparison, our 
method continues to perform well and is stable as the dimension p increases.

In terms of rank recovery, both mLasso and NNET cannot recover the rank, which indicates they fail to reveal the 
internal structure of the coefficient matrix. Although RRVGLM gives the estimated rank r̂, the gaps between the esti-
mated rank and the true rank are large. Moreover, RRVGLM is sensitive and unstable, as can be proven with simu-
lated data. Our proposed method can realize the rank recovery, and the estimated rank is very close to the true rank.

With respect to the computational time, we can see that the RRVGLM method requires time similar to other meth-
ods and cannot deal with the cases when p > n. The NNET method does not involve any tuning parameter, and thus 
it is the fastest in the low-dimensional setting. However, this computational advantage diminishes as p increases. This 
is largely because of the increasing number of parameters that must be estimated. The SRRMLR and mLasso methods 
have comparable similar computation time when p is relatively small. However, as p increases, SRRMLR performs 
slightly worse in terms of running time. This could be expected considering the use of a grid search for tuning parame-
ter determination in SRRMLR; more computations are required for our proposed approach. Nevertheless, SRRMLR 

Table 2. Simulation Results with the Compound Symmetry Covariance in X

p Method Pred Estimate r̂ |Â | Sen Spe Time (s)

50 SRRMLR 1,256.030 0.030 4.240 5.140 1.000 0.997 5.784
mLasso 1,598.091 0.299 — 33.360 0.996 0.369 10.038
NNETa 6,034.134 4.749 — 50.000 1.000 0.000 0.205
RRVGLMa 1,669.428 0.291 1.677 50.000 1.000 0.000 338.04

200 SRRMLR 1,280.851 0.009 4.270 5.370 0.980 0.998 19.686
mLasso 1,655.199 0.079 — 60.810 0.990 0.714 7.899
NNETa 69,698.433 72.285 — 200.000 1.000 0.000 3.006
RRVGLM — — — — — — —

500 SRRMLR 1,288.622 0.004 4.350 5.300 0.972 0.999 53.667
mLasso 1,694.433 0.035 — 77.810 0.974 0.853 12.225
NNET 36,862.754 6.938 — 500.000 1.000 0.000 29.715
RRVGLM — — — — — — —

Note. —, these results cannot be obtained.
aIn the p � 50 setting, the number of effective results from NNET is 97 in 100 repetitions, and the number of effective results from RRVGLM is 

95 in 100 repetitions. In the p � 200 setting, the number of effective results from NNET is 98 in 100 repetitions.
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terminates in less than one minute even when p � 500, which suggests the scalability of our method and its applicabil-
ity to high-dimensional data.

4.3. Algorithmic Analysis
In this section, we investigate the convergence properties of our algorithm. The SRRMLR algorithm is tested on the 
simulated example from Section 4.1 by setting n � 400, q � 8, s � 10, and r � 5. We run Algorithm 1 with input s � 10 
and r � 5.

Figure 1 plots the mean squared error (MSE) of the estimator and the true value versus the iterations in the outer 
loop during 100 replications. Because of space limits, we only present the results of the CS covariance matrix; those of 
AR are omitted because they are similar. As shown in Figure 1, the estimation errors converge to zero within a hun-
dred iterations for all tested numbers of dimensions. This implies that Algorithm 2 converges at a fast rate and can con-
verge to the true value of the estimated parameters, which is consistent with Theorem 2.

Next, we evaluate how many iterations are needed in the inner loop. Figure 2 shows bar plots of inner iterations for 
each outer loop iteration, that is, the kth step in the inner loop of the m-th step in the outer loop. At the beginning of 
the outer loop, the average number of iterations fluctuates around 3 for CS and 2 for AR. These values reflect the 
impact of inaccurate estimation when the algorithm starts. As the number of outer iterations increases, the number of 
the iterations in the inner loop decreases, which is expected because the algorithm is approaching the true solution. 
When the iterations in the outer loop reach around 150, the average iterations in the inner loop converge to zero. This 
means that when the estimate becomes accurate, the active set tends to remain the same, removing the need to update 
the active set.

Finally, we investigate how the algorithm converges in terms of the active set as n increases. In particular, let the 
sample size n increase from 200 to 800, and other settings are as in the paragraph above. To visualize the convergence 
of selected rows, we plot the average number of intersections of the current active set Âm and the true active set A∗, 

Table 3. Simulation Results with the Autoregression Covariance in X

p Method Pred Estimate r̂ |Â | Sen Spe Time (s)

50 SRRMLR 1,219.186 0.038 4.200 5.020 0.998 0.999 6.364
mLasso 1,625.903 0.335 — 33.190 1.000 0.374 9.808
NNETa 7,355.270 8.893 — 50.000 1.000 0.000 0.199
RRVGLMa 1,666.573 0.240 1.667 50.000 1.000 0.000 237.509

200 SRRMLR 1,240.753 0.010 4.250 5.100 0.996 0.999 23.368
mLasso 1,681.168 0.087 — 64.720 0.992 0.694 7.214
NNETa 61,368.110 50.830 — 200.000 1.000 0.000 2.858
RRVGLM — — — — — — —

500 SRRMLR 1,222.785 0.004 4.170 5.020 0.996 0.999 59.998
mLasso 1,693.959 0.036 — 88.840 0.996 0.831 11.523
NNET 40,812.972 5.979 — 500.000 1.000 0.000 27.325
RRVGLM — — — — — — —

Note. —, these results cannot be obtained.
aIn the p � 50 setting, the number of effective results from NNET is 98 in 100 repetitions, and the number of effective results from RRVGLM is 

97 in 100 repetitions. In the p � 200 setting, the number of effective results from NNET is 99 in 100 repetitions.

Figure 1. (Color online) Plots of MSE vs. Number of Iterations in the Outer Loop, Where Different Colors Represent Various 
Randomized Experiments Under Fixed, Well-Selected s and r 
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that is, |A∗ ∩ Âm | , versus the iterations m during 100 replications in Figure 3. It can be seen that after approximately 
50 iterations, the algorithm keeps selecting the same order of active set. Furthermore, as the sample size n increases, 
the estimated active set converges to the true active set.

Figure 4 plots the average number of intersections of the estimated active set Â and the true active set A∗, that is, 
|A∗ ∩ Â | , versus the sample size n during 100 replications. As for the case with p � 50 and AR structure, the true 
active set of rows is correctly identified most times, even when the sample size is small, for example, n � 200. When p 
increases, it becomes difficult to correctly determine the true relevant rows with limited sample size, and the number 
of intersections fluctuates. Nevertheless, as the sample size n increases, all true relevant rows are selected by our new 
method, which is consistent with the theoretical results expressed in Corollary 1.

5. Real Data Analysis
In this section, we illustrate the practical application of our proposal by analyzing two real data sets. The MNIST data 
set (LeCun et al. 1998) is from the Modified National Institute of Standards and Technology database, a data set of 
handwritten Arabic numerals. It is popularly considered a standard data set for handwritten digit classification in opti-
cal character recognition and machine learning research. In addition, another analysis of a more complicated data set 
of the pigmented skin lesion data, HAM10000 (Połap et al. 2021), is given in the online appendix.

We applied all four methods in Section 4 to these two data sets and evaluated their performance via three measure-
ments. To measure the estimation accuracy, we consider the negative log-likelihood value defined by Pred � L(Ĉ;Dtest), 
where D is a test data set. We also record the estimated rank r̂ and the estimated sparsity |Â | for each method.

All the parametric settings are similar to those in Section 4 except for the tuning parameter selection strategy. To 
determine an optimal pair of rank and sparsity, we consider the five-fold cross-validation technique. To be specific, we 
divide the whole data set into five almost equal-size groups. For each group, we take the group as a validation data set 
and the remaining groups as a training data set. Then a model is fitted on the training set, and the negative log- 
likelihood value is computed on the test set. We choose (an) optimum tuning parameter(s) with the smallest negative 
log-likelihood value. We use the previous strategy to tune the rank and sparsity in SRRMLR, λ�in mLasso, and rank in 
RRVGLM.

Figure 2. Bar Plots of Inner Iterations for Each Outer Iteration 

Notes. The left, center, and right panels correspond to n � 200, 400, and 800, respectively. The top panel corresponds to the results of CS structure 
in X, and the bottom panel corresponds to the results of AR structure in X.
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The MNIST data set is widely used in the field of machine learning and can be thought of as a “Hello, World” data 
set. It contains 60,000 training images and 10,000 test images. All these grayscale images are size-normalized to 28× 28 
pixels, and the center of gravity of the intensity lies at the center of the image. Because the image is 28× 28 in dimen-
sion and RRVGLM does not work when the dimension is too high, we reduce the dimension to 100 via the principal 
component analysis technique, which can explain approximately 91.5% of the total variance. The results are presented 
in Table 4.

We can see from Table 4 that our proposal yields the sparsest model in terms of the number of nonzero rows, 
whereas the other three methods cannot produce a sparse model. Furthermore, the Pred value of SRRMLR is much 
lower than other methods, which indicates its superior power in distinguishing different categories. NNET performs 
poorly with the highest Pred value, which is expected because it results in a full model with too many negligible ele-
ments in its coefficient matrix. However, it is known that the images of handwritten Arabic numerals have structured 
patterns, and thus the dimension can be reduced further. With respect to the rank, only SRRMLR can yield a coefficient 
matrix with low rank and the estimated ranks using SRRMLR is nine. Considering that the MNIST data contains 10 
categories and one category is used for baseline, the perfect rank of coefficient matrix estimation should be nine.

To provide further insight into the stability of the previous methods, we randomly select 100 samples from each cat-
egory, and a total of 1,000 samples are used. We then treat 500 of them as training data and the remainder as test data. 
All of the aforementioned methods are performed using the training data, and the predictive performance is assessed 
on the test data. This random sampling process is replicated 100 times. The results are summarized in Table 5. Overall, 
the results are consistent with those in Table 4. Again, the proposed SRRMLR method has the best performance in 
terms of all measurements. In particular, the average prediction error of SRRMLR is the smallest, and the correspond-
ing standard deviation is the lowest, indicating the superior and robust behavior of our proposed technique.

6. Discussion
In this paper, we propose a novel group best subset selection procedure in a reduced-rank multinomial logistic regres-
sion model to realize the goal of joint dimension reduction and variable selection. We develop an iterative algorithm 

Figure 3. Plots of the Average Number of Intersections of the Current Active Set Âm and the True Active Set A∗ vs. Iterations m 
over 100 Replications 

Notes. The left, center, and right panels correspond to n � 200, 400, and 800, respectively. The top panel corresponds to the results of CS structure 
in X, and the bottom panel corresponds to the results of AR structure in X.
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based on a group version of the primal-dual active set algorithm and the MM algorithm to efficiently solve the sparse 
reduced-rank multinomial logistic regression problem. We show that our proposed estimator enjoys important theo-
retical properties, including estimation ability and variable selection consistency. The simulation studies also demon-
strate that our method performs better in identifying the correct model than well-known previous methods. Finally, 
we apply the proposed method to two real datasets from imaging classification and obtain meaningful results. There-
fore, our new approach is a valuable toolbox for the high-dimensional multiclass classification problem.

Although SRRMLR performs satisfactorily in both simulated and real data, it still has a few aspects that can inspire 
further studies. For the tuning of r and s, we use a grid search here and set the upper bounds rmax and smax according 
to the theoretical results in Section 3. A smarter strategy could be used to speed up the tuning procedure. For instance, 
we could set r to be its maximum possible value, r �min(p, q� 1), and determine an appropriate value for s by search-
ing all possible values along {1, : : : , smax}. Then based on this s value, we could determine the optimal r value by solv-
ing the optimization problem in a setting with a much lower dimension. This one-dimensional searching strategy 
could lower the computational time substantially. It will be interesting to investigate how well this strategy guarantees 
estimation accuracy and row support recovery.

Figure 4. Scatterplots of the Number of Intersections of the Estimated Active Set Â and the True Active Set A∗ During 100 
Replications 

Notes. In each subfigure, a smooth local polynomial regression fitting curve, as well as its confidence band, is added to show the trend over the 
sample size. The left, center, and right panels correspond to p � 50, 200, and 500, respectively. The top panel corresponds to the results of CS 
structure in X, and the bottom panel corresponds to the results of AR structure in X.

Table 4. Results for the Whole MNIST Data Set

Method Pred r̂ |Â |

SRRMLR 3,429.53 9 99
mLasso 11,906.89 — 100
NNET 8,337.42 — 100
RRVGLM — — —

Note. —, these results cannot be obtained.
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