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Abstract

On-the-fly retrieval of relevant knowledge has001
proven an essential element of reliable systems002
for tasks such as open-domain question answer-003
ing and fact verification. However, because re-004
trieval systems are not perfect, generation mod-005
els are required to generate outputs given par-006
tially or entirely irrelevant passages. This can007
cause over- or under-reliance on context, and008
result in problems in the generated output such009
as hallucinations. To alleviate these problems,010
we propose FILCO, a method that improves the011
quality of the context provided to the genera-012
tor by (1) identifying useful context based on013
lexical and information-theoretic approaches,014
and (2) training context filtering models that015
can filter retrieved contexts at test time. We ex-016
periment on six knowledge-intensive tasks with017
FLAN-T5 and LLAMA2, and demonstrate that018
our method outperforms existing approaches on019
extractive question answering (QA), complex020
multi-hop and long-form QA, fact verification,021

and dialog generation tasks.1022

1 Introduction023

Retrieval augmented approaches to generation have024

proven effective for many knowledge-intensive lan-025

guage tasks such as open-domain question answer-026

ing and fact verification, producing more faithful027

(Khandelwal et al., 2020; Lewis et al., 2020; Shus-028

ter et al., 2021; Komeili et al., 2022), interpretable029

(Guu et al., 2020), and generalizable (Khandelwal030

et al., 2021) outputs. While the de facto approach031

is to provide the top retrieved passages to the gen-032

erator indiscriminately, imperfect retrieval systems033

often return irrelevant or distracting content. Gener-034

ation models are then trained to produce canonical035

outputs with the guidance of partially or entirely036

irrelevant passages, and thus are prone to halluci-037

nation or spurious memorization.038

1https://anonymous.4open.science/r/filco

Generator

infrastructure necessary for rapid industrial growth was 
put in place. The first railway in Belgium, running from 
northern Brussels to Mechelen, was completed in May 
1835. The earliest railway in Britain was a wagonway 
system, a horse drawn wooden rail system, used by 
German miners at Caldbeck, Cumbria, England, perhaps 
from the 1560s. A wagonway was built at Prescot, near 
Liverpool, sometime around 1600, possibly as early as 
1594. Owned by Philip Layton, the line carried coal from 
a pit near Prescot Hall to a terminus about half a mile 
away. On 26 July 1803, Jessop opened the Surrey Iron

    Retrieved Passage

Question

When did the 
first train run 
in England?

1835

1560s
The earliest railway in Britain was a wagonway system, a 
horse drawn wooden rail system, used by German miners 
at Caldbeck, Cumbria, England, perhaps from the 1560s. 

    Filtered Content

Figure 1: FILCO filters out irrelevant content (marked
in red) and leaves precisely supporting content, making
it easier for the generator to predict the correct answer.

Ideally, a model should be grounded on only con- 039

tent that supports the correct output. However, this 040

ideal grounding is hard to achieve with an imper- 041

fect retrieval system alone. On one hand, positive 042

passages (i.e., passages that support the output) 043

sometimes contain distracting content. For exam- 044

ple in Figure 1, while the passage containing the 045

actual supporting content is successfully retrieved, 046

the model still fails to pay sufficient attention to the 047

supporting content, and is distracted by surround- 048

ing sentences that share similar topics (Shi et al., 049

2023). On the other hand, models learn to over- 050

utilize negative passages, extracting spans from an 051

irrelevant passage, which will usually be incorrect. 052

This can degrade accuracy, as evidenced by the fact 053

that training with higher-quality context often leads 054

to better performance (Dou et al., 2021). 055

Some works have attempted to optimize the pro- 056

vided content on the passage level, by reranking 057

more relevant passages to the top of the retrieved 058

list (Wang et al., 2018; Nogueira and Cho, 2020; 059

Mao et al., 2021), selecting only evidential pas- 060

sages to include (Asai et al., 2022), or only retriev- 061

ing passages when generation models need assis- 062

tance (Mallen et al., 2023; Jiang et al., 2023). Choi 063

et al. (2021) proposed to decontextualize sentences 064

by integrating surrounding context, but require sub- 065
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Generation Mgen

Context Filter Mctx

Input query  q The horse began to 
become domesticated 
around 2000 BC.

Output  o
Retrieved Passage  P
The clearest evidence of early use of the 
horse as a means of transport is from 
chariot burials dated c. 2000 BCE. 
However, an increasing amount of 
evidence supports the hypothesis that 
horses were domesticated in the Eurasian 
Steppes approximately 3500 BCE; recent ..

StrInc

Lexical

CXMI

However, an increasing 
amount of evidence supports 
the hypothesis that horses 
were domesticated in the 
Eurasian Steppes 
approximately 3500 BCE

Filtered Content  t

Prediction  pREFUTESREFUTES

Figure 2: The FILCO pipeline: (i) filtering retrieved passages, (ii) generation with filtered context.

stantial human annotation effort and still can suffer066

from distracting content, even in positive passages.067

In this paper, we propose FILCO (§2), a method068

that learns to FILter COntext retrieved in a fine-069

grained sentence-wise manner by training on con-070

tent selected via three measures: (i) STRINC:071

whether passages contain the generation output,072

(ii) LEXICAL overlap: how much unigram over-073

lap the content and output has, and (iii) Con-074

ditional cross-mutual information (CXMI): how075

much more likely the generator is to generate the076

output when the content is provided.077

We experiment on six knowledge-intensive lan-078

guage datasets from three tasks (§3). (i) question079

answering: including NaturalQuestions (NQ) and080

Trivia QA (TQA), as well as more complex multi-081

hop HotpotQA and long-form ELI5, (ii) fact verifi-082

cation: Fact Extraction and VERificaton (FEVER),083

and (iii) knowledge-grounded dialog generation:084

the Wizard of Wikipedia (WoW) dataset.085

Using FLAN-T5 and LLAMA2 models, our086

method outperforms both baseline methods, i.e.,087

full-context augmentation and passage-wise filter-088

ing, on all six datasets. FILCO also greatly reduces089

the prompt length by 44 − 64% across tasks, with090

corresponding efficiency benefits during generation.091

We further split examples retrieved with positive092

and negative passages, and show that FILCO effec-093

tively improves generation in both scenarios (§4).094

Moreover, we extend experiments to the more com-095

plex multi-passage settings, where FILCO main-096

tains its advantage over baseline methods.097

Comparing filtering methods on each task, we098

observe that STRINC, LEXICAL and CXMI-based099

filtering were best for extractive QA, dialog gener-100

ation, and more complex tasks, respectively (§5).101

2 Generation with Filtered Contexts 102

In this section, we first outline notation (§2.1), then 103

introduce three oracle filtering measures (§2.2). 104

Next, we describe how to train context filtering 105

models with oracle filtered context (§2.3) and learn 106

to generate with filtered contexts (§2.4). 107

2.1 Problem Statement 108

In retrieval-augmented generation, we are given 109

an input query q and annotated output o from an 110

example e = {q, o}, and want to improve the out- 111

put of a generative model Mgen. We assume a set 112

of retrieved passages P = {pi}, i ∈ K, each con- 113

sisting of ni text spans pi = [t1i ,⋯, t
ni

i ]. We can 114

provide the model with one or more selected text 115

spans T = {tji} when generating output o, namely 116

Mgen(o ∣ q, T ). In traditional retrieval-based meth- 117

ods, however, all text spans in the top-K passages 118

{tji},∀j ∈ ni,∀i ∈ K are provided to the model. 119

In experiments, we split passages into sentences 120

using the spaCy tokenizer2 as candidate text spans. 121

Later in §4, we will show that sentence-wise split- 122

ting performs the best among other granularities. 123

2.2 Obtaining Oracle Contexts 124

In this section, we propose methods that select or- 125

acle text spans that can be used to train a context 126

filtering model. We select spans using a filtering 127

function F (⋅), denoted as F (T ∣e, P ), where text 128

spans in T = {tji} are selected by the underlying 129

score function f(⋅) according to individual filter- 130

ing methods. We select a single best span T = t
j
i , 131

(i, j) = argmaxi,j f(t
j
i , e) when performing ora- 132

cle filtering, as it outperforms multi-span filtering 133

in our preliminary studies. 134

2https://spacy.io/api/tokenizer
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We now introduce three approaches to filter po-135

tentially useful content from retrieved passages.136

String Inclusion The STRINC measure makes a137

binary decision finc(t, o) ∈ {0, 1} on whether text138

span t lexically contains the output o. We enumer-139

ate the ranked passages retrieved {p1, p2,⋯} and140

select the first text span that contains the output141

finc(t, o) = 1. STRINC is effective when the sup-142

porting document pgold contains the exact output143

o. However, finc may fail to distinguish support-144

ing passages from spurious ones, that accidentally145

contain the output but do not answer the question.146

Applying finc to abstractive tasks may result in147

selecting zero spans since no exact matches exist.148

Lexical Overlap We next introduce the more149

flexible LEXICAL measure fuf1 ∈ [0, 1] that cal-150

culates the unigram overlap between the example151

e and the candidate text span t. Intuitively speak-152

ing, higher lexical overlap indicates greater topic153

similarity, hence higher utility at generation time.154

We select sentences t using different parts of the155

example e for tasks of different types. We measure156

the F1 score fuf1(t, o) ∈ [0, 1] between t and out-157

put o for tasks having responses grounded on pro-158

vided knowledge, i.e., QA and dialog generation.159

We measure t using query q for fact verification160

as fuf1(t, q) since o is a one-word binary label.161

We select the span t
j
i with the highest similarity162

to example e and above a pre-defined threshold163

λ = 0.5,3 where (i, j) = argmaxi,j(fuf1(t
j
i , e)),164

and i, j ∈ {i, j ∣ fuf1(tji , e) > λ}. Nonetheless,165

for tasks having queries that may be factually incor-166

rect (e.g., fact verification), spans of high lexical167

overlap to an erroneous claim may reinforce the168

misinformation and lead to erroneous generations.169

Conditional Cross-Mutual Information (CXMI)170

We adopt a measure fcxmi from the conditional171

cross-mutual information (CXMI) score in contex-172

tual machine translation (Fernandes et al., 2021).173

Given a pair of input sequences with and without174

context augmentation, t⊕ q and q, we measure the175

probability difference in model Mgen generating176

the expected output o, the process being denoted177

as fcxmi(t, e) =
Mgen(o∣t⊕q)
Mgen(o∣q) ∈ R, as illustrated178

in Figure 3. We select the text span t
j
i having the179

highest CXMI score above a pre-defined threshold180

3We compare different thresholds (0.1, 0.3, 0.5, 0.7, 0.9)
in preliminary studies, 0.5 gives the best generation results.

q: The horse began to become domesticated around 2000 BC.

t1: How and when horses became domesticated is disputed.

t2: The clearest evidence of early use of the horse as a means of 
transport is from chariot burials dated c. 2000 BCE.

t3: However, an increasing amount of evidence supports the 
hypothesis that horses were domesticated in the Eurasian Steppes 
approximately 3500 BCE

P

t1q

highest 
CXMI

t2q
t3q

Score
Calculation 

fcxmi

1.2

0.9

2.0

q
tq

Mgen REFUTES

output  o probability
pctx

p 2.0

CXMI

Figure 3: An example illustration of context filtering
with the CXMI measure.

λ = 0.0,4 where (i, j) = argmaxi,j(fcxmi(tji , e)), 181

and i, j ∈ {i, j ∣ fcxmi(tji , e) > λ}. fcxmi can 182

overcome the lexical barrier and is applicable to all 183

tasks, albeit at the cost of more computation. 184

2.3 Learning to Filter Contexts 185

While the previous section described how to iden- 186

tify useful contexts at training time when the gold- 187

standard answer is known, we also need methods 188

that can apply at test time when the answer is un- 189

known. To this end, we train the context filtering 190

models, Mctx, using context filtered with the three 191

measures in §2.2. To create training data for Mctx, 192

for each training example with query q, we concate- 193

nate the retrieved passages P to query q as input, 194

then we apply the filter method f to obtain filtered 195

context tsilver as output. We use silver instead 196

of oracle to represent the non-perfect filtering re- 197

sult due to unknown gold labels for non-extractive 198

tasks. As shown in Figure 2, we train Mctx by feed- 199

ing in query q and retrieved passages P , and ask 200

it to generate filtered context tsilver, formalized as 201

Mctx(tsilver∣ q ⊕ P ). 202

At test time, given the retrieved passages P for 203

a test query q, we leverage Mctx to predict filtered 204

context tpred, as tpred = Mctx(q⊕P ). tpred is sub- 205

sequently provided to the generation model Mgen 206

together with the query q, to predict the output. 207

2.4 Generation With Filtered Contexts 208

We similarly use tsilver filtered context for training 209

and model predicted context tpred for inference. 210

4
1.0 naturally distinguishes context that adds to or reduces

output probability. We compare other values in preliminary
studies (0.5, 2.0), where 1.0 gives the best results.
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For each training example (q, o), we prepend the211

silver filtered context tsilver to the query q, and get212

the model input q ⊕ tsilver. We feed this input into213

the generation model Mgen and train it to output the214

gold output o, formalized as Mgen(o ∣ tsilver ⊕ q).215

At inference time, we provide the context tpred216

filtered by model Mctx for generation, denoted as217

Mgen(o ∣ tpred ⊕ q) = Mgen(o ∣Mctx(q, P )⊕ q).218

In comparison to appending all retrieved text219

spans P ⊕ q, including only selected text can effec-220

tively reduce the computational cost by ∣P ∣
∣t∣ at both221

training and inference time.222

3 Knowledge-Intensive Language Tasks223

We experiment on six knowledge-intensive lan-224

guage tasks that necessitate retrieval augmentation225

for generation (§3.1), where a limited portion of ex-226

amples are supported by retrieved passages (§3.2).227

3.1 Tasks and Datasets228

We use six datasets that contain outputs supported229

by Wikipedia articles, as listed in Table 1.230

Open-Domain Question Answering We adopt231

NaturalQuestions (NQ) (Kwiatkowski et al., 2019)232

and TriviaQA (TQA) (Joshi et al., 2017) to experi-233

ment with the open-domain QA task.234

Each example in NQ has a question q and an-235

notated short answers o. We experiment with the236

processed version (Lee et al., 2019) that includes237

all examples having short answers of no more than238

five tokens. In the TQA dataset, each example has239

a question q and answers o, which are extracted240

spans from supporting Wikipedia articles P . Fol-241

lowing Lewis et al. (2020), we use the Exact Match242

(EM) metric to evaluate model predictions.243

Multi-Hop Question Answering We also adopt244

more complex QA scenarios, the first of which is245

multi-hop QA, where answering each question q246

requires reasoning over a chain of passages P . For247

this task, we use the HotpotQA dataset (Yang et al.,248

2018). Because the answers do not always exist in249

the supporting documents, this dataset belongs to250

abstractive generation, in contrary to the extractive251

answers in NQ and TQA. Following Yang et al.252

(2018) and accommodating its abstractive nature,253

we use unigram F1 for evaluation.254

Long-Form Question Answering Another com-255

plex QA task is generating long, abstract answers256

given the question, i.e., long-form QA. For this257

we use the ELI5 (Fan et al., 2019) dataset, which258

requires elaborate, in-depth answers to open-ended 259

questions. The dataset is derived from the Reddit 260

forum “Explain Like I’m Five” and features diverse 261

questions with multi-sentence answers. We experi- 262

ment with the generative short setting, and evaluate 263

model predictions using unigram F1. 264

Fact Verification We use the Fact Extraction 265

and VERification (FEVER) dataset (Thorne et al., 266

2018) aggregated by the KILT benchmark (Petroni 267

et al., 2021). It contains claims q generated by 268

rephrasing sentences in Wikipedia articles. A claim 269

has the label o = “SUPPORTS” if it preserves the 270

fact in the Wikipedia reference, otherwise is la- 271

beled as “REFUTES” due to the factual contradic- 272

tion. Following the original baseline (Thorne et al., 273

2018), we use accuracy for evaluation. 274

Knowledge-Grounded Dialog Generation We 275

adopt the Wizard of Wikipedia (WoW) dataset (Di- 276

nan et al., 2019) from KILT, which aims to generate 277

the next dialog by grounding on Wikipedia articles. 278

In each example, the input q is the conversation 279

history involving multiple utterance turns, and the 280

next-turn response is the output o. We evaluate 281

with unigram F1 following Petroni et al. (2021). 282

Dataset # Examples (thousands) Evaluation
train dev test Metric

NQ 79.2 8.7 3.6 EM
TQA 78.8 8.8 11.3 EM
HOTPOTQA 88.9 5.6 5.6 F1

ELI5 273.0 1.5 0.6 F1

FEVER 105.0 10.4 10.1 Accuracy
WOW 63.7 3.1 2.9 F1

Table 1: Statistics and evaluation metric for six tasks.

Table 1 lists the dataset statistics. Because test 283

sets are not available for datasets adopted from the 284

KILT benchmark (i.e., HotpotQA, ELI5, FEVER, 285

WoW), we report the results on development sets. 286

3.2 Wikipedia Passage Retrieval 287

To better understand the quality of passages pro- 288

vided in the generation stage, we evaluate the qual- 289

ity of retrieval passages. 290

To retrieve Wikipedia passages for all examples, 291

we use the adversarial Dense Passage Retriever 292

(DPR) (Karpukhin et al., 2020)5 to retrieve the top 293

5 passages from all Wikipedia passages. 294

5https://github.com/facebookresearch/DPR#
new-march-2021-retrieval-model
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A Mixture of Positive and Negative Passages295

We evaluate the recall of the top 1 and top 5 re-296

trieved passages in Table 2 (left). For the extractive297

NQ and TQA tasks, we measure if any of the pas-298

sages contain the answer strings. For the other four299

tasks where outputs are not spans in supporting doc-300

uments, we calculate if any of the passages come301

from the provenance articles annotated in KILT.302

Notably, for all six datasets, top-1 passages only303

support the canonical output half or less of the time.304

Although involving more passages increases the305

coverage of supporting documents, it often brings306

along linearly (Izacard and Grave, 2021) or quadrat-307

ically increased computation.308

Dataset Recall (pos. + neg.) Precision (pos.)
1 5 1 5

NQ 50.1 74.1 2.5 2.7
TQA 61.2 77.8 4.5 4.8
HOTPOTQA 16.7 27.3 2.1 0.4
ELI5 13.1 25.7 97.7 55.1
FEVER 57.0 75.9 1.3 1.4
WOW 34.9 54.8 16.4 17.7

Table 2: Recall of the top 1 and top 5 DPR-retrieved
passages, and precision on positive passages.

Noise in Positive Passagess To measure the ratio309

of precisely supporting context in retrieved positive310

passages, we further calculate their unigram preci-311

sion to the gold output, as shown in Table 2 (right).312

In general, the precision is pretty low: scoring less313

than 20% for WoW, and less than 5% for NQ, TQA,314

HotpotQA, and FEVER. ELI5 has exceptionally315

high top-1 precision, because its output often aggre-316

gates large text chunks from multiple passages. Yet317

still, the precision drops by over 40% when adding318

4 more passages. These numbers indicate the poten-319

tial existence of noisy content, which could distract320

the model and deteriorate its generation.321

In the next section, we attempt to filter the suffi-322

cient and precisely necessary context, as described323

in §2, to achieve more efficient generation.324

4 Experiments and Analysis325

We first introduce the experimental setup (§4.1) and326

baseline approaches for comparison (§4.2). Then,327

we evaluate models on both end generation (§4.3)328

and context filtering (§4.5).329

4.1 Experimental Setup330

We use FLAN-T5 (Chung et al., 2022) and LLAMA331

2 (Touvron et al., 2023) as the backbone model332

architectures, because of their potential superior 333

performance among open-source models. We fine- 334

tune both models for (i) the context filtering task 335

as Mctx, and (ii) the end generation task as Mgen. 336

FLAN-T5 FLAN-T5 is a family of instruction- 337

tuned encoder-decoder models for seq2seq genera- 338

tion tasks, which makes it suitable for our retrieval- 339

augmented generation setting. Due to constraints 340

in computational resources, we use the XL version 341

with 3B parameters. We load model checkpoints 342

from and implement training using HuggingFace 343

Transformers (Wolf et al., 2020). 344

LLAMA 2 LLAMA 2 represents a collection of 345

foundation model ranging from 7B to 70B param- 346

eters, particularly optimized for dialog uses cases, 347

but also achieve good performance on many other 348

tasks. We train the 7B model version with LoRA 349

(Hu et al., 2022) using the xTuring platform.6 350

Implementation Details For both models, we 351

allow a maximum of 1024 input tokens at training 352

and inference. We allow Mctx to generate at most 353

512 tokens and Mgen to 128 tokens. We use greedy 354

decoding for generating both filtered context and 355

end-task output. Unless otherwise specified, we 356

train Mctx and Mgen models for 3 epochs, using a 357

learning rate of 5e−5 and batch size of 32. 358

4.2 Experiment Methods 359

We describe two baselines FULL and PSG, our main 360

approach FILCO, and the SILVER setting. 361

Baseline 1: Augmenting Full Passages The 362

most common method for retrieval-augmented gen- 363

eration is to concatenate all passages into the input. 364

We denote this method as FULL and use it as our 365

first baseline. To conduct a fair comparison with 366

sufficient training in a full-context genreation style, 367

we fine-tune FLAN-T5 and LLAMA 2 to generate 368

output using the full content of the top-1 passage 369

under the same experiment setting as in §4.1. 370

Baseline 2: Passage-Wise Filtering An alterna- 371

tive method inspired by Asai et al. (2022) is to filter 372

context on a passage level. Specifically, for the top- 373

1 retrieved passage for each example, the model 374

decides whether to include the entire piece of the 375

passage in the input. In comparison, our method 376

operates in a finer granularity (i.e., the sentence 377

level). We denote this the PSG baseline and show 378

the empirical advantage of our method. 379

6https://github.com/stochasticai/xTuring
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NQ TQA HotpotQA

ELI5 FEVER WoW

Full Psg FilCo (ours) Silver

Figure 4: Generation performance when passages are filtered with different approaches.

Main Approach: Augmenting Filtered Context380

As described in §2, we train Mctx to filter the top-1381

retrieved passage p1 to tsilver, and Mgen to gener-382

ate output o with tsilver. To create tsilver, we use383

the STRINC measure for NQ and TQA, LEXICAL384

for WoW, and CXMI for FEVER, HotpotQA, and385

ELI5. These measures are shown to be optimal386

based on further analysis in §5.387

At test time, we provide model-filtered context388

tpred to Mgen, and denote the results as FILCO.389

To show the prospective performance upper-bound,390

we also evaluate Mgen generations by providing391

silver-filtered context tsilver, as the SILVER setting.392

4.3 Generation Performance393

Results using four methods and two models are394

shown in Figure 4. In general, applying context fil-395

tering beforehand significantly improves the results396

on all datasets than FULL and PSG. Compared397

to providing Mgen with SILVER filtered contexts,398

using Mctx filtered context (FILCO) achieves com-399

parable performance on all six tasks.400

For extractive QA tasks, FILCO achieves +4.3401

and +8.6 EM increase in NQ with FLAN-T5 and402

LLAMA2, +1.1 and +0.2 EM in TQA. For com-403

plex QA tasks, FILCO brings +1.0 and +1.3 F1 in-404

crease in HotpotQA with FLAN-T5 and LLAMA2,405

and +0.6, +2.6 EM increase in ELI5. The over-406

all improvement is less significant than extractive407

tasks, presumably due to the increased difficulty.408

For abstractive generation tasks, FILCO brings409

about even larger gains: +6.2 and +4.3 accuracy410

increase for FEVER with FLAN-T5 and LLAMA2,411

and +3.5, +1.1 F1 increase for WoW. As could412

be partially conjectured from the low precision in413

Table 2, filtering irrelevant content helps the model414

focus on the concerned knowledge.415

4.4 Providing Positive and Negative Passages 416

We decompose datasets into examples with positive 417

and negative top-1 retrieved passages, to examine 418

FILCO effectiveness under both scenarios. 419

As shown in Figure 6, applying FILCO effec- 420

tively improves the utility of both positive and neg- 421

ative passages retrieved, and hence yields better 422

generations, particularly for abstractive tasks such 423

as FEVER and WoW. Aligning with our hypothe- 424

sis, the generation model produces better outputs 425

when we remove (i) distracting content in positive 426

passages, and (ii) negative passages. 427

4.5 Evaluating Filtered Contexts 428

We evaluate filtering outputs from two aspects: re- 429

duced input length and increased answer precision. 430

Shorter Inputs In Figure 5, we measure the aver- 431

age number of tokens in model inputs after filtering 432

the retrieved passages using different methods. We 433

do not filter context in the FULL setting, filter by 434

passage in PSG, and filter on the sentence level with 435

FILCO. Model inputs contain the example query 436

and (filtered) context.7 FILCO effectively reduces 437

input length by 44 − 64%. 438

Full Psg FilCo

Figure 5: Number of input tokens after filtering retrieved
contexts with different strategies.

7We tokenize all text sequences with the LlamaTokenizer.
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Full Psg FilCo (ours) Silver

pos
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ELI5

pos
neg
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pos
neg

NQ HotpotQATQA
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pos
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Figure 6: Improvement on examples retrieved with positive (top) and negative passages (bottom), respectively.

Higher Precision To measure the amount of un-439

helpful content in input contexts, we calculate the440

unigram precision of gold outputs to input contexts.441

As in Table 3, filtered context achieves much442

higher output precision for all tasks. Moreover,443

model-filtered contexts (FILCO) are largely compa-444

rable to SILVER, and sometimes even better, such445

as +3.8 points in TQA. For other tasks, the small446

gaps between them minimally affect the end gener-447

ation, as already shown in Figure 4.448

However, PSG filtering often leads to precisions449

lower than FULL. The coarse granularity of filter-450

ing may be one reason for its precision loss.451

Method FULL PSG FILCO SILVER

NQ 2.5 1.3 5.1 7.3
TQA 4.5 3.0 8.4 4.6
HOTPOTQA 2.6 2.6 10.8 17.1
ELI5 92.9 92.5 98.8 98.8
FEVER 1.2 1.2 5.1 4.4
WOW 10.8 35.5 62.9 71.5

Table 3: Precision of canonical outputs with respect to
contexts filtered with different methods.

4.6 Generation with Multiple Passages452

Integrating multiple passages as context input is of-453

ten helpful. Some tasks such as multi-hop QA may454

naturally necessitate multiple passages to perform455

the task. To verify the generality of our method, we456

further take multiple passages as source context.457

We experiment with top-K passages, where K =458

5, to minimize the loss from length truncation due459

to model input limits, and conduct fairer experi-460

ments than using larger Ks. We use FLAN-T5461

since it has more consistent behaviors across tasks.462

As shown in Table 4, FILCO surpasses FULL and463

PSGS settings by a large margin, +1.2−14.2 points 464

in all six tasks. FILCO also outperforms existing 465

performant baselines: RAG (Lewis et al., 2020), 466

FiD (Izacard and Grave, 2021), and evidentiality- 467

guided (EVI.) generation (Asai et al., 2022). 468

Compared to using top-1 passages only, perfor- 469

mance increases on extractive tasks when aggre- 470

gating multiple top-ranked passages. Interestingly, 471

performance on FEVER and WoW drops by −3.2 472

and −2.3 points, potentially due to the degraded 473

retrieval quality of lower-ranked passages, as the 474

top-1 passage recall is relatively high. 475

Context NQ TQA HotpotQA ELI5 FEVER WoW

BASELINE, TOP 5

RAG 44.5 56.8 - - 88.1 13.8
FID 48.3 67.2 - - 89.5 16.9
EVI. 49.8 67.8 - - 89.8 17.9

FILCO, TOP 1

FILCO 44.7 59.0 60.0 73.8 94.2 68.3

FILCO, TOP 5

FULL 47.6 67.3 61.5 72.7 88.0 64.8
PSGS 52.9 69.1 62.3 73.7 90.7 64.6
FILCO 61.8 71.1 65.0 73.9 91.4 66.0
SILVER 62.0 71.1 65.2 73.9 92.2 66.1

Table 4: Generation results when providing top-5 re-
trieved passages filtered by passages or sentences. RAG,
FID, and EVI. are existing performant methods. We
bold-type the best results that do not use silver contexts.

5 Comparing Context Filtering Strategies 476

To justify the context filtering strategies in §4, we 477

compare the measures in §2 (STRINC, LEXICAL, 478

and CXMI) on individual tasks. 479

5.1 Results with Different Strategies 480

Results in Table 5 reveal that different tasks benefit 481

the most from different measures. NQ and TQA 482
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favor STRINC, WoW works best with LEXICAL,483

while more complex tasks (FEVER, HOTPOTQA,484

and ELI5) perform the best using CXMI. Model485

wise, FLAN-T5 and LLAMA2 align on most tasks,486

with slight divergence on ELI5.487

FLAN-T5

Measure STRINC LEXICAL CXMI

NQ 44.7 30.0 39.9
TQA 59.2 39.0 45.3
HOTPOTQA 59.2 57.4 60.0
ELI5 73.6 73.9 74.2
FEVER 80.9 86.4 95.8
WOW 63.4 69.3 66.6

LLAMA 2

NQ 43.3 35.2 41.8
TQA 60.7 57.1 60.7
HOTPOTQA 59.5 61.1 61.3
ELI5 78.6 78.8 72.8
FEVER 86.6 88.4 92.3
WOW 65.5 66.0 65.4

Table 5: Results using varied context filtering measures.

5.2 In-Depth Analysis for Different Tasks488

Extractive tasks performs the best with an STRINC489

context filter, which reasonably aligns with their ex-490

tractive nature. While STRINC strategy falls short491

on abstractive tasks due to empty filtered content,492

LEXICAL flexibly measures unigram-level matches493

and is the most suitable for dialog generation.494

      The horse began to become domesticated around 2000 BC.
      REFUTESo
q

      Domestication of the horse A number of hypotheses exist 
on many of the key issues regarding the domestication of the 
horse. Although horses appeared in Paleolithic cave art as early 
as 30,000 BCE, these were wild horses and were probably 
hunted for meat. How and when horses became domesticated 
is disputed. The clearest evidence of early use of the horse as a 
means of transport is from chariot burials dated c. 2000 BCE. 
However, an increasing amount of evidence supports the 
hypothesis that horses were domesticated in the Eurasian 
Steppes approximately 3500 BCE; recent discoveries in …

P

Figure 7: Filter outputs on a FEVER example. STRINC
gets empty context, LEXICAL selects red misleading
content, and CXMI selects green supporting content.

CXMI works the best for more complex tasks,495

i.e., multi-hop QA, long-form QA, and fact verifica-496

tion. Taking the fact verification task in Figure 7 for497

example, while “REFUTED” claims often contain498

noisy contents, such as “2000 BC”, lexical mea-499

sures would falsely pick the misleading content500

that matches “2000 BC” but is about “evidence of501

early use” instead of “become domesticated”. Aug-502

menting this can reinforce the misleading fact503

(“2000 BC”) and deteriorate model generation. In 504

comparison, selecting only the content supportive 505

of making factual judgment can inform that horses 506

became domesticated around “3500 BCE”. 507

6 Related Work 508

Augmented Generation Providing additional 509

contexts to generation are effective (Lewis et al., 510

2020; Guu et al., 2020; Mialon et al., 2023) to many 511

knowledge-intensive tasks (Petroni et al., 2021). 512

Many works explored retrieval at varied granularity: 513

paragraph (Lee et al., 2019; Feldman and El-Yaniv, 514

2019), phrase (Lee et al., 2021), and even token 515

levels (Khandelwal et al., 2020; Alon et al., 2022). 516

They all revealed a trade-off between retrieval and 517

generation difficulty: it is easier to retrieve longer 518

sequences, but harder to generate from them, pre- 519

sumably because of the noisier content impairing 520

models (Shi et al., 2023). Our method allows arbi- 521

trary passage sizes at retrieval time, and alleviates 522

this in-passage distraction via filtering. 523

Optimizing Retrieval for Augmentation Many 524

works post-process retrieved content to augment 525

the generation. A common way is to rerank pas- 526

sages and provide only the top few under limited 527

input capacity, based on the query-passage simi- 528

larity (Nogueira and Cho, 2020), reader prediction 529

majority (Mao et al., 2021), and utility for gener- 530

ation (Wang et al., 2018). Asai et al. (2022) re- 531

moves passages having low evidentiality scores, 532

and (Mallen et al., 2023) skips retrieval when un- 533

necessary. Nonetheless, these methods operate on 534

the coarse passage level, thus still suffering from 535

in-passage distractions. Our method operates at a 536

more fine-grained sentence level, and can capture 537

more subtle variances. 538

7 Conclusion 539

We propose a context filtering method, FILCO, to 540

provide precisely supportive content to assist model 541

generations, which effectively removes distracting 542

content in both passages partially supporting and ir- 543

relevant to the queries. Applying our method brings 544

an average of 2.8 and 3.0 point increase with FLAN- 545

T5 and LLAMA2, across six knowledge-intensive 546

language datasets from question answering, fact 547

verification, to knowledge-grounded dialog gen- 548

eration. Our work also reveals varied recipes to 549

effectively filter context for different tasks. We 550

hope that FILCO can facilitate more developments 551

toward faithful generations in more scenarios. 552

8



Limitations553

Our proposed method has been shown effective554

across various tasks, however, may be in certain555

data domains, under automatic evaluation metrics,556

and with sufficient computational resources.557

Our approach is domain-agnostic in principle,558

however, all the datasets we experiment with are559

built from Wikipedia articles, i.e., the open domain.560

Tasks of other domains such as news (Trischler561

et al., 2017), biomedical knowledge (Nentidis et al.,562

2023), and even fictional stories (Kočiský et al.,563

2018; Xu et al., 2022), can readily adopt our564

method and potentially benefit from it. Nonethe-565

less, we encourage readers to verify its effective-566

ness before directly extrapolating our conclusion567

to special-domain datasets.568

We evaluate model retrieval, filtering, and gener-569

ation performance using automatic metrics such as570

Exact Match and Unigram F1, which have become571

the standard metrics. Beyond lexical-based metrics,572

we keep open to neural- or human-based evalua-573

tions, given the potentially inaccurate automatic574

measures, especially with increasingly complex575

tasks (Pugaliya et al., 2019) and models of greater576

capacities (Kamalloo et al., 2023).577

Our method requires training models to (i) filter578

context, and (ii) generate output, which necessitates579

certain computational resources, according to the580

model architecture and size of choice. Nonetheless,581

our method costs less computation compared to582

traditional full-passage augmentation. As shown583

by §5, a generation model with filtered content584

requires at least 4.7 times less computation, at both585

training and inference time.586
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