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Abstract

Algorithmic tools are often used to make decisions about people in high-stakes
domains. In the presence of such automated decision making, there is incentive
for strategic agents to modify their input to the algorithm in order to receive a
more desirable outcome. While previous work on strategic classification attempts
to capture this phenomenon, these models fail to take into account the multiple
actions a decision maker usually has at their disposal, and the fact that they often
have access only to bandit feedback. Indeed, in standard strategic classification, the
decision maker’s action is to either assign a positive or a negative prediction to the
agent, and they are assumed to have access to the agent’s true label after the fact. In
contrast, we study a setting where the decision maker has access to multiple actions
but only can see the outcome of the action they assign. We formalize this setting as a
contextual bandit problem, in which a decision maker must take actions based on a
sequence of strategically modified contexts. We provide an algorithm with no regret
compared to the best fixed policy in hindsight if the agents’ were truthful when
revealing their contexts (i.e., no-strategic-regret) for the two action setting, and
prove that sublinear strategic regret is generally not possible for settings in which
the number of actions is greater than two. Along the way, we obtain impossibility
results for multi-class strategic classification which may be of independent interest.

1 Introduction

When subjugated to algorithmic decision making, decision subjects may strategically modify
their input to the algorithm in order to receive a better outcome.This may be viewed as a form of
distribution shift in which the data distribution the machine learning (ML) algorithm observes has
been strategically altered. It is therefore desirable to design reliable ML algorithms in the presence
of such strategic interactions. While this area of study has received much recent interest in the
literature under the name of strategic classification (see Section 2 for a list of related work), current
work in this area fails to capture several salient features of reality, as most models only consider
binary classification or linear regression settings under full feedback (i.e., the decision maker sees
the agent’s true label after making a prediction). In contrast, we study a model in which a decision
maker must assign a strategic agent one of several actions under bandit feedback (i.e., the decision
maker only observes some reward for the action they assign). Our model captures several settings of
practical interest including (1) personalized shopping, in which an online platform (decision maker)
must decide which level of discount (action) to give to give to customers (strategic agents) given
their previous buying patterns and (2) lending, in which a bank (decision maker) needs to decide
which type of loan (e.g., high-interest, low-interest, no loan) to offer to applicants (strategic agents)
given their credit history. Our main contributions are as follows: (1) We formalize the strategy-aware
contextual bandit setting, in which a decision maker must assign a sequence of strategic agents
one of n actions, and observes their outcomes under bandit feedback. (2) For n = 2 actions, we
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Interaction protocol: Contextual bandits under strategic manipulations
For each round t ∈ [T ]:

1. Decision maker publicly commits to a mapping πt : X → A. Agent Γt arrives with private
type xt.

2. Agent t strategically selects context x′
t according to Assumption 3.3.

3. Decision maker observes context x′
t and plays action at = πt(x

′
t).

4. Decision maker receives reward rDt (at) and agent receives reward rA(at).

Figure 1: Description of the strategy-aware contextual bandit setting we consider, which may be
viewed as a generalization of the contextual bandit problem with linear rewards.

show that it is possible to minimize strategic regret, a strong notion of hindsight rationality. (3)
Finally, we show that in sharp contrast to the two-action setting, when n ≥ 3 there exist cases where
achieving sublinear strategic regret is not possible. Along the way, we obtain impossibility results
for multi-class strategic classification which may be of independent interest. In particular, we show
that there exist situations in which perfect classification under strategic responses is not possible
with three or more labels, even if agents are linearly separable before strategic modification.

2 Related Work

Our work is closely related to two lines of work: learning in the presence of strategic behavior (e.g.,
[3, 5, 9, 12, 14, 15, 18, 13, 6, 11, 17, 19, 7]) and contextual bandits (see e.g. [16, 21, 22, 20, 8, 1, 10, 2]
for a highly incomplete list).

Strategic learning. The problem of strategic classification was first introduced in Hardt et al.
[12]. The original formulation considers a sequential game between a “jury” (decision maker),
who publishes a classifier, and a “contestant” (strategic agent), who best responds by strategically
modifying their observable features. In the years since, there have been extensions to online learning
(Dong et al. [9], Chen et al. [7], Ahmadi et al. [3]), repeated interactions (Harris et al. [14]), and
social learning settings (Bechavod et al. [5]), although to the best of our knowledge, we are the first
to consider multi-class strategic classification under bandit feedback.

Contextual bandits. The contextual bandit setting can be thought of a multi-armed bandit problem,
in which the bandit algorithm has access to extra information about the reward of each action
(i.e., the context) at every round. Various relationships between contexts and rewards have been
studied; several of the most common are Lipschitz contextual bandits (e.g., Hazan and Megiddo
[16], Lu et al. [21], Slivkins [22]), in which the expected reward of each arm is Lipschitz in the
context, linear contextual bandits (e.g., Li et al. [20], Chu et al. [8]), where the expected reward
is linear in the context, and agnostic algorithms (e.g., Agarwal et al. [2], Foster and Rakhlin [10]),
which make no assumptions on the underlying reward distribution, but assume access to various
classification/regression oracles. In particular, our setting is most similar to that of linear contextual
bandits, although with the notable exception that in our setting, the expected reward of each action
is linear in the agent’s private type. Since each agent’s private type is not observed by the decision
maker, this introduces significant additional difficulties in the decision maker’s learning problem and
leads to our impossibility results in Section 5.

3 Model and Preliminaries

We consider a setting in which a decision maker interacts with a sequence of T strategic agents. At
each time t ∈ [T ], a new agent Γt arrives with a private type xt ∈ X ⊂ [−L,L]d for L ∈ R+, and
presents a context x′

t ∈ Rd to the decision maker. Note that it is possible for x′
t = xt, but the two

do not necessarily coincide. Given a context x′
t, the decision maker takes an action at from some set

of actions A, where A = {1, . . . , n}. For each action a ∈ A, we assume that the decision maker’s
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expected reward E[rDt (a)] ∈ [−1, 1] is a linear function of the agent’s private type. In particular,
we make the following assumption on the decision maker’s reward.
Assumption 3.1 (Linearity of Rewards). The decision maker reward of each arm a ∈ A at time t is
given by

rDt (a) = ⟨θa,xt⟩+ εt

for some θa ∈ Rd which is unknown to the decision maker, where εt is zero-mean sub-Gaussian noise.

Note that if x′
t = xt ∀t ∈ [T ], our setting reduces to that of linear contextual bandits (e.g, [20, 2]). In

contrast to the decision maker’s reward, we assume that each agent’s reward rAt (a) is a function of the
action alone, i.e., rAt (a) = rA(a),∀t ∈ [T ], and is known to the decision maker. In the personalized
shopping example, a consumer’s private type can be thought of as the type of customer they are
(e.g., loyal customer, new customer, thrifty customer, etc.). If customers knew the online platform
was going to offer them a discount based on their buying habits, they may strategically alter their
short-term behavior on the platform (i.e., their context) in order to obtain the highest discount possible.

The decision maker’s policy πt : X → A at time t is a mapping from agent contexts to actions. In
particular, the goal of the decision maker is to deploy a sequence of policies π1, . . . πT in order to
minimize strategic regret, which is defined as follows:
Definition 3.2 (Strategic Regret). The expected strategic regret of a sequence of policies {πt}Tt=1
is defined as the cumulative expected reward of π∗(x) := argmaxa∈A

∑
t∈[T ] E[rDt (a)|x], the

optimum-in-hindsight policy given the agents’ private types, minus the cumulative expected reward
of the deployed sequence of policies. Formally,

E[R(T )] =

T∑
t=1

E[rDt (π∗(xt))|Γt]︸ ︷︷ ︸
reward of optimal policy given private type

− E[rDt (πt(x
′
t))|Γt]︸ ︷︷ ︸

realized reward given context

A decision maker with sublinear strategic regret will approach the performance of the best-in-
hindsight policy if agents are not strategic as T → ∞, thereby learning to “account” for the strategic
behavior of agents in the long run. Given the decision maker policy πt, it is natural for an agent
to choose their context in a way which maximizes their reward. Specifically, we assume that agent Γt

determines their context by strategically modifying their private type based on the decision maker’s
policy, subject to a constraint on the amount of modification which is possible. In addition to being a
common assumption in the literature (e.g., [7, 18, 14]), this budget constraint on the amount an agent
can modify their private type reflects the fact that agents have inherent constraints on the amount
of time and resources they can spend on modification.
Assumption 3.3 (Agent Best Response). We assume that agent Γt best-responds to the decision
maker’s policy πt in order to maximize their expected reward, subject to the constraint that their
context x′

t is within a δ-radius of their private type xt. Formally, we assume that the agent solves the
following optimization to determine their context:

x′
t ∈ arg max

x′∈X
rA(πt(x

′))

s.t. ∥x′ − xt∥2 ≤ δ

Furthermore, we assume that if an agent is indifferent between modifying their context and not
modifying, they choose not to modify. See Figure 1 for a summary of the setting we consider. Finally,
we conclude this section by introducing the idea of an equivalence region, which will be useful when
discussing our theoretical contributions. Roughly speaking, an equivalence region corresponds to all
contexts for which a policy π(·) assigns action a.
Definition 3.4 (Equivalence region). An equivalence region for an action a ∈ A under policy π is
defined as the set of all x ∈ X such that π(x) = a.

For the policies we consider, each equivalence region will be a closed, convex set.

4 Sublinear strategic regret for two actions

We now outline an algorithm which achieves sublinear strategic regret in the two-action setting.
W.l.o.g., we assume that rA(2) > rA(1) for the remainder of the subsection. While our algorithm
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Figure 2: (Left: Proposition 4.1) The optimal policy in the non-strategic setting assigns action 1 to the
left of the line ⟨β12,x⟩ = 0 (blue) and action 2 to the right. (Right: Proposition 4.2) In the strategic
setting, the optimal decision boundary is shifted by δ∥β12∥2. In both figures, the equivalence region
for a = 1 is denoted by white and that for a = 2 in gray.

is similar to previous algorithms from the “strategic classification” literature (e.g., [12, 3]), we view
it as an important structural result which (1) illustrates that sublinear strategic regret is possible in
the two action setting and (2) provides intuition as to why this is generally not possible in the case
of 3+ actions. We begin with a result for the offline, non-strategic setting.
Proposition 4.1. In the two-action setting in which agents are not strategic (i.e., x′

t = xt,∀t ∈ [T ])
and θ1,θ2 are known to the decision maker, the optimal policy assigns action at = 1 if ⟨β12,x

′
t⟩ ≥ 0

and action at = 2 otherwise, where β12 := θ1 − θ2.

Proposition 4.1 follows from Assumption 3.1. While the decision boundary of Proposition 4.1
is optimal in the non-strategic setting, its performance may suffer in the strategic setting (i.e., if
x′
t ̸= xt). In order to account for potential strategic manipulations, the optimal decision boundary

needs to be shifted by an amount proportional to the agents’ ability to manipulate their private
type. Intuitively, this shift disincentives strategic manipulations from the agents who would have
manipulated without such shift.
Proposition 4.2. In the two-action setting in which agents strategically reveal their contexts according
to Assumption 3.3, the optimal policy assigns action at = 1 if ⟨β12,x

′
t⟩ ≥ −δ∥β12∥2 and action

at = 2 otherwise, where β12 := θ1 − θ2. Moreover, the performance of such a policy when agents
strategically reveal their contexts according to Assumption 3.3 matches that of Proposition 4.1 in the
non-strategic setting (i.e., when x′

t = xt,∀t ∈ [T ]).

See Figure 2 for a visual depiction of the policies of Propositions 4.1 and 4.2. Given the result
of Proposition 4.2, it is rather straightforward to achieve sublinear strategic regret in the online
setting by using the standard “explore-first” technique. In particular, under minor distributional
assumptions on the population of agents (e.g., the covariance of the agent population has full rank),
the decision maker can apply Algorithm 1 to achieve O(T 2/3) strategic regret.
Theorem 4.3 (Abridged; see Appendix A.2 for formal statement). For sufficiently large T , if
T0 = Õ(T 2/3)

E[R(T )] = Õ(d1/3T 2/3),

where Õ(·) suppresses terms which do not depend on T, d, as well as logarithmic terms.

The idea of Algorithm 1 is as follows: the first T0 rounds are the exploration phase, i.e., contexts
are not used to make decisions about which action to assign. Since the agents have no incentive
to modify their private type, x′

t = xt,∀t ∈ [T0]. The decision maker then uses data from the explore
phase to estimate β12, and acts greedily according to β̂12 for the remaining T − T0 rounds.

5 Ω(T ) strategic regret for more than two actions

In the previous subsection, we showed that it is generally possible to achieve sublinear strategic regret
in the two-action strategy-aware contextual bandit setting using a linear separating hyperplane, shifted
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ALGORITHM 1: Explore-first for online strategic classification with bandit feedback (Explore-First)
Data: n ≥ 0
for t = 1, . . . , T0 do

if t ≤ T0/2 then
Assign action a1

else
Assign action a2

end
end
Estimate θ1, θ2 via OLS as θ̂1, θ̂2. Let β̂12 := θ̂1 − θ̂2.
for t = T0 + 1, . . . , T do

Assign action

at =

{
1 if ⟨β̂12,xt⟩ − δ∥β̂12∥2 ≥ 0

2 o.w.

end

Figure 3: Visualization of the “bad example” from Theorem 5.1. Blue lines represent optimal decision
boundaries in the non-strategic setting. The distribution over agent private types for which perfect
classification is not possible puts probability mass 1/5 on the orange dot and each of the orange lines.

by an appropriate amount. However, we will now show that this intuition does not carry over to the
3+ action setting. Furthermore, we show that there exist situations for which no linear policy (e.g., set
of linear hyperplanes) can achieve sublinear strategic regret if the decision maker has three or more
actions.1 As was the case in Section 4, we begin with a result for the offline setting. Note that this
result immediately implies that similar “bad examples” exist for settings in which n > 3 and d > 2.

Theorem 5.1. Suppose X = R2, n = 3, and rA(2) > rA(1) = rA(3). For θ1 = [1 0.5]⊤,
θ2 = [0 1]⊤, θ3 = [−1 0.5]⊤, there exists a distribution over agent private types such that no linear
policy can achieve perfect classification if agents choose their contexts according to Assumption 3.3.

Proof Sketch. The proof of Theorem 5.1 proceeds by constructing a “bad” distribution over agents
(shown in orange in Figure 3) in which it is necessary to shift the separating hyperplanes β12 and β23
(defined analogously to β12 in Proposition 4.2) in order to achieve perfect classification on a certain
subpopulation of agents (far-left and far-right orange lines in Figure 3). Next, we show that shifting
β12 and β23 by such an amount will make it impossible to classify another agent subpopulation
(orange dot in Figure 3). Finally, we conclude that perfect classification of this distribution of strategic
agents is not possible. Note that this is in contrast to the non-strategic setting, in which this agent
population is trivially linearly separable.

Proof. Recall that assigning at = argmaxa∈A ⟨θa,xt⟩ will achieve perfect classification in the
non-strategic setting. Define β12 := θ1 − θ2 = [1 − 0.5]⊤, β13 := θ1 − θ3 = [2 0]⊤, and

1We hypothesize that this impossibility holds for more expressive policy classes, and we view extending our
results to such settings as an important direction for future research.
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β23 := θ2 − θ3 = [1 0.5]⊤ Assigning actions according to the following set of decision boundaries
is equivalent to assigning at = argmaxa∈A ⟨θa,xt⟩:

at =


1 if ⟨β12,xt⟩ ≥ 0 and ⟨β13,xt⟩ ≥ 0

2 if ⟨β12,xt⟩ < 0 and ⟨β23,xt⟩ ≥ 0

3 if ⟨β13,xt⟩ < 0 and ⟨β23,xt⟩ < 0

See Figure 3 for a visual depiction of the decision space (blue lines).

Consider the following agent private types: x1 = [0 α1]
⊤, X2 = {x : ⟨β12,x⟩ = α2, x[1] > 0},

X ′
2 = {x : ⟨β12,x⟩ = β12[2] · α1, x[1] > 0}, X3 = {x : ⟨β23,x⟩ = −α2, x[1] < 0},

X ′
3 = {x : ⟨β23,x⟩ = β23[2] ·α1, x[1] < 0}, where α1, α2 > 0 and the corresponding distribution

over X : P(xt = x1) =
1
5 , P(xt ∈ X2) =

1
5 ,P(xt ∈ X ′

2) =
1
5 , P(xt ∈ X3) =

1
5 , P(xt ∈ X ′

3) =
1
5 .

Suppose that rA(2) > rA(1) = rA(3). Under this setting, we make use of the following two lemmas
to identify necessary conditions on the hyperplane shift ε in order to achieve perfect classification in
the strategic setting:

Lemma 5.2. To prevent gaming, the decision maker must assign action a2 only if ⟨β12,xt⟩+ ε12 <
0 and ⟨β23,xt⟩ − ε23 ≥ 0, where ε12 ≥ δ∥β12∥2 − α2 and ε23 > δ∥β23∥2 − α2.

Lemma 5.3. To correctly classify agents with xt = x1, the decision maker must assign action
a2 only if ⟨β12,xt⟩ + ε12 < 0 and ⟨β23,xt⟩ − ε23 ≥ 0, where ε12 ≤ −β12[2](α1 + δ) and
ε23 ≤ β23[2](α1 + δ).

An immediate consequence of the above two lemmas is that unless δ∥β12∥2−α2 ≤ −β12[2](α1+δ)
and δ∥β23∥2 − α2 ≤ β23[2](α1 + δ), perfect classification is not possible. In the above setting, this
implies that perfect classification is not possible unless 1

2α1 + α2 ≥ δ(
√
1.25− 0.5), which does not

hold for sufficiently small α1, α2.

The following corollary follows immediately from Theorem 5.1 and Definition 3.2.
Corollary 5.4. In the setting of Theorem 5.1, no online learning algorithm can achieve sublinear
strategic regret.

6 Conclusions and future research

In this extended abstract, we showed a separation between strategic classification and multi-class
strategic classification, which immediately implies an impossibility result for the strategy-aware
contextual bandit setting with three or more actions. There are several exciting directions for future
research.

The most important direction for future work is to identify a set of sufficient or necessary conditions
for which the impossibility result of Theorem 5.1 holds. In settings for which it does not hold, it
would be interesting to see if ideas similar to the explore-exploit algorithm of Section 4 achieve
sublinear strategic regret for 3+ actions. Another exciting direction would be to give a lower bound on
strategic regret in the two-action setting. In particular, it is unclear if the Ω(T 1/2) lower bound from
the non-strategic setting applies, or if Ω(T 2/3) strategic regret is the best one can do. If the Ω(T 1/2)
lower bound does indeed hold, deriving an algorithm which obtains this rate would be interesting.
Finally, one may argue that strategic regret is too strong of a benchmark given the negative result
of Theorem 5.1. Therefore, it may be desirable to derive algorithms with low Stackelberg regret
[4] in the strategy-aware contextual bandit setting.
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A Proofs from Section 4

A.1 Proof of Proposition 4.2

Proposition A.1. In the two-action setting in which agents strategically reveal their contexts accord-
ing to Assumption 3.3, the optimal policy assigns action at = 1 if ⟨β12,xt⟩ ≥ −δ∥β12∥2 and action
at = 2 otherwise, where β12 := θ1 − θ2.

Proof. Denote the unit vector along the direction of β12 as n = β12

∥β12∥2
. We proceed on a case-by-

case basis.

Case 1: The policy of Proposition 4.1 assigns action at = 1 to agent Γt:

Since at = 1, ⟨β12,xt⟩ ≥ 0. In order to move across the boundary under as little modification as
possible, the agent should modify their context in the direction of −n. However, the most they can
manipulate their context by is δ, and ⟨β12,xt − δn⟩ ≥ −δ∥β12∥2 since ⟨β12,xt⟩ ≥ 0. Therefore no
valid manipulations exist for which the policy of Proposition 4.2 assigns action a = 2 to agent Γt.

Case 2: The policy of Proposition 4.1 assigns action at = 2 to agent Γt:

Since at = 2, ⟨β12,xt⟩ < 0. If agent Γt modifies their private from xt to context xt − δn,
⟨β12,x

′
t⟩ = ⟨θ1 − θ2,xt⟩ − δ⟨θ1 − θ2,n⟩ < −δ∥β12∥2. Therefore, they can receive action a = 2

under the policy of Proposition 4.2 by strategically modifying their private type from xt to context
xt − δn.

A.2 Proof of sublinear strategic regret for two actions

Lemma A.2. If T0 ≥ 4dL
σ2
x log 1

2 e
log 2d

δ ,

|⟨θ̂1 − θ1,x⟩| ≤
4Lσε

√
d log(2d/δ)√
T0σ2

x

with probability at least 1− δ. An identical bound holds for |⟨θ̂2 − θ2,x⟩|.

Proof. ∣∣∣〈θ̂1 − θ1,x
〉∣∣∣ ≤ ∥θ̂1 − θ1∥2∥x∥2

≤ L
√
d∥θ̂1 − θ1∥2

= L
√
d

∥∥∥∥∥∥∥
T0/2∑

t=1

xtx
⊤
t

−1
T0/2∑
t=1

xt(x
⊤
t θ1 + εt)− θ1

∥∥∥∥∥∥∥
2

= L
√
d

∥∥∥∥∥∥∥
T0/2∑

t=1

xtx
⊤
t

−1
T0/2∑
t=1

xtεt

∥∥∥∥∥∥∥
2

≤ L
√
d

∥∥∥∥∥∥∥
T0/2∑

t=1

xtx
⊤
t

−1
∥∥∥∥∥∥∥
2

∥∥∥∥∥∥
T0/2∑
t=1

xtεt

∥∥∥∥∥∥
2

=
L
√
d
∥∥∥∑T0/2

t=1 xtεt

∥∥∥
2

σmin(
∑T0/2

t=1 xtx⊤
t )

=
L
√
d
∥∥∥∑T0/2

t=1 xtεt

∥∥∥
2

λmin(
∑T0/2

t=1 xtx⊤
t )
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Bounding
∥∥∥∑T0/2

t=1 xtεt

∥∥∥
2

Since xt(j) ∈ [−L,L] and εt is a sub-Guassian random variable with variance σ2
ε , xt(j)εt is a

zero-mean sub-Gaussian random variable with variance at most L2σ2
ε . Therefore, we can use the

following result to bound
∥∥∥∑T0/2

t=1 xtεt

∥∥∥
2

with high probability.

Theorem A.3 (High probability bound on the sum of unbounded sub-Gaussian random variables).
Let xt ∼ subG(0, σ2). For any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣∣∣

T∑
t=1

xt

∣∣∣∣∣ ≤ σ
√

2T log(1/δ).

Using Theorem A.3, ∥∥∥∥∥∥
T0/2∑
t=1

xtεt

∥∥∥∥∥∥
2

=

√√√√√ d∑
j=1

T0/2∑
t=1

xt(j)εt

2

≤

√√√√ d∑
j=1

(
Lσε

√
T0 log(1/δj)

)2

= Lσε

√√√√ d∑
j=1

T0 log(1/δj)

= Lσε

√
dT0 log(d/δ),

with probability at least 1− δ, where the last line follows from a union bound where δj = δ/d for all
j ∈ [d].

Bounding λmin

(∑T0/2
t=1 xtx

⊤
t

)
Let Y =

∑T0/2
t=1 xtx

⊤
t .

µmin = λmin(E[Y ])

= λmin(E[
T0/2∑
t=1

xtx
⊤
t ])

= λmin(
1

2
T0E[x1x

⊤
1 ])

=
1

2
T0λmin(E[x1x

⊤
1 ])

=
1

2
T0(λmin(σ

2
xId×d + E[x1]E[x⊤

1 ]))

λmin(σ
2
xId×d) and λmin(E[x1]E[x⊤

1 ]) commute, so

µmin =
1

2
T0(λmin(σ

2
xId×d) + λmin(E[x1]E[x⊤

1 ]))

=
1

2
T0λmin(σ

2
xId×d)

=
1

2
T0σ

2
xλmin(Id×d)

=
1

2
T0σ

2
x

We use the following result to bound λmin

(∑T0/2
t=1 xtx

⊤
t

)
with high probability:

10



Theorem A.4 (Matrix Chernoff). Consider a finite sequence {Xt}Tt=1 of independent, random,
Hermitian matrices with common dimension d. Assume that

0 ≤ λmin(Xt) and λmax(Xt) ≤ L′ for each index t

Introduce the random matrix

Y =

T∑
t=1

Xt.

Define the minimum eigenvalue µmin of the expectation E[Y ]:

µmin = λmin(E[Y ]) = λmin

(
T∑

t=1

E[Xt]

)
Then,

P(λmin(Y ) ≤ (1− ε)µmin) ≤ d

(
e−ε

(1− ε)1−ε

)µmin/L
′

for ε ∈ [0, 1).

λmax(xtx
⊤
t ) ≤ dL, so L′ = dL. Pick ε = 1

2 . Applying Theorem A.4 to λmin(
∑T0/2

t=1 xtx
⊤
t ),

P(λmin(

T0/2∑
t=1

xtx
⊤
t ) ≤

1

4
T0σ

2
x) ≤ d

(
1

2
e

)−T0σ2
x

4dL

(1)

After inverting the bound, we see that λmin(
∑T0/2

t=1 xtx
⊤
t ) ≥ 1

4T0σ
2
x with probability at least 1− δ

if T0 ≥ 4dL
σ2
x log 1

2 e
log d

δ .

Combining the bounds for
∥∥∥∑T0/2

t=1 xtεt

∥∥∥
2

and λmin

(∑T0/2
t=1 xtx

⊤
t

)
via a union bound, we obtain

our stated result.

Theorem A.5. If T0 ≥ 4dL
σ2
x log 1

2 e
log(2dT 4), Algorithm Explore-First achieves expected strategic

regret

E[R(T )] ≤ T0 + T
16Lσε

√
d log(4dT 4)√
T0σ2

x

Proof.

E[R(T )] =

T∑
t=1

E[r(πS(xt))|xt]−
T∑

t=1

E[r(πt(x
′
t))|x′

t]

≤ T0 +

T∑
t=T0+1

E[r(πS(xt))|xt]−
T∑

t=1

E[r(πt(x
′
t))|x′

t]

= T0 +

T∑
t=T0+1

⟨θa∗
t
− θat ,xt⟩

If T0 ≥ 8dL
σ2
x log 1

2 e
log 2d

δ , the following two events hold simultaneously with probability at least 1− δ:

|⟨θ̂1 − θ1,x⟩| ≤
4Lσε

√
d log(4d/δ)√
T0σ2

x

|⟨θ̂2 − θ2,x⟩| ≤
4Lσε

√
d log(4d/δ)√
T0σ2

x

11



If at is the suboptimal action to assign to agent t, then with probability at least 1− δ,

⟨θat ,xt⟩+
4Lσε

√
d log(4d/δ)√
T0σ2

x

≥
〈
θ̂at

,xt

〉
≥
〈
θ̂a∗

t
,xt

〉
≥
〈
θa∗

t
,xt

〉
−

4Lσε

√
d log(4d/δ)√
T0σ2

x

(2)

Therefore,
〈
θa∗

t
− θat ,xt

〉
≤ 8Lσε

√
d log(4d/δ)√
T0σ2

x
with probability at least 1− δ.

By an argument similar to the proof of Proposition 4.2, the Explore-First’s strategic regret is the
same as that of making decisions according to β̂12 on non-strategic agents. Using this observation,
we can set δ = 1

T 4 and upper-bound expected strategic regret by

E[R(T )] ≤ T0 + T
16Lσε

√
d log(4dT 4)√
T0σ2

x

Corollary A.6. If T0 =
4L2/3σ2/3

ε (d log(4dT 4))1/3

σ
4/3
x

T 2/3 and T ≥ 2L1/2d
σεσx(log

1
2 e)

3/2 log
16L1/2d2

σεσx(log
1
2 e)

3/2 ,
then

E[R(T )] ≤ 16L2/3σ
2/3
ε (d log(4dT 4))1/3

σ
4/3
x

T 2/3

The proof of Corollary A.6 follows straightforwardly from Theorem A.5 and the inequality log x ≤
αx− logα− 1 for any α, x > 0.

B Proofs from Section 5

B.1 Proof of Lemma 5.2

Lemma B.1. To prevent gaming, the decision maker must assign action a2 only if ⟨β12,xt⟩+ ε12 <
0 and ⟨β23,xt⟩ − ε23 ≥ 0, where ε12 ≥ δ∥β12∥2 − α2 and ε23 > δ∥β23∥2 − α2.

Proof. Since rA(1) = rA(3), agents are indifferent between receiving actions 1 and 3, and so β13
is the optimal decision boundary between the a = 1 and a = 3 equivalence regions. Due to the
structure of the distribution over agents, it is w.l.o.g. to consider linear decision boundaries which are
parallel to β12 and β23.

Since rA(2) > rA(1), an agent with private type xt ∈ X2 has incentive to choose their context such
that ⟨β12,x

′
t⟩+ε12 < 0, where x′

t is agent t’s context. It is w.l.o.g. to assume the agent modifies their
private type in the direction perpendicular to β12. The most the agent can modify in this direction is
−δβ12

∥β12∥2
. Therefore if we want ⟨β12,x

′
t⟩+ ε12 ≥ 0,

⟨β12,xt −
δβ12

∥β12∥2
⟩+ ε12 ≥ 0

⟨β12,xt⟩ − δ∥β12∥2 + ε12 ≥ 0

α2 − δ∥β12∥2 + ε12 ≥ 0

Similarly for an agent xt ∈ X3,

⟨β23,xt +
δβ23

∥β23∥2
⟩ − ε23 < 0

⟨β23,xt⟩+ δ∥β23∥2 − ε23 < 0

−α2 + δ∥β23∥2 − ε23 < 0

12



B.2 Proof of Lemma 5.3

Lemma B.2. To correctly classify agents with xt = x1, the decision maker must assign action
a2 only if ⟨β12,xt⟩ + ε12 < 0 and ⟨β23,xt⟩ − ε23 ≥ 0, where ε12 ≤ −β12[2](α1 + δ) and
ε23 ≤ β23[2](α1 + δ).

Proof. It is w.l.o.g. to assume that x′
t = [0 α1 + δ]⊤. If we want ⟨β12,x

′
t⟩+ ε12 < 0, then

β12[2](α1 + δ) + ε12 < 0

Similarly, if we want ⟨β23,x
′
t⟩ − ε23 ≥ 0, then

β23[2](α1 + δ)− ε23 ≥ 0

13
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