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ABSTRACT

Proteins adopt multiple structural conformations to perform their diverse biologi-
cal functions, and understanding these conformations is crucial for advancing drug
discovery. Traditional physics-based simulation methods often struggle with sam-
pling equilibrium conformations and are computationally expensive. Recently,
deep generative models have shown promise in generating protein conformations
as a more efficient alternative. However, these methods predominantly rely on the
diffusion process within a 3D geometric space, which typically centers around the
vicinity of metastable states and is often inefficient in terms of runtime. In this pa-
per, we introduce Structure Language Modeling (SLM) as a novel framework for
efficient protein conformation generation. Specifically, the protein structures are
first encoded into a compact latent space using a discrete variational auto-encoder,
followed by conditional language modeling that effectively captures sequence-
specific conformation distributions. This enables a more efficient and interpretable
exploration of diverse ensemble modes compared to existing methods. Based on
this general framework, we instantiate SLM with various popular LM architec-
tures as well as proposing the ESMDiff, a novel BERT-like structure language
model fine-tuned from ESM3 with masked diffusion. We verify our approach in
various scenarios, including the equilibrium dynamics of BPTI, conformational
change pairs, and intrinsically disordered proteins. SLM provides a highly effi-
cient solution, offering a 20-100x speedup than existing methods in generating
diverse conformations, shedding light on promising avenues for future research.

1 INTRODUCTION

Protein structure dynamics are fundamental to understanding the biological functions of proteins.
The ability of proteins to adopt multiple conformations is crucial for their function in influencing
interactions with other biomolecules and the environment. Traditional computational methods, such
as molecular dynamics (MD) simulations, have long been used to explore these dynamics. However,
these methods are computationally expensive and time-consuming. Structure prediction models,
such as AlphaFold 2 (Jumper et al., 2021) and RosettaFold (Baek et al., 2021), have made significant
strides in predicting static protein structures, yet often fail to accurately capture the dynamic nature
of proteins and their multiple conformations (Chakravarty & Porter, 2022).

Recently, significant progress has been made by adopting deep generative models as conformation
samplers to efficiently explore the complicated protein conformational space. For example, Noé
et al. (2019) adopts normalizing flow to match the underlying Boltzmann distribution by learning
from simulation data. Despite their potential, normalizing flow-based methods (Noé et al., 2019;
Klein et al., 2023) face significant challenges in modeling large protein systems with hundreds of
amino acids, as the invertibility constraint becomes a major obstacle when scaling up model param-
eters. As a remedy, denoising diffusion approaches (Jing et al., 2023; Lu et al., 2024; Wang et al.,
2024; Zheng et al., 2024) can efficiently learn from structural data, achieve good generalization, and
perform amortized inference. However, modeling high-dimensional protein structures explicitly in
their 3D Euclidean space can demand intensive computation and usually requires accounting for
special equivariant properties (Köhler et al., 2020). Furthermore, L2-based training objectives such
as denoising score matching (Song et al., 2020) tend to predict local perturbations rather than cap-
turing remote modes of alternative conformations (Wang et al., 2024). Consequently, these models
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may overallocate their capacity to learn structural noises in the training data instead of focusing on
low-frequency structural changes (Chou, 1985).

In complement with existing approaches, we present Structure Language Modeling (SLM), a novel
framework for protein conformation generation that performs generative modeling in the latent space
of protein structures. Inspired by the recent progress in developing structural vocabularies for pro-
tein representation learning (Su et al., 2023; Hayes et al., 2024), our approach first encodes structural
flexibility into a distribution over latent tokens using a discrete variational autoencoder, as illustrated
in Fig. 1. The discrete latent encoding removes high-frequency details of protein structures, form-
ing “structure languages” that effectively capture the uncertainty of complex protein conformations
(Fig. 2a); Conditional language modeling is then applied to these latent structure tokens, using amino
acid types as context to capture sequence-specific conformation distributions (Fig. 2b); Protein con-
formations can finally be reconstructed by mapping structure tokens into 3D space with a learned
decoder (Fig. 2c). By leveraging generative language modeling in the discrete latent space, SLM by-
passes the complexity of equivariant constraints associated with geometric symmetries and benefits
from enhanced model capacity. As a general framework, SLM is fully compatible with any existing
language model (LM) architectures and shows promising scalability. To further demonstrate the
versatility of our approach, we introduce ESMDiff, a novel BERT-like structure language model in-
stantiation fine-tuned from ESM3 (Hayes et al., 2024) with masked discrete diffusion (Austin et al.,
2021; Zhao et al., 2024) grounded in the SLM framework. Experimental results across various con-
formation generation scenarios demonstrate the state-of-the-art performance of SLM including the
representative ESMDiff model, achieving orders of magnitude faster speeds compared to existing
generative methods. The proposed framework paves the way for new research avenues in addressing
the protein conformation sampling challenge.

We summarize our key contributions as follows.

• We comprehensively explore an innovative
conformation generation framework based on
language modeling in the latent space, which
opens up potential research avenues.

• We introduce ESMDiff, a novel fine-tuned
variant of a state-of-the-art protein language
model, built on masked discrete diffusion.

• We demonstrate the superior capability of
structure language models by evaluating them
on various conformation generation settings
and comparing them with existing methods.

2 RELATED WORK

Flexibility

Flexibility

GLU49

GLY12

Figure 1: Residue flexibility (BPTI clusters,
Shaw et al. (2010)) reflected by the categori-
cal distribution over latent structure tokens. Dif-
ferent tokens (colored in different shades ) are
used to encode varying local structural patterns.

Protein language models. In recent years, several language models of protein sequence have been
built. Among these, the ESM-series (Rives et al., 2021; Lin et al., 2023; Hayes et al., 2024) and other
similar models (Elnaggar et al., 2021; Alley et al., 2019) have garnered great attention because of
their wide range of downstream applications such as protein engineering (Meier et al., 2021). On the
other hand, auto-regressive protein language models, based on either recurrent neural networks (Al-
ley et al., 2019), or Transformer including ProGen (Madani et al., 2023) and ProtGPT2 (Ferruz et al.,
2022), are able to generate de novo sequences with input controlling tokens. Specially, inverse fold-
ing models (Ingraham et al., 2019; Jing et al., 2020; Hsu et al., 2022; Dauparas et al., 2022; Gao
et al., 2022) learn to perform structure-based protein design with geometric-aware encoders.

Generative conformation sampling. Given the intensive computation of traditional MD simula-
tions, generative models have been used to learn conformation distributions in a data-driven fash-
ion. The Boltzmann generator (Noé et al., 2019) uses normalizing flow to fit the Boltzmann dis-
tribution from target-specific simulation data. Arts et al. (2023) extends this by using denoising
diffusion models for coarse-grained protein conformations. Furthermore, EigenFold (Jing et al.,
2023), Str2Str (Lu et al., 2024), AlphaFlow (Jing et al., 2024), ConfDiff (Wang et al., 2024), and
DiG (Zheng et al., 2024) leverage diffusion or flow matching to conditionally sample protein con-
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Figure 2: An illustration of the proposed SLM framework.

formations by learning from PDB data. Recently, AlphaFold3 (Abramson et al., 2024) revised the
structure decoder of AlphaFold2 to a diffusion-based module for diversified structure prediction.

Quantized representation for protein structures. Beside the prevailing diffusion models for pro-
tein structure, representation learning of protein structures using discrete variational autoencoders
(dVAE) has gained increasing attention in recent years. FoldSeek (van Kempen et al., 2022) is one of
the earliest attempt to build dVAE for fast structure search and alignment. Based on this, SaProt (Su
et al., 2023) constructs learned representations with both sequence and structure tokens as input,
while ProtT5 (Heinzinger et al., 2023) fine-tuned an existing language model to accept structure to-
kens as input. PVQD (Haiyan et al., 2023) applied latent diffusion in the embedding space of dVAE
for conditional protein structure generation. ProSST (Li et al., 2024) trained an autoencoder with K-
means clustering applied in the latent space. Gaujac et al. (2024) and Gao et al. (2024) respectively
build dVAE with large vocabularies for learning protein structure representations.

Remarks: Our work is closely related to these concurrent research directions by leveraging LMs to
model and efficiently perform conformation generation over the quantized representation of protein
structures. We refer to this framework as “structure language models” and describe them in detail.

3 PROTEIN CONFORMATION GENERATION WITH LANGUAGE MODELING

Notation. A protein withL residues is identified by its sequence of amino acid types c ∈ |S|L where
S is the vocabulary of 20 standard amino acids. The protein (backbone) structure is represented by
its composing 3D atom positions x ∈ X ≡ RL×4×3 including all backbone heavy atoms. Through
an encoder q(z|x), the structure x is encoded to a sequence of latent codes z ∼ q(z|x) where
z ≡ (z1, . . . ,zL) ∈ |V |L and V is the pre-specified vocabulary of latent codes; the structure tokens
z are decoded by first mapping to embedding vectors and then to the 3D structure x.

3.1 LEARNING THE SEQUENCE-STRUCTURE DISTRIBUTION

To address the conformation generation problem, we start with modeling the sequence-to-structure
translation distribution p(x|c) of interest and derive the learning objective in this section. To cir-
cumvent explicitly learning in the structure space, the roto-translation invariant1 latent represen-
tation z is introduced to encode 3D atomic protein structure. Given this, the target distribution
p(x|c) can be derived by marginalizing the joint distribution p(x|c) =

∫
z
p(x, z|c). We fur-

ther factorize this joint distribution according to the Bayes’ rule by isolating the latent variable
z: pθ,ϕ(x, z|c) = pϕ(x|c, z)pθ(z|c), where pϕ denotes the (decoding) distribution over the 3D

1For example, features like distance and angle are roto-translation invariant. This relationship can be for-
mally written as q(z|T ◦ x) ≜ q(z|R ◦ x+ t) = q(z|x), ∀T .
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protein structures given the structure token and sequence, and pθ denotes the conditional distribu-
tion over the structure tokens, respectively modeled by neural networks with parameter set ϕ, θ. This
gives rise to the evidence lower bound on the likelihood of model distribution over protein structures
conditioned on sequence:

log pθ,ψ(x|c) ≥ Eqψ(z|x) [log pϕ(x|c, z)]−DKL(qψ(z|x)∥pθ(z|c)) ≜ L(ϕ, θ), (1)

where ψ is introduced to parameterized the posterior distribution over latent representation z. Please
refer to the Appendix G.2.1 for the full derivation of Eq. 1. Directly optimizing the right-hand side
of Eq. 1 can be intractable and difficult since we have unknown posterior qψ . In practice, one
may adopt an one-step expectation–maximization (EM) approach (Dempster et al., 1977) by first
jointly learning pϕ and qψ with a simple and parameter-free prior distribution p(z|c), followed by
optimization on pθ with the learned p∗ϕ and q∗ψ similar to Van Den Oord et al. (2017). This yields the
overall two-stage and separable training pipeline:

Learning quantized representation for structure. With the prior p(z|c) fixed, we begin by max-
imizing the ELBO L(ϕ, θ) with respect to the encoder ψ and decoder ϕ, using protein structure
samples D = {(c,x)}. In the context of discrete latent spaces, this process is analogous to training
a discrete VAE (dVAE) (Van Den Oord et al., 2017) to learn quantized representations for protein
structures. Here, the encoder qψ(z|x) maps structures to latent tokens, while the decoder pϕ(x|z, c)
reconstructs structures from these tokens2. The prior p(z|c) is fixed to be uniform during this stage.

Learning the prior over latent tokens. In this stage, we fix the learned parameters ϕ∗ and ψ∗,
and train the prior pθ by maximizing the ELBO: argmaxθ L(ϕ∗, θ). Since both ϕ∗ and ψ∗ are
fixed, the reconstruction term in the ELBO cancels out, and training reduces to minimizing the
KL divergence DKL(qψ∗∥pθ). This is equivalent to performing maximum likelihood estimation, as
E(c,x)∼DEz∼qψ(z|x)pθ(z|c) with respect to pθ. Given that both z and c are categorical variables,
this formulation resembles a translation task, allowing pθ to be parameterized by language models.

Optimizing Eq. 1 provides a general learning framework for conformation generation. In practice,
we can approach this objective in a demystified view: we are exploring new “conformations” in
an invariant latent space via learning a sequence-to-structure (seq2str) network while offloading
the complicated geometric modeling to the structure auto-encoder. This allows the practitioners to
choose from popular architectures of structure encoders/decoders and modern language models.

3.2 STRUCTURE LANGUAGE MODELING

The prior learned in the previous stage is now applied to conformation generation, which can be
framed as a conditional generative modeling problem for the seq2str translation. Given an input
condition c ∈ |S|L which determines the molecular topology, the goal is to sample a conformation
ensemble from p(x|c). To do this, we first sample a set of latent variables from the prior distribution
learned earlier, z ∼ pθ(z|c), and then decode these latents using the decoder pϕ(x|c, z). The
decoder is jointly trained with the encoder qψ(z|x) in the first stage, ensuring that the sampled
latents align with the reconstruction. This framework supports roto-translation invariant inference
and is described in Algorithm 1. Next, we illustrate this approach with two straightforward examples
of structure language models (SLM): the encoder-decoder and decoder-only architectures.

Encoder-decoder. Given the conditional nature of translation, the prior pθ(z|c) can be explicitly
modeled by an encoder-decoder architecture like T5 (Raffel et al., 2020). The decoder conditions on
the context c and factorizes the structure tokens sequentially: p(z|c) =

∏L
l=1 p(zl|z<l, c), where

z ∈ Z represents the quantized structure tokens. The training objective is the negative log-likelihood
(NLL) loss conditioned on c: L(θ) = −E(c,x)∼DEz∼q(z|x)

∑L
l=1 log pθ(zl|z<l, c), z<1 ≡ ∅.

Decoder-only. Alternatively, the latent prior pθ(z|c) ∝ pθ(c, z) can be modeled autore-
gressively using a decoder-only architecture, such as GPT (Radford et al., 2019), where
c serves as the “prompt”. We define y ≜ [c, z] = [c1, . . . , cL, z1, . . . ,zL], and the
training involves maximizing the likelihood over y via the NLL minimization: L(θ) =

−E(c,x)∼DEz∼q(z|x)
∑2L
l=1 log pθ(yl|y<l), where c,x ∼ D is the i.i.d. samples from the data dis-

2We assume that x is conditionally independent of c given latent variable z for simplicity. In practice, this
leads to structure decoder pϕ(x|z, c) ≈ pϕ(x|z) such as in Hayes et al. (2024).

4
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Figure 3: Autoregressive prior modeling the for latent structure tokens discussed in Section 3.2.

tribution over structures each with the associated amino-acid sequence as condition c. In practice,
we add an additional special token [sep] to differentiate between these two modalities.

Inference involves sampling with a left-to-right decoding order, as defined by the autoregressive
factorization of both language models. Fig. 3 briefly illustrates these two modeling strategies.

4 ESMDIFF: A MASKED DIFFUSION INSTANTIATION

Building on the foundation of SLM, we here propose ESMDiff as an instantiation based on discrete
diffusion models (Austin et al., 2021). ESMDiff incorporates the inductive bias of seq2str translation
and leverages the protein foundation model ESM3 (Hayes et al., 2024) through masked diffusion
fine-tuning. The effectively fine-tuning of ESMDiff also exemplifies how a large pretrained BERT-
like masked language model can be adapted to acquire conditional generative capabilities, making
it well-suited for broader downstream tasks such as conformation generation.

4.1 CONDITIONAL MASKED DIFFUSION LANGUAGE MODEL

The discrete diffusion models can be generally defined by a sequential process of progressive noisy
discrete variables zt ∈ V from the categorical variable z0 ∈ V .3 Masked diffusion (Austin et al.,
2021; Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024) represents a special case in which the
transition includes an “absorbing state”, denoted as [MASK] . In this formulation, the stationary
distribution assigns all probability mass to the unique special token [MASK] , such that P (z =

[MASK] ) = 1 and P (z ̸= [MASK] ) = 0. For convenience, we define pM ∈ {0, 1}|V̄ | (V̄ ≜ V ∪
{[MASK] }) as the one-hot vector representing [MASK] . In masked diffusion, the stochastic forward
process maps z0 → [MASK] and remains in this state thereafter (i.e., “absorbing”). Conversely,
the reverse process gradually unmasks (denoises) the [MASK] token to produce the data sample z0,
where s < t (see Appendix G.2.2 for derivation):

q(zs|zt, z0) = Cat (zs; [β(s, t) + (1− λM (zt))(1− β(s, t))]zt + λM (zt)(1− β(s, t))z0) , (2)

where β(s, t) = 1−α(s)
1−α(t) and λM (zt) = ⟨pM , zt⟩. Eq. 2 implies when zt ̸= [MASK] , the back-

ward process simply copies the unmasked token by zs ← zt, i.e. q(zs|zt, z0) = Cat (zs; zt);
otherwise the probability mass interpolates between pM and z0. The posterior q(zs|zt, z0) can be
approximated by pθ(zs|zt) using re-parameterization: pθ(zs|zt) = q(zs|zt,uθ(t, zt)), where the
neural net uθ ∈ ∆|V̄ | is a neural network that outputs a probability vector that remains in ∆|V̄ |.
Unlike open-ended text generation, protein conformation generation is well-defined within discrete
diffusion models, as it conditions on the input amino acid sequence, allowing each output token to
correspond uniquely to a position in the input and thus enjoy a fixed-length context window4.

For conformation generation, we now consider the conditional case of masked diffusion. Given the
amino acid types c, our goal is to sample structure tokens through Eq. 2, utilizing a conditional
posterior q(zs|zt, z0; c). This posterior can be re-parameterized similarly by incorporating the con-
dition into the backbone model, resulting in pθ(zs|zt; c) = q(zs|zt,uθ(t, zt, c)). To achieve this

3See Appendix G.1 for more details of the discrete diffusion models.
4This indicates that c[i] and z[i] are aligned at the same position index i.
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Bidirectional Transformer

Time encoding

Structure tokens

Denoising

[MASK]
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🔍

Figure 4: Illustration for conditional denoising network uθ(zt, c) where the masked (structure)
tokens are colored grey. The unmasked tokens are carried over to the output without update, while
the masked tokens are under random transition into either unmasked (✓) or still masked (✗) state.

goal, the reverse process simulated by pθ(zs|zt; c) must effectively approximate the data distribu-
tion p(z|c). A feasible training objective is to optimize the estimation of the conditional ELBO
within the continuous-time integral, resulting in the following loss (see Appendix G.2.4 for details):

L(θ) = Ec,z0

{∫
t∈[0,1)

Ezt∼q(zt|z0)

[
1

1− α(t)
∂α(t)

∂t
λM (zt) log⟨uθ(t, zt, c), z0⟩

]
dt

}
, (3)

where z0 is sampled from the learned encoder qϕ(z|x) with the corresponding amino acid condition
c from the data distribution p(x, c), and λM (zt) implies the loss is only applied for the latents
∀t, s.t. zt = [MASK] . In practice, we can employ Monte Carlo estimation to compute the integral.

Algorithm 1 Inference: Conformation Generation of SLM

1: Require: amino acid types (condition) c, generic conditional language models pθ(z|c), struc-
ture decoder pϕ(x|c, z), sampling temperature T > 0, sample size N > 0.

2: Initialize an empty set of samples X = ∅
3: for i = 1 to N do
4: z(i) ∼ pθ(z|c) ▷ Sample latent with temperature T
5: x(i) ∼ pϕ(x|c, z(i)) ▷ Decode the sampled latent vector
6: X ← X ∪ {x(i)} ▷ Add the decoded structure
7: return X

4.2 BIDIRECTIONAL ENCODER AS DENOISING NETWORK

We now discuss the implementation of the conditional denoising network using bidirectional en-
coder language models, such as BERT (Devlin, 2018). First, consider the sequential generaliza-
tion of masked diffusion with a sequence of categorical variables. Let zt now be a sequence of
discrete structure tokens

[
zt,[1], zt,[2], . . . ,zt,[L]

]
where zt,[i] ∈ V̄ , ∀i = 1, . . . , L. Due to the

interpolation scheme of Eq. 2, we assume conditional independence and factorize the posterior dis-
tribution pθ(zs|zt; c) across the L output tokens, such that pθ(zs|zt, c) =

∏L
i=1 pθ(zs,[i]|zt, c) =∏L

i=1 q
(
zs,[i]|zt,[i],uθ,[i](t, zt, c)

)
where uθ,[i](t, zt, c) represents the i-th output channel of neural

network. This implement coincides with the BERT-style transformer architecture and allow us to
take advantage of existing protein foundation model, for example ESM3 (Hayes et al., 2024). For
a sequence of tokens, the masked log-term in the training objective from Eq. 3 is replaced by the
summation:

∑L
i=1 λM (zt,[i]) log⟨uθ,[i](t, zt, c), z0,[i]⟩, with notations the same as defined above.

Modifications. The following are special considerations for the network: (1) Position-coupled en-
coding. Unlike general translation problem, SLMs maintain strict position-to-position correspon-
dence between amino acid types and the latent tokens5 . This inductive bias enables us to construct

5The underlying co-evolutionary relationships between residues are fully shared across both amino acid
types and its spatial patterns.

6
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the input embedding for all position i as follows: e[i] = fθ[ez(zt,[i]) + ec(c[i]) + et(t)] ∈ RD,
where ez : |V̄ | 7→ RD, ec : |S| 7→ RD, et : R 7→ RD are the embedding functions and fθ is a linear
transformation. (2) Copying. The unmasked tokens zt,[i] ̸= [MASK] remain the same in spite of the
model output. (3) Zero-out [MASK] . Since uθ parameterize the approximated clean data z0 (fully
unmasked), the [MASK] token cannot present in the output and its probability should be zero-out.
This is equivalent to adding −∞ to the logit. In our study, the pre-trained LM head of ESM3 is
replaced with a randomly initialized head with augmented vocabulary (V̄ ) during fine-tuning.

5 EXPERIMENTS

Base settings. We start with the pre-trained dVAE established in Hayes et al. (2024) as the structure
tokenizer (frozen). The structure quantization is perform residue-level with a receptive field over
local geometric neighborhoods of protein structure. The structure language models as described in
Section 3.2 are based off state-of-the-art language models as follows: (1) S-T5 (384M) adopts the
T5 (Raffel et al., 2020) architecture with a bidirectional encoder and an autoregressive decoder. (2)
S-GPT (961M) models the joint distribution with an uni-directional decoder like GPT2 (Radford
et al., 2019). (3) ESM3 (zero shot) is a pre-trained BERT model over multi-modal data and perform
zero-shot inference by the iterative decoding. (4) ESMDiff is a fine-tuned variant of (3) on the PDB
data using the masked diffusion objective in Eq. 3. For S-T5 and S-GPT, we embed the sequence
tokens with the pre-trained ESM3-1.4B encoder to provide model condition. For ESMDiff, two
different paradigms: Iterative Decoding (ID) and DDPM are considered. See Appendix B for details.

Table 1: Evaluation results of different conformation generation methods on generating the BPTI
conformations. JS-* represents the Jensen-Shannon (JS) divergence between the sampled ensemble
and long MD ensemble on pairwise distance (PwD), time-lagged independent components (TIC),
and radius of gyration (Rg). The validity as the frequency of clash-free samples in the ensemble is
also included. Moreover, the ensemble TM-score and ensemble RMSD are reported with respect to
the five kinetic clusters in Shaw et al. (2010). The best results among all methods are bold while the
best results among the SLM family are colored purple (similarly applied to all tables below).

JS-PwD (↓) JS-TIC (↓) JS-RG (↓) Validity (↑) TM-ens (↑) RMSD-ens (↓)

MSA-Subs. 0.593 0.482 0.742 0.990 0.840 1.526
AlphaFlow 0.503 0.462 0.777 1.000 0.845 1.441

EigenFold 0.536 0.466 0.824 0.620 0.840 1.473
Str2Str (PF) 0.561 0.590 0.325 1.000 0.705 2.155
Str2Str (SDE) 0.506 0.552 0.302 0.960 0.664 2.480
ESMFlow 0.524 0.439 0.804 0.970 0.839 1.462

S-T5 0.410 0.446 0.528 0.740 0.845 1.434
S-GPT 0.573 0.687 0.415 0.750 0.841 1.476
ESM3 (zero shot) 0.406 0.445 0.561 0.800 0.842 1.450
ESMDiff (ID) 0.422 0.432 0.510 0.910 0.844 1.421
ESMDiff (DDPM) 0.372 0.420 0.439 0.940 0.843 1.437

Method

MSA-based

Seq-based

SLM

Baselines. We consider multiple open-source models as evaluation baselines for the protein multiple
conformation generation, which are mainly categorized into (1) MSA-based methods that includes
MSA-Subsampling (Del Alamo et al., 2022; Bryant & Noé, 2024) and AlphaFlow (Jing et al., 2024).
These methods rely on inference-time retrieval of multiple sequence alignments (MSA) ; (2) Sin-
gle sequence-based methods: EigenFold (Jing et al., 2023) leverages a harmonic diffusion process
conditioned on OmegaFold (Wu et al., 2022) embeddings to generate protein structures, Str2Str (Lu
et al., 2024) simulates a round-trip local diffusion conditioned on input structure to explore hy-
pothetical conformations, and ESMFlow (Jing et al., 2024) replaces AlphaFlow with ESMFold as
the backbone; (3) Specially tailored for intrinsically disordered proteins (IDPs) generation of idp-
GAN (Janson et al., 2023). Results reported for baselines are obtained by re-running the inference
pipeline and based on their open-source codes. The detailed pipeline can be found in Appendix A.

Training data. The training data for structure language models are controlled to contain only PDB
entries on or before May 1st, 2020. This cutoff is aligned with previous works (Jing et al., 2023;
2024; Lu et al., 2024; Hayes et al., 2024) trained on PDB data to make fair comparison. The training
set is further filtered to include all monomeric structures with a max resolution of 5.0Å, length
ranging from 10 to 1000, which forms a total size of |D| = 112.4k as the training data.
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Participating benchmark sets. To discover the potential of SLMs in conformation sam-
pling, several relevant datasets are considered for benchmarking purpose: (1) simulation dy-
namics of BPTI (Shaw et al., 2010), (2) conformational changing pairs including the fold-
switching (Chakravarty & Porter, 2022) and ligand-induced apo/holo states (Saldaño et al.,
2022), and (3) intrinsically disordered proteins (IDPs) deposited in the protein ensemble database
(PED) (Lazar et al., 2021) . These benchmarking tasks reflect different characteristics and challenges
of the conformation generations, which provides a comprehensive evaluation for models.

5.1 STRUCTURAL DYNAMICS OF BPTI

In the first experiment, we evaluate the models by generating the conformations of protein bovine
pancreatic trypsin inhibitor (BPTI). The structural dynamic patterns of BPTI are well acknowledged
in Shaw et al. (2010) with 1ms-long MD simulations, based on which five kinetic clusters have been
revealed. Similar to Lu et al. (2024), we report the Jensen Shannon (JS) divergence for distributions
of pairwise distance (PwD), time-lagged independent components (TIC), and radius of gyration
(Rg); the clash-free validity and the ensemble TM-score and root-mean-square-deviation (RMSD)
w.r.t. the kinetic clusters. The benchmark results are shown in Table 1. Following Wang et al. (2024),
we also evaluate the best distance of the generated samples to each cluster, as shown in Table 2. The
RMSD and TM-score are both calculated using the TM-score binary (Zhang & Skolnick, 2004) with
structural alignment. Note that the Cluster 3 is a difficult remote folding mode (Wang et al., 2024),
yet SLMs achieve a significant improvement by modeling with a smaller matching RMSD.

Table 2: Evaluating on the best matching RMSD with respect to each of the kinetic clusters reported
in Shaw et al. (2010) with an non-exhaustive ensemble size of N = 100. RMSDCi(i = 1, 2, 3, 4, 5)
are the lower the better (↓). Among them, the Cluster 3 is the most challenging case to model (Wang
et al., 2024) and highlighted in red , of which the best sample from ESMDiff is visualized.

RMSDC1 RMSDC2 RMSDC3 RMSDC4 RMSDC5

MSA-Subs. 0.953 1.669 2.412 1.616 0.982
AlphaFlow 0.882 1.693 2.418 1.380 0.915

EigenFold 0.905 1.680 2.478 1.352 0.977
Str2Str (PF) 1.968 1.881 2.480 2.064 1.900
Str2Str (SDE) 2.334 2.295 2.924 2.271 2.240
ESMFlow 0.883 1.720 2.385 1.361 0.960

S-T5 0.863 1.628 2.285 1.428 0.968
S-GPT 0.922 1.687 2.357 1.462 0.953
ESM3 (zero shot) 0.968 1.560 2.301 1.444 0.977
ESMDiff (ID) 0.872 1.620 2.270 1.415 0.927
ESMDiff (DDPM) 0.924 1.628 2.198 1.435 1.000

Method

MSA-based

Seq-based

SLM
Cluster 3

Table 3: Evaluation on the conformation changing pairs (Saldaño et al., 2022; Chakravarty & Porter,
2022): (1) Pearson correlation r between sampled diversity and ground-truth diversity measured by
the residue flexibility (ResFlex, absolute deviation after alignment), and (2) the ensemble TM-score
(TM-ens). For the residue flexibility, both global (gl.) and per-target (pt.) mean/median correlations
are reported; for the TM-ens, both mean/median are reported. Metrics are the higher the better (↑).

ResFlex r (gl.) ResFlex r (pt.) TM-ens ResFlex r (gl.) ResFlex r (pt.) TM-ens

MSA-Subs. 0.398 0.404 / 0.371 0.856 / 0.894 0.350 0.320 / 0.303 0.714 / 0.765
AlphaFlow 0.455 0.527 / 0.527 0.864 / 0.893 0.385 0.384 / 0.376 0.730 / 0.788

Eigenfold 0.126 0.407 / 0.401 0.830 / 0.870 0.225 0.279 / 0.255 0.614 / 0.653
Str2Str (PF) 0.174 0.326 / 0.307 0.731 / 0.728 0.161 0.246 / 0.233 0.615 / 0.644
Str2Str (SDE) 0.148 0.349 / 0.340 0.659 / 0.681 0.111 0.224 / 0.220 0.521 / 0.545
ESMFlow 0.416 0.496 / 0.522 0.856 / 0.893 0.269 0.345 / 0.329 0.700 / 0.755

S-T5 0.097 0.144 / 0.166 0.726 / 0.787 0.313 0.135 / 0.099 0.437 / 0.392
S-GPT 0.112 0.134 / 0.112 0.571 / 0.562 0.207 0.075 / 0.078 0.349 / 0.300
ESM3 (zero shot) 0.312 0.473 / 0.466 0.839 / 0.876 0.388 0.323 / 0.320 0.627 / 0.717
ESMDiff (ID) 0.424 0.502 / 0.517 0.851 / 0.883 0.391 0.328 / 0.346 0.660 / 0.720
ESMDiff (DDPM) 0.420 0.489 / 0.515 0.838 / 0.877 0.402 0.341 / 0.288 0.626 / 0.685

Method
Apo/holo Fold-switch

MSA-based

Seq-based

SLM
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5.2 CONFORMATION CHANGING PAIRS

We continue the study on the task of modeling and predicting conformational changes in structural
proteins. The authors of Jing et al. (2023) have curated two benchmarking sets of pairing data
including (1) 77 pairs of fold-switching proteins (Chakravarty & Porter, 2022); and (2) 90 apo/holo
pairs with ligand-induced conformational change (Saldaño et al., 2022) to evaluate the modeling
capacity of conformation diversity. Following the setting and evaluation metrics of Jing et al. (2023),
we randomly sample a few-shot ensemble with five structures per target and evaluate them based on
the correlation metrics of residue flexibility and the ensemble TM-score (Zhang & Skolnick, 2004).
The evaluation results for both test sets are shown in Table 3. We find that MSA-based methods
generally achieve better performance than other model families, which highlights the importance of
using MSA for generating stable conformation changing protein targets.

Table 4: Mean absolute error (MAE) for the IDP test set measured in different characteristics for
each method, where both mean / median are reported over all targets. All metrics are the lower the
better (↓). The contact map of PED00247 (PDB: 2MTF) is shown to the right as an example.

Pairwise distance Radius of gyration Contact map

MSA-Subs. 7.250 / 4.654 4.381 / 2.639 0.181 / 0.120
AlphaFlow 7.129 / 3.533 4.880 / 1.464 0.228 / 0.161

Seq-based

EigenFold 11.419 / 6.404 8.663 / 4.880 1.309 / 0.560
idpGAN 11.618 / 10.764 7.006 / 5.631 0.447 / 0.408
Str2Str (PF) 9.838 / 7.301 6.369 / 4.286 0.264 / 0.203
Str2Str (SDE) 8.793 / 5.891 5.444 / 3.082 0.227 / 0.165
ESMFlow 7.692 / 4.429 5.110 / 1.636 0.257 / 0.179

S-T5 9.009 / 5.737 5.448 / 2.596 0.536 / 0.467
S-GPT 9.221 / 6.146 5.634 / 2.634 0.607 / 0.529
ESM3 (zero shot) 6.606 / 4.301 4.346 / 2.329 0.249 / 0.174
ESMDiff (ID) 6.886 / 4.689 4.333 / 2.160 0.295 / 0.239
ESMDiff (DDPM) 7.010 / 4.665 4.438 / 1.974 0.354 / 0.284

Method

MSA-based

SLM ESMDiff

Experimental

5.3 INTRINSICALLY DISORDERED PROTEINS

Different from structural proteins, intrinsically disordered proteins (IDPs) do not have a fixed or
stable tertiary structure under normal conditions. IDPs possess inherent flexibility and usually ex-
ist as dynamic ensembles of conformations, allowing them to adapt to different binding partners
or cellular environments. We have curated in total 114 entries from the protein ensemble database
(PED) (Lazar et al., 2021) as benchmarking set. In specific, we only select the experimentally
validated (eg. NMR spectroscopy) structure ensembles and excluding similar protein records with
training set to avoid data leakage (see Appendix A.4). Due to the disordered structural character-
ization for IDPs, alignment-based metrics such as TM-score is not applicable. Because different
targets have different sizes of ensemble (from ten to thousand), we follow the metrics used in Janson
et al. (2023) to evaluate the mean absolute error (MAE), specifically the pairwise distance, radius
of gyration, and contact map between the predicted ensemble and the ground-truth ensemble.

5.4 RUNTIME ANALYSIS

L = 50 L = 100 L = 200 L = 500
# Residues

101

102

103

104

W
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tim

e 
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MSA Subsampling (93M)
AlphaFlow (95M | 10 steps, w/o resampling)
EigenFold (800M, w/ OmegaFold)
Str2Str (17M | 1000 steps, T=0.3)
ESMFlow (3.5B | 10 steps, w/o resampling)
S-T5 (380M)
S-GPT (960M)
ESMDiff (1.4B | Gibbs, 25 steps)
ESMDiff (1.4B | DDPM, 25 steps)

Figure 5: Runtime profiling for SLMs and baseline methods. The number of parameters and neces-
sary configurations for each model are also remarked for better reference.
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To demonstrate the efficiency of SLM, we benchmark the runtime of each SLM and compare them
with diffusion-based baselines. The measurement is based on the elapsed wall clock time for sam-
pling an ensemble of N = 100 across different protein lengths (see Appendix A.2). As shown in
Fig. 5, SLMs exhibit superior scalability with respect to protein size and are 20-100× faster than
diffusion models like AlphaFlow, highlighting their potential for real-world applications.

5.5 CASE STUDY: STRUCTURAL INPAINTING OF NANOBODY

CDR2 
(A49-R57)

CDR1 
(T28-D33)

N-term

C-term

CDR3 
(G99-W104)

Figure 6: Visualization of a Llama VHH
domain. The ESMDiff sampled conforma-
tions (in khaki) are superimposed on the
NMR structures (Renisio et al., 2002) col-
ored in transparent rainbow.

The position-wise masking and unmasking nature in-
herently enables ESMDiff to perform inpainting task
effectively. Intuitively, the partially masked input (eg.
nanobody framework) can be interpreted as an inter-
mediate state zs, s > 0 in the masked diffusion, where
the unknown positions to be modeled are designated
as [MASK] naturally in accordance with the formu-
lation. Then partially reversing allows us to restrict
the conformation sampling to the specific sub-regions
of the protein, analogous to the concept of “inpaint-
ing” for images. Here we name the forward-backward
inference as the round-trip masked diffusion infer-
ence (see Algorithm 5) for the inpainting task. Here,
we illustrate the conformation inpainting capability
through a case study that focuses on generating the
complementarity-determining regions (CDRs) for a
nanobody example. In specific, we explored the in-
painting capabilities of ESMDiff using a nanobody de-
rived from Llama (PDB entry: 1G9E).

As shown in Fig. 6, the loop structures generated by the round-trip diffusion process of ESMDiff
resemble the native conformations observed in NMR structures (both N = 20). The inference is
conducted in a very efficient speed by only taking ∼5.3±0.3 seconds on a single NVIDIA A100-
SXM4-40GB GPU, highlighting the effectiveness of SLMs in performing structural inpainting and
promising potentials in the real-world scenarios such as structural analysis or virtual screening.

6 CONCLUSION AND LIMITATIONS

In this work, we propose a novel conformation generation framework of structure language models
(SLMs). The overall inference is divided into two stages: conditional sampling of latent structure
tokens and roto-translation invariant structure decoding. We develop and train a variety of con-
ditional language models, especially the masked diffusion-based ESMDiff, which is a fine-tuned
variant to enhance the capabilities of ESM3 adapting for conformation generation. Unlike existing
methods, SLMs perform amortized distribution learning within an invariant latent space, leading to
more efficient inference. By alleviating the need for geometric modeling, SLMs can fully exploit
the scalability of modern language model architectures and take advantage of advanced hardware
optimizations. Benchmarking results across various conformation generation tasks demonstrate the
compelling performance and application potential of SLMs. In summary, the proposed method
opens up an intriguing and novel research direction for related communities to explore.

Limitations. The current study presents several limitations worth exploring for future works. Firstly,
one can design more advanced dVAE architecture to balance between structure disentanglement
and reconstruction fidelity. In addition to the discrete latent space, continuous latent space can also
be considered, for example using the latent diffusion models (Rombach et al., 2022). Secondly, it
is worthwhile exploring alternative SLM instances specially tailored for the sequence-to-structure
translation in consideration of proper inductive biases. Additionally, modeling protein side chains
and other relevant modality including ligand and RNA by building an atomic structural auto-encoder
is also a very appealing research direction. Lastly, the outstanding performance of MSA-based
methods also indicates the potential to build MSA-conditioned structure language models.
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Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.
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A IMPLEMENTATION DETAILS

A.1 BASELINE EVALUATIONS

For baselines, we compare our structure language models against: EigenFold (Jing et al., 2023),
Str2Str (Lu et al., 2024), MSA subsampling (Del Alamo et al., 2022), AlphaFlow & ESMFlow (Jing
et al., 2024), and idpGAN (Janson et al., 2023). For MSA subsampling, we leverage the official
repository of Del Alamo et al. (2022) under AlphaFold v2.3.2 with an MSA depth of 32, i.e. 32
maximum extra MSAs and 16 maximum MSA clusters (half the depth value (Del Alamo et al.,
2022)). For AlphaFlow and ESMFlow, we use the base PDB model (no distillation) with no resam-
pling. The input MSAs for test proteins are queried via the ColabFold server (Mirdita et al., 2022).
All other parameters are set to the recommended values according to the original implementation by
the authors (Jing et al., 2024). For EigenFold, we follow the pipeline in Jing et al. (2023) by using
OmegaFold (Wu et al., 2022) to make embeddings for the test set and sampling via the pre-trained
diffusion model with default parameters, where α = 1 and β = 3. For Str2Str, we use their public
codebase to with initial structure guess generated by the ESMFold (Lin et al., 2023) using the script
provided in the repository. We use a T = 1000 diffusion sampling steps for both probability flow
and SDE (noise scale is set to 1.0 for SDE runs) and other parameters as default. For idpGAN, we
run the inference pipeline following the Jupyter notebook in their open-source repository with the
default inference settings for custom proteins.

A.2 RUNTIME PROFILING

To profile the inference time for each method, we set a ladder of tasks of different protein lengths
including 50, 100, 200, and 500 residues, with an ensemble size of N = 100 for each benchmark
task. The profiling is carried out on a single NVIDIA A100 SXM4 GPU with 40GB memory, we
measure the wall clock time elapsed for generating the target ensembles for each model. Note
that for the MSA-based methods, the time-consuming MSA search is conducted only once and is
amortized in the overall computational cost for multiple batches. For autoregressive SLMs namely
S-T5 and S-GPT, the past computed key-value pairs for each layer are cached for fast inference.

A.3 TRAINING DETAILS

S-T5 training. For S-T5, we build upon the implementation from the Transformers package (Wolf
et al., 2020). Table S1 shows the hyperparameter settings for training. The total number of trainable
parameters is 384M. The model is trained without learning rate scheduler for up to 30 epochs.
The final tested model and the reported epoch number in Table S1 come from the best checkpoint,
selected according to the NLL of structure tokens on a hold-out validation set. To leverage the
ESM3 sequence embeddings, we bypass the encoder’s input token embedding layer and feed the
precomputed embeddings directly into the transformer encoder.

S-GPT training. For S-GPT, we also use the implementation from the Transformers pack-
age. The total number of trainable parameters is 961M. We insert a special [sep] token in
between the sequence and structure tokens when they are fed into the model, with its embed-
ding being randomly initialized and learnable. In practice, we find it useful to add a hyper-
parameter λ to balance between the NLL of sequence and structure prediction, i.e., L(θ) =

−E(c,x)∼DEz∼q(z|x)

[
λ
∑L
l=1 log pθ(yl|y<l) +

∑2L
l=L log pθ(yl|y<l)

]
, where the first half of y

consists of the sequence tokens and the second half consists of the structure tokens, as defined
in Sec. 3.2. Table S2 shows the hyperparameter settings for training. The model is trained and up to
30 epochs but the best checkpoint is evaluated and reported.

Masked Diffusion fine-tuning of ESM3. The masked diffusion is scheduled with a log linear
noise schedule (Austin et al., 2021) for clipped time domain t ∈ [0, 1 − ϵ] with infinite small
time ϵ = 0.001, such that σ(t) ≜ − log(1 − t) while the coefficient is parameterized as α(t) =
exp[−σ(t)] ∈ (0, 1]. We leverage this schedule for both training and inference. When fine-tuning,
we replace the pre-trained LM head in the structure track of the ESM3 with a randomly initialized
head for the augmented vocabulary V̄ = V ∪ [MASK] by setting output dimension to be 4101. We
use a learned embedding module to encode timestep t via the sinusoidal time embeddings followed
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Table S1: Hyperparameters of S-T5

Parameter Value Description
optimizer AdamW Optimizer type
lr 1× 10−5 Learning rate
batch size 8 Batch size
epochs 28 Number of training epochs
betas (0.9, 0.999) Coefficients for computing running averages of gradient
weight decay 1× 10−2 Weight decay coefficient
num layers 12 Number of transformer layers in the encoder and decoder
num heads 16 Number of attention heads
d ff 2048 Feedforward network dimension
d model 1280 Model hidden dimensionality
dropout rate 0.1 Dropout rate
feed forward proj gelu Activation function

Table S2: Hyperparameters of S-GPT

Parameter Value Description
optimizer AdamW Optimizer type
lr 1× 10−4 Learning rate
batch size 12 Batch size
epochs 11 Number of training epochs
betas (0.9, 0.999) Coefficients for computing running averages of gradient
weight decay 1× 10−2 Weight decay coefficient
num layers 48 Number of transformer layers
num heads 16 Number of attention heads
n inner 5120 Feedforward network dimension
n embd 1280 Model hidden dimensionality
dropout rate 0.1 Dropout rate
activation function gelu Activation function
seq pred weight 0.01 Weight of loss for sequence prediction

a simple 3-layer MLP coupled with SiLU activation function. We use the AdamW optimizer with
betas=(0.9, 0.999) and weight decay=0.01. The training is scheduled with the constant scheduler
with warm up steps of 2,500.

Algorithm 2 Masked diffusion fine-tuning of ESM3

1: Require: Pre-trained masked language models pθ(·|c, z), training data D = {c, z}, masking
schedule α(t) > 0, learning rate η.

2: for i = 1, 2, . . . , |D| do
3: Get sample (c, z)← D[i]
4: Sample time indices t ∈ U [0, 1]
5: Sample masked probability p(t) based on the masking schedule α(t)
6: Create masked input zt by masking z with probability p(t)
7: Compute the negative ELBO loss L(θ; zt, t, c) based on Eq. 3
8: Update model parameters: θ ← θ − η∇θL(θ)
9: return pθ

A.4 CURATION OF IDP TEST SET

We curated the test set for intrinsically disordered proteins (IDPs) by downloading data from the
Protein Ensemble Database (PED) (Lazar et al., 2021) on August 10, 2024, using the official API,
which provided a total of 481 raw entries. To prepare the evaluation set, we filtered the data to
include proteins with sequence lengths between 20 and 500 and ensemble sizes of N ≥ 10. To
ensure balance in the dataset, we performed clustering using MMseqs 2 (Steinegger & Söding,
2017) with the flags -s 7.5 --min-seq-id 9.0. We further excluded the records with more

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

than 90% sequence identity by conducting another search against the PDB training data to avoid
data leakage. Finally, we select the experimentally validated (eg., NMR) ensembles by filtering with
respect to the measurement method, which excludes computationally generated ensemble by models
such as idpGAN (Janson et al., 2023).

A.5 TRAINING DATA OF BASELINE MODELS

We list the training data and the corresponding cutoff for all the mentioned models in our study for
reference, as shown in Table S3.

Table S3: Training data and base model of different methods in this study.

Method Base/Embedding model Data source Cutoff date

MSA subs. AlphaFold2 (93M) PDB May 1, 2018
AlphaFlow AlphaFold2 (93M) PDB May 1, 2018
ESMFlow ESMFold (3B) PDB May 1, 2020
Eigenfold OmegaFold (900M) PDB Apr. 30, 2020
Str2Str / PDB Jun, 9, 2023
idpGAN / DisProt50 + MD Jun., 2021
ESMDiff ESM3-open (1.4B) PDB May 1, 2020

B INFERENCE OF BIDIRECTIONAL SLMS

B.1 ZERO-SHOT CONFORMATION GENERATION OF ESM3

The sampling method for the BERT model was first introduced by Wang & Cho (2019), which
treats the bidirectional encoder as a Markov random field graphical model and employs ID sampling
to generate new sequences. In Hayes et al. (2024), the author propose to use iterative decoding
to enable simultaneous decoding of multiple positions rather than processing them one at a time.
Following the authors (Hayes et al., 2024), we refer to this latter method as the iterative decoding
(ID) and take advantages of this sampling strategy for zero-shot conformation generation.

In specific, we leveraged the open-source 1.4B ESM3 protein language model (Hayes et al., 2024)
for zero-shot conformation sampling. ESM3 is pre-trained on multi-modal data related to protein
and contains several tracks of language model heads for prediction as well as input embeddings,
including sequence (amino acid types), structure, secondary structure, SASA and functions. In our
main experiment, only the sequence and structure tracks are turned on and the input tokens for other
tracks are set to the default value (i.e. [MASK] in each vocabulary). For sampling configurations,
we use a sampling schedule of 25 steps and set the sampling temperature to be 1.0 without specially
pointing out. During sampling, we also adopted the nucleus (top-p) sampling strategy (Holtzman
et al., 2019) to improve the quality of samples with a probability threshold of 0.95. Throughout
the experimental Section 5, we use the entropy-ranked ID sampling to obtain the results for ESM3
(described below).

B.2 POSITION-RANKED ITERATIVE DECODING

Unlike one-shot decoding, which maps all masked structure tokens [MASK] to their predictions in
a single feed-forward pass, the iterative decoding can adopt various strategies to iteratively select
where to unmask at each sampling step from the masked structure tokens of the target protein.
These strategies are governed by different ranking functions f(·) applied over the masked positions,
as detailed below. The overall inference pipeline (with ranking) is outlined in Algorithm 3. We
investigate and compare these ranking strategies in Table S4, using ESM3 as the base model.

Entropy ranking. The entropy for categorical distribution quantifies the predicted uncertainty for
the current evaluation of probability. Formally, the ranking score of the masked position indexed by
i (1 < i < N) is the position-specific entropy:

f(i) = −
∑
z′∈V

p[i](z[i] = z′) log p[i](z[i] = z′), (4)
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Algorithm 3 Iterative Decoding with Positional Ranking

1: Require: amino acid types (condition) c, masked language models pθ(z|c, z), ranking function
f(i; c, z), sampling temperature T > 0, the number of decoding steps K, mask token [MASK] .

2: L = len(c) ▷ Target protein length
3: Initialize M ← {0, 1, . . . , L− 1}, U ← ∅
4: Initialize z[i] ← [MASK] ,∀i ∈M
5: Get schedule {nk} (k = 1, . . . ,K) with

∑
k nk = L ▷ per-step number of positions to unmask

6: for k = 1 to K do ▷ iterations
7: Rank i ∈M using f(i; c, z)
8: Select top nk positions Mk ← Ranked(M ; key = f)[ : nk] ▷ rank and select top-nk
9: Sample latent components z′

[i] ∼ pθ(z[i]|c, z), i ∈Mk with temperature T
10: Assign z[i] ← z′

[i],∀i ∈Mk

11: Update the unmasked set: U ← U ∪Mk

12: Update the masked set: M ←M \Mk

13: return z

where p[i] = SoftMax(logits[i])) is the predicted probability mass function of position i over the
pre-defined vocabulary of valid structure tokens V . The entropy of each candidate position is ranked
ascending, i.e. positions with smaller entropy are firstly decoded. We also adopt the adaptive
entropy calculation, which means the logits prediction in the current decoding step is based on the
unmasked structure tokens from the last step and calculated on-the-fly.

Maxlogit ranking. Beside the uncertainty-based ranking, we similarly consider the maximum of
logits (maxlogit) from prediction as the ranking score. This indicates we choose the positions with
the top (highest) logit score as candidates. The maxlogit reflects the maximal confidence of the
model among its choice as well as the probability of the selected token during greedy decoding.
Correspondingly, the ranking score of maxlogit for index i is defined as:

f(i) = max
z′∈V

p[i](z[i] = z′). (5)

Secondary structure ranking. The ranking scores discussed above can be applied to arbitrary data
for masked decoding. Here, we introduce a novel decoding schedule designed for proteins, ordered
by predicted secondary structure:

f(i) = −g(s∗[i]),where s
∗
[i] = argmax

s∗∈S
pss(s∗|c, z, i), (6)

where pss is a predicted categorical distribution over all eight secondary structures (SS8) defined by
the Dictionary of Protein Secondary Structure (DSSP), including helix of 3-turn, 4-turn, 5-turn, and
hydrogen bonded turn; extended strand of β-sheet and isolated β-bridge; bend and coil, and g(·) ∈
{0, . . . , 7}maps the SS8 type to the finite ordering score. Given the predicted distribution over SS8,
we use greedy selection to assign the SS8 label (with the max logit) for all masked positions. The
positions are further ranked from the most structural to the most disordered, or the same order as
above. The intuition behind is that we want to predict the structural region in the first place, followed
by modeling the disordered region (loop). In practice, we adopt the secondary structure prediction
heads of pre-trained ESM3 (Hayes et al., 2024) for the prediction of SS8 types for each masked
candidate positions.

B.3 INFERENCE OF CONDITIONAL MASKED DIFFUSION MODEL

After the fine-tuning stage, ESMDiff is able to perform conditional generation from sequence to
structure either using (1) the iterative decoding described in Algorithm 3 or (2) the vanilla DDPM
ancestral sampling (Ho et al., 2020). The former sampling pipeline can readily accommodate the
ESMDiff backbone (fine-tuned ESM3 Transformer module) without any changes. For experiments,
we fine-tune the ESM3 using the objective defined in Eq. 3 w/o time conditioning. The DDPM
sampling of masked diffusion model is simple and straightforward by progressively unmasking all
the [MASK] in a fixed number of time steps T = 25. This inference pipeline is shown in Algorithm 4.
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Table S4: The performance of different ranking functions on the three benchmarking tasks described
in Appendix B.2.

Method JS-PwD (↓) JS-TIC (↓) JS-RG (↓) Validity (↑) TM-ens (↑) RMSD-ens (↓)
Uniform (w/o ranking) 0.414 0.428 0.602 0.840 0.845 1.460

Entropy 0.411 0.402 0.582 0.740 0.844 1.478
Maxlogit 0.411 0.425 0.576 0.890 0.850 1.436
Secondary structure 0.411 0.423 0.628 0.930 0.849 1.441

ResFlex r (gl.) ResFlex r (pt.) TM-ens ResFlex r (gl.) ResFlex r (pt.) TM-ens
Uniform (w/o ranking) 0.223 0.400 / 0.384 0.796 / 0.848 0.328 0.276 / 0.291 0.531 / 0.522

Entropy 0.318 0.447 / 0.470 0.840 / 0.876 0.407 0.343 / 0.366 0.629 / 0.692
Maxlogit 0.386 0.480 / 0.481 0.843 / 0.876 0.391 0.333 / 0.309 0.629 / 0.715
Secondary structure 0.237 0.444 / 0.444 0.826 / 0.868 0.377 0.309 / 0.352 0.589 / 0.665

Method
Apo/holo Fold-switch

Method Pairwise distance Radius of gyration Contact map
Uniform (w/o ranking) 6.661 / 4.810 4.017 / 1.950 0.328 / 0.264

Entropy 6.706 / 4.726 4.273 / 2.172 0.249 / 0.170
Maxlogit 6.743 / 5.037 4.311 / 2.303 0.252 / 0.191
Secondary structure 6.365 / 4.767 3.833 / 2.011 0.298 / 0.228

The DDPM sampling is conducted for fine-tuned model w/ time conditioning. Throughout our study,
we neither control the temperature (equivalently set to 1.0) nor use the ranking function introduced
in Appendix B.2 during each reverse step in DDPM sampling, which is worth exploring in the future
works.

Algorithm 4 DDPM Ancestral Sampling for Conditional Masked Diffusion

1: Require: amino acid types (condition) c, bidirectional model (w/o softmax head) fθ(zs|zt, c),
noise schedule {αt}, initial latent zT ∼ q(zT ), the number of denoising steps T , mask token
[MASK]

2: L = len(c) ▷ Target protein length
3: Initialize zT ← [0, . . . , 0] ∈ |V̄ |L ▷ Initialize with noisy latent vector from prior
4: Set mask tokens: zT,[i] ← [MASK] ,∀i ∈ {1, 2, . . . , L}
5: for t = T to 1 do ▷ Ancestral denoising process
6: P ∗

L×|V̄ | ← Softmax(fθ(zt−1|zt, c)) ▷ Compute log probability matrix from the logits
7: For each i, z∗

[i] ∼ Cat(·;P ∗[i, :]) ▷ Sample candidate tokens from categorical distribution
8: z∗

t−1 ∼ q(zt−1|zt, z∗) ▷ Sample from the posterior according to Equation 2
9: for i = 1 to L do

10: if zt,[i] = [MASK] then
11: zt−1,[i] ← z∗

t−1,[i] ▷ Update using sampled z∗
t−1

12: else
13: zt−1,[i] ← zt,[i] ▷ Preserve the unmasked token from zt

14: return z0 ▷ Return the fully unmasked latent vector

B.4 COMPARISON BETWEEN ESM AND ESMDIFF

Different from the MLM pre-training of ESM, in ESMDiff, the amino acid types are fully condi-
tioned while the structure tokens are trained using masked diffusion with loglinear schedule. Except
for the time-conditioning and loss reweighting, both MLM and masked diffusion similarly use ran-
dom masking as training objective. However, the ratio of masking should depend on different down-
stream tasks to ”mimic the types of inputs” during inference, as indicated in Hayes et al. (2024).
Thus, in the task of SLMs, we reason that it benefits conformation generation more when using
less-to-none sequence masking and properly scheduled structure masking. For other fine-tuning
application of ESM (eg., sequence to function tokens), we recommend practitioners to make the
fine-tuning objective suitable for specific input/output inference-time usage.
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C DETAILS OF CONFORMATION INPAINTING

The inherently position-wise masking and unmasking nature of masked diffusion enables ESMDiff
to perform inpainting tasks effectively. Intuitively, the partially masked input can be interpreted as an
intermediate state zs(s > 0) within the masked diffusion process, where the unknown positions that
need to be modeled are designated as [MASK] in accordance with the masked diffusion formulation.
This allows us to restrict the sampling of conformational changes to specific sub-regions of protein
structures, analogous to the concept of “inpainting” in image processing.

Specifically, the conformation inpainting can be formulated as a round-trip masked diffusion process
described below:

Forward. Given an input sequence ofN tokens z0 ∈ |V |N as the initial state, we first simulate the
forward diffusion process to an intermediate state zs. Instead of using the stochastic forward kernel
q(zs|z0) defined in Eq. 9, zs is obtained in a deterministic way, i.e., we set zs,[i] ← [MASK] if ∀i ∈
∆M and zs,[i] ← z0,[i] otherwise, where ∆M is the residue indices for which we want to sample.
Note that the ideal time s is induced from the noise schedule α(t) by matching the expectation of the
number of the masking positions under the forward marginal, or formally, s∗ = α−1(N − |∆M |).
Intuitively, we shall see on average n = |∆M | [MASK] tokens in z∗

s if we simulate the stochastic
kernel zs∗ ∼ q(·|z0). In practice, however, s∗ > 0 can be chosen as a tunable hyperparameter.

Backward. We then evolve the reverse process of masked diffusion starting using the learned
posterior pθ(zs|zt, c) from zs according to Eq. 2. Thanks to the “absorbing” nature of the masked
diffusion process, the copied variables {zs,[i],∀i /∈ ∆M} are all preserved during the backward
steps until we return to ẑ0 (we add hat to distinguish it from input z0). This means that sampling is
conducted exclusively for the target indices in ∆M .

Since the sampling transitions from the fully unmasked state z0 to zs (s > 0) and then back to ẑ0,
we refer to this as the “round-trip” diffusion process. This approach is reminiscent of the forward-
backward (FB) dynamics introduced by Lu et al. (2024), although the latter is defined for local
exploration within the SE(3)N geometric space and is not specifically intended for inpainting. We
describe this process in Algorithm 5.

Algorithm 5 Round-Trip Diffusion for Conformation Inpainting

1: Input: Initial structure x, amino acid tokens c, the indices of the sampling sub-region ∆M ,
noise schedule α(t), denoising network uθ, structure encoder qψ , and structure decoder pϕ

2: Output: The inpainted conformation x̂
3: Encode z0 ∼ pψ(z0|x)
4: Length L← len(z0)
5: // Deterministic Forward Diffusion
6: Infer the ideal intermediate time step s∗ = α−1(N − |∆M |)
7: Set z∗

s ← z0
8: for each i ∈ ∆M do
9: zs∗,[i] ← [MASK] ▷ Mask specified indices

10: // Generating Reverse Diffusion
11: ẑ0 ← Reverse(z∗

s , c, uθ) ▷ Either in Algo. 3 or 4
12: Decode x̂ ∼ pϕ(x|c, ẑ0)
13: return x̂

In Fig. 6, we explored the inpainting capabilities of ESMDiff using a nanobody derived from Llama
(PDB entry: 1G9E). To sample the conformations of the CDR loops, we began with a PDB structure,
fixed the nanobody framework, and applied the inpainting pipeline exclusively to the three CDR
loops, which is numbered by the canonical IMGT numbering scheme (Lefranc et al., 2003). Then
we simulate the round-trip diffusion process using ESMDiff (ID, T=1.0) with 25 steps for the CDR
regions. The sampling is performed on a single NVIDIA A100-SXM4-40GB GPU. Both NMR and
the generated structure ensembles contain N = 20 conformations.
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D EVALUATION METRICS

Jensen-Shannon divergence (JS). The quality of a set of conformations is assessed by comparing
the distributional similarity between the reference ensemble and the generated ensemble, akin to how
the Fréchet inception distance (FID) (Heusel et al., 2017) is used for evaluating synthetic images.
We use the Jensen-Shannon (JS) divergence because of its symmetry, which penalizes the model’s
distribution for both lack of ground truth coverage and biased coverage. To ensure compatibility with
baseline models, only Cα-atoms are considered in calculating divergence metrics. We use three key
roto-translation invariant features to accurately capture ensemble characteristics, following Lu et al.
(2024):

• Pairwise distance (PwD): pairwise distances are calculated between atoms, skipping three
atoms between pairs. To transform these continuous values into a distribution, we construct
histograms with Nbin = 50 bins to represent the pairwise distribution, and JS divergence is
calculated over these. A pseudo-count of ϵ = 10−6 is added to zero frequencies for slight
smoothing.

• The two slowest components of time-lagged independent component analysis (TIC) (Pérez-
Hernández et al., 2013): Pairwise distances for each protein conformation are computed
and flattened. TICA projections are then fitted using the reference full MD trajectories, ap-
plying the Deeptime library(Hoffmann et al., 2021). The first two components are selected
after TICA dimension reduction for each ensemble. Histograms are constructed for both
components similarly to the pairwise distances.

• Radius of gyration: This measures the root mean square distance of atoms from the center
of mass. The same histogram approach is used as described for the other features.

Validity. following Lu et al. (2024), the validity is defined as the ratio of clash-free conformations
in the generated ensemble. It is computed by dividing the number of conformations without steric
clashes by the total size of ensemble. A steric clash occurs when two atoms are too close to each
other. For a given ensemble of conformations, it is expressed as: Validity({x(i)}Ni=1) = 1.0 −
1
N

∑N
i=1 1{∃ j, k, such that |x(i)

Cα,[j] − x
(i)
Cα,[k]| < δ}, where x

(i)
Cα,[j] ∈ R3 represents the Cα-atom

coordinate of residue j in the conformation sample x(i), and δ = 3.0Å.

TM-ens (RMSD-ens). First introduced in Jing et al. (2023), the ensemble TM-score (TM-ens)
quantifies how well the generated ensemble matches the observed conformational states in the refer-
ence data. Specifically, it is defined as the maximum TM-score between each generated sample and
the reference state, averaged over all reference states. This provides a measure of structural simi-
larity, with higher scores indicating better coverage between the generated and true conformations
given a limited sampling budget. Similarly, RMSD-ens calculates the average minimum RMSD
value between the generated and reference conformations, providing another metric to evaluate the
structural fidelity of the ensemble. They are respectively defined as follows, with x represents the
generated ensemble and y denotes the reference ensemble:

TMens({x(i)}, {y(j)}) = 1

|{y(j)}|

|{y(j)}|∑
j=1

max
i

TM(x(i),y(j)), and

RMSDens({x(i)}, {y(j)}) = 1

|{y(j)}|

|{y(j)}|∑
j=1

min
i

RMSD(x(i),y(j)).

The TM-score and RMSD are both calculated using the compiled binary executive developed by
Zhang & Skolnick (2004).

Residue flexibility. Following Jing et al. (2023), we evaluate the Pearson correlation for global
and per-target residue flexibility (ResFlex), which is defined as the absolute deviation of the center
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Cα-atom coordinates after structural alignment, or formally for index i:

ResFlex({xk}Nk=1)[i] =
1

N

N∑
k=1

|Align(x(k))Cα,[i] −
1

N

N∑
k=1

Align(x(k))Cα,[i]|,

where Align(·) means the Kabsch alignment as in RMSD among all N conformations in the en-
semble. Afterward, the correlation is calculated between the generated ensemble and the reference
ensemble.

Mean absolute error (MAE). Since the experimental ensemble contains a varying number of
samples for different targets in the PED database (Lazar et al., 2021), we balance by using the mean
absolute error (MAE) to evaluate the performance on intrinsically disordered proteins (IDPs). For
each feature, we calculate the ensemble average for both the reference and generated samples, then
compute the MAE between them and average this value over the channels. The mean and median
MAE are reported across all 114 targets.

Contact map. We calculate and visualize the contact map as the probability distribution over
a 2D grid of pairwise distances. First, the pairwise distance between residues is calculated, and a
distance threshold of 8.0Å is applied to determine if two residues are in contact (Janson et al., 2023).
Finally, the frequency of contacts across all conformations in the ensemble is normalized to create
a probability distribution over the entire distance map. Formally, the contact probability between
residues i and j is given by:

Pcontact(i, j) =
1

N

N∑
k=1

1{d(k)(i, j) ≤ 8.0Å},

where d(k)(i, j) ∈ R is the pairwise distance between residues i and j in conformation k, and N
is the number of conformations in the ensemble. This normalized contact map provides straightfor-
ward insights into residue interactions within the generated ensemble.

E ABLATION STUDIES AND ADDITIONAL EXPERIMENTS

E.1 FINE-TUNING CONFIGURATION

In Table S5, we list different fine-tuning configurations in our experiments. Note that using the
sequence track dropout, masking, or prediction similar to the pre-training stage of ESM3 do have
a positive improvement on the BPTI task, we discover the model accuracy will decrease for the
apo/holo or fold-switch evaluation. In specific, the track dropout rate is set to be 25%, the masking
rate is 10% while the sequence prediction loss has the equal weight of structure prediction.

E.2 CHANGING OF TEMPERATURES

In this section, we examine the effect of altering the temperature parameter T during the sampling
process. Temperature scaling influences the diversity and accuracy of the sampled conformations,
with higher temperatures encouraging more exploratory behavior, while lower temperatures lead to
more deterministic outputs. We experimented with different values of T , ranging from 0.25 to 5.0, to
observe how this affects the balance between diversity and accuracy in our conformation generation
for different SLMs (for ESMDiff, only the ID sampling is applied). To make the result straightfor-
ward, we evaluate on the BPTI samples (N=100) with the validity metric as well as the TM-diversity.
The TM-diversity is defined as the average pairwise inverse TM-score (i.e., 1 − TM(x, y)) among
conformations in the sampled ensemble. As shown in Fig. S1, we observe that higher temperature
generally leads to decreased validity and increased diversity. Note that the pre-trained ESM3’s (w/o
fine-tuning) performance degenerated significantly at the low temperature. After fine-tuning, its
validity improves significantly without compromising the diversity. As the temperature increases,
ESM3 and ESMDiff maintain a high validity score. However, there is minimal improvement in
diversity, suggesting that these models might not be sensitive to high sampling temperatures. S-T5
and S-GPT also achieve strong validity when T ≤ 1. In contrast to ESM models, these two models
are quite sensitive to the temperature. As can be seen, their validity scores quickly deteriorate as the
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Figure S1: Moving (a) Validity and (b) TM-diversity along with temperature for SLMs.

temperature moves beyond 1.5. Notably, at T ≤ 1, S-GPT not only maintains high validity but also
achieves significantly greater diversity, showcasing its superior ability to balance between diversity
and accuracy.

E.3 CHANGING OF SAMPLING STEPS

This section focuses on the impact of varying the number of sampling steps in the ID or DDPM
sampling. As the number of steps increases, the model has more opportunities to refine the sampled
conformations, potentially improving accuracy. However, increasing the total number of sampling
stepsK also incurs a higher computational cost (growing linearlyO(K)). We explored different step
counts, ranging from 5 to 100, and evaluated their performance similarly. As shown in Fig. S2, only
ID sampling significantly benefits from an increased number of sampling steps. For the other two
methods, accuracy improvement plateaus after 10 steps. The diversity remains largely unaffected
by the number of steps for all methods. Overall, DDPM sampling consistently yields the highest
validity across nearly all step counts, with the exception of at 100 steps.
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Figure S2: Moving (a) Validity and (b) TM-diversity along with the number of sampling steps for
BERT-like SLMs.

E.4 EVALUATING ON THE ATLAS MD ENSEMBLES

We additional evaluate the performance on the ATLAS MD ensemble dataset (Vander Meersche
et al., 2024), which contains 100ns all-atom MD simulation in the span of 1390 monomeric protein
targets. In Jing et al. (2024), the authors established a comprehensive benchmark (as well as data
split) to evaluate the performance of conformation generation methods in learning from MD ensem-
bles across multiple statistical properties. As shown in Table S6, we found that ESM3 (zero shot) has
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Table S5: Ablation results for ESMDiff fine-tuned using different strategies across three tasks in our
study. By default, the DDPM sampling (Algorithm 4) is used to generate samples for evaluation.

Method JS-PwD (↓) JS-TIC (↓) JS-RG (↓) Validity (↑) TM-ens (↑) RMSD-ens (↓)

ESMDiff (DDPM) 0.372 0.421 0.440 0.940 0.843 1.437

w/o time condition 0.385 0.421 0.456 0.930 0.849 1.454
w/ sequence mask 0.387 0.414 0.461 0.940 0.849 1.423
w/ sequence dropout 0.358 0.408 0.431 0.910 0.846 1.407
w/ sequence prediction 0.366 0.442 0.474 0.860 0.853 1.389

ResFlex r (gl.) ResFlex r (pt.) TM-ens ResFlex r (gl.) ResFlex r (pt.) TM-ens

ESMDiff (DDPM) 0.420 0.489 / 0.515 0.838 / 0.877 0.402 0.341 / 0.288 0.626 / 0.685

w/o time condition 0.419 0.479 / 0.487 0.847 / 0.883 0.346 0.340 / 0.357 0.633 / 0.685
w/ sequence mask 0.371 0.474 / 0.491 0.843 / 0.885 0.381 0.336 / 0.329 0.624 / 0.687
w/ sequence dropout 0.345 0.460 / 0.483 0.833 / 0.858 0.373 0.323 / 0.308 0.597 / 0.665
w/ sequence prediction 0.419 0.456 / 0.445 0.828 / 0.860 0.360 0.324 / 0.341 0.598 / 0.626

Method
Apo/holo Fold-switch

Method Pairwise distance Radius of gyration Contact map

ESMDiff (DDPM) 7.010 / 4.665 4.438 / 1.974 0.354 / 0.284

w/o time condition 7.399 / 4.855 4.854 / 1.838 0.366 / 0.283
w/ sequence mask 7.027 / 4.654 4.523 / 2.221 0.363 / 0.293
w/ sequence dropout 7.140 / 4.904 4.629 / 2.502 0.369 / 0.303
w/ sequence prediction 8.122 / 4.764 5.414 / 2.422 0.433 / 0.361

Table S6: Statistical metrics on MD ensembles of ATLAS test set (Jing et al., 2024).

Metrics AlphaFlow-MD ESM3 (zero shot)

Pairwise RMSD 2.89 7.01
Pairwise RMSD r 0.48 0.08
RMSF 1.68 3.74
Global RMSF r 0.6 0.19
Per target RMSF r 0.85 0.67
RMWD 2.61 7.27
RMWD trans 2.28 5.22
RMWD var 1.3 4.35
MD PCA W2 1.52 2.06
Joint PCA W2 2.25 5.97
PC sim 0.5 % 44 21.95
Weak contacts J 0.62 0.45
Transient contacts J 0.41 0.26
Exposed residue J 0.5 -
Exposed MI matrix rho 0.25 -
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difficulty recovering the MD ensembles of ATLAS test set. A possible reason is that the simulation
timescales of ATLAS is limited to 100ns and seldom contains slower and substantial conformational
changes (according to Jing et al. (2024)), which does not favor the tokenized structure and language
modeling. How to properly leverage SLMs for learning MD simulation ensemble could be a very
important and promising research direction in the future.

F STRUCTURE AUTO-ENCODERS

F.1 QUANTIZED REPRESENTATION OF STRUCTURES

Tokenizing protein structures can differ from the cases of image pixels (Van Den Oord et al., 2017;
Ramesh et al., 2021). The encoded structure should not only provide informative representations for
accurate reconstruction but also ensure a well-structured latent space that enables efficient language
modeling. In order to build better structure language models, we discuss several rules that ideal
structure quantization methods should follow.

Disentangled quantization. Firstly, we ask the disentangled property of the latent z6. In specific,
each position of the codes zi ∈ |V | has only a limited receptive field of the local structure and
the interaction between different codes should be minimized. In other words, specific token zi is
expected to correspond to a specific pattern of local structures, where small noise from inputs can
be redacted or inferred from other tokens. Disentangled representation can enable efficient language
modeling and the interpretability of the latent space. Formally, we assume conditional independence
of zi given input structure, i.e. q(z|x) ≡ q(z1, z2, . . . ,zN |x) = q(z1|x)q(z2|x) . . . q(zN |x). 7

Roto-translation invariant encoding. Roto-translation invariance (RT-Inv) of a function (map-
ping) indicates that applying (global) affine transformations T ◦ x = R ◦ x + t, composed of 3D
rotation matrix R ∈ R3×3 and translation vector t ∈ R3 , to the input (of Euclidean space) should
have no effects on the final output value. Formally, the encoder q(z|x) : X → Z with RT-Inv
property can be described as: q(z|T ◦ x) = q(z|R ◦ x + t) = q(z|x),∀ T . RT-Inv property is
essential for effective structure quantization since encoding global rotation or translation into rep-
resentation can make unnecessary assumption for network architectures. It is also non-trivial to
encode orientation or translation in the categorical codes z.

Complete coverage of conformation space. The (approximately) complete coverage property of
quantized representation guarantees successfully reconstruction between x and x̃. Good latent space
Z should be properly configured according to the distribution of structure characteristics. To achieve
good reconstruction, latent codes z should be able to catch and distinguish various subtle structure
patterns from the input space X for high-quality decoding. On the other hand, excessively large
vocabulary can cause a sparse coding space and unnecessarily encode the noises in structure, which
can thus lead to memorization (Arpit et al., 2017) and make the generalization difficult.

F.2 RECONSTRUCTION ON TEST DATASETS

To investigate whether the structure tokens by the dVAE (Hayes et al., 2024) can encode different
conformations in a distinguishable way, we evaluate the reconstruction accuracy of the encode-
decoder as a preliminary study via the root-mean-square-deviation (RMSD) on the benchmarking
test datasets used in this study. The results are presented as histogram as shown in Fig S3. Note
that a non-negligible ratio of the fold-switching Chakravarty & Porter (2022) and IDPs (Lazar et al.,
2021) targets for which the encoder-decoder cannot reconstruct the input protein structure very well
(RMSD > 0.5Å) passing through the quantization process.

Furthermore, we plot the histogram for pairing structures of each target in the Apo/holo (Saldaño
et al., 2022) and fold-switching Chakravarty & Porter (2022) for a closer investigation. As shown in
Fig. S4 (a) and (b) respectively, the dVAE can have a better accuracy for the folds in the Apo/holo

6To avoid ambiguity, we confine the meaning of “disentangle” to be local-to-global instead of semantic-level
description of the structure (eg. double-helix). Thus, the latent zi should have restricted receptive field.

7Note that conditional independence of z given x does not necessarily imply such relation given c, though
these two variables, as protein sequence and structure, possess high mutual dependence.
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Figure S3: Histogram of RMSD of the targets from each participating test set used in this study.
Frequencies has been normalized as density due to the unequal sizes of different datasets.
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Figure S4: Histogram of RMSD of the targets in the (a) Apo/holo pairs; (b) Fold-switching pairs.

dataset than those of fold-switching, which may explain the relatively inferior performance of SLMs
on the fold-switching test data.

G EXTENDED METHODOLOGY DISCUSSION

G.1 REVISITING DISCRETE DIFFUSION AS DISTRIBUTION INTERPOLATION

The discrete diffusion models (Austin et al., 2021; Lou et al., 2023; Sun et al., 2022; Campbell
et al., 2022; Zheng et al., 2023) can be generally defined by a sequential process of progressive noisy
variables zt ∈ V from the categorical variable z0 ∈ V . Denote the one-hot (row) vector of zt as
zt ∈ {0, 1}|V |, in the discrete-time case (Austin et al., 2021), the forward marginal probability of zt
at time t has the following form as a composition of Markov kernel defined by Qt (t = 1, 2 . . . , T ):

q(zt|z0) = Cat
(
zt; z0Q̄t

)
≜ Cat (zt; z0Q1 · · · · ·Qt) , (7)

where Qt indicates the transition probability matrix for time t represented by [Qt]ij = q(zt =

j|zt−1 = i), and Cat(·;p),p ∈ ∆|V | indicates the categorical distribution with probability and ∆|V |

is the |V |-simplex. Eq. 7 also induce the form of the marginal distribution for ∀t > s is q(zt|zs) =

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Cat
(
zt; zsQ̄t|s

)
≜ Cat (zt; zsQs+1 · · · · ·Qt). Correspondingly, the posterior q(zs|zt, z0) can be

obtained by the reverse process (Austin et al., 2021):

q(zs|zt, z0) =
q(zt|zs, z0)q(zs|z0)

q(zt|z0)
= Cat

(
zs;

ztQ
⊤
t|s ⊙ z0Q̄s

z0Q̄tz⊤
t

)
,∀ s < t. (8)

Both Zhao et al. (2024) and Shi et al. (2024) discuss how the discrete-time diffusion process can be
generalized to the time domain t ∈ [0, 1], akin to the diffusion over continuous space (Song et al.,
2020), by demonstrating the continuous-time limit as T → ∞. Notably, when the stationary distri-
bution is explicitly specified (denoted as p ∈ ∆|V |), we can choose a state-independent transition
kernel in the simple form: Qt|s ≜

[
α(s)−1α(t)I + (1− α(s)−1α(t))1⊤p

]
, thus simplifying the

continuous-time forward marginal to:

q(zt|zs) = Cat

(
zt;

α(t)

α(s)
zs + (1− α(t)

α(s)
)p

)
,∀ 0 ≤ s < t < 1, (9)

where α(t) ∈ [0, 1) is a strictly monotone decreasing function with α0 = 1 and α1 → 0. The
equation above demonstrates that the discrete diffusion, when defined with an explicit stationary
distribution, can be viewed as an interpolation between two categorical distributions controlled by
α(t). According to Eq. 8, the reverse process of diffusion defined in Eq. 9 takes the following form
for the posterior distribution, where 0 ≤ s < t < 1:

q(zs|zt, z0) = Cat

(
zs;

[µ(t, s)zt + (1− µ(t, s))λzt(p)1]⊙ [α(s)z0 + (1− α(s))p]
α(t)λzt(z0) + (1− α(t))λzt(p)

)
, (10)

where µ(t, s) ≜ α(s)−1α(t) > 0 and indicator function λzt(·) ≜ ⟨zt, ·⟩ for concision. Readers are
referred to Appendix G.2.2 for more details on deriving the Eq. 9 and 10.

Unlike open-ended text generation, protein conformation generation is well-defined within discrete
diffusion models, as it conditions on the input amino acid sequence, allowing each output token to
correspond uniquely to a position in the input and thus enjoy a fixed-length context window8.

G.2 PROOFS AND DERIVATIONS

G.2.1 DERIVATION OF THE EVIDENCE LOWER BOUND IN EQUATION 1

We want to prove the inequality of ELBO of the log-likelihood over structure tokens z conditioned
on input c, which is:

log pθ,ψ(x|c) ≥ Eqψ(z|x) [log pϕ(x|c, z)−DKL(qψ(z|x)∥pθ(z|c))]
Proof: Consider the log likelihood of structure x and sequence c, which is parameterized by param-
eters θ, ψ:

log pθ,ψ(x|c) = log

∫
pθ,ψ(x, z|c) dz

where z is introduced as a latent variable, and pθ,ψ(x, z|c) is the joint distribution over x and z.
Write the variational distribution qψ(z|x) as an approximation to the true posterior over the latent
variables z conditioned on x, yielding the following log-likelihood:

log pθ,ψ(x|c) = log

∫
pθ,ψ(x, z|c)
qψ(z|x)

qψ(z|x) dz,

Here we assume positive conditional distribution of qψ(c, z|x). By applying Jensen’s inequality to
the logarithm, we obtain the following inequality:

log pθ,ψ(x|c) ≥ Eqψ(z|x)
[
log

pθ,ψ(x, z|c)
qψ(z|x)

]
We can simplify the terms inside the expectation and separates the R.H.S. into two expectations:

Eqψ(z|x)
[
log

pθ,ψ(x, z|c)
qψ(z|x)

]
= Eqψ(z|x) [log pϕ(x|c, z)] + Eqψ(z|x)

[
log

pθ(z|c)
qψ(z|x)

]
8This indicates that c[i] and z[i] are aligned at the same position index i.
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The second term is the negative Kullback-Leibler (KL) divergence, and thus:

Eqψ(z|x) [log pϕ(x|c, z)]−DKL(qψ(z|x)∥pθ(z|c))

Since the latent tokens z encode the protein structures, we assume that x is conditionally indepen-
dent of c given z. Thus, we obtain:

log pθ,ψ(x|c) ≥ Eqψ(z|x) [log pϕ(x|c, z)−DKL(qψ(z|x)∥pθ(z|c))]

G.2.2 DERIVATIONS OF MARGINAL AND POSTERIOR IN G.1

Based on the theoretical results in Austin et al. (2021), we derive the marginal and poste-
rior distribution corresponding to the state-independent transition kernel defined in as Qt|s ≜[
α(s)−1α(t)I + (1− α(s)−1α(t))1⊤p

]
, with α(t) ∈ [0, 1] being some strictly monotone decreas-

ing function s.t. α0 = 1 and α1 → 0.

Forward Marginal. For q(zt|zs), we plug in the transition matrix into the definition of forward
marginal:

q(zt|zs) = Cat
(
zt; zsQt|s

)
= Cat

(
zt; zs

[
α(s)−1α(t)I + (1− α(s)−1α(t))1⊤p

])
= Cat

(
zt;

α(t)

α(s)
zs + (1− α(t)

α(s)
)zs(1

⊤p)

)
= Cat

(
zt;

α(t)

α(s)
zs + (1− α(t)

α(s)
)(zs1

⊤)p

)
= Cat

(
zt;

α(t)

α(s)
zs + (1− α(t)

α(s)
)p

)
(11)

where in the second to last line the associative property is used and zs1
⊤ = ⟨zs,1⟩ = 1 ∈ R,∀t

due to the fact that by definition ∀s, zs ∈ {0, 1}N is an one-hot (row) vector, i.e. ⟨zs, zs⟩ = 1.
Let µ(s, t) ≜ α(s)−1α(t) be positive function defined on [0, 1], we can write forward marginal
as q(zt|zs) = Cat (zt;µ(s, t)zs + (1− µ(s, t))p), which can be viewed as an “interpolation” be-
tween categorical distribution Cat (·; zs) and stationary prior Cat (·;p).

Posterior distribution. Similarly we derive the posterior as follows. Note that by definition: Q̄t ≡
Qt|0 =

[
α(0)−1α(t)I + (1− α(0)−1α(t))1⊤p

]
= α(t)I + (1− α(t))1⊤p,∀ t > 0):

q(zs|zt, z0) = Cat

(
zs;

ztQ
⊤
t|s ⊙ z0Q̄s

z0Q̄tz⊤
t

)
,

= Cat

(
zs;

zt
[
α(s)−1α(t)I + (1− α(s)−1α(t))1⊤p

]⊤ ⊙ z0
[
α(s)I + (1− α(s))1⊤p

]
z0 [α(t)I + (1− α(t))1⊤p] z⊤

t

)

= Cat

(
zs;

[
α(s)−1α(t)zt + (1− α(s)−1α(t))ztp

⊤1
]
⊙ [α(s)z0 + (1− α(s))p]

[α(t)z0 + (1− α(t))p] z⊤
t

)

= Cat

(
zs;

[µ(s, t)zt + (1− µ(s, t))⟨zt,p⟩1]⊙ [α(s)z0 + (1− α(s))p]
α(t)⟨z0, zt⟩+ (1− α(t))⟨p, zt⟩

)
. (12)

G.2.3 DERIVATION OF CONDITIONAL MASKED DIFFUSION IN 4.1

The conditional masked diffusion follows the modeling of forward and reverse processes derived
above with the special case that p = pM . Let pM ∈ {0, 1}|V̄ | be the one-hot vector for [MASK]
token. The forward marginal is directly obtained as

q(zt|zs) = Cat (zt;µ(s, t)zs + (1− µ(s, t))pM ) ,∀ 0 ≤ s < t ≤ 1. (13)
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Then we plug this in Eq. 12, which is:

q(zs|zt, z0) = Cat

(
zs;

[µ(s, t)zt + (1− µ(s, t))⟨zt,pM ⟩1]⊙ [α(s)z0 + (1− α(s))pM ]

α(t)⟨z0, zt⟩+ (1− α(t))⟨pM , zt⟩

)
.

(14)
Since multiple inner-product terms appear between one-hot vectors z0, zt,pM which only takes
binary value ∈ {0, 1}, we discuss this by cases and derived the form in Eq. 10:

zt = [MASK] . In this case, we immediately note that ⟨zt,pM ⟩ = 1 and ⟨zt, z0⟩ = 0 because
z0 ∈ V represents the data and thus z0 ̸= [MASK] = zt. Plug in Eq. 14, we have:

q(zs|zt, z0) = Cat

(
zs;

[µ(s, t)pM + (1− µ(s, t))1]⊙ [α(s)z0 + (1− α(s))pM ]

1− α(t)

)
= Cat

(
zs;

[µ(s, t)pM + (1− µ(s, t))1]⊙ [α(s)z0 + (1− α(s))pM ]

1− α(t)

)
= Cat

(
zs;

[µ(s, t)pM + (1− µ(s, t))1]⊙ [α(s)z0 + (1− α(s))pM ]

1− α(t)

)
= Cat

(
zs;

[µ(s, t)pM + (1− µ(s, t))1]⊙ [α(s)z0 + (1− α(s))pM ]

1− α(t)

)
= Cat

(
zs;

µ(s, t)α(s)0+ µ(s, t)(1− α(s))pM + (1− µ(s, t))α(s)z0 + (1− µ(s, t))(1− α(s))pM
1− α(t)

)
= Cat

(
zs;

α(s)− α(t)
1− α(t)

z0 +
1− α(s)
1− α(t)

pM

)
, (15)

where we use the facts that z0 ⊙ pM = 0,pM ⊙ pM = pM , and ∗ ⊙ 1 = ∗.

zt ̸= [MASK] . Correspondingly, this leads to ⟨zt,pM ⟩ = 0 and we have the following simplifi-
cation:

q(zs|zt, z0) = Cat

(
zs;

[µ(s, t)zt + (1− µ(s, t))⟨zt, z0⟩1]⊙ [α(s)z0 + (1− α(s))pM ]

α(t)⟨zt, z0⟩+ (1− α(t))⟨zt,pM ⟩

)
= Cat

(
zs;

µ(s, t)α(s)(zt ⊙ z0)

α(t)⟨zt, z0⟩

)
= Cat

(
zs;

zt ⊙ z0
⟨zt, z0⟩

)
. (16)

Here we find that, due to the construction of forward marginal in Eq. 13, zt ∈ {[MASK] , z0} to
guarantee the denominator α(t)⟨zt, z0⟩+(1−α(t))⟨zt,pM ⟩ to be positive. Such that zt ̸= [MASK]
will imply ⟨zt, z0⟩ = 1 and thus q(zs|zt, z0) becomes Cat (zs; zt) which has probability mass
P (z = zt) = 1 and zero elsewhere.

To combine these two cases together, we introduce the indicator function λM (·) ≜ ⟨pM , ·⟩ and let
β(s, t) ≜ 1−α(s)

1−α(t) > 0, Eq. 2 can be obtained by plugging in the coefficients to Eq. 14:

q(zs|zt, z0) = Cat (zs; [β(s, t) + (1− λM (zt))(1− β(s, t))]zt + λM (zt)(1− β(s, t))z0) .
(17)

G.2.4 LEARNING OBJECTIVE FOR CONDITIONAL MASKED DIFFUSION

Based on the pre-defined masked diffusion process, now we derive the training objective as in Eq.
3. The task we are interested in involves a key step of sampling structure tokens z0 based on
the amino-acid sequence condition c. We start with discrete-time denoising diffusion objective
according to Ho et al. (2020), which is the ELBO of marginal likelihood of z0 conditioned on c (let
ti ≜ max(ϵ, i/T ), i = 0, 1, . . . , T ):

log p(z0|c) ≥ Eq(zt0 |z0)[log pθ(z0|zt0 , c)]−DKL(q(zT |z0)∥pθ(zT |c))

−
T∑
i=2

DKL(q(zti−1
|zti , z0)∥pθ(zti−1

|zti , c)), (18)
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where each term can be respectively viewed as reconstruction, prior and (discrete-time) diffusion
loss. The definition above is general and still valid regardless of continuous or discrete data.
Due to the special construction of conditional masked diffusion in Eq. 9 and 10, we find the
cancellations of the first two terms because: (1) For reconstruction loss, the interpolation dif-
fusion process is based on two one-hot vectors z0 and [MASK] which assigns zero probability
to all other values. That indicates z0 ≡ zt0 , or there is no “decoding process” mapping from
the infinite small time step to original data, i.e. limt→0 α(t) = 1. Thus log pθ(z0|zt0 , c)] =
log q(z0|zt0 ,uθ(zt0 , t0, c))]→ 0 as t0 → 0; (2) For the prior loss, both q(zT |z0) and pθ(zT |c) are
designed to be Cat(zT |pM ) as the stationary distribution with all probability mass on the [MASK]
token. Thus, DKL(q(zT |z0)∥pθ(zT |c)) = DKL(Cat(zT |pM )∥Cat(zT |pM )) ≡ 0.

The ELBO in Eq. 18 is simplified to contain only the multi-step diffusion loss, by parameterization
of the posterior distribution:

ELBO = −
T∑
i=2

DKL(q(zti−1
|zti , z0)∥pθ(zti−1

|zti , c)),

= −
T∑
i=2

DKL(q(zti−1
|zti , z0)∥q(zi−1|zti ,uθ(zti , ti, c))),

= −
T∑
i=2

|V̄ |∑
j=1

q(zti−1 = ej |zti , z0) log
q(zti−1

= ej |zti , z0)
q(zti−1

= ej |zti ,uθ(zti , ti, c)))
, (19)

where ej ∈ {0, 1}|V̄ | is the one-hot basis vector with j-th element being non-zero. Note that in
Eq. 16, we show that if zt ̸= pM , the posterior q(·|zt, z0) becomes z0-independent, which imply
DKL = 0. When zt = pM , according to Eq. 15, we have:

ELBO = −
T∑
i=2

|V̄ |∑
j=1

q(zti−1 = ej |zti , z0) log
q(zti−1

= ej |zti , z0)
q(zti−1

= ej |zti ,uθ(zti , ti, c)))

= −
T∑
i=2

|V |∑
j=1

(1− β(ti−1, ti))⟨z0, ej⟩ log
⟨z0, ej⟩

⟨uθ(zti , ti, c), ej⟩

= −
T∑
i=2

(1− β(ti−1, ti))

|V |∑
j=1

[⟨z0, ej⟩ log ⟨z0, ej⟩ − ⟨z0, ej⟩ log ⟨uθ(zti , ti, c), ej⟩]

=

T∑
i=2

(1− β(ti−1, ti))

|V |∑
j=1

⟨z0, ej⟩ log ⟨uθ(zti , ti, c), ej⟩

=

T∑
i=2

(1− β(ti−1, ti)) Eq(zti |z0) [⟨loguθ(zti , ti, c), z0⟩] . (20)

Then we push T →∞ and obtain the limit of continuous-time ELBO:

ELBO∞ = lim
T→∞

T∑
i=2

(1− β(ti−1, ti)) Eq(zti |z0) [⟨z0, loguθ(zti , ti, c)⟩]

= lim
T→∞

T∑
i=2

α(ti−1)− α(ti)
1− α(ti)

Eq(zti |z0) [⟨z0, loguθ(zti , ti, c)⟩]

= − lim
T→∞, i/T→0

T∑
i=2

[α(ti)− α(ti−1)](ti − ti−1)

[1− α(ti)](ti − ti−1)
Eq(zti |z0) [⟨z0, loguθ(zti , ti, c)⟩]

= −
∫
t∈(0,1)

1

1− α(t)
∂α(t)

∂t
Eq(zt|z0) [⟨z0, loguθ(zt, t, c)⟩] dt. (21)

In practice, the integral above can be replaced by the uniform sampling t ∼ U [0, 1] as Monte Carlo
estimation during training. Note that the ELBO∞ above is conditioned on zt = pM (ELBO=0
otherwise), such that we introduce the indicator function λM (zt) and obtain the Eq. 3.
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H STRUCTURE GALLERY

This section showcases various structural ensembles generated by our model, ESMDiff (DDPM
sampling), across different protein scenarios. The visualizations include comparisons between sam-
pled ensembles and reference structure(s) or ground truth ensembles, providing an insight into the
model’s ability to capture diverse conformations and structural flexibility in different types of pro-
teins.

H.1 PROTEIN BPTI

Figure S5 displays the best-matched samples from our modeled ensemble (N = 100) for each
kinetic cluster (in total 5) of BPTI published in Shaw et al. (2010). The superimposed visualization
compares the modeled conformations (solid rainbow color) with the reference structure (rendered
transparent) after structural alignments.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure S5: The visualization shows the best matched samples for each kinetic cluster of BPTI from
the modeled ensemble (N = 100) by ESMDiff. The reference structure is rendered transparent.

H.2 CONFORMATION CHANGE PAIRS

Figure S6 presents the sampled ensemble in khaki, overlaid on the ground truth structures of
conformation-changing pairs from the Apo/Holo dataset, shown in transparent rainbow colors.

1igp.A | 2au6.A 1jej.A | 1rf4.A 1rf5.A | 1rf4.A

1za1.A | 1q95.A 2ju3.A | 2ju8.A 2k43.A | 2k8r.A

Figure S6: Sampled ensemble (colored in khaki) superimposed with the ground truth conformation
changing pairs in Apo/Holo dataset(represented in transparent rainbow colors)
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H.3 INTRINSICALLY DISORDERED PROTEIN

The final subsection focuses on intrinsically disordered proteins (IDPs), which are characterized by
their flexible, non-fixed structures. Figure S7 demonstrates the sampled ensemble in khaki, superim-
posed on the ground truth ensemble of IDPs, rendered in transparent rainbow colors. Additionally,
the figure includes a comparison of contact maps to the right, further illustrating the model’s ca-
pacity to reproduce the flexible and dynamic nature of IDPs. Among the examples, we also show
a failed case for PED00433, where the model struggles to enforce structural diversity at both ter-
minal fragments. While the experimental ensemble exhibits significant structural variability, the
model-generated ensemble shows reduced diversity, indicating a potential direction for further im-
provement in modeling terminal regions of the modern structure prediction models.

Figure S7: Sampled ensemble (colored in khaki) superimposed with the ground truth ensemble of
intrinsically disordered proteins (IDPs) (represented in transparent rainbow colors), accompanied by
a contact map comparison on the right.
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