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ABSTRACT

Molecular property prediction plays a crucial role in drug discovery and mate-
rial design but faces major challenges such as constructing meaningful molecular
features and defining effective similarity metrics between molecules. Recently,
graph neural networks (GNNs) have shown great success in learning molecular
representations from graphs via capturing local atomic interactions. However,
they often struggle to capture global chemical motifs and complex long-range
dependencies between molecules and substructures. In this paper, we present
Fin-H2AN, a novel Fingerprint-based Heterogeneous Hypergraph Attention Net-
work to address the molecular property prediction problem. In this model, we
propose a novel heterogeneous hypergraph structure by defining higher-order re-
lations between molecules by leveraging diverse substructures derived from mul-
tiple molecular fingerprints. In this way, all molecules and their different fin-
gerprints are embedded into a unified hypergraph. We employ a heterogeneous
hypergraph attention model to learn meaningful molecular representations from
the proposed heterogeneous hypergraph. It captures higher-order relations among
molecules and integrates unique features of different molecular fingerprints into
the molecular embeddings. These embeddings are then used for molecular prop-
erty prediction. Extensive experiments on eight MoleculeNet benchmark datasets
demonstrate that Fin-H2AN outperforms the state-of-the-art molecular property
prediction models and show its effectiveness in capturing both local and global
molecular information.

1 INTRODUCTION

The rapid and efficient design of new drugs is essential for combating diseases, tackling pandemics
and improving human health. Molecular property prediction is a crucial step in drug discovery
and material design, as it enables the rapid identification of compounds with desired biological and
physicochemical attributes. With the availability of public databases, several computational models
have been proposed for molecular property prediction Zhang et al. (2024); Rollins et al. (2024);
Nguyen-Vo et al. (2024). A major challenge in effectively utilizing machine learning models for this
problem lies in constructing meaningful molecular representations and features, as well as defin-
ing effective similarity metrics between molecules Wigh et al. (2022); López-Pérez et al. (2024).
Traditional molecular property prediction models, like quantitative structure–activity (property) re-
lationship (QSAR/QSPR) Muratov et al. (2020); Toropov & Toropova (2020), use a large set of
handcrafted features such as Extended-connectivity fingerprints (ECFPs) Rogers & Hahn (2010).
However, this process is labor intensive, and selecting the right features to capture complex multi-
scale interactions within molecules remains a significant challenge Lewis (2005).

Recently, graph neural networks (GNNs) have shown great success in learning molecular represen-
tations from molecular graphs Withnall et al. (2020); Feinberg et al. (2020); Xiong et al. (2019).
Each molecule is represented as an undirected molecular graph, where nodes represent the set of
atoms in the molecule, and edges represent the set of chemical bonds between atoms, capturing
molecular connectivity and bonding relationships. This graph-based representation preserves criti-
cal atomic-level information essential for capturing molecular information (e.g., bond connectivity,
stereochemistry, ring systems) Coley et al. (2017). However, GNNs applied to simple molecular
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graphs often struggle to model complex higher-order interactions and long-range dependencies be-
tween substructures and within molecules Giraldo et al. (2023). They also lack prior knowledge of
the domain including molecular fragments in molecules.

Alternatively, molecular fingerprints provide essential information for encoding molecular struc-
tures Mayr et al. (2018); Moriwaki et al. (2018). These fixed-length binary vectors indicate the pres-
ence or absence of specific chemical fragments (e.g., rings, chains, or functional groups) and provide
complementary information that enhances molecular representations Cao et al. (2015); Yap (2011);
Cereto-Massagué et al. (2015). However, simply applying models like SVM and regular neural net-
works to these vectors often fails to capture complex molecular interactions, such as higher-order
dependencies within and between molecules Wu et al. (2018); Mayr et al. (2018). Moreover, se-
lecting the most effective fingerprint representation remains a challenge. Some approaches, such as
FP-GNN Cai et al. (2022), address this by concatenating multiple fingerprint features into a single
vector, assuming an equal contribution from all bits while neglecting the relational context among
chemical fragments. According to the Similar Property Principle, structurally similar molecules
tend to exhibit similar properties and two molecules are similar if they have similar substructures
as functional groups in their sequence Johnson et al. (1990); Lapez-Parez et al. (2024); Muegge &
Mukherjee (2016). Finding similarities of molecules based on their substructures is a challenging
task. Thus, there is a strong need for methods that better capture higher-order molecular interactions
by explicitly considering the substructures encoded in fingerprints as domain knowledge.

To overcome these limitations, we develop a novel Fingerprint-based Heterogeneous Hypergraph
Attention Network, Fin-H2AN. To properly depict the structural similarity between molecules, we
construct a novel heterogeneous hypergraph by using diverse substructures derived from multiple
molecular fingerprints. In this hypergraph, we incorporate three different molecular fingerprints;
MACCS, ErG, and PubChem Durant et al. (2002); Stiefl et al. (2006); Bolton et al. (2008). A hy-
pergraph is a unique model of a graph with hyperedges. Unlike a regular graph where the degree of
each edge is two, hyperedge as degree-free can connect an arbitrary number of nodesBretto (2013).
Each bit in a fingerprint, corresponding to a specific chemical fragment in the molecule, is repre-
sented as a node in the hypergraph. Each molecule is represented as a hyperedge connecting the
nodes corresponding to its active fingerprint bits. The resulting hypergraph captures higher-order
relations between molecules. Each hyperedge combines nodes derived from the three fingerprints,
making it heterogeneous. To effectively encode this unified heterogeneous hypergraph and learn
the representations of molecules, we employ a heterogeneous hypergraph attention model includ-
ing dual attention mechanism. First, hyperedge-to-node attention aggregates the global molecular
context into each fingerprint node by computing attention weights from all connected molecules.
Second, node-to-hyperedge attention enables each molecule to aggregate refined fingerprint node
representations, taking into account the heterogeneity of nodes. This results in a comprehensive,
molecule-level embedding capturing higher-order relations among molecules and integrates unique
features of different molecular fingerprints into the molecular embeddings. To evaluate the effec-
tiveness of our model, we perform extensive experiments on eight MoleculeNet benchmark datasets
and compare its performance with state-of-the-art baseline models for molecular property prediction.
Our experimental results show that Fin-H2AN achieves top-ranked performance, outperforming the
state-of-the-art overall. Our main contributions are summarized as follows:

• We propose a unified fingerprint-based heterogenous hypergraph representations, where
each molecule is a hyperedge connecting diverse fingerprint nodes (MACCS, ErG, and
PubChem). This design preserves the unique signals of each fingerprint type and captures
higher-order interactions among fragments and molecules.

• We design a heterogeneous hypergraph encoder with a dual attention mechanism: (i)
hyperedge-to-node attention to inject global molecular context into fingerprint nodes, and
(ii) node-to-hyperedge attention to aggregate refined node features into molecule-level em-
beddings. This setup highlights the importance of specific substructures for predicting
molecular properties.

• We conduct extensive experiments on MoleculeNet benchmarks, showing that our model
consistently outperforms state-of-the-art baselines.
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2 RELATED WORK

Single-View Models (Graphs and Fingerprints): Graph neural networks (GNNs) model
molecules as graphs where atoms are represented as nodes and bonds as edges. Initial GNN ar-
chitectures, including graph convolutional networks (GCNs), graph attention networks (GATs) and
message passing neural networks (MPNNs), effectively captured local atomic relationships within
molecules Kipf & Welling (2016); Velickovic et al. (2017); Yang et al. (2019). Building on these
foundations, several advanced GNN models have been proposed. AttentiveFP adds attention to high-
light key local contexts Xiong et al. (2019); TrimNet fuses atom–bond–atom triplets with multi-head
attention to sharpen bond reasoning while limiting parameters Li et al. (2021); HiGNN decomposes
molecules with BRICS Degen et al. (2008) and applies feature-wise attention for multi-scale con-
text Zhu et al. (2022); ResGAT uses residual connections to stabilize training and extend effective
range Nguyen-Vo et al. (2024). Despite strong 2D topology modeling, atom-level message passing
can require many steps for distant motifs to interact, limiting long-range dependency capture for
properties. As a result, important interactions that influence properties may be underrepresented.
Fingerprints encode chemically meaningful fragments into fixed-length vectors for efficient, inter-
pretable QSAR/QSPR Cherkasov et al. (2014); Mayr et al. (2018); Moriwaki et al. (2018). Fully-
connected neural networks (FCNNs) over ECFP or MACCS keys treat all fingerprint bits equally
ignoring task-specific importance and contextual relationships among fragments Cherkasov et al.
(2014). Bypass architecture Wu et al. (2018) adds residual shortcuts between raw fingerprints
and learned embeddings to preserve information flow, but still relies on bit-wise independence.
FP2VEC Jeon & Kim (2019) learns embeddings for active bits and aggregates them to reveal pre-
dictive motifs. These methods remain limited in explicitly modeling interactions or co-occurrence
patterns between chemically distant motifs, affecting their capacity to capture higher-order relation-
ships that affect the molecular property prediction.

Fusion & Higher-Order Methods To overcome the short-coming of single-view representations,
recent methods fuse multiple molecular modalities. FP-GNN Cai et al. (2022) concatenates finger-
prints embeddings, treating all fingerprint types equally, with atom-level GNN features, blending
local structure and global fragment cues. FP-BERT Wen et al. (2022) adapts masked-language pre-
training to ECFP substructures by treating bits as words and molecules as sentences, then fine-tunes
a CNN head for property prediction. MolPROP Rollins et al. (2024) fuses a pretrained SMILES-
BERT (ChemBERTa-2 Ahmad et al. (2022)) embeddings with GNN node features through joint
fine-tuning. PremuNet Zhang et al. (2024) advances this idea with two complementary pre-training
branches, one fusing SMILES, fingerprints and 2D graphs via a Transformer+GNN, the other mask-
ing and reconstructing 2D topology and 3D coordinates, to produce unified representations. Al-
though these fusion strategies capture richer information, they can be computationally expensive,
and require large pre-training data. Hypergraphs generalize pairwise edges to hyperedges, directly
modeling multi-fragment co-occurrence Bretto (2013). Seq-HyGAN forms hyperedges over over-
lapping k-mers with attention Saifuddin et al. (2023), but arbitrary k-mer splits may miss chemically
meaningful units. In contrast, we build a heterogeneous hypergraph whose nodes are well-defined
fingerprint bits (PubChem, MACCS, ErG) and whose hyperedges are molecules. A dual-attention
mechanism (type-aware and molecule-aware) enriches each bit with global molecular context and
then aggregates salient bits into a molecule embedding, preserving modality-specific semantics
while capturing long-range fragment interactions in a single step and avoiding heavy pretraining
or complex late fusion.

3 METHODOLOGY

In this section, we introduce our Fin-H2AN model. We first describe how to build our fingerprint-
based heterogeneous hypergraph from three complementary fingerprint types (Section 3.1). Next,
we detail the dual attention heterogeneous hypergraph encoder, covering both hyperedge-to-node
and node-to-hyperedge message-passing stages(Section 3.2). Finally, we present the downstream
prediction head and loss functions (Section 3.3). Figure 1 gives a high-level view of our pipeline.
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Figure 1: System architecture of the proposed method Fin-H2AN. a) The first step of the model is
heterogeneous hypergraph contraction, where each molecule is represented as hyperedge and bits
fingerprints as substructures of molecules are represented as nodes. b) The second step is Heteroge-
neous Hypergraph Attention network with dual level attention as hyperedge-to-node level attention
and node-to-hyperedge level attention

3.1 MOLECULAR FINGERPRINT-BASED HETEROGENEOUS HYPERGRAPH REPRESENTATION

One of the most widely used representations of molecular structures is SMILES (Simplified Molecu-
lar Input Line Entry System) Weininger (1988), that provides a compact and human-readable format
to describe molecular structures. SMILES representations can be used to generate various molecular
features, including molecular fingerprints and molecular graphs. Molecular fingerprints are designed
to capture structural features of a molecule. There are different types of fingerprints and each type
represents a group of specific intrinsic characteristics of a molecule, including structural motifs, con-
nectivity, and functional groups. These fingerprints are represented as binary vectors, where each bit
indicates the presence or absence of a specific substructural feature. To enhance molecular property
prediction, we utilize three complementary fingerprint types: MACCS, ErG, and PubChem. Each
of these fingerprints provides unique insights into molecular structures and enables a more compre-
hensive representation of molecular characteristics. MACCS fingerprints consist of 167 bits derived
from predefined SMARTS (SMiles ARbitrary Target Specification) patterns, which represent com-
mon chemical substructures in organic compounds Durant et al. (2002). In contrast, ErG fingerprints
(441 bits) employ a 2D pharmacophore-based approach, emphasizing the local spatial arrangement
of atoms and their neighborhoods. This is particularly useful for capturing bioactive conformations
in drug discovery Stiefl et al. (2006). Meanwhile, PubChem fingerprints, composed of 881 bits,
provide a more comprehensive chemical description by encompassing a wide range of substructures
through numerous SMARTS-based features Bolton et al. (2008).

According to the Similar Property Principle Johnson et al. (1990), structurally similar molecules
tend to have similar properties, and two molecules are similar if they have similar substructures
as functional groups in their sequence. Substructural patterns are effectively captured by molecu-
lar fingerprints. When two molecules share many of these patterns, reflected in their fingerprints
through common active bits, they exhibit a higher degree of similarity. Building on these insights,
to effectively capture higher-order substructural similarities of molecules, we construct novel het-
erogeneous hypergraph representations of molecules using molecular fingerprints. A hypergraph is
a unique model of a graph with hyperedges. Unlike a regular graph where the degree of each edge
is two, hyperedge is degree-free and can connect an arbitrary number of nodes. Each bit in a finger-
print, corresponding to a specific chemical fragment in the molecule, is represented as a node in this
hypergraph. Each molecule is represented as a hyperedge connecting nodes of the molecule’s active
bits in each fingerprint. Since we incorporate three different fingerprints, the resulting hypergraph
contains three distinct node types, making it heterogeneous.

Next, we formally define a heterogeneous hypergraph and introduce our proposed heterogeneous
hypergraph model.
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Heterogeneous Hypergraph: A heterogeneous hypergraph is a tuple HG = (V, E , T ) where V =
{v1, ..vi.., vn} is the set of nodes, E = {e1, ..ej .., em} is the set of hyperedges and T = {t1, ..., tk}
is the set of node types. A hyperedge is a special type of edge that can connect any number of nodes,
unlike traditional graph edges, which link only two nodes. Similar to the adjacency matrix of a
simple graph, a hypergraph can be represented by an incidence matrix Hn×m where Hij = 1 if
vi ∈ ej , otherwise 0 with n is the number of nodes and m is the number of hyperedges.

In our heterogeneous hypergraph HG = (V, E , T ), we take the set of node types as T =
{MACCS,ErG,PubChem}. Each bit i in a fingerprint type t (t ∈ T ) is represented as a node
vi,t ∈ Vt, where Vt denotes all nodes corresponding to the fingerprint type t. So we have 167 nodes
for MACCS, 441 nodes for ERg and 881 nodes for PubChem fingerprints. The complete set of nodes
in the hypergraph is given by V =

⋃
t∈T Vt. Each molecule j is modeled as a hyperedge ej , which

connects the nodes corresponding to its active bits in each fingerprint type. As a result, every hy-
peredge contains three distinct types of nodes, each derived from a different fingerprint. Rather than
merging all fingerprints into a single representation, maintaining separate fingerprint types as node
types allows us to preserve the unique chemical signals of each type. The hypergraph is represented
by an incidence matrix H ∈ {0, 1}|V |×|E|, where Hi,j = 1 if the node vi (belonging to a specific
type of fingerprint) is associated with the molecule (hyperedge) ej , and Hi,j = 0 otherwise. For
example, green molecule on Figure 1(a), has 1 active bit at position 1 for MACCS so include blude
node 1, 2 active bit at position 2 and 3 fro ERg so include yellow nodes 2 and 3 and it include 1
active bit for PubChem at position 2 so include red node 2. This heterogeneous hypergraph structure
explicitly encodes higher-order molecular relationships and captures complex interactions beyond
pairwise similarities. Instead of representing every molecule as a graph, we represent all molecules
in one hypergraph that capture functional similarities and this provides computational efficiency in
addition to its effectiveness for molecular property prediction.

3.2 HETEROGENEOUS HYPERGRAPH ATTENTION NETWORK

In this section, we present our heterogeneous hypergraph attention network, which learns
fingerprint-based molecular embeddings by explicitly modeling higher-order substructural similar-
ities of molecules. Unlike standard GNN models that focus on node embeddings through pairwise
relations, our model captures molecule-level higher order information through hyperedges. In our
design, molecules are modeled as hyperedges that connect fingerprint nodes from three distinct
types (MACCS, ErG, and PubChem). Each molecule is represented as a hyperedge linking the fin-
gerprint nodes that correspond to its substructures. To capture this information, we use a dual atten-
tion mechanism that (i) enhances local fingerprint node embeddings with global molecular context
through hyperedge-to-node attention, and (ii) aggregates the refined node features into a molecule-
level representation using node-to-hyperedge attention, resulting in more comprehensive molecular
embeddings for improved molecular property prediction.

3.2.1 STAGE 1: HYPEREDGE-TO-NODE ATTENTION

In this stage, each fingerprint node vi,t (node i of fingerprint type t ∈ T ), represented by it’s
embedding ni,t, aggregates information from all molecule hyperedges connected to it. While a
fingerprint node represents a specific structural pattern, its importance is determined by the global
context of the molecule. To model this relationship, we introduce an attention mechanism during the
message-passing process from hyperedges to nodes. This mechanism learns the relevance of each
molecule to the fingerprint node with respect to its type, enabling the model to dynamically weigh
the contributions of different hyperedges based on their contextual importance. Using this attention
mechanism, the updated representation of the fingerprint node is defined as:

n new
i,t =

∑
j∈E(i)

αj,i,t W1 ej (1)

where W1 is a trainable weight and αj,i,t is the attention coefficient that quantifies the importance
of hyperedge ej to node vi,t. The attention coefficient with respect to the node type is computed as:

αj,i,t =
exp(ai,j,t)∑

j′∈E(i)
exp(ai,j′,t)

, ai,j,t = LeakyReLU
(
W2 ej ·W3,t ni,t

)
(2)
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where E(i) is the set of molecules connected to node i and W2 and W3,t are trainable weights. W3,t

is type-specific to adapt to the unique characteristics of each fingerprint type.

3.2.2 STAGE 2: NODE-TO-HYPEREDGE ATTENTION

The second stage aggregates enhanced node embeddings into comprehensive molecule-level em-
beddings. The node-to-hyperedge attention layer captures the most relevant structural patterns from
each fingerprint type (MACCS, ErG and PubChem) and combines them into a comprehensive molec-
ular representation. The aggregated hyperedge embedding zj,HyG is:

zj = MLP ([e new
j,MACCS ∥ e new

j,ErG ∥ e new
j,PubChem]) (3)

where e new
j,t , for fingerprint type t, represents the updated representation of molecule j specifically

aggregated from fingerprint nodes of type t. It is computed as:

e new
j,t =

∑
i∈N (j,t)

αi,t,j W6,tn
new
i,t (4)

The attention coefficient αi,t,j , representing fingerprint node vi,t contribution to molecule ej , is
defined as:

αi,t,j =
exp(aj,i,t)∑

i′∈N (j,t)

exp(aj,i′,t))
) , ai,t,j = LeakyReLU

(
W4,tn

new
i,t ·W5ej

))
(5)

where N (j, t) is the set of nodes of type t connected to hyperedge j, and W4,t, W5 and W6,t are
learnable weight matrices, with W4,t and W6,t being type specific.

3.3 PREDICTION AND OPTIMIZATION

After learning the representations of molecules, our goal is to predict molecular properties using
these representations. For this, we utilize a Multilayer perceptron (MLP) that takes the representa-
tion zj of a molecule j and generates the final output as whether molecule j have a specific property

ŷj = MLP(zj) (6)

The entire model is trained using a binary cross-entropy (BCE) loss function for classification tasks
and a mean squared error (MSE) loss function for regression tasks, and are computed as follows:

LBCE = − 1

N

N∑
j=1

[yj log(ŷj
)
+ (1− yj) log(1− ŷj

)
] (7)

LMSE =
1

N

N∑
j=1

(
yj − ŷj

)2
(8)

where N is the total number of samples, yj is the ground truth label (or value) and ŷj is the predicted
label (or value).

4 EXPERIMENTS

4.1 DATASETS

We evaluate our proposed model on eight widely-used benchmark datasets from MoleculeNet Wu
et al. (2018). For classification tasks, we use datasets that evaluate different aspects of drug bioac-
tivity and toxicity. Specifically, the BACE dataset is employed to predict β-secretase inhibition,
while BBBP focuses on blood-brain barrier permeability. The ClinTox dataset is used to distinguish
between FDA-approved compounds and those that failed due to safety concerns, and Tox21 consists
of 12 independent toxicity assays. Additionally, the SIDER dataset examines adverse drug reactions
by categorizing 27 different side effects. For regression tasks that predict key physicochemical prop-
erties of molecules, we use three datasets: the ESOL dataset for aqueous solubility, Lipophilicity
for the octanol-water partition coefficient, and FreeSolv for hydration free energy Wu et al. (2018).
More information about the datasets can be found in Appendix (Table 6).
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4.2 EXPERIMENTAL SETUP

For each dataset, we adopt a random split strategy, allocating 80% of the data for training, 10%
for validation, and 10% for testing. To mitigate sampling bias, we repeat each experiment over 10
different random seeds and report the averaged metrics. Models are trained for up to 100 epochs
using the Adam optimizer, with early stopping triggered if validation performance does not improve
over 7 consecutive epochs. For classification tasks, we evaluate performance using ROC-AUC,
averaging results when multiple labels are involved. For regression tasks, we report the Root Mean
Squared Error (RMSE), where lower values signify better performance. A dynamic learning rate
schedule is employed via a Noam scheduler, adjusting the rate from an initial 1× 10−5 up to a peak
of 1× 10−3, and then decaying to a final value in the range of 5× 10−5 to 1× 10−4. Dropout rates
are tuned per dataset; set to 0.10 for Lipophilicity, FreeSolv, and ESOL, 0.30 for BACE, BBBP, and
Tox21, and increased to 0.50 for ClinTox and SIDER.

4.3 BASELINES

To assess Fin-H2AN performance, we include three categories of baselines. First, foundational
GNN architectures, GCN Kipf & Welling (2016), GAT Velickovic et al. (2017), and D-MPNN Yang
et al. (2019), which provide convolutional, attention-based, and message-passing perspectives. Sec-
ond, we include 3 models from advanced molecular graph models, which are AttentiveFP Xiong
et al. (2019) that applies self-attention during message passing; TrimNet Li et al. (2021) that uses
multi-head attention over atom–bond–atom triplets; and ResGAT Nguyen-Vo et al. (2024) that inte-
grates residual connections into GAT layers. Third, as similar to our modality, two fingerprint-based
models are included, which are FP-GNN Cai et al. (2022) that fuses learned fingerprint embed-
dings with graph features, and FP2VEC Jeon & Kim (2019) that learns dense bit embeddings. All
baselines use the same data splits and evaluation protocols. For all baselines except FP-GNN and
FP2Vec , we adopt published results from ResGAT Nguyen-Vo et al. (2024) to maintain consistency.
For FP-GNN and FP2Vec methods, we retrain them using their recommended hyperparameters to
ensure a fair comparison.

4.4 RESULTS AND ANALYSIS

Tables 1, 2, and 3 summarize the performance of our proposed Fin-H2AN model alongside base-
lines across a diverse set of molecular property prediction tasks. Our evaluation covers five classifi-
cation datasets (BACE, BBBP, ClinTox, SIDER, and Tox21) and three regression datasets (ESOL,
Lipophilicity, FreeSolv). For classification, we report the ROC-AUC (with higher values indicating
better performance), whereas for regression tasks, we present RMSE (with lower values indicating
better performance). To provide a robust comparison, we employ a ranking-based evaluation: for
each dataset, models are ordered based on their performance (with a rank of [1] assigned to the best
result), and an average rank (Avg Rank) is computed across datasets. All results are averaged over
10 random splits.

Classification Performance: Table 1 summarizes ROC-AUC results with standard deviations and
ranking per-dataset (1=best) for tree classification dataset. Fin-H2AN achieves first-place perfor-
mance on BACE (88.77 ± 2, rank 1) and BBBP (92.84±1, rank 1), improving over the second-best
FP-GNN by 0.30–0.94 points while reducing the standard deviation on BBBP from 3 to 1. On
SIDER, Fin-H2AN scores 65.00 ± 2 (rank 2), narrowly trailing FP2VEC’s 65.73 ± 1; both meth-
ods markedly outperform the rest, but our model still cuts baseline variability in half. In terms of
average rank across all datasets, Fin-H2ANachieves the top position with a score of 1.3, indicating
consistent superiority over both classical GNN baselines (GCN, GAT) and recent state-of-the-art
models such as D-MPNN, AttentiveFP, and FP-GNN. Table 2 show the performance on toxicity
classification datasets Tox21 and ClinTox. Our model and other fingerprint-based models are outer
performed by several deep GNN baselines. In ClinTox, ResGAT achieves 88.81 ± 1 (rank 1) and
D-MPNN 85.31 ± 1 (rank 2) versus our 79.58 ± 6 (rank 4), while on Tox21 AttentiveFP reaches
86.00 ± 5 (rank 1) and D-MPNN 84.79 ± 5 (rank 2) versus our 84.34 ± 1 (rank 4), although
Fin-H2AN still outperforms other fingerprint-based models. This underperformance likely stems
from the complex, multi-target toxicity endpoints in these datasets, where atom-level stereoelec-
tronic features, better captured by deep GNNs, play a dominant role Gilmer et al. (2017). Across all
five tasks, Fin-H2AN achieves an average classification rank of 2.4, the best among all compared
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methods, demonstrating that its heterogeneous hypergraph attention yields both high mean accuracy
and low variance. On the other hand, data modality is important for different datasets. While toxic-
ity datasets detailed atom level information is more important, for other datasets, substructures plays
more important roles for molecular property prediction.

Table 1: ROC-AUC Results on MoleculeNet classification datasets.

Model BACE BBBP SIDER Avg Rank
GCN* 65.05± 38 61.55± 68 53.92± 48 8
GAT* 63.16± 69 63.38± 79 56.18± 59 9

D-MPNN* 87.88± 45 91.97± 32 59.21± 56 4.3
AttentiveFP* 88.36± 44 91.29± 44 64.09± 64 4

TrimNet* 80.54± 57 82.75± 37 54.56± 77 7
ResGAT* 88.40± 33 90.77± 26 63.00± 55 4.6
FP-GNN 88.47± 22 91.90± 13 64.97± 13 2.6
FP2VEC 87.81± 26 90.88± 35 65.73± 11 4

Fin-H2AN (Ours) 88.77± 21 92.84± 11 65.00± 22 1.3

Table 2: ROC-AUC Results on MoleculeNet Toxicity classification datasets.

Model ClinTox Tox21 Avg Rank
GCN* 46.68± 39 60.78± 48 8.5
GAT* 53.29± 78 48.28± 49 8.5

D-MPNN* 85.31± 12 84.79± 52 2
AttentiveFP* 84.59± 23 86.00± 51 2

TrimNet* 69.70± 67 84.51± 43 5
ResGAT* 88.81± 11 83.97± 56 3.5
FP-GNN 78.46± 85 84.05± 15 5
FP2VEC 76.02± 66 79.70± 27 6.5

Fin-H2AN (Ours) 79.58± 64 84.34± 14 4

Regression Performance: Table 3 reports RMSE results, with standard deviations and ranking of
models for each dataset from ESOL, Lipophilicity, and FreeSolv for regression tasks. These datasets
evaluate a model’s ability to predict key molecular properties such as solubility and hydration free
energy, which are critical in drug discovery and molecular design. Our model achieves the best
performance with lowest error on ESOL (0.6487 ± 0.04, rank 1) and FreeSolv (1.0115 ± 0.12, rank
1), outperforming strong message-passing baselines such as D-MPNN by 6–10% while maintaining
the standard deviation among the smallest. On Lipophilicity, Fin-H2AN ranks second (0.6254 ±
0.03, rank 2), narrowly behind D-MPNN (0.6148 ± 0.03) but again with identical low variance.
These results yield an average regression rank of 1.3 for our model, demonstrating consistent and
superior performance compared to both classical GNN baselines (e.g., GCN, GAT) and recent state-
of-the-art models (e.g., D-MPNN, FP-GNN). For visual analysis, we provided predicted versus
ground truth plots in the Appendix (Figures 2 (a, b, c)), which illustrates that the predictions closely
align with the diagonal ŷ = y, supporting the low RMSE and variance reported.

Table 3: ROC-AUC Results on MoleculeNet regression datasets.

Model ESOL Lipophilicity FreeSolv Avg Rank
GCN* 2.0569± 0.148 1.1974± 0.037 3.6618± 0.758 7.7
GAT* 2.4261± 0.169 1.4974± 0.068 4.4315± 0.879 8.7

D-MPNN* 0.6930± 0.082 0.6148± 0.031 1.1394± 0.183 2.0
AttentiveFP* 1.5225± 0.137 1.1232± 0.036 3.5585± 0.727 6.7

TrimNet* 0.7499± 0.044 0.6315± 0.035 1.5996± 0.166 5.0
ResGAT* 0.8125± 0.075 0.6833± 0.024 1.4734± 0.315 4.7
FP-GNN 0.7453± 0.073 0.6674± 0.023 1.0720± 0.182 2.7
FP2VEC 1.3134± 0.146 1.0055± 0.049 2.2506± 0.544 6.3

Fin-H2AN (Ours) 0.6487± 0.041 0.6254± 0.032 1.0115± 0.121 1.3
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4.5 FINGERPRINT ABLATION STUDY

To quantify the individual contribution of each fingerprint modality, we compare four variants of
our HFP-GIN model: (1) MACCS-only, (2) ErG-only, (3) PubChem-only, and (4) the full com-
bination of all three fingerprint types. Tables 4 and 5 report the mean±std over 10 indepen-
dent runs for classification (ROC-AUC) and regression (RMSE) benchmarks, respectively. While
each fingerprint provides reasonable predictive power on its own, combining all three consis-
tently yields the best performance across all datasets. On the classification tasks, the combined
(MACCS+ErG+PubChem) model, Fin-H2AN, outperforms each single-fingerprint variant by al-
most 1—16% percentage points in ROC-AUC. For example, on BACE the combined model achieves
88.77±2 whereas it achieves 68.66±5 for MACCS-only and the best single-fingerprint result is
81.59 (ErG) . On the regression tasks, the fusion model reduces RMSE by almost 16–36% com-
pared to single-fingerprint baselines. Notably, on FreeSolv, ErG-only fails (no prediction) because
fewer than 50% of molecules present ErG pharmacophores, forcing the combined model to rely on
MACCS and PubChem features. These findings highlight the complementary nature of the finger-
prints and demonstrate that their integration in Fin-H2AN leads to significant performance gains in
molecular classification tasks.

Table 4: Ablation study on Classification Datasets.

Model BACE BBBP SIDER ClinTox Tox21
MACCS only 68.66± 5 90.80± 2 55.18± 3 77.91± 8 77.70± 2

ErG only 81.59± 4 89.36± 3 56.25± 3 75.31± 6 69.37± 1
PubChem only 73.15± 3 91.79± 1 54.89± 3 73.17± 6 80.35± 1

MACCS+ErG+PubChem 88.77± 2 92.84± 1 65.00± 2 79.58± 6 84.34± 1

Table 5: Ablation study on Regression Datasets.

Model ESOL Lipophilicity FreeSolv
Maccs only 1.0487 ± 0.06 1.2285 ± 0.05 1.4558 ± 0.19

Erg only 1.7157 ± 0.12 0.9773 ± 0.14 –
Pubchem only 0.7788 ± 0.03 1.2284 ± 0.05 1.7599 ± 0.79

Maccs+ErG+Pubchem 0.6487± 0.04 0.6254± 0.03 1.0115± 0.12

4.6 CASE STUDY: INTERPRETING BBB PERMEABILITY VIA FINGERPRINT CONTRIBUTIONS

To further interpret our model’s predictions, we conducted a case study in blood-brain barrier (BBB)
permeability using the BBBP dataset. We analyze fingerprint attributions and fragment-level ClogP
values for two representative compounds, one BBB-permeable and one non-permeable. The detailed
case study is provided in Appendix A.3.

5 CONCLUSION

In this work, we introduced Fin-H2AN, a novel fingerprint-based heterogeneous hypergraph atten-
tion network that unifies multiple molecular fingerprints into a single hypergraph and uses a dual
attention mechanism to capture both global molecular context and modality-specific substructure
importance. By treating MACCS, ErG, and PubChem bits as distinct node types and molecules
as hyperedges, Fin-H2AN naturally models higher-order interactions among chemical fragments
and rapidly aggregates long-range dependencies in a single message-passing step. Extensive eval-
uations on eight MoleculeNet benchmarks demonstrate that Fin-H2AN consistently outperforms
state-of-the-art graph-based and fingerprint-based models across both classification and regression
tasks, while exhibiting low variance across random splits. Looking forward, we plan to enrich the
hypergraph by adding atom-level nodes alongside multi-omics node types, such as gene expres-
sion, so a single dual-attention encoder can seamlessly integrate chemical, structural, and biological
relationships without any separate fusion steps.
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A APPENDIX

Code is available at: https://github.com/anonymous-researcher28/code/

A.1 DATASETS

A.2 REGRESSION PERFORMANCE PLOTS

Figures 2 (a, b, c) illustrate the predicted (ŷ) versus ground truth (y) values for Lipophilicity, ESOL,
and FreeSolv, respectively. In all three datasets, the points closely follow the red diagonal line ŷ = y,
indicating strong agreement between predictions and true values and underscoring the low RMSE
and small standard deviations reported in Table 3.
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Table 6: Dataset Summary

Dataset Task Type #Tasks #Compounds
BACE Binary Classification 1 1,513
BBBP Binary Classification 1 2,039

ClinTox Multi-label Classification 2 1,491
Tox21 Multi-label Classification 12 7,831
SIDER Multi-label Classification 27 1,427
ESOL Regression 1 1,128

Lipophilicity Regression 1 4,200
FreeSolv Regression 1 642

(a) Lipophilicity (b) ESOL (c) FreeSolv

Figure 2: Predicted vs. true scatter plots for regression datasets. Blue markers are individual
molecule predictions; the red dashed line denotes perfect agreement (ŷ = y). The tight cluster-
ing around the diagonal highlights the low RMSE values reported in Table 3.

A.3 CASE STUDY: INTERPRETING BBB PERMEABILITY VIA FINGERPRINT CONTRIBUTIONS

To evaluate the interpretability of our model, we analyze two representative compounds from the
BBBP dataset. Molecule 1 (Fig. 3-a) is known to cross the blood–brain barrier (BBB), whereas
Molecule 2 (Fig. 3-b) is not. Table 7 and 8 lists the top three bits per fingerprint and their corre-
sponding substructure meanings for molecule 1 and molecule 2, respectively. We further computed
fragment-level ClogP values with RDkit rdk (2024) to connect our model’s attributions with chem-
ical permeability features. ClogP, the logarithm of the octanol–water partition coefficient (P ), is
widely used to assess lipophilicity, an important factor for passive membrane diffusion Ghose et al.
(1998); Wu et al. (2023). Molecules with a ClogP value around 2.5 tend to exhibit optimal BBB
permeability, whereas low or negative ClogP values typically indicate poor lipid solubility and weak
diffusion Pajouhesh & Lenz (2005).

In Molecule 1, the highest weight attributions point to the aromatic/halogenated fragment
(MACCS 162: aromatic atom; PubChem 384: conjugated C=C; ErG 203: donor–acceptor/halogen
contact). which is exactly the red-shaded phenyl ring in Fig. 3-a. This fragment shows a positive
fragment ClogP consistent with a lipophilic patch that helps transmembrane diffusion Banks (2009).
At the same time, the model also attends to featyres around amine/tropane region (MACCS 49: pos-
itively charged atom; PubChem 352/443: C–O and carbonyl; ErG 124/81: donor motifs) which
aligns with the gray polar fragment showing a much lower fragment ClogP. The hydrophobic ring
balanced by the polar cationic center is a classic pattern for BBB-permeable drugs where a suffi-
ciently lipophilic fragment compensate local polarity to enable diffusion while maintaining recog-
nition for solubility Pajouhesh & Lenz (2005); Wu et al. (2023). For the non-permeable compound,
the model’s top bits emphasize oxygenated donor rich fragments. These maps to the sugar-like
scaffold highlighted in red in Fig. 3-b and neighboring polyol/amine regions, all showing negative
fragment ClogP. This is the expected signature if high polarity and multiple H-bond donors/acceptors
which reduce effective partitioning into lipid membranes Banks (2009); Pajouhesh & Lenz (2005).
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Table 7: Top 3 Active Bits per Fingerprint Type for Molecule 1

Fingerprint Top Bits Meaning
MACCS 49 positively charged atom
MACCS 162 aromatic atom
MACCS 153 heteroatom adjacent to CH2

PubChem 384 conjugated C=C bonds
PubChem 352 C–O single bond
PubChem 443 carbonyl group

ErG 124 (’Donor’, ’Aromatic’, 8 )
ErG 203 (’DA’, ’Halogen’, 6 )
ErG 81 (’Donor’,’Donor’, 1 )

Table 8: Top 3 Active Bits per Fingerprint Type for Molecule 2

Fingerprint Top Bits Meaning
MACCS 137 (‘non-aromatic heterocycle atom’)
MACCS 153 (‘heteroatom adjacent to CH2’)
MACCS 157 (‘C–O single bond’)
PubChem 352 (‘C–O single bond’)
PubChem 346 (‘aliphatic carbon with OH substituent’)
PubChem 284 (‘C–C single bond’)

ErG 124 (’Donor’, ’Aromatic’, 8 )
ErG 81 (’Donor’,’Donor’, 1 )
ErG 151 (’Donor’, ’Ring’, 8 )

(a) Molecule 1 (permeable). (b) Molecule 2 (impermeable).

Figure 3: Molecular representation and fragment ClogP values for a a) permeable b) impermeable
molecules

14


	Introduction
	Related Work
	Methodology
	Molecular Fingerprint-Based Heterogeneous Hypergraph representation
	Heterogeneous Hypergraph Attention Network
	Stage 1: Hyperedge-to-Node Attention
	Stage 2: Node-to-Hyperedge Attention

	Prediction and Optimization

	Experiments
	Datasets
	Experimental Setup
	Baselines
	Results and Analysis
	Fingerprint Ablation Study
	Case Study: Interpreting BBB Permeability via Fingerprint Contributions

	Conclusion
	Appendix
	Datasets
	Regression Performance Plots
	Case Study: Interpreting BBB Permeability via Fingerprint Contributions


