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Abstract

In single-cell perturbation prediction, a central task is to forecast the effects of
perturbing a gene unseen in the training data. The efficacy of such predictions
depends on two factors: (1) the similarity of the target gene to those covered
in the training data, which informs model (epistemic) uncertainty, and (2) the
quality of the corresponding training data, which reflects data (aleatoric) uncer-
tainty. Both factors are critical for determining the reliability of a prediction,
particularly as gene perturbation is an inherently stochastic biochemical process.
In this paper, we propose PRESCRIBE (PREdicting Single-Cell Response wlth
Bayesian Estimation), a multivariate deep evidential regression framework de-
signed to measure both sources of uncertainty jointly. Our analysis demonstrates
that PRESCRIBE effectively estimates a confidence score for each prediction,
which strongly correlates with its empirical accuracy. This capability enables
the filtering of untrustworthy results, and in our experiments, it achieves steady
accuracy improvements of over 3% compared to comparable baselines. Code is
available at https://github. com/Bunnybeibei/PRESCRIBE.

1 Introduction

Predicting the effects of perturbations is crucial for advancing biological understanding and the
development of targeted genetic therapies. Recent years have seen significant progress in machine
learning models [1H3]], data generation [4] 5], and benchmarking [6, [7] for this task. However, a
critical challenge remains less explored: quantifying prediction uncertainty for individual predictions,
especially for perturbations of genes that are not seen during training and are functionally distant to
any of the genes in the training set. Fig. illustrates this issue, showing that even models with
high average accuracy can make substantial errors on specific predictions.

The first step towards estimating prediction uncertainty is to understand its sources. Prediction uncer-
tainty arises from the interaction between two primary sources. First, data (aleatoric) uncertainty
arises from the inherent stochasticity of biological systems, where perturbing a single gene can yield
a diverse spectrum of cellular outcomes. Second, model (epistemic) uncertainty reflects the model’s
unfamiliarity with a given input, which is particularly high for out-of-distribution perturbations. A
practical framework needs to account for both. For example, a prediction is the least reliable when
the model’s output is far from a highly consistent biological outcome (high model uncertainty, low
data uncertainty). Equally, a prediction is intrinsically uncertain when the biological outcome itself is
highly variable (high data uncertainty).
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Figure 1: Preliminary experiments on the Norman dataset using three representative models: (a)
High overall predictive accuracy does not ensure individual prediction reliability. (b) E-distance
exhibits a strong correlation with prediction accuracy across these models. (c) Calibration analysis
demonstrates that E-distance percentiles effectively stratify prediction accuracy.

Here, we propose a unified, data-driven metric to capture both data and model uncertainty, inspired
by the energy distance (E-distance) [[8]. E-distance quantifies the similarity between two cell
populations by balancing the distance between them against the dispersion within them. In the
context of perturbation prediction, E-distance reconciles both the model uncertainty and the data
uncertainty (Fig.[I(B)). If the ground truth of a perturbation is known a priori, then the E-distance
between the predicted post-perturbation population and the ground truth, composed of an inter-group
distance compensated by a negative intra-group distance term, reflects the accuracy of the prediction
(Fig.[I(c)). Apparently, the ground truth post-perturbation cell fate distribution of an unseen gene
cannot be obtained. Therefore, E-distance, in its original form, is not directly applicable to the
perturbation prediction uncertainty estimation task. In this work, we adapt the idea of E-distance by
jointly modeling the prediction error and the intrinsic post-perturbation dispersion. We name our
perturbation uncertainty estimation metric pseudo E-distance.

To estimate the pseudo E-distance for unseen perturbations, we introduce PRESCRIBE (PREdicting
Single-Cell Response wilth Bayesian Estimation). PRESCRIBE is a multivariate extension of a deep
evidential learning framework (Natural Posterior Network [9]]) that, instead of outputting a single
expression profile, simultaneously predicts the post-perturbation state and estimates the prediction’s
confidence. PRESCRIBE has two key elements: a posterior distribution over the transcriptomic
landscape and an evidence score derived from a learned latent density of the perturbation space.
The pseudo E-distance (Fig. [2) is defined by combining these terms: the spread of the predicted
distribution (measured by its entropy) quantifies data uncertainty, while the evidence score quantifies
model uncertainty. Intuitively, the evidence score measures the distribution density of the training data
in the latent perturbation space within a close vicinity of an unseen target gene or gene combination.
A high evidence score indicates that a prediction is grounded by multiple functionally related gene
perturbation instances in the training data, and a low evidence score indicates otherwise. We model
the post-perturbation transcriptomic spread using a Normal-Wishart conjugate Bayesian framework,
allowing the variance to be inferred from the perturbation embedding via a trained decoder. For
perturbations far from the training data, the predicted distribution defaults to a null state (typically the
unperturbed control cell population). This fallback ensures a safe output for unreliable predictions.

Our main contributions can be summarized as follows:

» We propose PRESCRIBE, a novel framework that uses a predicted pseudo E-distance as a unified
surrogate for both data and model uncertainty in single-cell perturbation prediction.

* We introduce a multivariate extension of the Natural Posterior Network, utilizing an Inverse-Wishart
prior to effectively model predictive distributions over multi-dimensional gene expression states.

* We demonstrate through comprehensive experiments that PRESCRIBE generates well-calibrated
uncertainty scores that improve predictive accuracy by enabling the filtering of unreliable results.



2 Related Work

2.1 Predicting Single-Cell Responses

In-silico prediction of single-cell responses offers an efficient alternative to costly single-cell pertur-
bations in the wet lab. Current methods generally fall into two main categories: direct matching or
disentanglement [7]]. Direct matching methods, such as GEARS [1]] and scGPT [10], map control cell
gene expressions to perturbed expressions to predict responses to new perturbations. Disentanglement
methods, like CPA [11]], isolate perturbation effects from cellular features (e.g., cell type, dosage)
to enable predictions under diverse conditions. Our work aligns with the direct matching strategy,
focusing on the challenge of predicting responses to novel perturbations.

A key assumption in matching methods is the ignorability condition. It posits that, conditional on an
adequate set of observed covariates, no unmeasured confounding factors would bias the comparison
between control and treated cell populations. Within this framework, given a dataset D = { X, y, ¢},
representing M types of perturbation and G genes, where X = {1, 3, ..., z5s } denotes the set of
perturbations, y € R is the post-perturbation gene expression profile, and c is the pre-perturbation
(control) gene expression profile, the predicted post-perturbation expression ¢, can be modeled as:

Yy, = c+ flxi). (1)

where f(z;) is the learned effect under the perturbation z;.

Examples of direct matching models include CellOracle [12]], which uses scRNA-seq and scATAC-seq
data to infer gene networks for simulating linear perturbation effects. GEARS pioneered predictions
for unseen perturbations using gene embeddings and Gene Ontology (GO) based perturbation
embeddings. GraphVCI [13] employs counterfactual concepts from causal inference to enhance gene
regulatory network learning. sams-VAE [14]], uses a sparse additive mechanism shift variational
autoencoder to disentangle specific perturbation effects. More recently, single-cell foundation models
like scGPT and scFoundation [15] also perform single-cell response prediction as a downstream task.

Despite these advances, robust uncertainty is rarely reported. Some methods, such as GEARS (which
uses Monte Carlo dropout [[16]]), do not fully account for the uncertainty from pair-wise distance to
controls. Moreover, the variance of GEARS estimates is not well-calibrated, as it is inconsistent with
generalization difficulty and actual prediction accuracy. These limitations underscore the need for
more practical and specifically tailored uncertainty quantification frameworks for this task.

2.2 Natural Posterior Network for Uncertainty Quantification

The Natural Posterior Network (NatPN) [9] is an evidential deep learning method (Appx.§ for
quantifying uncertainty. Within a single forward process, it estimates epistemic uncertainty (model’s
confidence) through the distance between the learned posterior and the prior in the latent space, while
aleatoric uncertainty (data randomness) is measured via predictive entropy.

NatPN updates beliefs using the Bayesian posterior theory (Appx.§ |E.2)) for exponential family
distributions. Briefly, for a likelihood P(y | w) and its conjugate prior Q(w | xP"°", nP"), observing

. M . .
M data points {y ; }j:1 leads to a posterior Q (w | P, nP°') with parameters are updated as:

pyprior +M . (2)

Xp()st _ npriorxprior_,’_zévl u(y7)
npost — nprior + M

NatPN measures confidence with nP*' — H[P (y | w)], where nP* (total evidence) captures epis-
temic uncertainty and entropy represents aleatoric uncertainty. The design of its density estimation
architecture has been proven to drive the estimated evidence towards zero under out-of-distribution
(OOD) conditions (e.g., far from the training set) (See Appx.§ [F.6]for details).

This confidence score shares conceptual similarities with E-distance calculations (Fig.[2(IV)). How-
ever, standard NatPN cannot be directly applied to single-cell perturbation prediction. It lacks
mechanisms to incorporate pair-wise distances and does not offer a readily available multivariate
extension suitable for complex gene expression data. Our work tries to resolve these limitations.
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Figure 2: Overview of PRESCRIBE. Each perturbation X; under condition c is first mapped onto
a perturbation density space z; by the encoder f,. From z;, the decoder f3 derives the parameter
update x$"* while a normalizing flow fy, yields the evidence update v{™. Posterior parameters w; are

prior out

?
obtained from a weighted combination of prior ;  and updated parameters according to 9"

3 Methods

Our core contribution is the pseudo E-distance, a metric from the model’s outputs that unifies
epistemic and aleatoric uncertainty. In this section, we first describe the model’s probabilistic
foundation, then define the pseudo E-distance and its calculation. Finally, we outline the network
architecture and the optimization objective employed during training. For reference, detailed notation
and hyperparameters are provided in Appx. Tabs.[5]and[6] and the core algorithm in Appx. Algo.[T]

3.1 Probabilistic Modeling of Gene Expression

To model both the distribution of gene expression and predictive uncertainty, we adopt a Bayesian
approach. For a given perturbation category x;, we assume the gene expression vector y; follows a
multivariate Gaussian distribution. Following related work, we place a Normal-Wishart conjugate
prior on the parameters of this Gaussian, which enables analytical Bayesian updates. Thus, a posterior
distribution is defined by four parameters w; = {po,, € RN, k; € RT,1; > N, L;}:

Py, | i Ai) ~N(pp A7Y) Py | Ad) =N (g, (kiA) ),
P(A;) =W (v, ;") = P(Z;71), P(Z) =W (1, ),

3 7

3

where 3; = A, ! is the covariance matrix and A, is its corresponding precision matrix. The scale
matrix W; is defined using a lower triangular matrix L; such that ¥ e ViLiLiT. Here, N, W, and
W1 denote the Normal, Wishart, and Inverse Wishart distributions, respectively. N is the rank of
the gene-gene interaction matrix, estimated via Principal Component Analysis (PCA).

The decoder outputs the effect of a perturbation x; as a set of sufficient statistics and evidence
counters:

t X3 Ko

out __ _ i

X = <x§“‘> - ( O, (md) " + (usi‘)Z(L?m)_T(L?m)q) “
n;)ut — K,/;)ut — 2V;)ut.



The network’s outputs (denoted by the “out” superscript). Since the evidence-related parameters are
proportionally linked (n; = k; = 21;), we use v to refer to them collectively for simplicity.

3.2 Pseudo E-distance as a Unified Uncertainty Surrogate

Definition. To capture both sources of uncertainty, we define pseudo E-distance (Fig.[2] Panel V)
as:

E =207 — H[P(y; | wi)]- ®)
Here, - denotes normalization. This metric comprises two key terms. The first, Dfm, represents the
posterior evidence, which quantifies the model’s epistemic uncertainty. High evidence indicates the
prediction is well-supported by training data, while low evidence suggests an out-of-distribution input.
The second term, —]I:]IH, is the negative normalized entropy of the predictive distribution, which

reflects aleatoric uncertainty or inherent output variability. As shown in Appendix E provably
preserves the rank-ordering of the true E-distance under fixed prior conditions.

Calculation. We initialize a base prior using the control cell profile ¢ and fixed hyperparameters
(k" =1, = 0.5). The posterior parameters are then obtained by combining this base prior
with the model’s outputs through the Bayesian update (Eq.[2). From this posterior, the evidence
P and the predictive entropy H][-] are normalized to the range [N, 2N]. This operation serves two
purposes: it places both components on a comparable scale and it ensures the degrees of freedom of
the resulting Student’s ¢-distribution remain in a regime that preserves its heavy-tailed properties,
which is crucial for capturing sparse regions (low evidence) of the perturbation space.

Remark 1. Our model can distinguish low-confidence, out-of-distribution predictions from high-
confidence predictions of perturbation with little to no effect. Although both may predict an outcome
similar to the control state, they are separated by their significantly different evidence scores.

3.3 Model Architecture

As illustrated in Fig. |2} our model comprises three core modules: an encoder (f,; Panel I) that
generates latent representations, a normalizing flow (f,; Panel II) that estimates evidence, and a
decoder (f3; Panels III-IV) that produces the sufficient statistics for the predictive distribution.

Encoder f,. The encoder processes a perturbation x and the cell’s basal state ¢ into a latent
embedding z € RP that captures functional similarities. Assuming additive effects [17], the encoder
comprises two components: f,, for individual perturbation effects and f,, for non-linear interactions.
For a single perturbation z;, the embedding is calculated as follows:

zi = fa, (xl) = fal:s(fall(xi) +fa12(c))' (6)
For a set of perturbations x, the model aggregates their individual effects via summation. This
operation ensures the resulting embedding is invariant to the order of the perturbations:

2= fol®@) = 3 for (@) + fos (Z m») . )

Here, f,,, is a linear layer that uses pre-trained gene embeddings, while f,,, and f,, are multilayer
perceptrons (MLPs) with LeakyReLU activation. While the encoder design is agnostic to the choice
of gene embeddings, we use those from scGPT [10] by default.

Normalizing Flow f,. The normalizing flow [[18] module estimates the density of the training data
in the latent space, which directly informs epistemic uncertainty. It takes the latent embedding =z as
input and outputs the evidence v. High-density regions (familiar inputs) yield high evidence, while
low-density regions (novel inputs) yield low evidence, forcing the prediction to revert toward the
pre-defined null state. Specifically, the evidence v; is calculated from the latent embedding z, and the
posterior evidence 7" is then updated and normalized as follows:
N V;

v; = exp(fy(z;) +In Ng), P = T

~post

Here, Ny is the total certainty budget, which we set to /V. The update operation for ;  scales the
posterior evidence to the range [NV, 2N ] and balances the influence of the base prior (when evidence
v; is low) against the data-driven prediction (when evidence v; is high).

+ N € [N,2N]. 8)



Decoder f3. The decoder is one linear layer that maps the latent embedding z; to the sufficient

statistics x?". The outputs from the decoder x?" and the normalizing flow v are then combined

with the prior through Bayesian update to form the final posterior distribution and evidence.

3.4 Optimization Objective

PRESCRIBE is trained by minimizing a composite loss function £ designed to encourage both
accurate predictions and meaningful perturbation density estimates:

L=- Ewi~W;1>P“~‘ P (y; | wi)] —Ailly; — Ngitnl H {WZLPOM}

—_————
ﬁl »C2
B : )
E
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Specifically, £ consists of a primary objective for prediction accuracy (£1) and three auxiliary terms,
weighted by hyperparameters A1, A2, A3 (see §[4.9|for grid search details):

Expected Log-Likelihood (£1). This term maximizes the likelihood of the observed data under the
posterior predictive distribution, driving accurate predictions. The details can be found in Appx.[F.1}

Entropy Regularization (£;). This term, weighted by prediction error, acts as a prior that favors
uninformative distributions with high entropy. The details can be found in Appx.[F.2]

E-distance Ranking Loss (£3). To supervise the model’s uncertainty estimates, we introduce
a ranking loss based on ListMLE [19]. This loss enforces consistency between the predicted and
reference rankings within each training batch. Specifically, the predicted pseudo E-distances, E, are
reordered according to the descending order of their corresponding reference E-distances, E:

Egorea = Elargsort(F, descending)]. (10)

The term E(Somd,zl) refers to the ¢-th element of this sorted list. This objective encourages the model’s
predicted ranking of uncertainties to match the reference ranking.

Uncertainty Regularization Loss (£4). This term addresses the problem of vanishing gradients in
low-evidence regions. The details can be found in Appx.

4 Results

This section details PRESCRIBE’s empirical evaluation. The experiments were designed to: (i)
assess the quality of its uncertainty (§ 4.3} [£.6)). (ii) demonstrate its utility in prediction accuracy
(§[.7), and (iii) explore contributions of its core components and initialization strategies (§[4.8} {.9).

4.1 Experimental Setup

Datasets. We evaluated PRESCRIBE on three widely recognized benchmark datasets: Norman [4],
Replogle2022_Repl, and Replogle2022_K562 [5]). (Details are provided in Appx.§[G})

Comparison Baselines. To evaluate PRESCRIBE, we conducted a comprehensive benchmark
against several existing methods. The baseline methods were divided into two main groups: recent
methods without uncertainty estimation (AverageKnown, Linear, Linear scGPT [20]], CellOr-
acle [12], samsVAE [14], GraphVCI [13], scFoundation [15]], and scGPT [10]]) and those with
variance-based uncertainty estimation (GEARS [1]] and GEARS-Drop). The evaluation also en-
compassed several adaptations and ablations of our approach and related models: GEARS-ens,
an ensemble of five GEARS-Drop models; Ours-MLPs, a variant that employed the our model’s
encoder/decoder architecture but specifically used Multi-Layer Perceptrons (MLPs) to regress E-
distance from the latent embedding; Ours-Null, representing our model’s untrained state; Ours-Ens,



an ensemble of five models using the our model’s encoder and an MC dropout [16] decoder; and
Ours-NOINFO, a variant that removed prior information by using zero vectors for the prior mean
and covariance. The complete settings of these baselines can be found in Appx. §H|

4.2 Evaluation Metrics

Our evaluation employed two categories of metrics, each serving a different role.

Prediction Accuracy. These metrics are assessed by measuring the Pearson Correlation Coefficient
(Tpred,wruth) and directional accuracy (ACCpred ruin) between predicted and true gene expression. We

also calculated these metrics on the top 20 differentially expressed genes (DEGs), denoted as 7pcg’

and ACCErEgmh. All accuracy evaluations were performed on log-fold change values.

Calibration Quality. These metrics assess if a model’s confidence scores are meaningful indicators
of its predictive performance. We measure this using several metrics: (1) the Pearson (7perf,cont) and
Spearman’s (rp.s conr) correlation between confidence scores and actual performance (as measured by
Tpred,truth); (2) @ percentile-based classification accuracy (ACCperf cont) to determine if low-confidence
predictions are less accurate; and (3) the Expected Calibration Error (ECE) [21]], denoted as €pexf,cont-

4.3 Estimation of E-distance

Our model is designed to efficiently estimate E-distance without requiring post-perturbation profiles.
We therefore validated the practical effectiveness of our estimated “pseudo E-distance” (E) in two
dimensions. First, across all datasets, £ exhibited a consistent positive correlation with a reference
E-distance (F), which was computed using post-perturbation profiles (Tab.[I(a)). Second, this positive
correlation strengthened significantly as the number of samples (V) used for computing the reference
E-distance (F) increased (Tab.[I{b)). Given that E calculated with a larger N more accurately reflects
the true underlying E-distance, this observed trend suggests that E can serve as an effective, and
potentially asymptotic, approximation of the true E-distance’s ranking.

Table 1: Comparison of pseudo E with reference E-distance (E): (a) across various datasets; (b)
across increasing sample size (/V) used for reference E calculation on the Norman dataset.

(a) Cross dataset performance

| Norman. Repl. K562. |
Method ‘ 7‘E,conf T ACCE,c(mf T TE,conf T /"Evc()nf T ACCE,conf T TEconf T ri;c(mf T ACCE,cOnf T TE,conf T
Ours-Null 0.76 16.13 -3.28 -3.61 19.10 -2.34 -9.58 17.65 -10.96
Ours-MLP | 27.49 25.03 29.56 -45.64 22.81 -50.59 -3.61 18.89 -2.34
Ours 35.56 25.81 33.84 12.18 23.53 21.80 24.74 31.58 16.86
(b) Cross sample size N performance
| Ours Ours-MLPs Ours-Null |
N ‘ 7‘E,conf T ACCE,conf T TE,conf T /"E,c()nf T ACCE,conf T TEconf T TE,c(mf T ACCE,COnf T TE,conf T
54 35.56 25.81 33.84 29.03 27.49 29.56 16.13 0.76 -3.28
200 41.37 33.33 45.44 33.33 32.71 31.52 7.69 -14.68 -9.42
500 80.00 50.00 67.55 50.00 20.00 24.22 NaN 33.33 NaN

4.4 Confidence Scaling with Generalization Difficulty

We utilized the Norman combination perturbation dataset to assess our model’s performance under
varying levels of generalization difficulty. We simulated increasing difficulty by varying the number of
unseen perturbations in combinations of two (0, 1, or 2 unseen). To remove the confounding variables
from E-distance, we controlled for the average E-distance across these scenarios, approximately 55.
As illustrated in Fig. our model significantly reduced its confidence scores as the generalization
difficulty increased. In contrast, others show a minorly decrease or inverse trend. This phenomenon
demonstrates our model’s ability to be more aware of epistemic uncertainty than other baselines.
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Figure 3: (a) The line plot depicts confidence scores from different models plotted against generaliza-
tion difficulty. An accompanying bar plot displays the average E-distance for corresponding levels of
generalization difficulty. (b) t-SNE visualization of the Normal-Inverse Wishart space.

Table 2: Perturbation Prediction Performance Comparison (in %)

Norman. Repl. K562.
Models Toreairan T TS T ACCheaumun T ACCheduun T Toreawun T 70500 1 ACCheqimn T ACChGuun T Toreaimin T 72500 7 ACCpreqimn T ACChedun 1
AverageKnown 39.64 58.98 27.23 61.94 54.53 57.89 53.66 3233 36.86 46.11 59.18 56.14
Linear 37.68 55.54 26.87 61.94 38.01 40.70 47.65 30.15 25.70 3242 52.54 52.36
Linear-scGPT 39.20 58.66 27.23 61.94 50.09 53.95 49.69 31.31 33.86 42.97 54.79 54.37
CellOracle 9.80 12.48 19.20 16.35 3991 7.40 37.55 23.70 4.44 5.89 41.41 41.15
samsVAE 12.48 32.05 37.42 49.63 12.59 36.45 33.04 25.08 8.51 29.03 36.44 43.55
GraphVCI 12.02 30.66 27.95 33.95 14.39 36.30 41.41 25.08 9.73 28.91 45.66 43.55
scFoundation 60.79 65.65 35.66 62.26 47.60 59.46 53.38 43.96 25.15 47.30 57.11 57.32
scGPT 61.48 65.87 61.96 74.43 50.32 65.54 61.72 67.07 32.72 43.15 57.44 57.32
GEARS 45.30 63.19 29.09 69.06 48.18 53.59 51.08 32.33 32.57 42.68 56.33 56.14
GEARS-Drop 44.96 60.38 29.92 68.28 46.49 51.05 52.25 37.08 31.26 42.88 56.34 57.67
GEARS-Drop-5% 45.05 59.61 29.72 66.83 47.01 51.27 52.25 36.79 31.66 43.54 56.28 57.44
GEARS-Drop-10% 49.72 65.23 30.57 70.18 45.34 48.68 52.09 36.93 31.94 43.65 56.48 58.22
GEARS-Ens 45.94 62.44 29.21 69.38 47.87 49.92 5191 34.30 30.58 42.99 56.22 56.36
GEARS-Ens-5% 45.95 61.85 29.01 68.00 48.32 49.72 51.91 33.94 30.99 43.60 56.16 56.12
GEARS-Ens-10% 50.91 67.42 29.86 71.43 48.05 50.07 51.99 34.06 31.29 43.84 56.42 56.91
PRESCRIBE-Null 14.40 43.84 51.19 65.97 8.50 16.95 51.83 55.89 10.96 21.80 52.38 56.30
PRESCRIBE 58.38 64.44 63.24 74.68 59.18 65.50 67.36 79.81 36.20 44.36 60.27 69.69
PRESCRIBE-5% 61.58 66.36 64.08 75.69 60.20 66.07 67.76 79.94 38.28 46.63 60.99 71.15
PRESCRIBE-10% 64.32 68.61 64.73 75.93 60.28 66.13 67.89 80.03 38.58 47.52 61.04 71.21

4.5 Qualitative Visualization

We visualized the Normal Inverse Wishart latent space learned by our model using t-SNE [22]
dimensionality reduction on the Norman dataset (Fig. [3(b)). This visualization represents control
(prior), training, and test perturbations by red, gray, and blue, respectively. The intensity of the blue
color corresponds to the rpreqrunm prediction accuracy, with darker shades indicating higher quality
predictions. The visualization aligns with expectations: training data points and large E values are
generally located further from the control prior; the model assigns them higher confidence, reflecting
their dominance over the prior, and indeed, most of them exhibit high prediction accuracy 7pred truth-

4.6 Accuracy-Based Calibration Analysis

We examined accuracy-based calibration curves for a more granular understanding of our model’s
practical utility. Furthermore, we computed the Spearman correlation (7. ..,¢) between prediction
accuracy and the confidence scores produced by our model and baseline methods (for GEARS-Drop
and GEARS-Ens, inverse values were used as their confidence scores represent variance). From
Fig. @l our model achieved the highest 7] ., across all datasets, and the visualizations of the
calibration curves demonstrated that our model exhibits a consistent trend where confidence increased
monotonically with accuracy, indicating its confidence score is well-calibrated overall. The expected

calibration error (€perf.cont) results are presented in the supplementary materials (Appx. E[)

4.7 Prediction Accuracy with Uncertainty-Guided Filtering

A practical use of reliable uncertainty estimation is identifying and potentially excluding low-
confidence predictions, thereby improving overall performance. We investigated this by comparing
our model’s accuracy after filtering out the 5% and 10% least confident predictions (Ours 5% and
Ours 10%) against baseline models (Tab.[2). Ours-10% significantly outperformed all baselines, while
Ours-5% also showed strong results. It is important to note that modeling distributions (as our model
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Figure 4: Calibration curves relating model-estimated confidence scores to prediction accuracy
("pred,ruth)- Each row corresponds to a dataset, while columns and colors distinguish different models
(in order: Ours, Ours-MLPs, GEARS-Drop, and GEARS-Ens). Text in each subplot indicates the
Spearman Correlation Coefficient (rp..¢ .one) between rpreq run and confidence scores.

does) is inherently more complex than direct value prediction. Thus, models like GEARS-Drop and
Ours, which learn an additional function for confidence evaluation, did not exhibit standout accuracy
initially. However, only our model demonstrated stable, significant, consistent improvements across
metrics after different degrees of filtering unreliable predictions.

4.8 Ablation Studies on Filtering and Key Model Components

We conducted several ablation studies further to understand the sources of our model’s performance.

Table 3: Ablation Studies on Filtering (in %) Table 4: Ablation Studies on Modules (in %)
Model Tpred,truth T ACCpred.lrulh T Model Tpred,truth T ACCpredjuuth T ‘ T;erl'.conf )
Ours 58.38 63.24 Ours-NOINFO ~ 43.25 57.80 36.65
Random Filtering-5%  53.35+3.16  60.56+0.97 wlo L3 55.61 63.61 27.74
Random Filtering-10%  58.28+1.59 57.494+2.25 w/o L4 22.41 54.73 29.83

Impact of Filtering. We performed random filtering (10 repetitions) to assess whether the observed
performance gains were merely an artifact of data removal. As shown in Tab. 3] randomly filtering
5% of predictions significantly decreased accuracy. Filtering 10% randomly brought accuracy back
to approximately the initial unfiltered level, but did not yield significant improvements. This confirms
that the performance gains of our model are not attributable to the filtering operation.
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Figure 5: Hyperparameter Search on Norman Dataset. (a) Box plots illustrating the relationship
between A, and the distributions of 7pred,truth, ACCpred,truth, and r;erf’conf. (b) Line plots illustrating the

relationship between the ratio A /A3 and metrics 7pred truth, ACCpred ruth, and r}ferf,conf, when \y = 0.1.
Impact of Key Components. As demonstrated in Tab.[d] evaluating specific architectural and loss
components revealed their distinct contributions. The Ours-NOINFO variant, despite comparable
prediction performance to our model, showed significantly lower rp . ... values, underscoring the
importance of informative prior settings for well-calibrated uncertainty. The loss term L3, which
supervises learning from E-distance, proved critical; its removal led to a slight ACCpreq trum increase,
potentially due to the adversarial nature of optimizing accuracy versus evidential uncertainty, but at
the cost of substantially reduced uncertainty calibration. Finally, ablating the loss term L4 resulted in
a suboptimal model due to zero gradients, as mentioned in §[3.4]

4.9 Hyperparameter Search Strategy

We developed an efficient hyperparameter tuning protocol for applying our model to new datasets.

Selection Pipeline. The selection protocol can be summarized in the following steps:

* Phase 1 - Ay Optimization: Conduct a grid or random search for A\ (the weight for L3).

* Phase 2 - \; /A3 Ratio Tuning: Fix A3 (the weight for £,) to 10~ and perform a focused search
for A\; (the weight for £2). This effectively tunes the ratio A1 /3.

Rationale and Example. Our efficient two-phase tuning pipeline reduces trials from 216 (6 X 6 x 6)
to 42 (6 x 6 + 6) by fixing A3 in the second phase. This is justified by the adversarial relationship
between L, (weighted by A1, promoting prior adherence) and £, (weighted by A3, encouraging
evidence accumulation). Thus, we fix A3 = 10~° and tune )\;. For example, on the Norman dataset,
an initial random search determined Ay = 0.1 (Fig.[5(a)). Tuning the A\; /A3 ratio (Fig. then
revealed an inverse relationship between confidence calibration (7 .,,¢) and prediction performance

(Tpred truths ACCpred truth), leading us to select Ay /A3 = 0.01 (so A\; = 1077 for A3 = 107°).

5 Conclusion and Discussion

Conclusion. We introduce PRESCRIBE, a novel uncertainty-aware framework for single-cell
response prediction. By employing a multivariate Natural Posterior Network to estimate the pseudo E-
distance for each perturbation category, our model delivers well-calibrated, instance-level uncertainty.
This metric acts as a unified surrogate for both aleatoric (data) and epistemic (model) uncertainty,
and its application demonstrates practical utility by improving overall predictive accuracy.

Future Work. Recent research [23] highlights the critical impact of the reference state (often the
unperturbed cell state) in this task. Therefore, future work will leverage PRESCRIBE’s configurable
“null” state to explore how the choice of this reference influences predicted perturbation responses.
The goal is to guide the optimal selection of a reference state, enabling the model to learn the specific
effects of perturbations more easily along the pronounced direction of change.
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A Notation Table

Table 5: Notation and Descriptions for Key Variables in PRESCRIBE

Notation

Description

I
-

71/7'%7-[/

>
~

Tpred,truth
ACCpred,truth

Tperf,conf
ACCo

S
Tperf,conf

Mean value

Covariance matrix

Number of perturbation types

Genetic perturbation

Post-perturbed transcriptomics expressions
Pre-perturbed transcriptomics expressions
Exponential family distribution

Conjugate prior

Normal distribution

Variance

Wishart distribution

Inverse Wishart distribution

Precision matrix

Rank of gene-gene interaction matrix
Hidden dim

Latent dim

Token count in scGPT embedding
Parameters in NIW+; L: lower triangular matrix
NIW parameter: ¥ = L= TL~!
Simplified NIW parameters: w = {po, K, v, L}
Evidence (data observations)

Sufficient statistics for NIW

Pseudo E-distance

E-distance (energy distance)

Batch size

Entropy

Digamma function

Gamma function

Encoder learnable parameters

Decoder learnable parameters

Flow model learnable parameters

Expected log-likelihood

Entropy regularization

E-distance supervised loss

Uncertainty-regularized loss

Weights for Lo, L3, L4

Pearson correlation (predicted vs. true log fold change)
Directional accuracy (predicted vs. true log fold change)
Pearson correlation between F and z*

Quintile classification accuracy (E vs. z%)

Spearman correlation (E vs. T¥)

TNIW = Normal Inverse Wishart distribution; *z defaults to PCC; unless specified.
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B Default Settings

The PRESCRIBE framework was trained on a single NVIDIA RTX 4090 GPU. We used the
Adam [24] optimizer with an initial learning rate of 10~* and set the weight decay value as 10~°. The
training was carried out for a maximum of 50 epochs using batch sizes of 4096 samples, with early
stopping triggered if £, of the validation set did not show improvement for three consecutive epochs.
A dynamic learning rate scheduler “plateau” reduced the learning rate by 1% when the relative £,
validation improvement remained below 0.01% for two consecutive epochs. The implementation
leverages PYTORCH LIGHTNING [25] 2.4.0’s modular architecture.

Table 6: Experiment Configurations.

Hyperparameter

Value

Model Settings

Flow layers
Flow size
Flow n hidden
Bound

D

N

10
0.774231384
2

30

64

10

Training Details

Warm up epochs
Warm up learning rate
Optimizer

Scheduler

Scheduler change step
Scheduler reduce rate
Patience

Learning rate

Total epochs

Weight decay

B

Gradient Accumulation
A1

A2

A3

5
0.001
Adam
Plateau
2
0.99

3

le-4
50
le-5
4096
4

le-7
0.1
le-5
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C Algorithm

The optimization process of PRESCRIBE can be summarized in the following algorithm|[T]

Algorithm 1 Training Process of PRESCRIBE

1: Input:
2:  Perturbation types: X;

3:  Condition information: ¢, x*"";

4:  Prior evidence: vP"";

5:  Post-perturbed transcriptomics expressions: y,;

6:  E-distance of training samples: E;;

7. Initialize:

8: 0 ={60,,0y,03} < initialize network parameters;

9: repeat

10: x; < random mini-batch from X;

11: zi < fa(wi, €); // Encoder;

12: n; < fs(2:); // Flow;

13: X; = {x1, X2} ¢ fs(%); // Decoder;

14: // Bayesian Posterior Update;

15: X;  compute through Eq. 4}

16: VP 1; < compute through Eq.

172 R 2o

18 e WX,

19: oot X0
20: LP < Cholesky((x5™ — (x3*")?) x (0*)?) x 2%
21: L <+ compute through Eq.[0}
22: /l Update parameters according to gradients;

23: 00—Vl
24: until deadline reached

D Computational Complexity Analysis

The computational complexity of our model is characterized by three primary components: the
Encoder, the Flow, and the Decoder. The complexities for each component are detailed below:

1. Encoder: The overall computational complexity for the Encoder is O(d - (S + G + d + D)). This
is derived from the complexities of its constituent functions:
* f111 O(S -d+ d)
. f122 O(G -d+ d)
. f13: O(d . d+ d)
o f2:0(d-d+d)
* fo:O(d-D+D)
2. Flow: The complexity associated with the Flow component is O(D).

3. Decoder: For the Decoder, which takes an input of dimension D and produces an output of
dimension (N - (N + 1)/2 + N), the computational complexity is O(D - N?).

E Preliminaries

E.1 E-Distance
E-distance [26], a statistical metric for assessing high-dimensional distributions, offers measures of

the signal-to-noise ratio within a dataset. It is popularly referred to as energy distance, originally
derived from the concept of gravitational energy in physics. In essence, E-distance determines
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whether two distributions are distinct by comparing the distance between them — pairwise distance— to
the variability within each distribution—self-distance”. The illustration can be referred to in Fig[J(IV).
Applying E-distance in single-cell perturbation prediction task was introduced by scPerturb [8]], which
utilized E-distance to differentiate between strong and weak perturbations. For two given single-cell
statuses, represented as X and Y, the E-distance calculation is defined as follows:

E(X,Y) = 25XY*UX*UY7 (11)
where ox and §xy are the self-distance within and pairwise distance between distributions:
1 N N
— i =i, 12
ox N(N_l);;”“ %l (12)
] MN
Oxy = W;;Hxi—wn. (13)

Typically, scPerturb sets the control status as X, aligning with most deep learning models’ assump-
tions. Our observation (Fig. suggests an apparent positive correlation between E-distance and
predictive quality. However, since E-distance needs to access data, it poses challenges for predicting
unseen perturbations, which is out-of-sample data.

E.2 Bayesian Posterior Update

In the context of distributions from the exponential family, we can express the conjugate prior and
the posterior distribution after observing M target observations as follows:

P(y | w) = hy) exp (87 u(y) - Aw)), (14)
Qw | x,n) = n(x,n) exp (nw” x — nA(w)), (15)
Q (w | ™, n™") o exp (nI"’SQ...vTXp“Sl — npOS‘A(w)). (16)

The parameters w, ¥, and n correspond to the target distribution, prior distribution, and evidence,
respectively. The posterior parameters can be updated as follows:

{xmm_7WMWW+zyu@»

e : (17)
npost — nprlor + M

The method nature posterior network [9] has leveraged this framework to predict Bayesian uncertainty.

Moreover, it employs normalizing flows [[18] to develop a structural latent space, inferring that regions

distant from the training data should exhibit higher uncertainty. However, this approach has yet to be

expanded to the multivariate Gaussian distribution, which needs to be theoretically complemented in

corresponding derivation to predict single-cell perturbation response better.

E.3 Deep Evidential Regression.

Evidential learning provides a promising solution to the challenge of overconfidence in deep learning
models. This approach is more efficient than ensemble methods [27] or Monte Carlo approximations,
as it learns high-order prior distributions by gathering evidence from training samples in a single
forward pass. Currently, the research on multivariate regression within this framework is limited,
with only one study [28] focusing on the parameters of a Normal Inverse-Wishart (NIW) distribution,
which serves as a conjugate prior. In this setting, the target y € RY is considered to be independently
and identically distributed (i.i.d.) from a multivariate Gaussian distribution with an unknown mean gt
and covariance matrix 3. The model aims to predict not only the mean E[u], but also the aleatoric
uncertainty [E[X] and epistemic uncertainty var[u]. These predictions can be expressed as follows:

E[S
Elu] = po, E[S] o ﬁLLT, var[y] o 1/[2’1. (18)
To generate these predictions, this method optimizes the analytical solution of the likelihood function:
P(y; | wi)=ty, —n+1 (yi | 2o;, y%z\mlth ”iLiLiT)' (19)

However, it lacks mechanisms to ensure a structured and continuous latent space, which is important
to leverage genetic structural similarity. Additionally, some studies [29[30] have noted that the model
takes the risk of halting the optimization process in highly uncertain areas, denoted as “zero-evidence”.
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F Derivation and Proof

This section includes theoretical derivations and proofs of PRESCRIBE. First, § [F.I] provides the
derivation for the expected log-likelihood (£1) of a multivariate Gaussian distribution under a Normal-
Inverse-Wishart prior. The derivation for the differential entropy of the Normal-Wishart distribution
(L) is presented in § [F2] §[F3]offers a justification for how Eq. mitigates the issue of zero
gradients in regions of high uncertainty. Furthermore, a multivariate approximation for the Gamma
and Digamma functions is derived in §[F.4] Moreover, this section also presents a proof demonstrating
that the pseudo E-distance preserves the ranking order of the true E-distance in § Finally, we
review the mechanism that NatPN uses to capture generalization difficulty. §[F.6]

F.1 Derivation of £

Expected Log-Likelihood £,. £; optimizes expected log-likelihood under predicted posterior w,
improving accuracy and reducing uncertainty. It also affects other data points’ evidence due to flow
normalization. Its closed form is as follows:

- 5 In(2m) + (1n 20 L LT | + ¥y (5)) (20)
1 I
-3 <(y, - H’Oxi) (yz - NOm,.,)T VfLiLzT + 2%)

For stability, ¢y (x) is approximated by Zf:/:l In(Z=2+1) (Appx. .

The Normal-Inverse-Wishart (NIW) distribution g1, 3 ~ W1 (p, k, v, ) is the conjugate prior of
the normal distribution y ~ N(u, ). Note that both parameters « and v can be viewed as pseudo
counts. However, PRESCRIBE enforces a single pseudo-count n corresponding to k = 2v.

Target Distribution. The density and the entropy of the Multivariate Normal distribution are:

exp (—i(x — ) T2 H(x —
R, ) = S (;))NEE( 2 e

H[N(p, )] = gln(%re) + %m 13| (22)

Conjugate Prior Distribution. The density of the NIW distribution is:

1
W_l(I,L’E | Mo, Ky Vs ‘Il) :N <l"’ ‘ Hos KZE) Vv_l(E | ‘1171/)7 (23)
/2|3 1
WS | ®,v) = i VN| | exp{—tr (2_1\11)}. (24)
2Fry () L2
The full version of the probability density function is:
AL > s i {5 2
W, | g, 5, v, ¥) = expd —=Tr (T2 — = (p—p) 7 (u— }
(1 3 | o ) Ty (7)) OP 12 ( ) =5 (1= mo) (b — o)

(25)
where Ty is the multivariate gamma function and Tr(-) is the Trace of the given matrix.
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Expected Log-Likelihood. The expected likelihood of the Multivariate Normal distribution
N(u, X) under the NIW distribution W1 (pq, 5, v, ®) is:

B, ) w—1 (gm0 N N(y | g1, 3] (26)
N 1 1
=E [—2 In(27) — 3 In|X|— 3 (vi—w) ' =7 (yi - u)] (27)
1
=5 (-BE[i- " =7 (i - w) - B[] - Nn2m) (28)
1
=5 (-Em|3i-w" i - =] +E[m[272] - Nin(2m))
(29)
1
=5 (VIYEET +y E[pE7] +yE [0 2] - E[p uz )
1

+§((Nln2fln|\11\+1/)N (%)) len(27r)> (30)

1 1
=5 (= )" (0= ) PELT T B 4 (5) - NIn(2m)).

2
€2V
Here ¢ (-) denotes the multivariate digamma function. In PRESCRIBE’s formulation, we can obtain

@' = yLL" and the moment of the NIW distribution E [uX "] = py-vLL",E [27'] =vLL",
E [uT ;4271] =l vLLT + %I , and the moment of the Inverse Wishart distribution is

E[n|E]=-NIn2+1n|¥| -y (g) —In

Yowls) o

F.2 Derivation of £,

Entropy Regularization £,. L5 is an entropy prior favoring high-entropy posterior distributions
WP Tts closed form:

N+1

_I/i-‘rN-l-l (Vi)+ViN (33)

AV 2
Approximations for stability (Appx.: ay(z) ~ zln(z) — 4 andIn Ty (z) = W In(27) +

IS (27 — (2 4+1—n) + (z — n) In(2EL=2)). In this section, gives the derivation of the
expected log-likelihood of a multivariate Gaussian distribution under Normal Inverse Wishart prior
Eq[20] [F.2] presents the derivation of the differential entropy of the normal Wishart distribution Eq[33]
In[F.3] we justify that Eq[3.4] can avoid zero gradient in highly uncertain areas. Lastly, we derive an
approximation of Gamma and Digamma in a multivariate version in[F.4] Before deriving Eq[33] we
first introduce two propositions as follows:

Proposition 1. For A ~ W(W, v) and any positive definite matrix A € RN*N,

E[tr(AA)] = vtr(AA). (34)

Proof. Eltr(AA)] = tr(E[A]A) = vir(PA). O
Proposition 2. For ¥ ~ W~Y(W, v) and any positive definite matrix A € RV*¥,

E[tr(Z71A4)] = vtr(® 1 A). (35)

Proof. By definition, 7' ~ W(\Il_l,u), so according to Proposition we can Yyield:
E[tr(Z1A)] = vtr(E 1 A). O
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The Differential Entropy of the Inverse Wishart Distribution. Using the Inverse Wishart density
given in Eq[24] the Inverse Wishart differential entropy is:

H(E) = —ElnW (2| ¥,0v)] (36)
:_;1n|\11|_|_]E[tr(§_l\I’)]+V;Vln2+lnFN (%)+$E[ln\‘l’ll (37
SR ”“(‘1;1‘1’) + 2 m2 pny (2) + 25 (e - N2 -y (2))

(38)
Q]V;lln‘f‘#/évﬂnm (g)—%N“wN (5) (39)

where (a) uses Propositionand Eq and in (b) used tr(® W) = tr(I) = N and simplified.

F.3 Derivation of £,

Zero Gradient Regions. Research has shown that when the evidence approaches zero, the gradient
will also become zero, resulting in stopping optimisation.

Proposition 3. The model cannot learn from samples in high uncertainty areas by optimizing L.

Proof. Given the parameters p,, of the flow module, we can obtain 9v7*" as Eq Therefore, the
gradient of the loss function £, with respect to p, is given by:

(9,61 o 3£1 8l/p{m
dp, — Owrer Op,

oL pv+Nu

- LN — : (40)
Oypost (ePV+NH + Vprtor)Z
oL 1

=1 .N. : : . 41)
Oppost 6p,,+NH + Quprior | Vprwref(py+NH)

(@)

In a high uncertainty areas, p, — —oco = (a) — 0, so it leads to zero gradient with respect to p,.
The model cannot learn from samples in these regions. O

Then, we prove that the effectiveness of the proposed L4 can be supervised not only by pairwise
distance but also by avoidance of the zero gradient scenario.

Proposition 4. L, can help the model learn from samples within zero-gradient regions.

Proof. Through Eq we can obtain /% = ln(% - vPrr) Then we can derive the gradient of
L4 with respect to p,, is given by:
8£4 - 8£4 ov
dp,  OvPost Op,
N (pv — N) (2N —py)
= —|Y; — Mog, N (42)
v~ b | G R o =) N2
= - |yz — Moz, 7& 0. (43)
O

The gradient remains non-zero when p,, — —oo, which avoids zero gradients in these areas.
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F.4 Approximation of Multivariate Gamma and Digamma Function.

The computation of a distribution’s entropy often requires subtracting large numbers from each other.
Although these numbers tend to be very close together, this introduces numerical challenges. For
large parameter values, we approximate the entropy by substituting numerically unstable terms and
simplifying the resulting formula. For this procedure, we use the following equivalences [31]:

InT(x) ~ 1lr127r —z+ (J: - ;) Inz, (44)
Y(z) =1 —*—f—(') ! ~1 (45)
nw— o — )~z

According to the definitions of the multivariate Gamma functions and the multivariate Digamma

Function:
Inly(z) = N(N ln 2m +Zln< (x—&-l—n))’ (46)

N
(@)= v <:H;“) , @7)
n=1

we can obtain multivariate approximation versions as follows:

N(N —1) 1

Ty () ~ == In(2) + Z<1n27r—(x+1—n)+(x_n)1n(”;_”)>,(48)

l\D

x—n—&-l. (49)

an

F.5 Proof of Ranking Order Preservation

Theorem 1. Under fixed prior conditions, E preserves the ranking order of E.

Proof. Under min-max normalization with fixed control states, we derive: £ = 20xy — Y, where
dxv,Y € [N,2N]. Through model design constraints: distance from prior v < dxy and target
entropy H « Y. Let v = adxy and H = bY with a,b > 0. Then:

EZQG((;XY*N) (Y —N)

alN bN
725Xy—N7Y—N
o N N
2W0xy —Y - N 1
= - _F-1
N N

Let C = —1. Then £ = +E + C. Since N is a positive constant (as §xy,Y € [N,2N] implies
N > 0), % is a positive constant. This linear relationship, FE = kE+C where k = % > 0, preserves
ordinal rzinking§ between E and E. If By < Es, then kE; < kEs, and kE; + C' < kE> + C, which
implies £y < Ejs. Thus, the ranking order is preserved. O

F.6 NatPN

The authors of NatPN [9] have proved that PRESCRIBE can estimate evidence that asymptotically
approaches zero under OOD conditions (e.g., far from the training set) as follows:

Lemma 1. Let {Ql}lR be the set of linear regions associated to the piecewise ReLU network f4(x).
For any x € RP, there exists 5* € RT and I* € {1,..., R} such that §x € Q- for all § > &* [32]] .

Theorem 2. Let a NatPN model parametrized with a (deep) encoder fq4 with piecewise ReLU
activations, a decoder gy, and the density P(z|w). Let f4(z) = Vx4 a)) be the piecewise affine
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representation of the ReLU network fq on the finite number of affine regions QW [32]]. Suppose that

V) have independent rows and the density function P(z|w) has bounded derivatives, then for almost
any x we have P(f(6 - x)|w) s 0. i.e the evidence becomes small far from training data.
— 00

Proof. Let x € RP be a non-zero input and fo be a ReLU network. Lem. |1|implies that there
exists 0* € Rt andl € {1,...,R} suchthat § - = € QU for all § > 6*. Thus, z; = fs(6 - x) =
§- (VOzx) 4 a® for all § > §*. Note that for § € [6*,+0c], z5 follows an affine half line
S, = {z]z =6 - (VWz) +a¥, § > 6} in the latent space. Further, note that V()z # 0 and
IIzs]l s oo since = # 0 and V() has independent rows. O

Our model adaptation did not conflict with its architectural prerequisite.

G Dataset Details
Our datasets are downloaded from scPerturb [§]] and perform the following preprocessing steps:

Quality control. To ensure consistent and homogeneous quality throughout the different data sets,
we filter cells with fewer than 1, 000 and genes with fewer than 50 cells per data set.

Feature Selection. We identified the top 2, 000 highly variable genes (HVGs) from each dataset
using standard procedures and included all perturbed genes in the dataset’s feature list.

Normalization. The raw count data were normalized using the lognormalization method, imple-
mented through the standard preprocessing workflow of Scanpy [33].

Identifying Differentially Expressed Genes (DEGs). We identified DEGs by comparing perturbed
cells to control cells for each perturbation. Genes were ranked based on adjusted p-values computed
using the Wilcoxon test in Scanpy, with those p-values< 0.05 designated as DEGs.

PCA. Considering that too large a dimension will cause the Student’s t-distribution to not be
distinguishable from the Gaussian distribution, we choose the PCA components as 10. The PCA was
trained on the training set and performed on the validation set and test set. Additionally, we save the
PCA model for reconstructing all gene’ values. The results are saved in adata.obsm['y_pca’].

E-distance Calculation. The E-distance for each perturbation was calculated to quantify the effect
of the perturbation. E distance is a statistical measure of distance between two distributions, which
is utilized to indicate the degree of perturbation effect in scPerturb. We utilized the scPerturb [8]
Python library to compute this metric between the control and perturbed cells. For each perturbation,
we subsampled all perturbations to their greatest common divisors to perform the calculation. The
distance e, pairwise distance, and self-distance are saved in adata.obsm[“n’’], adata.obsm[’d’] and
adata.obsm[’s’], respectively. For normalization, we perform the max-min normalisation on all the
training sets’ E distances onto [N, 2N].

Spilt Dataset. The filtered perturbations were divided into training, testing, and validation sets
according to the default operation in GEARS [1]]. The training set was used to fit the models, the
validation set was used to select the best model, and the testing set was used to evaluate the final
model performance. And for more details, see Tabﬂ}

H Baseline Setting Details

To evaluate PRESCRIBE'’s effectiveness, we benchmarked it against seven baseline models and five
PRESCRIBE variants. Unless otherwise specified, all baseline model parameters were configured
according to this benchmark [6] research to ensure a fair comparison.
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Table 7: Summary Statistics of Different Datasets

Metric Norman2019 [4] Replogle2022_Repl [S Replogle2022_K562 [5
Average E-distance 59.172741 135.737438 31.004867

Number train/val/test 80712/4758/6009 121242/14959/37863 133412/13593/45114

Type of train/val/test 213/32/32 1036/115/384 734/82/272

Test Description Only double gene knock-out perturbation ~ Only single gene knock-out perturbation ~ Only single gene knock-out perturbation
UMI Count 2037 3212 2868

Cell Type K562 RPEI K562

H.1 AverageKnown

AverageKnown is a fundamental approach that averages gene expression across all cells within known
perturbations to predict unseen perturbations.

H.2 Linear

The linear method is derived from a benchmark study [20]. The optimization objective is given by
: train T 2
argmin [ Y™ — (GWP” + b) [, , (50)

where Y™ is the gene expression matrix of perturbed cells. The rows represent the gene feature set,
and the columns represent the perturbed genes in the training data. G is the gene embedding matrix
obtained from the top K principal components derived from principal component analysis (PCA) on
Y'rin P s a subset of G that includes the perturbed genes in the training data. The fitted matrix is
expressed as b = % vazl YUin where b is the vector of average gene expressions from Y™, The
matrix W is solved using the normal equations:

W = (GTG +AT) ' GT (Y™ — b) P (PTP + \I) . (51)
Here, we set k to 512 and A to 0.1. The fitted W is then used for prediction:
Y =b+ GWP7, (52)

where Y represents the predicted gene expression, and P denotes the subset of G that corresponds to
the embeddings of perturbed genes in the testing data.

H.3 Linear-GPT

Linear-scGPT [20] employs the same modeling approach as the linear method, with the key distinction
that the gene embedding matrix G is derived from the scGPT model rather than the PCA components
of the training data. We followed the instructions from the GitHub repository of the linear method to
obtain the scGPT gene embeddings.

H4 scGPT

The scGPT [10] model is versatile across various scenarios due to its ability to accept any length of
gene input. In the unseen perturbation transfer and unseen cell type transfer scenarios, we adhered to
the guidance in the scGPT GitHub repository to reformat data and train models. Default parameter
settings were employed, with the model trained using all genes in the feature set. Similar to GEARS,
we trained the scGPT model for 20 epochs and selected the best-performing model based on validation
results for testing. For zero-shot transfer and cell state transition scenarios, the scGPT model was
trained on a combined dataset comprising a total of 17 datasets, ensuring broader generalization
across different biological contexts.

H.5 scFoundation

scFoundation [15]] also employs transformer-based architectures, making it suitable for in silico
perturbation tasks, similar to the training paradigm of scGPT. Specifically, we leveraged the encoder
module of the scFoundation model to train the perturbation model. The training and testing procedures
mirrored those in scGPT. Since scFoundation incorporates more transformer layers than scGPT, we
set the learning rate to 1 x 1075,
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H.6 CellOracle

We used the code provided on the CellOracle [12] GitHub repository. Since our control group
data contained significantly fewer cells compared to the tutorial dataset, we reduced 'n_iters’ from
100, 000 to 1,000 to improve computational efficiency.

H.7 GEARS

Standard. We followed the tutorials provided in the GEARS [1] GitHub repository. GEARS is
designed for scenarios involving unseen perturbations. We first reformatted our data to align with
GEARS'’ input requirements. The model was then trained using its default parameter settings, with
the number of epochs set to 20. The best-performing model, selected based on its performance on the
validation dataset, was used to evaluate the test dataset.

GEARS-Drop. GEARS provides an additional version that predicts the variance of each gene
under specified perturbations, utilizing a loss function based on negative log likelihood as follows:

1l e K
B = = _ _ & \@2+Y)
Lune =7 ) B D52 e (—su) (8u — &) (53)
k=1"" 1=1 =1
where g, is the predicted post-perturbation scalar and &2 is the variance, s, = logs? =

post-pert
wine Rt pune

GEARS-Ens. We ensemble GEARS-Drop by employing different training/validation splits and
evaluating on the same test set. The results are averaged for both the predicted values and the
logarithmic variance. We set the ensemble number to 5.

H.8 Variants Of PRESCRIBE

Ours-NOINFO. We did not use the control status’s mean and covariance to initialize the prior
distribution. Instead, we adopt zeros as the prior mean and a zero matrix as the prior covariance.

Ours-Null. Ours-Null represents our model’s untrained state.

Ours-Drop. The Ours-Drop variant utilizes the same encoder architecture as PRESCRIBE but
replaces the decoder with Multi-Layer Perceptrons (MLPs). It employs the same loss function
formulation as GEARS-Drop.

Ours-Ens. We ensemble Ours-Drop by employing different training/validation splits and evaluating
on the same test set. The results are averaged for both the predicted values and the logarithmic
variance. We set the ensemble number to 5.

Ours-MLPs. The Ours-MLPs variant is based on Ours-Drop but incorporates an additional mean
squared error loss term. It uses two linear layers with a ReLU activation function to regress the
E-distance from the latent embeddings.

I Expected Calibration Error Results

We evaluate the uncertainty calibration of our model using the Expected Calibration Error (ECE).
As shown in Tab. 8] PRESCRIBE consistently achieves lower ECE scores across all three datasets
compared to the baselines, indicating better-calibrated uncertainty estimates.

J Limitations

Input Embeddings. The model’s performance relies on the quality of input embeddings from
foundation models. Applying it to complex chemical perturbations, which are more intricate than
genetic ones, requires developing correspondingly richer embeddings.
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Model Norman Repl K562

PRESCRIBE (Ours) 30.59 50.38 41.47
GEARS-unc 3245 63.96 64.76
GEARS-Ens 38.63 53.85 43.07

Table 8: Expected Calibration Error (ECE), multiplied by 100. Lower values indicate better calibra-
tion. Our model, PRESCRIBE, is compared against two baselines.

Continuous Data Assumption. We assume a continuous Gaussian space, while single-cell data is
often represented as discrete counts. A potential solution is to use an autoencoder (e.g., scVI [34]) to
project count data into a continuous latent space, apply our method, and then reconstruct the counts.

Representation of Epistemic Uncertainty. Our framework approximates epistemic uncertainty
with latent space density. While this is a practical approach, it is an indirect measurement, as genuine
epistemic uncertainty is difficult to quantify and interpret [35]]. Developing more direct and robust
methods for representing epistemic uncertainty is a crucial direction for future research.

K Broader Impacts

Our framework has broader applicability beyond its current focus on predicting gene perturbations.
Many disciplines within the Al for Science landscape, such as materials science or drug discovery,
face two common challenges: models are usually required to make predictions on novel, out-of-
distribution inputs, and the training data is often derived from experimental observations subject
to significant inherent uncertainty. By providing a unified approach to quantifying both epistemic
(out-of-distribution) and aleatoric (data) uncertainty, our method can enhance the reliability and
trustworthiness of machine learning models in these critical scientific applications.
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L. NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations in the Appx. ??.
Guidelines:

* The answer NA means that the paper has no limitations, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or when images are taken in low lighting. Or a speech-to-text system might not
be used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset or provide access to the model. In general. Releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper elaborates on all the details of training and testing (such as data
partitioning, hyperparameters, how they are selected, types of optimizers, etc.), as can be

seen in §[@.1]and the Appx. §[G]
Guidelines:
» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The paper reports error bars suitably and correctly defined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar rather than state that they have a 96% CI if the
hypothesis of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

* If error bars are reported in tables or plots, the authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses this work’s possible positive and negative social impacts
in the sections in the Appx.[K]

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper has complied with all relevant licenses and usage terms, and has
credited all original authors.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper well documented and is the documentation
provided alongside the assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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